压铸件结构设计规范

合集下载

2-3压铸件结构设计-53

2-3压铸件结构设计-53

表2-13 铸造圆角半径的设计计算 上一页 下一页 返回
4.压铸件的脱模斜度

为了保证压铸件能够从压铸模具中顺利脱出,在压铸件沿脱出方向上
的所有内表面都要有一定的斜度,该斜度称为脱模斜度。压铸件脱模 斜度的大小和压铸件的壁厚及合金种类有关。

压铸件壁厚↑,对型芯的抱紧力↑,脱模斜度↑;
收缩率及熔点↑,脱模斜度↑; 压铸件内表面或孔比外表面的脱模斜度要大。 在允许范围内,采用较大的脱模斜度,可减少推件力和抽芯力。
上一页 下一页 返回
表2-2 厚度尺寸公差(单位:mm)
表2-3 圆角半径尺寸的公差(单位:mm)
D4
表2-4 自由角度和自由锥度尺寸公差
表2-5 孔中心距尺寸公差(单位:mm)
2).表面形状和位置

压铸件的表面形状和位置主要由压铸模的成型表面决定,而压铸 模成型表面的形位公差精度较高,所以对压铸件的表面形位公差 一般不另行规定,其公差值包括在有关尺寸的公差范围内。对于 直接用于装配的表面,类似机械加工零件,在图中注明表面形状 和位置公差。
表2-9 压铸件机械加工余量(mm) 表2-10 压铸件铰孔加工余量
三、 压铸件结构设计

压铸件的结构设计是压铸生产中首先遇到的工作, 其设计的合理性和工艺适用性直接影响到后续工作
的顺利进行。设计压铸件除要满足使用要求外,同
时应该满足成型工艺要求,并且尽量做到模具结构 简单、生产成本低,达到设计的合理性、工艺性、 可制造性、经济性。
图2-4 改变凹区域方向消除抽芯受阻区域 图2-4 (a)形成区域A的活动型芯受到凸台K阻碍,无法抽出。 因此改变其方向,使区域A指向外侧,则可顺畅抽出,如图2-4 (b)所示。
(二)消除抽芯受阻区域

压铸件结构设计

压铸件结构设计
r1=(0.5bcosahsina) /(1-sina)
h2≥0.8mm
a≤3°
压铸件加强筋的运用
3,作为散热加强;
4,作为装饰作用。
2,引导料流流向;
1,加强结构强度;
压铸件结构工艺性分析一
不好的案例
好的案例
说明
于型模中加工凹入文字较之加工凸出文字为困难﹒且模具寿命难以保证,使用后续刻加工﹐则与此相反。
1.5
0.014~0.020
6
0.056~0.084
2
0.018~0.026
7
0.066~0.100
2.5
0.022~0.032
8
0.076~0.116
3
0.028~0.040
9
0.088~0.138
3.5
0.034~0.050
10
0.100~0.160
4
0.040~0.060
合金浇注温度高时,填充时间可选长些。 模具温度高时,填充时间可选长些。 铸件厚壁部分离内浇口远时,填充时间可选长些。 熔化潜热和比热高的合金,填充时间可选长些。
好的案例
说明
陈学民
2021
2023
内容大纲
O1
产品的壁厚(模具成型的基础)
O2
产品的拔模(模具脱模的保障)
O3
产品的圆角(模具寿命的关键)
O4
加强筋的设计(结构优化的手段)
压铸件壁厚的设计
3.5
2.5
3.5
2.5
2.5
2.0
>500
3.0
1.8
3.0
1.8
2.2
1.5
>100~500
2.5

压铸件结构设计

压铸件结构设计

压铸件结构创新设计(经验)压铸件零件设计的注意事项一、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面;二、压铸件的设计原则是:a、正确选择压铸件的材料,b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。

三、压铸件按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。

在设计压铸件时,还应该注意零件应满足压铸的工艺要求。

压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。

合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。

压铸件零件设计的要求一、压铸件的形状结构要求:a、消除内部侧凹;b、避免或减少抽芯部位;c、避免型芯交叉;合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量,二、铸件设计的壁厚要求:压铸件壁厚度(通常称壁厚)是压铸工艺中一个具有特殊意义的因素,壁厚与整个工艺规范有着密切关系,如填充时间的计算、内浇口速度的选择、凝固时间的计算、模具温度梯度的分析、压力(最终比压)的作用、留模时间的长短、铸件顶出温度的高低及操作效率;a、零件壁厚偏厚会使压铸件的力学性能明显下降,薄壁铸件致密性好,相对提高了铸件强度及耐压性;b、铸件壁厚不能太薄,太薄会造成铝液填充不良,成型困难,使铝合金熔接不好,铸件表面易产生冷隔等缺陷,并给压铸工艺带来困难;压铸件随壁厚的增加,其内部气孔、缩孔等缺陷增加,故在保证铸件有足够强度和刚度的前提下,应尽量减小铸件壁厚并保持截面的厚薄均匀一致,为了避免缩松等缺陷,对铸件的厚壁处应减厚(减料),增加筋;对于大面积的平板类厚壁铸件,设置筋以减少铸件壁厚;根据压铸件的表面积,铝合金压铸件的合理壁厚如下:压铸件表面积/mm2 壁厚S/mm≤25 1.0~3.0>25~100 1.5~4.5>100~400 2.5~5.0>400 3.5~6.0三、铸件设计筋的要求:筋的作用是壁厚改薄后,用以提高零件的强度和刚性,防止减少铸件收缩变形,以及避免工件从模具内顶出时发生变形,填充时用以作用辅助回路(金属流动的通路),压铸件筋的厚度应小于所在壁的厚度,一般取该处的厚度的2/3~3/4;四、铸件设计的圆角要求:压铸件上凡是壁与壁的连接,不论直角、锐角或钝角、盲孔和凹槽的根部,都应设计成圆角,只有当预计确定为分型面的部位上,才不采用圆角连接,其余部位一般必须为圆角,圆角不宜过大或过小,过小压铸件易产生裂纹,过大易产生疏松缩孔,压铸件圆角一般取:1/2壁厚≤R≤壁厚;圆角的作用是有助于金属的流动,减少涡流或湍流;避免零件上因有圆角的存在而产生应力集中而导致开裂;当零件要进行电镀或涂覆时,圆角可获得均匀镀层,防止尖角处沉积;可以延长压铸模的使用寿命,不致因模具型腔尖角的存在而导致崩角或开裂;五、压铸件设计的铸造斜度要求:斜度作用是减少铸件与模具型腔的摩擦,容易取出铸件;保证铸件表面不拉伤;延长压铸模使用寿命,铝合金压铸件一般最小铸造斜度如下:铝合金压铸件最小的铸造斜度外表面内表面型芯孔(单边)1°1°30′2°铸件的结构工艺性铸件中的基础件都是箱体形结构,并增设了很多加强筋,致使铸件结构形状较为复杂。

