高考物理含弹簧的物理模型专题分析

合集下载

专题受力分析之弹簧问题

专题受力分析之弹簧问题

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂;其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘;还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法;根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析;一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力;当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态;2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变;3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解;同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值;弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解;二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上不拴接,整个系统处于平衡状态;现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面;在此过程中,m2的重力势能增加了______,m1的重力势能增加了________;例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况;只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单;2.突变类问题例3.如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态;现将l2线剪断,求剪断瞬时小球的加速度;若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度;突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”;所以,对于细线、弹簧类问题,当外界情况发生变化时如撤力、变力、剪断,要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键;3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,它与碰撞类问题的一个明显差别就是它的作用过程相对较长,而碰撞类问题的作用时间极短; 例4.如图6所示,物体B静止在光滑的水平面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B运动并与弹簧发生碰撞,A、B始终沿统一直线,则A,B组成的系统动能损失最大的时刻是A.A开始运动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时4:机械能守恒型弹簧问题对于弹性势能,高中阶段并不需要定量计算,但是需要定性的了解,即知道弹性势能的大小与弹簧的形变之间存在直接的关系,对于相同的弹簧,形变量一样的时候,弹性势能就是一样的,不管是压缩状态还是拉伸状态;例5.一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为m=12kg的物体A、B,它们竖直静止在水平面上,如图7所示;现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经物体B刚要离开地面;求:⑴此过程中所加外力F的最大值和最小值;⑵此过程中力F所做的功;设整个过程弹簧都在弹性限度内,取g=10m/s2例6.如图8所示,物体B和物体C用劲度系数为k的弹簧连接并竖直地静置在水平面上;将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落后与物体B碰撞,碰撞后A和B粘合在一起并立刻向下运动,在以后的运动中A、B不再分离;已知物体A、B、C的质量均为M,重力加速度为g,忽略物体自身的高度及空气阻力;求:1A与B碰撞后瞬间的速度大小;2A和B一起运动达到最大速度时,物体C对水平地面压力为多大3开始时,物体A从距B多大的高度自由落下时,在以后的运动中才能使物体C恰好离开地面5.简谐运动型弹簧问题弹簧振子是简谐运动的经典模型,有一些弹簧问题,如果从简谐运动的角度思考,利用简谐运动的周期性和对称性来处理,问题的难度将大大下降;例7.如图9所示,一根轻弹簧竖直直立在水平面上,下端固定;在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩;当弹簧被压缩了x0时,物块的速度减小到零;从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a随下降位移大小x变化的图像,可能是下图中的例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧压缩,在压缩的全过程中忽略空气阻力且在弹性限度内,以下说法正确的是A.小球所受弹力的最大值一定大于2mgB.小球的加速度的最大值一定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加速度为零时重力势能与弹性势能之和最大6.综合类弹簧问题例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态;一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩;开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向;现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升;若将C换成另一个质量为的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少已知重力加速度为g;综合类弹簧问题总结:综合类弹簧问题一般物理情景复杂,涉及的物理量较多,思维过程较长,题目难度较大;处理这类问题最好的办法是前面所述的“肢解法”,即把一个复杂的问题“肢解”成若干个熟悉的简单的物理情景,逐一攻破;这就要求学生具有扎实的基础知识,平时善于积累常见的物理模型及其处理办法,并具有把一个物理问题还原成物理模型的能力;。

高中物理专题复习之弹簧模型中的极值问题

高中物理专题复习之弹簧模型中的极值问题

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

一、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。

求此过程中所加外力的最大和最小值。

图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg km ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。

刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。

二、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。

一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006= ①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得:E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥ 解①~⑥式可得h x =02。

高三物理复习物理模型组合讲解——弹簧模型(功能问题)

高三物理复习物理模型组合讲解——弹簧模型(功能问题)

模型组合讲解——弹簧模型(功能问题)[模型概述]弹力做功对应的弹簧势能,分子力做功所对应的分子势能、电场力做功对应的电势能、重力做功对应的重力势能有区别,但也有相似。

例:(2005年江苏高考)如图1所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直,磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略。

初始时刻,弹簧恰处于自然长度,导体在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触。

(1)求初始时刻导体棒受到的安培力。

(2)若导体棒从初始时刻到速度第一次为零时,则这一过程中安培力所做的功W1和电阻R上产生的焦耳热Q1分别为多少?(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R上产生的焦耳热Q为多少?图1解析:(1(2)由功和能的关系,得安培力做电阻R上产生的焦耳热(3[模型要点]在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系或能量转化和守恒定律求解,图象中的“面积”功也是我们要熟悉掌握的内容。

高考不作定理要求,可作定性讨论。

因此,在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解。

分子力、电场力、重力做正功,对应的势能都减少,反之增加。

都具有相对性系统性。

弹簧一端连联物、另一端固定:当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻。

若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。

若关联物与接触面粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。

此时有两个方案:一是严格带符号运算,q考虑正和负,所得W的正、负直接表明电场力做功的正、负;二是只取绝对值进行计算,所得W只是功的数值,至于做正功还是负功?可用力学知识判定。

高考物理模型101专题讲练:第36讲 与弹簧相关的机械能守恒问题

高考物理模型101专题讲练:第36讲 与弹簧相关的机械能守恒问题

第36讲 与弹簧相关的机械能守恒问题1.(2022·江苏)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态.A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零.A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时,弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量(多选)2.(2022·辽宁)如图所示,带电荷量为6Q (Q >0)的球1固定在倾角为30°光滑绝缘斜面上的a 点,其正上方L 处固定一电荷量为﹣Q 的球2,斜面上距a 点L 处的b 点有质量为m 的带电球3,球3与一端固定的绝缘轻质弹簧相连并在b 点处于静止状态。

此时弹簧的压缩量为L 2,球2、3间的静电力大小为mg 2。

迅速移走球1后,球3沿斜面向下运动。

g 为重力加速度,球的大小可忽略,下列关于球3的说法正确的是( )A .带负电B .运动至a 点的速度大小为√gLC .运动至a 点的加速度大小为2gD .运动至ab 中点时对斜面的压力大小为3√3−46mg一.知识回顾1.弹簧类问题的突破要点(1)弹簧的弹力大小由形变大小决定,解题时一般应从弹簧的形变分析入手,确定原长位置、现长位置、平衡位置等,再结合其他力的情况分析物体的运动状态。

(2)因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。

因此,在分析瞬间变化时可以认为弹力大小不变,即弹簧的弹力不突变。

(3)在求弹簧的弹力做功或弹簧的弹性势能时,通常可以根据系统的机械能守恒或功能关系进行分析。

2.弹簧类问题的注意事项(1)弹簧处于相同状态时弹性势能相等;(2)在不同的物理过程中,弹簧形变量相等,则弹性势能的变化量相等。

经典高三物理模型水平方向上的碰撞及弹簧模型 知识点分析

经典高三物理模型水平方向上的碰撞及弹簧模型 知识点分析

水平方向上的碰撞及弹簧模型[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

[模型讲解]一、光滑水平面上的碰撞问题例1. 在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。

已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于()A.B.C.D.解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出,由能量守恒定律得,联立解得,所以正确选项为C。

二、光滑水平面上有阻挡板参与的碰撞问题例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。

这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P 发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。

图1(1)求弹簧长度刚被锁定后A球的速度。

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。

解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得,由以上两式求得A的速度。

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒得当弹簧伸到最长时,其势能最大,设此势能为EP”,由能量守恒,有解以上各式得。

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型:
1.简单弹簧模型:最基本的模型,将弹簧看作一个线性弹性体,满足胡克定律,即弹
簧力与变形量成正比。

2.质点弹簧模型:在简单弹簧模型的基础上,考虑到弹簧两端连接的物体的质量,将
其视为质点,分析弹簧振动、调和运动等问题。

3.弹簧振子模型:将弹簧与一定质量的物体(如小球)组合起来,形成一个简谐振动
系统,研究其振动频率、周期等特性。

4.弹簧串联模型:多个弹簧按照串联方式连接,研究整个系统的弹性特性和变形量的
分布情况。

5.弹簧并联模型:多个弹簧按照并联方式连接,研究整个系统的弹性特性和总的弹簧
常数。

6.弹簧平衡模型:将弹簧与其他物体相连接,使其处于平衡状态,通过分析受力平衡
条件,求解物体的位移和力的大小。

7.弹簧阻尼模型:考虑弹簧振动过程中存在的阻尼现象,引入阻尼系数,分析阻尼对
振动特性的影响。

8.非线性弹簧模型:考虑到弹簧在较大变形下不再满足胡克定律,采用非线性弹簧模
型进行分析,如非线性胡克定律、比例限制等。

(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习

(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。

轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。

它不能产生支持作用。

它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

3。

绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。

4.力对绳子做的功,全部转化为绳对物体的做的功。

5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。

②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。

10 NC 。

5错误! ND.10错误! N1—2。

5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)

5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)

5、力与直线运动:弹簧问题一.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.2、求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.二、动态变化问题力与运动的关系:力→加速度→速度变化→(运动状态变化)(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化。