压铸产品结构设计的工艺要求

压铸产品结构设计的工艺要求

压铸类产品结构设计的工艺要求
压力铸造是将熔融状态或者(半)熔融状态合金浇入压铸机的压室,以极高的速度在高压的作用下充填在压铸模的型腔内,使熔融合金在高压下冷却凝固成型的方法。

常见的压铸材料包括:铝合金、锌合金、镁合金、铜合金等,铝合金又分为铝镁合金、铝铜合金、铝锌合金、铝硅合金等。

压铸类产品在结构设计时的工艺要求注意的几个方面。

①压铸件的厚度
压铸件产品的厚度一般指料厚,料的厚薄直接影响压铸的难易,一般情况下,压铸产品的料厚≥0.8mm,具体料厚根据产品设计。

压铸产品不会因为局部料厚产生缩水的现象,相反,在一些尖钢薄钢处要加料填充,避免模具强度低而损坏。

压铸产品的外观面局部最小料厚≥0.7mm,非外观面局部最小料厚度建议≥0.4mm,太薄会导致填充不良、无法成型,薄的区域面积也不能太大,否则无法成型。

②压铸件的拔模角
压铸件与塑胶件一样,内外表面都需要拔模角,压铸件外表面的
拔模角一般在1°~3°,内表面拔模角比外表面拔模角大一点,方便产品出模。

③压铸件的后续加工
压铸件有时达不到设计的要求,需要后续加工。

其中螺丝柱中的螺纹就是后续加工的,在设计产品时只需留出底孔就可以。

压铸件有深孔时,压铸件需要做出孔位置,再通过后续机械钻孔加工完成。

压铸件有些表面要求较高的精度,一般也需要后续加工,在设计时可在需要后续加工的地方留出加工余量,加工余量一般在0.5mm 左右。

④压铸件产品不能变形,一般是螺丝连接,在做扣位连接,连接的对应产品必须能变形,如塑胶产品等。

⑤压铸件产品加强筋不能太多,对于薄壁类零件,需适当设计加强筋,以增加产品的抗弯强度,防止产品变形损坏。

压铸件的基本结构设计内容

压铸件的基本结构设计内容

压铸件的基本结构设计内容咱们今天聊一聊压铸件的基本结构设计内容。

可能你一听“压铸件”三个字,心里就想着这又是什么高大上的东西,其实吧,压铸件就跟咱们平时看到的那些金属零件差不多,差别就是它们是通过压铸工艺来做出来的,简单说,就是把熔化的金属像倒水一样压进一个模具里,冷却固化后就成了咱们需要的形状。

好啦,说到压铸件的设计内容,其实可以分为好几个方面来讲。

首先就是模具设计。

咱们先不说别的,单单这个模具就很考究了。

压铸模具的设计就像是为每个压铸件量身定做衣服,不合适的话,结果就没法穿出来,穿不上也就算了,还可能会导致材料浪费、成型不良等等一大堆麻烦。

模具的设计要求非常高,既要保证零件的精准度,又得考虑到金属在模具里流动的状态,必须考虑冷却系统,甚至是脱模的角度,像是个全方位的“专业护理”。

别看模具小,做不好就能让整个生产过程泡汤,真的是“细节决定成败”啊。

咱们得聊聊压铸件的结构设计。

这个“结构”啊,其实就是零件的形状、厚度分布、壁厚均匀度等等一系列的事。

想象一下,你在做一道菜,如果配料不匀,或者火候控制不好,那味道肯定会差,压铸件也是一样。

设计的好,能让熔融金属在模具里流得顺畅,零件出来时就能不留气孔、不变形,质量自然过关。

特别是壁厚,千万不能忽视!有的地方厚的像土豆饼,有的地方薄得像纸片,做出来的零件要么沉,要么轻,怎么可能不出问题呢?所以啊,这壁厚的均匀性就像做菜时的火候,一定要掌握得当。

然后呢,咱得说说压铸件的材料选择。

这也是个大问题。

有些零件要承受大负荷,有些则得耐高温,甚至得防腐蚀,材料得根据这些要求来选。

可能是铝合金,有时候可能是锌合金,每种金属的性质不一样,决定了它适用的范围和效果。

所以呢,选材可不是随便选选的,而是需要经过精密计算的。

想象一下,你买东西时会货比三家,那在压铸件的设计中,选材也是一样,要根据具体的需求来决定。

对了,还得提一提设计时的考虑问题,比如说气体排放问题。

金属熔化后,容易产生气体,若是设计不合理,这些气体可能就会被困在零件里面,导致气孔、气泡,影响零件的强度。

压铸件壁厚设计原则

压铸件壁厚设计原则

压铸件壁厚设计原则压铸件是采用压铸工艺制造的金属件,它不仅具有良好的表面质量和尺寸精度,而且还能在生产过程中实现大批量生产,具有成本低、生产效率高等优点。

在压铸件的设计中,壁厚是一项重要的设计参数。

合理的壁厚设计不仅能够保证产品的稳定性和质量,还能有效节约生产成本,提高企业竞争力。

下面就来介绍一下压铸件壁厚设计的原则。

1. 加强结构部位的壁厚压铸件的结构部位是指在受到力的情况下承受更大载荷的部位。

这些部位通常需要比其他部位更厚的壁厚来保证其刚度和强度。

例如,汽车零部件的法兰、齿轮等部位都需要加强。

此外,压铸件的结构部位通常应具有流畅的曲线,以减小应力集中,提高零部件的使用寿命。

2. 普通部位的壁厚根据应力分布来设计与结构部位相比,普通部位受力较小,因此可以设计相对较薄的壁厚。

但需要根据零部件的应力分布情况进行合理的设计。

当应力分布不均匀时,可以采取增加局部壁厚并采用倒角或圆弧等方法,以减少应力集中,避免零部件出现裂纹或断裂等情况。

3. 壁厚应满足力学和工艺要求设计时应考虑强度、刚度、工艺等要求,如当零部件受压应力大、表面质量要求高、加工难度大时可适当增加壁厚。

同时要留出足够的余量,避免因材料性能差异、生产工艺等因素造成出现缺陷。

4. 壁厚不应超过材料特性的限制对于压铸件材料而言,应遵循材料的物理和化学特性来选择适合的壁厚。

一般来说,壁厚不应超过材料的比强度和比刚度的限制。

当壁厚过厚时,可能会出现热裂、缩孔、扭曲等缺陷,影响零部件的质量和性能。

5. 各部位的壁厚要保持一定的比例设计中各部位的壁厚要保持一定的比例,以保证零部件的整体结构均衡、外形美观。

例如,压铸镁合金零件的壁厚在中部一般为4~6mm,边缘部位一般减薄到2~3mm。

综上所述,压铸件壁厚的设计应该综合考虑材料的物理和化学特性、零部件的应力分布、工艺要求等因素。

合理的壁厚设计可以提高零部件的使用寿命、减少生产成本,从而促进企业的发展。

压铸件结构设计和压铸工艺

压铸件结构设计和压铸工艺

压铸件结构设计和压铸工艺压铸是一种将熔融金属注入到铸型中,通过冷却凝固形成所需形状的金属成型工艺。

压铸件结构设计和压铸工艺是压铸过程中至关重要的两个环节,对于保证产品质量和提高生产效率具有重要意义。

下面将从压铸件结构设计和压铸工艺两个方面进行详细介绍。

一、压铸件结构设计1.几何形状:要考虑产品的形状是否适合压铸工艺,避免出现厚壁或复杂形状等难以生产的结构。

2.壁厚设计:在保证产品强度和刚性的前提下,尽量减少壁厚。

过厚的壁厚会导致液态金属充填困难,同时也会增加材料消耗和生产成本。

3.避免内部缺陷:合理设置内部结构,避免产生气孔、缩松等内部缺陷,影响产品质量。

4.轮廓设计:尽量简化复杂的轮廓,减少加工和后处理工序,提高生产效率。

5.集成功能:在设计阶段就考虑到产品的功能需求,尽量将不同功能集成到一个构件中,减少组装工序。

二、压铸工艺压铸工艺是将压铸件结构设计转换为实际产品的过程,主要包括模具设计、熔化与注射、冷却凝固、脱模、后处理等阶段。

1.模具设计:根据产品的形状和尺寸要求,设计出相应的模具。

模具设计要遵循易于加工和维修的原则,并考虑到产品的收缩率,以保证最终产品符合设计要求。

2.熔化与注射:将所需的金属材料加热至液态,然后通过注射机将熔融金属注入到模具中。

注射过程需要控制注射速度和压力,保证金属充填完整且无气泡。

3.冷却凝固:在模具中进行冷却凝固,使注入的金属逐渐凝固。

冷却过程需要控制温度和时间,以保证产品的结晶组织均匀性和性能稳定性。

4.脱模:凝固后的产品从模具中取出,包括冷却水冲洗和振动脱模等工序。

脱模过程需要注意避免产品的变形和损坏。

5.后处理:包括修磨、去毛刺、清洗、表面处理等工序。

后处理旨在提高产品表面质量和机械性能,并满足特定的外观要求。

总结:压铸件结构设计和压铸工艺是相互关联的,一个合理的结构设计可以提高生产效率和产品质量,而一个良好的压铸工艺可以保证结构设计的实施效果。

因此,在进行压铸件结构设计和压铸工艺选择时,需要综合考虑产品的功能要求、材料特性、生产成本等因素,以达到最佳的工艺效果。

压铸件设计规范(2013)V1.0

压铸件设计规范(2013)V1.0

压铸件设计规范目录铸圆脱铸缘压铸压铸内压铸压铸级压铸压铸一、壁厚1、压铸件的壁厚对铸件质量有很大的影响。

以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。

因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。

2、铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。

厚壁压铸件,其壁中心层的晶粒粗大,易产生缩孔、缩松等缺陷,同样降低铸件的强度。

3、压铸件的壁厚一般以2.5~4mm为宜,同一压铸件内昀大壁厚与昀小壁厚之比不要大于3∶1,壁厚超过6mm的零件不宜采用压铸。

推荐值见表1。

我司的铝压铸件,按如下要求选取壁厚:散热齿一般取2.0~2.5mm,(自然散热)间距取10~12mm,(强迫风冷)间距取8~10mm.其余壁厚取4.5~5.0mm;螺纹孔为M3的PCB支撑柱,直径取6.5~7.5mm;接地螺纹孔处的壁厚取:M4 9.5~10.5mm, M5 10.5~11mm。

表1 压铸件的最小壁厚和正常壁厚二、铸造圆角和脱模斜度1、铸造圆角压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。

对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。

压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。

铸造圆角半径的计算见表3。

我司铝压铸件的圆角一般取R1.0mm,无配合处最小取R3.0mm(有外观要求的除外)。

表2 压铸件的最小圆角半径(mm)①、对锌合金铸件,K=1/4;对铝、镁合金铸件, K=1/2。

②、计算后的最小圆角应符合表2的要求。

表3 铸造圆角半径的计算(mm)2、脱模斜度设计压铸件时,就应在结构上留有脱模斜度,无脱模斜度时,在需要之处,必须有脱模的工艺斜度。

斜度的方向,必须与铸件的脱模方向一致。

推荐的脱模斜度见表4。

我司现采用的脱模斜度一般取前模1.5°,后模1.0°。

压铸件零件设计的注意事项

压铸件零件设计的注意事项

压铸件零件设计的注意事项压铸件零件设计的注意事项一、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面;二、压铸件的设计原则是:a、正确选择压铸件的材料,b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。