(2)速度增大或减小取决于加速度和速度方向间的关系,和加速度的大小没有关系。

(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系。

三、临界问题物体分离的临界条件时两物体间相互作用力为0例1、(2021·山东泰安模拟)如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( )A.0 B.2.5 NC.5 N D.3.75 N【解析】当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.【答案】 D针对训练1. (多选)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ【解析】:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mgcos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC 上的拉力F 也发生了突变,小球的加速度方向沿与BC 垂直的方向且斜向下,大小为a =mg sin θm=g sin θ,B 正确,A 错误;在BC 被突然剪断的瞬间,橡皮筋AC 的拉力不变,小球的合力大小与BC 被剪断前拉力的大小相等,方向沿BC 方向斜向下,故加速度a =Fm=gcos θ,C 正确,D 错误.【答案】 BC针对训练2、(多选)如图所示,在水平地面上的箱子内,用细线将质量均为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )A .系统处于静止状态时地面受到的压力大小为(M +2m )g -FB .系统处于静止状态时地面受到压力大小为(M +2m )gC .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +FD .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g【解析】 系统处于静止状态时,对整体进行受力分析,由平衡条件可得,地面对整体的支持力F N =(M +2m )g ,由牛顿第三定律可知地面受到的压力大小为(M +2m )g ,选项B 正确,A 错误;剪断连接球b 与箱底的细线瞬间,球b 向上加速运动,地面受到的压力大小为(M +2m )g +F ,选项C 正确,D 错误。

高考中弹簧类模型分析

高考中弹簧类模型分析
求并不是很 高, 但是弹簧类模型能涉及 力和加速度 、
功 和 能 、冲量 和 动 量 甚 至 简 谐 运 动 等 多 个 物 理 概 念 和规 律 。学 生 往 往 对 弹力 大 小 和 方 向 的变 化 过 程 缺
弹 簧 的弹 力 是 一 个 变 力 ,而 且 弹 性 势 能 仅 与 弹
的改 变 需 要 一 定 时 间 , 因 此这 种情 况下 , 弹 力 的大 小 不 会 突 然 改 变 , 即弹 簧 弹 力 大 小 的改 变 需 要 一 定 的
簧; £ 这段 时 间内 , 小球 先加 速后减 速 , 小球 的动
能 先 增 加 后 减 少 。C 选项 正 确 。
( 作者单位 : 山 东 省利 津二 中 )
考 点 聚 焦

■ 薛 保 生
翻开历 年全 国各省市 高考物理试卷 ,弹簧类模 时 间。 ( 这一点与绳不 同 , 高 中物理研究 中, 是不考虑 绳 的形变 的 ,因此绳两端所受弹力 的改变可 以是 瞬
时 的。)
四、 弹簧弹力做功与动量 、 能量 的综 合 问题
型出现频率之高让人震惊 。虽然大纲对胡克定律要
析 问 题 时要 注 意 弹 力 的 大小 与方 向 时刻 要 与 当 时 的 ( A) t t 时刻小球动能最大.
( B) t 2 时刻小 球动能最 大.
( C) t 2  ̄ t 这段时 间内, 小球 的 动 能先 增 加 后 减 少 . ( D) t 2  ̄ t 这段时 间内, 小 球 增 加 的 动 能 等 于 弹 簧 减 少 的 弹性 势 能 .
由弹 簧 自身 的 特 点 所 决 定 ,必 须 考 虑 到 弹 簧 既 可 以
簧正上方某一高度处 由静止释放 ,小球 落到弹簧上 压缩弹簧到最低点 , 然后又被弹起离开弹簧 , 上升到

2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

模型建构——弹簧模型弹簧问题综合性大,但弹簧问题往往是由几个基本的模型组合而成,掌握弹簧问题的基本模型,对于解决复杂的弹簧问题有很重要的意义。

处理复杂的弹簧模型,要应用基本的弹簧模型,应用力的观点、能的观点以及动量的观点解决问题。

类型图示规律分析瞬时性初始时,A 、B 紧挨在一起但A 、B 之间无压力。

剪断细绳的瞬间,弹簧的弹力不能突变,AB 系统受到的合外力等于B 的重力,用整体法求AB 的加速度,隔离法求A 、B 间的相互作用力对称性斜面光滑,物块B 紧靠挡板,物块A 被外力控制恰使弹簧处于原长状态。

撤去外力后,A 物块的运动具有对称性分离性撤去外力F ,AB 向上运动的过程中,A 、B 相互作用力为0的位置为A 、B 分离的位置不变性弹性势能与物体质量无关,相等的伸长量和缩短量弹性势能相等弹性势能不变模型光滑斜面上物块A 被平行斜面的轻质弹簧拉住静止于O 点,如图所示,现将A 沿斜面拉到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法错误的是( )A.在运动过程中,物块A 和弹簧组成的系统机械能守恒B.从B 到C 的过程中,合外力对物块A 的冲量为零C.物块A 从B 点到O 点过程中,动能的增量等于弹性势能的减小量D.B 点时物块A 的机械能最小【解析】选C。