三、压铸件按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。

在设计压铸件时,还应该注意零件应满足压铸的工艺要求。

压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。

合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。

压铸件零件设计的要求一、压铸件的形状结构要求:a、消除内部侧凹;b、避免或减少抽芯部位;c、避免型芯交叉;合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量,二、铸件设计的壁厚要求:压铸件壁厚度(通常称壁厚)是压铸工艺中一个具有特殊意义的因素,壁厚与整个工艺规范有着密切关系,如填充时间的计算、内浇口速度的选择、凝固时间的计算、模具温度梯度的分析、压力(最终比压)的作用、留模时间的长短、铸件顶出温度的高低及操作效率;a、零件壁厚偏厚会使压铸件的力学性能明显下降,薄壁铸件致密性好,相对提高了铸件强度及耐压性;b、铸件壁厚不能太薄,太薄会造成铝液填充不良,成型困难,使铝合金熔接不好,铸件表面易产生冷隔等缺陷,并给压铸工艺带来困难;压铸件随壁厚的增加,其内部气孔、缩孔等缺陷增加,故在保证铸件有足够强度和刚度的前提下,应尽量减小铸件壁厚并保持截面的厚薄均匀一致,为了避免缩松等缺陷,对铸件的厚壁处应减厚(减料),增加筋;对于大面积的平板类厚壁铸件,设置筋以减少铸件壁厚;根据压铸件的表面积,铝合金压铸件的合理壁厚如下:压铸件表面积/mm2壁厚S/mm≤251.0~3.0>25~1001.5~4.5>100~4002.5~5.03.5~>4006.0三、铸件设计筋的要求:筋的作用是壁厚改薄后,用以提高零件的强度和刚性,防止减少铸件收缩变形,以及避免工件从模具内顶出时发生变形,填充时用以作用辅助回路(金属流动的通路),压铸件筋的厚度应小于所在壁的厚度,一般取该处的厚度的2/3~3/4;四、铸件设计的圆角要求:压铸件上凡是壁与壁的连接,不论直角、锐角或钝角、盲孔和凹槽的根部,都应设计成圆角,只有当预计确定为分型面的部位上,才不采用圆角连接,其余部位一般必须为圆角,圆角不宜过大或过小,过小压铸件易产生裂纹,过大易产生疏松缩孔,压铸件圆角一般取:1/2壁厚≤R≤壁厚;圆角的作用是有助于金属的流动,减少涡流或湍流;避免零件上因有圆角的存在而产生应力集中而导致开裂;当零件要进行电镀或涂覆时,圆角可获得均匀镀层,防止尖角处沉积;可以延长压铸模的使用寿命,不致因模具型腔尖角的存在而导致崩角或开裂;五、压铸件设计的铸造斜度要求:斜度作用是减少铸件与模具型腔的摩擦,容易取出铸件;保证铸件表面不拉伤;延长压铸模使用寿命,铝合金压铸件一般最小铸造斜度如下:铝合金压铸件最小的铸造斜度外表面内型芯孔(单表面边)1°1°2°30′。

压铸件结构设计规范

压铸件结构设计规范

压铸件结构设计规范压铸件是一种常见的金属制品,它具有成本低、生产效率高以及复杂形状和良好的表面质量等优点。

在压铸件的结构设计中,需要遵循一定的规范和要求,以确保产品的质量和性能。

以下是压铸件结构设计的一些常见规范:1.材料选择:在压铸件结构设计中,需要选择适合的材料,以确保产品的强度和耐用性。

常用的铸造材料包括铝合金、镁合金和锌合金等。

在选择材料时,需要考虑产品的功能要求、工作环境和制造工艺等因素。

2.壁厚设计:在压铸件的结构设计中,需要合理确定壁厚。

过薄的壁厚容易导致产品变形和脆性,而过厚的壁厚会增加产品的重量和生产成本。

一般来说,压铸件的壁厚应根据材料的强度、铸造工艺和表面质量要求等因素进行合理计算和选择。

3.强化设计:在压铸件结构设计中,需要考虑强化结构,以增加产品的刚性和耐用性。

常用的强化结构包括加强肋、加强筋和加强板等。

强化结构可以提高产品的抗拉强度和抗扭强度,减少变形和裂纹的产生。

4.浇注系统设计:在压铸件的结构设计中,需要合理设计浇注系统,以确保熔融金属能够均匀地充满模腔,并排除气体和杂质。

浇注系统设计包括喷嘴和浇口的位置、大小和形状等因素。

合理的浇注系统设计可以提高产品的充型性能和表面质量。

5.模具设计:在压铸件结构设计中,需要合理设计模具,以确保产品的精度和一致性。

模具设计包括型腔结构、型芯结构和冷却系统等。

合理的模具设计可以减少缺陷和变形的产生,提高产品的尺寸精度和表面质量。

综上所述,压铸件的结构设计需要遵循一定的规范和要求,以确保产品的质量和性能。

这些规范包括材料选择、壁厚设计、强化设计、浇注系统设计和模具设计等。

通过合理设计和优化,可以提高产品的制造效率、降低成本,并满足不同应用领域的需求。

压铸件结构设计和压铸工艺

压铸件结构设计和压铸工艺

〔一从简化模具结构、延长模具使用寿命考虑
• 避免内侧凹 • 针对要求采取的措施有: • 1>外形不加大,内部形状凸出至底部〔见下图a>. •
2>局部加厚,内形加至底部,外形加至分型面处,从而消除侧 凹〔见下图b> .
3>原凸台形状不改变,在零件底部开出通孔,模型成型镶件 可以从通孔处插入形成台阶〔见下图c>.
8.压铸嵌件 镶铸件的作用有如下几个方面:
1、加强压铸件某些部位的强度、耐磨性、导电性、成绝缘 性等.如:铝中铸人钢件提高强度,铸入蓝宝石提高耐磨 性,铸入绝缘材料降低成本及提高绝缘性,铸入铁心赋予 导磁性等;
2、清除压铸件过于复杂的型腔以及内侧凹形无法压铸的型 腔;
3、消除热节,避免疏松;
4、利用低熔点金属压铸代替贵金属,如用高硅铝代替青铜;
〔四加工余量
压铸件能达到较高的精度,故多数的表面和部件都 不必进行机械加工,便可直接装配使用.同时还有 以下两个原因也不希望对压铸件进行机械加工:
1>压铸件表层坚实耐磨,加工会失去这层好的表皮;
2>压铸件有时有内部气孔存在,分散而细小的气孔 通常是不影响使用的,但机械加工后却成为外露 气孔,反而可能影响使用.
• 压铸件壁厚的极限范围: • 压铸件壁厚的极限范围很难加以限制.通常可按铸件
各个壁厚表面积的总和来选择适宜的壁厚.在零件的工艺 性能好以及压铸生产中又具备良好的工艺条件时,还可以 压铸出更薄的壁. • 这时,锌合金铸件最小壁厚度为0.5mm,铝合金铸件最小 厚度为0.7mm,镁合金铸件最小厚度为0.8mm,铜合金铸件 最小厚度为1mm.
〔±,但其偏差值为CT6级公差的1/2.
3、非配合尺寸,根据铸件结构而定.

压铸件设计规范

压铸件设计规范

压铸件设计规范相关知识压铸件设计规范相关知识一、壁厚压铸件的壁厚对铸件质量有很大的影响。

以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。

因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。

铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。

随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样降低铸件的强度。

压铸件的壁厚一般以2.5~4mm为宜,壁厚超过6mm的零件不宜采用压铸。

推荐采用的最小壁厚和正常壁厚见表1。

表1 压铸件的最小壁厚和正常壁厚二、铸造圆角和脱模斜度1)铸造圆角压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。

对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。

压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。

铸造圆角半径的计算见表3。

表2 压铸件的最小圆角半径(mm)我司现采用的圆角一般取R1.5。

表3 铸造圆角半径的计算(mm)说明:①、对锌合金铸件,K=1/4;对铝、镁、合金铸件,K=1/2。

②、计算后的最小圆角应符合表2的要求。

2) 脱模斜度设计压铸件时,就应在结构上留有结构斜度,无结构斜度时,在需要之处,必须有脱模的工艺斜度。

斜度的方向,必须与铸件的脱模方向一致。

推荐的脱模斜度见表4。

表4 脱模斜度说明:①、由此斜度而引起的铸件尺寸偏差,不计入尺寸公差值内。

②、表中数值仅适用型腔深度或型芯高度≤50mm,表面粗糙度在Ra0.1,大端与小端尺寸的单面差的最小值为0.03mm。

当深度或高度>50mm,或表面粗糙度超过Ra0.1时,则脱模斜度可适当增加。

我司现采用的脱模斜度一般取1.5°。

一般采用的加强筋的尺寸按图1选取:t1=2 t /3~t;t2=3 t /4~t;R≥t/2~t;h≤5t;r≤0.5mm(t—压铸件壁厚,最大不超过6~8mm)。

简述压铸件的结构工艺性及工艺设计

简述压铸件的结构工艺性及工艺设计

简述压铸件的结构工艺性及工艺设计1.压铸件的结构工艺性合理的铸件结构外形,应使压铸型结构简化,加工制造便利,不易形成铸造缺陷,有利于保证铸件质量。

压铸件外形和结构上应使铸件能顺当从压铸型中取出,影响取出铸件的障碍,应改进其结构加以消退。

压铸生产中,几乎全部压铸工艺参数都与铸件壁厚有关。

壁厚过厚,易产生气孔、缩孔及缩松等缺陷;若壁厚过薄,易产生表面缺陷,甚至浇不足。

允许最小的壁厚依合金种类及铸件单面表面积的大小而定。

2.压铸件的工艺设计压铸件工艺设计是压铸型设计前必需做的工作,其内容许多,除制订工艺方案外,还要确定一系列的工艺参数和详细细节。

1)压铸件分型面的选择分型面的确定对于压铸型的简单程度和加工制度是否便利,以及铸件质量(尤其是尺寸精度)都有很大影响。

因此,对分型面的选择有如下要求:分型面应取在铸件的最大截面上,且在开型时,应使铸件留在动型内;浇注系统和排气系统能够得到合理的分布;尺寸精度要求高的部分尽可能位于同一半型内,使压铸型尽可能简化。

对某一详细铸件而言,设计者应在全面考虑、权衡轻重后选择铸件的分型面。

2)压铸件浇注系统的设计浇注系统一般由直浇道、内浇口和横浇道等组成。

依据压铸机的类型及引入液体金属的方式不同,浇注系统的形式也有所不同。

图5-52示出了同一铸件在不同类型压铸机上的浇注系统结构。

(1)直浇道的设计。

典型的立式冷压室压铸机上的铸件直浇道由喷嘴、浇口套和定型上的相应孔洞形成。

每台压铸机上常有几种内孔直径的喷嚏,而形成直浇道金属喷喷入口处的直径依据压铸件金属的种类和经喷嘴被压射金属的质量进行选择。

太粗的直浇道会铺张金属液,还会引起铸型局部过热。

太细的直浇道会提高压铸时金属液在浇道中的流速,有可能冲刷下在浇口套壁上初凝的金属层进入型腔堵塞内浇口使金属液充型不畅。

(2)内浇口的设计。

一般在大多数压铸型中,内浇口都设在分型面上,应尽可能削减金属液充型过程中可能遇到的障碍,在压铸螺纹时,应使浇口顺着螺纹方向,对圆环形铸件采纳切向浇口,设置内浇口位置时应留意使金属流的方向与型腔捧气方向全都,且不应引起铸件变形。

详解压铸零件结构设计-精

详解压铸零件结构设计-精

压铸件设计规范目录铸圆脱铸缘压铸压铸内压铸压铸级压铸压铸一、壁厚1、压铸件的壁厚对铸件质量有很大的影响。

以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。

因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。

2、铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。

厚壁压铸件,其壁中心层的晶粒粗大,易产生缩孔、缩松等缺陷,同样降低铸件的强度。

3、压铸件的壁厚一般以2.5~4mm为宜,同一压铸件内昀大壁厚与昀小壁厚之比不要大于3∶1,壁厚超过6mm的零件不宜采用压铸。

推荐值见表1。

我司的铝压铸件,按如下要求选取壁厚:散热齿一般取2.0~2.5mm,(自然散热)间距取10~12mm,(强迫风冷)间距取8~10mm.其余壁厚取4.5~5.0mm;螺纹孔为M3的PCB支撑柱,直径取6.5~7.5mm;接地螺纹孔处的壁厚取:M4 9.5~10.5mm, M5 10.5~11mm。