在运动过程中,物块A和弹簧组成的系统机械能守恒,故A正确;从B到C的过程中,根据冲量定理可知Ft=mv C-mv B,由于B、C两点的速度为零,故合外力对物块A的冲量为零,故B正确;从B点到O点的过程中,对物块A根据动能定理可知-mgh-W弹=12m v O2-0,故动能的增量等于弹性势能的减小量减去克服重力做的功,故C错误;物块A和弹簧系统机械能守恒;B 点时弹簧的弹性势能最大,故物块A的机械能最小,故D正确。

弹性势能对称模型(2022·湖北选择考)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。

2025高考物理总复习“滑块—弹簧”模型和“滑块—斜(曲)面”模型

2025高考物理总复习“滑块—弹簧”模型和“滑块—斜(曲)面”模型
目录
2
提升素养能力
目录
提升素养能力
A级 基础对点练 1.(2024·广东东莞高三检测)如图1所示,弹簧一端固定在竖直墙上,质量为m的光
滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量为2m的小球
从槽高h处自由下滑,则下列说法正确的是( C )
A.在下滑过程中,小球和槽组成的系统动量守恒
目录
研透核心考点
1.模型图示
模型二 “滑块—斜(曲)面”模型
目录
研透核心考点
2.模型特点 (1)上升到最大高度:m 与 M 具有共同水平速度 v 共,此时 m 的竖直速度 vy=0。 系统水平方向动量守恒,mv0=(M+m)v 共;系统机械能守恒,12mv20=12(M+m)v2共 +mgh,其中 h 为滑块上升的最大高度,不一定等于弧形轨道的高度(相当于完 全非弹性碰撞,系统减少的动能转化为 m 的重力势能)。 (2)返回最低点:m 与 M 分离点。水平方向动量守恒,mv0=mv1+Mv2;系统机 械能守恒,12mv20=21mv21+12Mv22(相当于弹性碰撞)。
01 02 03 04 05 06 07 08 09
目录
提升素养能力
5.如图5所示,光滑弧形滑块P锁定在光滑水平地面上,其弧形底端切线水平,小
球Q(视为质点)的质量为滑块P的质量的一半,小球Q从滑块P顶端由静止释放,
Q离开P时的动能为Ek1。现解除锁定,仍让Q从滑块顶端由静止释放,Q离开P
时的动能为Ek2,Ek1和Ek2的比值为( C )
3
C.16E
D.E
图2
01 02 03 04 05 06 07 08 09
目录
提升素养能力
解析 设 P 物体的初速度为 v0,由已知可得12mv20=E,P 与 Q 碰撞过程中,两 物体速度相等时,弹簧压缩量最大,此时弹性势能最大,整个过程中,满足动 量守恒 mv0=(m+3m)v1,最大弹性势能 Ep=12mv20-21×(m+3m)v21,解得 Ep= 38mv20=34E,故 A 正确。

高考物理复习考点知识专题讲解19 弹簧连接体模型(解析版)

高考物理复习考点知识专题讲解19 弹簧连接体模型(解析版)

高考物理复习考点知识专题讲解专题19 弹簧连接体模型一、单选题1.(2020·山东省高三其他)如图甲、乙所示,细绳拴一个质量为m的小球,小球分别用固定在墙上的轻质铰链杆和轻质弹簧支撑,平衡时细绳与竖直方向的夹角均为53°,轻杆和轻弹簧均水平。

已知重力加速度为g,sin53°=0.8,cos53°=0.6。

下列结论正确的是()A.甲、乙两种情境中,小球静止时,细绳的拉力大小均为43 mgB.甲图所示情境中,细绳烧断瞬间小球的加速度大小为43 mgC.乙图所示情境中,细绳烧断瞬间小球的加速度大小为53 mgD.甲、乙两种情境中,细绳烧断瞬间小球的加速度大小均为53 mg【答案】C【解析】A.甲、乙两种情境中,小球静止时,轻杆对小球与轻弹簧对小球的作用力都是水平向右,如图所示由平衡条件得细绳的拉力大小都为 5cos533mg T mg ==︒ 故A 错误;BCD.甲图所示情境中,细绳烧断瞬间,小球即将做圆周运动,所以小球的加速度大小为1a g =乙图所示情境中,细绳烧断瞬间弹簧的弹力不变,则小球所受的合力与烧断前细绳拉力的大小相等、方向相反,则此瞬间小球的加速度大小为253T a g m == 故C 正确,BD 错误。

故选C 。

2.(2020·四川省棠湖中学高一期末)如图所示,A 、B 两个小球质量为1m 、2m ,分别连在弹簧两端,B 端用平行于斜面的细线固定在倾角为37°的光滑固定斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度大小分别为( )A.35g 和35gB.0和35gC.12235m m g m +⋅和0D.0和12235m m g m +⋅ 【答案】D【解析】剪断前,小球A 处于平衡状态,弹簧的弹力1sin 37F m g=剪断后瞬间,绳子拉力突然消失,而弹簧的形变量没变,小球A 仍处于平衡状态,加速度为0;而此时B 小球,根据牛顿第二定律222sin 37F m g m a +=整理得,B 小球的加速度 122235m m g a m +=⋅ 故D 正确,ABC 错误。

专题04 弹簧模型-2023年高三物理常见模型与方法强化专训专练(解析版)(解析版)

专题04 弹簧模型-2023年高三物理常见模型与方法强化专训专练(解析版)(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题04弹簧模型特训目标特训内容目标1高考真题(1T—6T )目标2三大力场中有关弹模型的平衡问题(7T—12T )目标3三大力场中有关弹簧模型的动力学问题(13T—18T )目标4三大力场中有关弹簧模型的能量动量问题(19T—24T )【特训典例】一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则()A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++-+=+对B 有B B AB B sin cos m g m g F m a θμθ--=联立可得AB A B BF F m m m =-+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++-化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ-⎛⎫-- ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =-+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。

专题受力分析之弹簧问题

专题受力分析之弹簧问题

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。

还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。

根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。

一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。

在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。

例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。

高考弹簧问题专题详解

高考弹簧问题专题详解

高考弹簧问题专题详解文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]高考弹簧问题专题详解高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。

知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。

数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。

说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。

2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。

(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。

(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。

弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。

如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。

由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。

专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)

专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)

1.动量守恒条件.(1)系统不受外力或合外力为零时,动量守恒.(2)若在某一方向合外力为0,则该方动量守恒.2.规律方法应用动量守恒定律解题的基本思路(1)分析题意,明确研究对象,确定所研究的系统是由哪些物体组成的.(2)对各阶段所选系统内的物体进行受力分析,区分系统内力和外力,在受力分析的基础上根据动量守恒定律条件判断能否应用动量守恒定律.(3)明确所研究物体间的相互作用的过程,确定过程的初、末状态,即系统内各个物体的初动量和末动量.(4)规定正方向,确定初、末状态的动量的正、负号,根据动量守恒定律列方程求解.3.在一个多过程、或者比较复杂的运动中,可能存在着同时满足动量守恒和能量守恒以及机械能守恒的问题,那么我们要根据题中的条件判断是否符合动量守恒和机械能守恒的条件,然后利用公式解题。