表1 压铸件的最小壁厚和正常壁厚二、铸造圆角和脱模斜度1、铸造圆角压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。

对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。

压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。

铸造圆角半径的计算见表3。

我司铝压铸件的圆角一般取R1.0mm,无配合处最小取R3.0mm(有外观要求的除外)。

表2 压铸件的最小圆角半径(mm)①、对锌合金铸件,K=1/4;对铝、镁合金铸件, K=1/2。

②、计算后的最小圆角应符合表2的要求。

表3 铸造圆角半径的计算(mm)2、脱模斜度设计压铸件时,就应在结构上留有脱模斜度,无脱模斜度时,在需要之处,必须有脱模的工艺斜度。

斜度的方向,必须与铸件的脱模方向一致。

推荐的脱模斜度见表4。

我司现采用的脱模斜度一般取前模1.5°,后模1.0°。

压铸件结构设计规范方案

压铸件结构设计规范方案

压铸件结构设计规范方案压铸件是一种常见的金属制品,广泛应用于汽车、电子、航空航天、军工等领域。

在压铸件的结构设计中,需要考虑安全性、可靠性、质量控制和经济性等多个方面的要求。

下面是一些压铸件结构设计的规范方案:1.结构设计原则:设计师应遵循结构设计的基本原则,包括坚固性、合理性和安全性。

压铸件在使用过程中需经受各种力的作用,因此结构需要具有足够的强度和刚度,同时保持合理的重量和尺寸,以确保产品的性能和可靠性。

2.材料选择:压铸件一般使用铝合金、镁合金和锌合金制造,根据具体使用条件和要求选择适合的材料。

在材料选择过程中,需要考虑材料的特性、成本、可塑性以及耐磨性等因素。

3.壁厚设计:压铸件的壁厚对于产品的强度和质量至关重要。

过厚的壁厚会增加材料的用量和制造成本,同时也会降低产品的制造精度和性能;而过薄的壁厚会导致产品强度不足,容易发生变形和破裂。

因此,壁厚的设计需要综合考虑产品的用途和要求,确保最佳的壁厚。

4.结构设计和冷却系统设计:压铸件在制造过程中需要通过冷却系统进行冷却,以确保产品的质量和性能。

合理的结构设计和冷却系统设计可以提高产品的制造精度和表面质量,减少材料的收缩和变形,同时也可以确保冷却介质的循环流动,提高冷却效果。

5.模具设计:压铸件的形状和尺寸需要通过模具来实现。

模具设计需要考虑产品的尺寸、形状、结构和材料特性等多个因素,确保产品可以准确复制并保持良好的质量。

同时,模具设计也需要考虑到产品的成本和制造工艺的可行性。

6.表面处理和热处理:压铸件在制造完成后需要进行表面处理,以提高产品的表面质量和耐腐蚀性。

表面处理可以选择镀铬、喷涂、阳极氧化等方式,根据产品的具体要求进行选择。

另外,部分压铸件还需要进行热处理,以改善材料的性能和强度。

7.质量控制:压铸件的质量控制是确保产品质量和性能的重要环节。

在生产过程中,需要对原材料、模具和工艺进行严格的检验和控制,以确保产品的符合设计要求。

同时,还需要建立完善的质量管理体系和检验机制,对成品进行检验和测试,以确保产品的质量和可靠性。

铝合金压铸件产品结构设计要点

铝合金压铸件产品结构设计要点

铝合金压铸件的结构设计要点简介为了提升铝合金铸件产品研发的合格率,在结构设计、开发时应注意以下几方面的内容:铸件壁厚相差不能过大,厚度的差距过大会对填充带来影响,且一般浇口部分的肉厚要大于零件的平均肉厚,目的是减少多铝液的压力损失;脱模问题,这点在压铸过程中非常重要,现实中脱模往往容易出现问题,这比注塑脱模麻烦多了,所以拔模斜度的设置和动定模脱模力的计算要注意些,一般拔模斜度为1°~3°,通常考虑到脱模的顺利性,外拔模要比内拔模的斜度要小些,外拔模1°,而内拔模要2°~3°左右。

设计时考虑到模具设计的问题,如果有多个位置的抽芯位,尽量放两边,最好不要放在下位抽芯,这样时间长了下抽芯会容易出问题;有些压铸件外观可能会有特殊的要求,如喷油、喷粉等,这时就要使结构上避开重要外观位置,便于设置浇口溢流槽;在结构上尽量的避免出现导致模具结构复杂的情况出现,如不得不使用多个抽芯或螺旋抽芯等。

对于需进行表面加工的零件,在零件设计时给适合的加工留量,不能太多,会把里面的气孔都暴露出来的;不能太少,否则粗精定位一加工,黑皮还没加工掉,你就等再在模具上打火花了,留量最好不要大于0.8mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。

选料应注意选用ADC12还是A380等,但同时也要看具体的要求——销往法国的铝压铸件,如果有FDA的要求,就不能用ADC-12,须用ADC-3T代替;铝合金没有弹性,要做扣位只有和塑料配合。

一般不能做深孔,在开模具时只做点孔,然后在后加工;如果是薄壁件,不能太薄,而且一定要用加强肋,增加抗弯能力。

由于铝铸件的温度要在800摄氏度左右,模具寿命一般比较短,如电机外壳一般只有80K左右;压铸件的设计与塑胶件的设计比较相似,塑胶件的一些设计常规也适用于压铸件,压铸模具一般是不允许靠破的。

对于铝合金,模具所受温度和压力比塑胶的大很多,对设计的正确性要求特严,即使很好的模具材料,一旦有焊接,模具就几乎无寿命可言,锌合金跟塑胶差不多,模具寿命较好;不能有凹的尖角,避免模具崩角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压铸件结构设计压铸件结构设计是压铸工作的第一步。

设计的合理性和工艺适应性将会影响到后续工作的顺利进行,如分型面选择、内浇口开设、推出机构布置、模具结构及制造难易、合金凝固收缩规律、铸件精度保证、缺陷的种类等,都会以压铸件本身工艺性的优劣为前提。