动量守恒的条件:系统不受外力或者所受合外力为零,则系统机械能是守恒的机械能守恒的条件:只有重力或系统内弹力做功,系统的机械能是守恒的。

动量守恒可以说某个方向上守恒,但机械能守恒不能说某个方向上守恒。

解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题利用动量和能量的观点解题的技巧(l )若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理(3)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显示出它们的优越性例题分析典例 1 如图所示,轻弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m 的小物块从槽高h 处开始自由下滑,下列说法正确的是()A .在下滑过程中,物块的机械能守恒B .在下滑过程中,物块和槽的动量守恒C .物块被弹簧反弹后,做匀速直线运动D.物块被弹簧反弹后,能回到槽高h 处【答案】C典例 2. 如图所示,木块 A 和 B 质量均为 2 kg,置于光滑水平面上. B 与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当 A 以 4 m/s的速度向 B 撞击时,A、B 之间由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为( )A. 4 J B.8 J C.16 J D.32 J【答案】B【解析】 A 与 B 碰撞过程动量守恒,有m A v A=(m A+m B)v AB,所以v AB==2 m/s.当弹簧被压缩到最短时,A、B 的动能完全转化成弹簧的弹性势能,所以E p=(m A+m B)v =8 J.典例 3 如图所示,物体 A 静止在光滑的水平面上, A 的左边固定有轻质弹簧,与 A 质量相等的物体 B 以速度v 向 A 运动并与弹簧发生碰撞,A、B 始终沿同一直线运动,则A、B 组成的系统动能损失最大的时刻是( )A . A 开始运动时B. A 的速度等于v 时C. B 的速度等于零时D . A 和 B 的速度相等时答案】D【解析】当 B 触及弹簧后减速, 而物体 A 加速, 当 A 、B 两物体速度相等时, A 、B 间距离最小, 弹簧 压缩量最大, 弹性势能最大, 由能的转化与守恒定律可知系统损失的动能最多, 故只有 D 正确 典例 4 (多选)如图甲所示,一轻弹簧的两端与质量分别为m 1和 m 2的两物块 A 、B 相连接,并静止在光滑的水平面上.现使 B 瞬时获得水平向右的速度 3 m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如 图乙所示,从图象信息可得 ( )A . 在 t 1、t 3时刻两物块达到共同速度 1 m/s ,且弹簧都处于伸长状态B . 从 t 3到 t 4时刻弹簧由压缩状态恢复到原长C . 两物体的质量之比为 m 1∶ m 2=1∶2D . 在 t 2时刻 A 与 B 的动能之比为E k1∶E k2=8∶1【答案】 BD专题练习1 (多选 )如图所示, 两物块质量关系为 m 1=2m 2;两物块与水平面间的动摩擦因数 μ2= 2μ1,两物块原来静止,轻质弹簧被压缩,若烧断细线后,弹簧恢复到原长时,两物块脱离弹簧且速率均不为零,则 ( )A .两物块在脱离弹簧时速率最大C .两物块的速率同时达到最大D .两物体在弹开后同时达到静止【答案】 BCDB .两物块在刚脱离弹簧时速率之比为 v 1 1v 2=2【分析】 烧断细线后,对 m 1、m 2及弹簧组成的系统,在 m 1、m 2 运动过程中,都受到滑动摩擦力的作用, 其中 F 1= μ1m 1g ,F 2=μ2m 2g ,根据题设条件,两摩擦力大小相等,方向相反,系统所受外力的合力为零,动 量守恒.两物块未脱离弹簧时,在水平方向各自受到弹簧弹力和地面对物体的摩擦力作用,其运动过程分 为两个阶段:先是弹簧弹力大于摩擦力,物块做变加速运动,直到弹簧弹力等于摩擦力时,物块速度达到 最大,此后弹簧弹力小于摩擦力,物块做变减速运动,弹簧恢复原长时,两物块与弹簧脱离.脱离弹簧后, 物块在水平方向只受摩擦力作用,做匀减速运动,直到停止.【点评】 对于所研究的系统,只要所受外力的合力为零,无论有多少个过程,无论系统内各物体是否接 触,也无论系统内物体间相互作用力的性质如何,动量守恒定律都适用.解题中既可以。

高考经典物理模型:弹簧类问题(一)

高考经典物理模型:弹簧类问题(一)

弹簧类问题(一)——常见弹簧类问题分析轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见. 应引起足够重视.弹簧类命题突破要点1. 弹簧的弹力是一种由形变而决定大小和方向的力. 当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应. 在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2. 因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变 . 因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3. 在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解. 同时要注意弹力做功的特点: W=-( 1 2 1 2 . 弹性势能的kx - kx ),弹力的功等于弹性势能增量的负值k2 2 2 1公式p=1kx 2 ,高考不作定量要求,可作定性讨论. 因此,在求弹力的功或弹性势能的2改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上( 但不拴接 ) ,整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1 g/ k1B.m2g/k2C.m 1g/ k2D.m 2g/ k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1 离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g /k2,而 m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△ x= (m1 + m2) · g/k2- m2g/ k2=m l g/ k2.此题若求m l移动的距离又当如何求解?参考答案 :C2.S1和 S2表示劲度系数分别为k1,和 k2两根轻质弹簧, k1>k2;A和B表示质量分别为 m A和 m B的两个小物块, m A>m B, 将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使 ( ) .A.S 1在上, A 在上B.S 1在上, B 在上C.S2在上, A 在上D.S2在上, B 在上参考答案 :D3. 一根大弹簧内套一根小弹簧,大弹簧比小弹簧长 0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1( 大弹簧 ) 和k2( 小弹簧 ) 分别为多少 ?( 参考答案k1=100N/m k 2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上, L1的一端悬挂在天花板上,与竖直方向夹角为θ ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1) 下面是某同学对该题的一种解法:解设 L1线上拉力为 T l, L2线上拉力为 T2,重力为 mg,物体在三力作用下保持平衡T l cos θ =mg, T l sin θ=T2, T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为 mgtanθ =ma,所以加速度 a=g tan θ,方向在 T2反方向.你认为这个结果正确吗 ?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ,a=gsin θ(2) 若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与 (1) 完全相同,即 a=gtan θ,你认为这个结果正确吗 ?请说明理由.解答:对,因为 L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5. 如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为 M的木板,木板下面再挂一个质量为 m的物体.当剪掉 m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长, ( 不考虑剪断后m、 M间的相互作用 ) 则 M与 m之间的关系必定为( )A.M>mB.M=mC.M<mD.不能确定参考答案 :B6. 如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中( 重物与弹簧脱离之前 ) 重物的运动情况是( )参考答案: CA. 一直加速运动B.匀加速运动C. 先加速运动后减速运动 D .先减速运动后加速运动[ 解析 ]物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7. 如图所示,一轻质弹簧竖直放在水平地面上,小球 A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案 :CA. 小球加速度方向始终向上B. 小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下( 试分析小球在最低点的加速度与重力加速度的大小关系)8. 如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到 B 点.今用一小物体 m把弹簧压缩到 A 点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是( )A. 物体从 A 到 B 速度越来越大,从 B 到 C速度越来越小B. 物体从 A 到 B 速度越来越小,从 B 到 C加速度不变C.物体从 A 到 B 先加速后减速,从 B 一直减速运动D.物体在 B 点受到的合外力为零参考答案 :C9. 如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至 A 点,然后放手。