1、压铸件零件设计的注意事项⑴、压铸件的设计涉及四个方面的内容:a、即压力铸造对零件形状结构的要求;b、压铸件的工艺性能;c、压铸件的尺寸精度及表面要求;d、压铸件分型面的确定;压铸件的零件设计是压铸生产技术中的重要部分,设计时必须考虑以下问题:模具分型面的选择、浇口的开设、顶杆位置的选择、铸件的收缩、铸件的尺寸精度保证、铸件内部缺陷的防范、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面;⑵、压铸件的设计原则是:a、正确选择压铸件的材料;b、合理确定压铸件的尺寸精度;c、尽量使壁厚分布均匀;d、各转角处增加工艺园角,避免尖角。

⑶、压铸件分类按使用要求可分为两大类,一类承受较大载荷的零件或有较高相对运动速度的零件,检查的项目有尺寸、表面质量、化学成分、力学性能(抗拉强度、伸长率、硬度);另一类为其它零件,检查的项目有尺寸、表面质量及化学成分。

在设计压铸件时,还应该注意零件应满足压铸的工艺要求。

压铸的工艺性从分型面的位置、顶面推杆的位置、铸孔的有关要求、收缩变形的有关要求以及加工余量的大小等方面考虑。

合理确定压铸面的分型面,不但能简化压铸型的结构,还能保证铸件的质量。

⑷、压铸件结构的工艺性:1)尽量消除铸件内部侧凹,使模具结构简单。

2)尽量使铸件壁厚均匀,可利用筋减少壁厚,减少铸件气孔、缩孔、变形等缺陷。

3)尽量消除铸件上深孔、深腔。

因为细小型芯易弯曲、折断,深腔处充填和排气不良。

4)设计的铸件要便于脱模、抽芯。

5)肉厚的均一性是必要的。

6)避免尖角。

7)注意拔模角度。

8)注意产品之公差标注。

9)太厚太薄皆不宜。

10)避免死角倒角(能少则少)。

11)考虑后加工的难易度。

12)尽量减少产品内空洞。

13)避免有半岛式的局部太弱的形状。

14)太长的成形孔,或太长的成形柱皆不宜。

2、压铸件零件设计⑴、压铸件的形状结构a、消除内部侧凹;b、避免或减少抽芯部位;c、避免型芯交叉;合理的压铸件结构不仅能简化压铸型的结构,降低制造成本,同时也改善铸件质量。

⑵、壁厚压铸件的壁厚对铸件质量有很大的影响。

以铝合金为例,薄壁比厚壁具有更高的强度和良好的致密性。

因此,在保证铸件有足够的强度和刚性的条件下,应尽可能减少其壁厚,并保持壁厚均匀一致。

铸件壁太薄时,使金属熔接不好,影响铸件的强度,同时给成型带来困难;壁厚过大或严重不均匀则易产生缩瘪及裂纹。

随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样降低铸件的强度。

压铸件的壁厚一般以2.5~4mm为宜,壁厚超过6mm的零件不宜采用压铸。

推荐采用的最小壁厚和正常壁厚见表1。

压铸件壁厚度(通常称壁厚)是压铸工艺中一个具有特殊意义的因素,壁厚与整个工艺规范有着密切关系,如填充时间的计算、内浇口速度的选择、凝固时间的计算、模具温度梯度的分析、压力(最终比压)的作用、留模时间的长短、铸件顶出温度的高低及操作效率;a、零件壁厚偏厚会使压铸件的力学性能明显下降,薄壁铸件致密性好,相对提高了铸件强度及耐压性;b、铸件壁厚不能太薄,太薄会造成铝液填充不良,成型困难,使铝合金熔接不好,铸件表面易产生冷隔等缺陷,并给压铸工艺带来困难;压铸件随壁厚的增加,其内部气孔、缩孔等缺陷增加,故在保证铸件有足够强度和刚度的前提下,应尽量减小铸件壁厚并保持截面的厚薄均匀一致,为了避免缩松等缺陷,对铸件的厚壁处应减厚(减料),增加筋;对于大面积的平板类厚壁铸件,设置筋以减少铸件壁厚。

1)压铸件壁厚与性能有关。

2)压铸件壁厚影响金属液填充型腔状态,最终影响铸件表面质量。

3)压铸件壁厚影响金属料消耗及成本。

在设计压铸件时,往往为保证强度和刚度的可靠性,以为壁越厚性能越好;实际上对于压铸件来说,随着壁厚增加,力学性能明显下降。

原因是在压铸过程中,当金属液以高压、高速的状态进入型腔,与型腔表面接触后很快冷却凝固。

受到激冷的压铸件表面形成一层细晶粒组织。

这层致密的细晶粒组织的厚度约为0.3m左右,因此薄壁压铸件具有更高的机械性能。

相反,厚壁压铸件中心层的晶粒较大,易产生内部缩孔、气孔,外表面凹陷等缺陷,使压铸件的机械性能随着壁厚的增加而降低。

随着壁厚的增加,金属料消耗多,成本也增加。

但如果单从结构性计算出最小壁厚,而忽略了铸件的复杂程度时,也会造成液态金属充填型腔状态不理想,产生缺陷。

在满足产品使用功能要求前提下,综合考虑各后工序过程的影响,以最低的金属消耗取得良好的成型性和工艺性,以采取正常、均匀的壁厚为佳。

⑶、铸造圆角压铸件各部分相交应有圆角(分型面处除外),使金属填充时流动平稳,气体容易排出,并可避免因锐角而产生裂纹。

对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。

压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm,见表2。

铸造圆角半径的计算见表3。

缺陷。

特别是压铸件需要电镀处理时,圆角对于保证其良好的电镀效果是十分必要的。

⑷、拔模斜度设计压铸件时,就应在结构上留有结构斜度,无结构斜度时,在需要之处,必须有脱模的工艺斜度。

斜度的方向,必须与铸件的脱模方向一致。

推荐的脱模斜度见表4。

②、表中数值仅适用型腔深度或型芯高度≤50mm,表面粗糙度在Ra0.1,大端与小端尺寸的单面差的最小值为0.03mm。

当深度或高度>50mm,或表面粗糙度超过Ra0.1时,则脱模斜度可适当增加。

斜度作用是减少铸件与模具型腔的摩擦,容易取出铸件;保证铸件表面不拉伤;延长压铸模使用寿命,为了顺利脱模,减少推出力、抽芯力,减少模具损耗,在设计压铸件时,应在结构上有尽可能大的斜度。