高考物理含弹簧的物理模型专题分析(答案)

高考物理含弹簧的物理模型专题分析(答案)

含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。

几乎贯穿整个力学的知识体系。

对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。

因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。

题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。

1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。

例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。

弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为CA .2121F F l l B .2121F F l l C .2121F F l l D .2121F F l l 例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。

现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m B .)(2)(212221k k gm m C .)()(21212221k k k k g m m D .22221)(k g m m +12211)(k gm m m 解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m ,x 2=221)(k g m m 故A 、B 增加的重力势能共为:ΔE P =m 1g(x 1+x 2)+m 2gx 2=22221)(k g m m +12211)(k gm m m 答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF进行计算更快捷方便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。

几乎贯穿整个力学的知识体系。

对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。

因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。

题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。

1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。

例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。

弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为 C A .2121F F l l -- B .2121F F l l ++ C .2121F F l l +- D .2121F F l l -+例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。

现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m ++B .)(2)(212221k k g m m ++C .)()(21212221k k k k g m m ++ D .22221)(k g m m ++12211)(k g m m m +解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m +,x 2=221)(k gm m +故A 、B 增加的重力势能共为:ΔE P =m 1g (x 1+x 2)+m 2gx 2=22221)(k g m m ++12211)(k g m m m +答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF∆进行计算更快捷方便。

2.动力学中的弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变。

(2)如图所示,将A 、B 下压后撤去外力,弹簧在恢复原长时刻B 与A 开始分离。

在弹力作用下物体的运动,由于弹力与弹簧的伸长量有关,随着物体的运动,弹簧的长度随之改变。

因此,在许多情况下,物体的运动不是匀变速运动,解决这类问题,首先要分析清楚物体的受力情况和运动情况,定性知道物体的速度、加速度的方向及大小变化情况,分成几个阶段,各段情况如何,相互关系是什么,等等。

例题3:一个弹簧秤放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止,如右图所示,现给P 施加一个方向向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 时间内F 为变力,0.2s 以后F 为恒力,求力F 的最大值与最小值(取g =10m/s 2)分析:P 受到的外力有三个:重力M g 、向上的力F 及Q 对P 的支持力N ,由牛顿第二定律:F +N -Mg =MaQ 受到的外力有也三个,重力mg 、向上的弹力kx 、P 对Q 的向下的压力N ,则kx -N -mg =ma(1)P 做匀加速运动,它受到的合外力一定是恒力。

其中重力Mg 为恒力,在上升过程中,弹簧压缩量x 逐渐减小,kx 逐渐减小,N 也逐渐减小,F 逐渐增大。

题目说0.2s 以后F 为恒力,说明t =0.2s 的时刻,正是P 与Q 开始脱离接触的时刻,即临界点。

(2)t =0.2 s 的时刻,是Q 对P 的作用力N 恰好为零的时刻,此时刻P 与Q 具有相同的速度和加速度。

因此此时刻弹簧并未恢复原长,也不能认为此时刻弹簧的弹力为零。

(3)当t =0的时刻,就是力F 最小的时刻,此时刻F 小=(M +m )a (a 为它们的加速度)。

随后,由于弹簧的弹力逐渐变小,而P 与Q 的合力保持不变,因此力F 逐渐变大,至t =0.2 s 时刻,F 增至最大,此时刻F 大=M (g +a )。

以上三点中第(2)点是解决此问题的关键所在,只有明确了P 与Q 脱离接触的瞬间情况,才能确定这0.2 s 时间内物体的位移,从而求出加速度a ,其余问题也就迎刃而解了。

解:设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧压缩量为x 2,物体P 的加速度为a ,则有 ()g m M kx +=1 ①ma mg kx =-2 ②22121at x x =- ③ 由①式,()kg m M x +=1=0.15m解②③式,a =6m/s 2 .在平衡位置拉力有最小值:F 小=(M +m )a =72 N P 、Q 分离时拉力达最大值,对P : F 大-M g =Ma所以:F 大=M (g +a ) =168N【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m 1与m 2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a ,故秤盘与重物分离。