从而减少压铸件与模具的摩擦,容易取出铸件,也使铸件表面不被拉伤,保证表面光洁。

⑸、加强筋加强筋的设置可以增加零件的强度和刚性,同时改善了压铸的工艺性。

但须注意:① 分布要均匀对称;② 与铸件连接的根部要有圆角; ③ 避免多筋交叉;④ 筋宽不应超过其相连的壁的厚度。

当壁厚小于 1.5mm 时,不宜采用加强筋; ⑤ 加强筋的脱模斜度应大于铸件内腔所允许的铸造斜度。

图1大于或等于设计原则:1、受力大,减小壁厚,改善强度。

2、对称布置,壁厚均匀,避免缩孔气孔。

3、与料流方向一致,避免乱流。

4、避免在肋上设置任何零部件。

筋的作用是壁厚改薄后,用以提高零件的强度和刚性,防止减少铸件收缩变形,以及避免工件从模具内顶出时发生变形,填充时用以作用辅助回路(金属流动的通路),压铸件筋的厚度应小于所在壁的厚度,一般取该处的厚度的2/3~3/4。

压铸件倾向采用均匀的薄壁,为了提高其强度和刚性,防止变形,不应单纯用增加壁厚的方法,而应采用适当的薄壁加强筋达此目的。

加强筋应对称布置,厚度均匀,避免新的金属堆聚。

为减少脱模时的阻力,加强筋应有铸造斜度。

⑹、压铸孔和孔到边缘的最小距离1)铸孔压铸件的孔径和孔深,对要求不高的孔可以直接压出,按表5。

表②、对于较大的孔径,精度要求不高时,孔的深度亦可超出上述范围。

铸件的孔应尽量铸出,这不仅可使壁厚均匀,减少热节,节约金属,而且可节省机加工工时。

压铸件可压铸出的孔的最小尺寸和深度,受到形成孔的型芯在型腔中的分布位置的制约。

细型芯在抽出时易弯曲或折断,因此孔的最小尺寸和深度受到一定限制。

其深度应带有一定斜度,以便于抽芯。

对于压铸件自攻螺钉用的底孔,推荐采用的底孔直径见表6。

表6 自攻螺钉用底孔直径(mm )2) 为了保证铸件有良好的成型条件,2。

图2b ≥(1/4~1/3)t当t <4.5时,b ≥1.5mm 3) 长方形孔和槽压铸件上的长方形孔和槽的设计推荐按表7 采用。

⑺、文字、标志、图案1)用压铸铸出,应采用凸纹。

凸纹高度大于0.3m ,以适应模具制造的特点。

2)采用目前开始流行的新技术:“转移彩膜”,可将彩色的文字、标志、图案彩膜转印到压铸件表面。

3)压铸出铸件后,用激光在铸件表面打出文字、标志、图案,可以打出非常细微的文字。

例:平行纹(直纹)高0.7MM ﹐间距1MM ﹐角度60.5。

外径Φ34.5mm 共104牙。

⑻、收缩率收缩率通常称为缩水。

它是指合金由液态凝固为固态,并冷却至室温时尺寸缩小的百分数,可用下式表示:K=(L 模-L 件)/L 件式中:L 模为模腔尺寸,L 件为铸件尺寸。

收缩率的大小与压铸件的结构特点、壁厚、合金的化学成分和工艺因素等有关。

锌合金的线收缩率一般为:自由收缩时取0.6%~0.8%,受阻收缩时取0.3%~0.6%。

表5为有型芯的锌合金压铸件不同壁厚时的线收缩率参考值。

⑼、螺纹1)外螺纹可以铸出,由于铸件或模具结构的需要,采用两半分型的螺纹型环时,需留有0.2~0.3mm加工余量。

可铸出的最小螺距为0.75mm,最小螺纹外径6mm,最大螺纹长为螺距的8倍。

2)内螺纹虽然可以铸出,但要通过使用机械装置转动压铸模中的型芯,使模具结构更复杂,而增加成本。

所以一般先铸出底孔,再由机械加工成内螺纹。

合金最小螺距(P)最小螺纹外径最大螺纹长度锌0.75外内外内6 10 8P 5P铝 1 10 20 6P 4P ⑽、齿轮齿轮可以铸出,锌合金压铸齿轮最小模数m为0.3。

对要求高的齿轮齿面应留有0.2~0.3mm的加工余量。

⑾、表皮铸态零件其外表面有致密的激冷表皮层比铸件其它部分有较高的力学性能。

因此设计者应避免机械加工去掉铸件表皮致密层,尤其是对要求耐磨的铸件。

⑿、嵌件压铸件内采用嵌件的目的:①改善和提高铸件上局部的工艺性能,如强度、硬度、耐磨性等;②铸件的某些部分过于复杂,如孔深、内侧凹等无法脱出型芯而采用嵌件;③可以将几个部件铸成一体。

设计带嵌件的压铸件的注意事项:①嵌件与压铸件的连接必须牢固,要求在嵌件上开槽、凸起、滚花等;②嵌件必须避免有尖角,以利安放并防止铸件应力集中;③必须考虑嵌件在模具上定位的稳固性,满足模具内配合要求;④外包嵌件的金属层不应小于1.5~2mm;⑤铸件上的嵌件数量不宜太多;⑥铸件和嵌件之间如有严重的电化腐蚀作用,则嵌件表面需要镀层保护;⑦有嵌件的铸件应避免热处理,以免因两种金属的相变而引起体积变化,使嵌件松动。

当设计要求将不同材料的零件组合成一个部件时,可采用插入件压铸,先把嵌件装放到压铸模型腔内,然后在嵌件周围压铸成形锌合金部件。

⒀、功能组合在进行产品设计中,降低成本最有效的方法是将几个零件组合成一个压铸件。

图4是一个设计典范,原设计的部件由一个钢冲压件和两个带螺纹的机加工钢件组成。

新设计是一个压铸件。

⒁、压铸件的加工余量压铸件由于尺寸精度或形位公差达不到产品图纸要求时,应首先考虑采用精整加工方法,如校正、拉光、挤压、整形等。

相关文档
最新文档