3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的确应用非常重要:(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等。

(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变量最大时两物体的速度相等。

例题4:如图所示,用轻弹簧将质量均为m =1 kg 的物块A 和B 连结起来,将它们固定在空中,弹簧处于原长状态,A 距地面的高度h 1=0.90 m 。

同时释放两物块,A 与地面碰撞后速度立即变为零,由于B 压缩弹簧后被反弹,使A 刚好能离开地面(但不继续上升)。

若将B 物块换为质量为2m 的物块C (图中未画出),仍将它与A 固定在空中且弹簧处于原长,从A 距地面的高度为h 2处同时释放,C 压缩弹簧被反弹后,也刚好能离开地面,已知弹簧的劲度系数k =100 N/m ,求h 2的大小。

解:设A 物块落地时,B 物块的速度为v 1,则有:21m v 12=mgh 1 设A 刚好离地时,弹簧的形变量为x ,对A 物块有: mg =kx从A 落地后到A 刚好离开地面的过程中,对于A 、B 及弹簧组成的系统机械能守恒,则有:21m v 12=mgx +ΔE p 将B 换成C 后,设A 落地时,C 的速度为v 2,则有:21·2m v 22=2mgh 2 从A 落地后到A 刚好离开地面的过程中,A 、C 及弹簧组成的系统机械能守恒,则有:21·2m v 22=2mgx +ΔE p 联立解得:h 2=0.50 m【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论(1)。

例题5:如图所示,质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x 0.一个物块从钢板的正上方相距3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块的质量也为m 时,它们恰能回到O 点;若物块的质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时还具有向上的速度.求物块向上运动所到达的最高点与O 点之间的距离。

【解析】设物块与钢板碰撞前瞬间的速度为v 0,由机械能守恒定律得:mg 3x 0=21m v 02 v 0=06gx 设质量为m 的物块与钢板碰撞后瞬间的速度为v 1,由动量守恒定律有:m v 0=(m +m ) v 1 v 1=2106gx设弹簧的压缩量为x 0时的弹性势能为E p ,对于物块和钢板碰撞后直至回到O 点的过程,由机械能守恒定律得:E p +21×2m ×v 12=2mgx 0 设质量为2m 的物块与钢板碰撞后瞬间的速度为v 2,物块与钢板回到O 点时所具有的速度为v 3,由动量守恒定律有:2m v 0=(2m +m )v 2 由机械能守恒定律有:E p +21×3m ×v 22=3mgx 0+21×3m ×v 32解得:v 3=0gx当质量为2m 的物块与钢板一起回到O 点时,弹簧的弹力为零,物块与钢板只受到重力的作用,加速度为g ;一过O 点,钢板就会受到弹簧向下的拉力作用,加速度大于g ,由于物块与钢板不粘连,故在O 点处物块与钢板分离;分离后,物块以速度v 3开始竖直上抛,由机械能守恒定律得:21·2m v 32=2mgh 解得:h =20x所以物块向上运动所到达的最高点与O 点之间的距离为2x . 【点评】①物块与钢板碰撞的瞬间外力之和并不为零,但这一过程时间极短,内力远大于外力,故可近似看成动量守恒.②两次下压至回到O 点的过程中,速度、路程并不相同,但弹性势能的改变(弹力做的功)hAB相同.③在本题中,物块与钢板下压至回到O 点的过程也可以运用动能定理列方程.第一次:W 弹-2mgx 0=0-21×2m ×v 12 第二次:W 弹-3mgx 0=21×3m ×v 32-21×3m ×v 22例题6:用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v 0=6 m/s 的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg 的物块C 静止在前方,如图所示,B 与C 碰撞后二者粘在一起运动,则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大? (2)弹簧弹性势能的最大值是多少?(3)A 的速度方向有可能向左吗?为什么?解析:(1)B 、C 发生碰撞时,B 、C 组成的系统动量守恒,设碰后瞬间,B 、C 两者速度为v ,则有:m B v =(m B +m C ) v 解得:v =2 m/s 。

此后A 、B 、C 继续运动,弹簧被压缩,当A 、B 、C 三者的速度相等(设为v ′)时,弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,则有:(m A +m B ) v 0=(m A +m B +m C ) v ′ 解得:v ′=3 m/s(2)A 的速度为v ′ 时,弹簧的弹性势能最大,设其值为E p ,根据能量守恒定律得;E p =21m A v 0221(m B +m C ) v 2+-21(m A +m B +m C ) v ′2 解得:E p =12 J(3)方法一:A 不可能向左运动。

相关文档
最新文档