18、第18章_勾股定理单元综合测试题(一)及答案

合集下载

人教版八年级下 第十八章 勾股定理应用综合题汇编(详细答案)

人教版八年级下 第十八章 勾股定理应用综合题汇编(详细答案)

勾股定理应用综合题汇编一.解答题(共29小题)1.如图所示,缉毒警方在基地B处获知有贩毒分子分别在P岛和M岛进行毒品交易后,缉毒艇立即出发,已知甲艇沿北偏东60°方向以每小时40海里的速度前进,乙艇沿南偏东30°方向以每小时30海里的速度前进,半小时后甲到M岛,乙到P岛,则M岛与P岛之间的距离是多少?2.小明家有一块三角形菜地,量得两边长分别为80米,100米,第三边上的高为60米,请你帮小明计算这块菜地的面积.3.如图,一探险者在某海岛探宝,登陆后,先往东走了8千米,又往北走了2千米,又向西走了3千米,再又向北走了6千米,往东一拐,仅走了1千米就找到了宝藏,试问:他走的是最近的路吗?如果是,请求出这个路线长;如果不是,请在图上画出最近的路线,并求出最近的路线长.4.如图,在笔直的某公路上有A、B两点相距50km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?5.如图,一艘渔政船从小岛A处出发,向正北方向以每小时20海里的速度行驶了1.5小时到达B处执行任务,再向正东方向以相同的速度行驶了2小时到达C处继续执行任务,然后以相同的速度直接从C处返回A处.(1)分别求AB、BC的长;(2)问返回时比出去时节省了多少时间?6.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=8m,BC=6m,CD=24m,AD=26m.求这块草坪的面积.7.如图,斜坡AC=8米,∠CAD=30°.坡顶有一旗杆BC(旗杆与地面AD垂直),旗杆顶端B点与A点有一彩带AB相连,AB=10米.试求旗杆BC的高度?(结果保留根号)8.如图所示,在3米高的柱子顶端A处有一只老鹰,它看到一条蛇从距柱脚9米B处向柱脚的蛇洞C游来,老鹰立即扑下,如果它们的速度相等,问老鹰在距蛇洞多远处捉住蛇?(设老鹰按直线飞行)9.如图,为修铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB=5km,BC=4km,若每天凿隧道0.3km,问几天才能把隧道凿通?10.如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.11.如图所示,有高为3米,斜坡长为5米的楼梯表面铺地毯,那么地毯至少需要多少米?12.(2008•义乌市)如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为3米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米,≈1.732)13.(2005•双柏县)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?14.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?15.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD 是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?16.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.17.如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.18.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B 点,最短线路是多少?19.甲、乙两人在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时速度向东南方向行走,1小时后乙出发,他以5千米/时速度向西南方向行走,上午10:00时,甲、乙两人相距多远?20.如图是一个长方体盒子,棱长AB=3cm,BF=3cm,BC=4cm.(1)连接BD,求BD的长;(2)一根长为6cm的木棒能放进这个盒子里去吗?说明你的理由.21.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?22.在甲村至乙村的公路有一块山地正在开发.现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?23.如图,小丽荡秋千,秋千架高2.4米,秋千座位离地0.4米,小红荡起最高时,坐位离地0.8米.此时小红荡出的水平距离是多少?(荡到秋千架两边的最高点之间的距离)24.如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图.求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm).25.如图,一根竹竿在离地面5米处断裂,竹竿顶部落在离竹竿底部12米处,问竹竿折断之前有多长?26.如图,要测一池塘两端A、B的距离,请你利用三角形知识设计一个测量方案.要求:①简述测量方法;②画出示意图(原图画);③用你测量的数据(用字母表示)表示AB,并说明理由,说明:池塘周围在同一高度,并且比较平坦.27.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”,请你计算后帮小明在标牌的▇填上适当的数字.28.如图,是一个长8m,宽6m,高5m的仓库,在其内壁的A(长的四等分点)处有一只壁虎,B(宽的三等分点)处有一只蚊子,则壁虎爬到蚊子处的最短距离为多少米.29.在△ABC中,AB=AC.(1)如图,若点P是BC边上的中点,连接AP.求证:BP•CP=AB2﹣AP2;(2)如图,若点P是BC边上任意一点,上面(1)的结论还成立吗?若成立,请证明、若不成立,请说明理由;(3)如图,若点P是BC边延长线上一点,线段AB,AP,BP,CP之间有什么样的数量关系?画出图形,写出你的结论.(不必证明)答案与评分标准一.解答题(共29小题)1.如图所示,缉毒警方在基地B处获知有贩毒分子分别在P岛和M岛进行毒品交易后,缉毒艇立即出发,已知甲艇沿北偏东60°方向以每小时40海里的速度前进,乙艇沿南偏东30°方向以每小时30海里的速度前进,半小时后甲到M岛,乙到P岛,则M岛与P岛之间的距离是多少?考点:勾股定理的应用。

难点详解沪科版八年级数学下册第18章 勾股定理专题测试试卷(含答案详解)

难点详解沪科版八年级数学下册第18章 勾股定理专题测试试卷(含答案详解)

八年级数学下册第18章 勾股定理专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为D .如果6AC =,3BC =,则BD 的长为( )A .2B .32C .D 2、下列长度的三条线段能组成直角三角形的是( )A .3,4,5B .2,3,5C .0.2, 0.3, 0.5D .13,14,153、下列四组数据中,不能..作为直角三角形的三边长的是( ) A .5,13,12 B .6,8,10 C .9,12,15 D .3,4,64、点P (-3,4)到坐标原点的距离是( )A .3B .4C .-4D .55、下列各组数中,不能作为直角三角形的三边的是( )A .3,4,5B .2,3C .8,15,17D .23,24,256、以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,5B .6,8,9C .5,12,13D .6,12,137、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个8、现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,如图(1)已知云梯最多只能伸长到15m ,消防车高3m .救人时云梯伸长至最长,在完成从12m 高处救人后,还要从15m 高处救人,这时消防车要从原处再向着火的楼房靠近的距离AC 为( )A .3米B .5米C .7米D .9米9、图中字母A 所代表的正方形的面积为( ).A .64B .8C .16D .610、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为( )A .10B .C .15D .10或第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△DEF 中,∠D =90°,DG :GE =1:3,GE =GF ,Q 是EF 上一动点,过点Q 作QM ⊥DE 于M ,QN ⊥GF 于N ,EF =QM +QN 的长是___________.2、如今人们锻炼身体的意识日渐增强,但是发现少数人保护环境的意识仍显淡薄,应提醒注意.下图是房山某公园的一角,有人为了抄近道而避开路的拐角ABC ∠(90ABC ∠=︒),于是在草坪内走出了一条不该有的“捷径路AC ” .已知30AB =米,40BC =米,他们踩坏了______米的草坪,只为少走______米的路.3、如图,线段10AB =,45A B ∠=∠=︒,AC BD ==E 、F 为线段AB 上两点从下面4个条件中:①5CE DF ==;②AF BE =;③7CE DF ==;④CEB DEA ∠=∠,选择一个条件,使得ACE 和BDF 全等.则所有满足的条件是______(填序号)4、已知三角形的三边分别是6,8,10,则最长边上的高等于______.5、如图,在四边形ABCE 中,∠B =∠A ,∠E =90°,点D 在AB 上,AD ∶BD =5∶11,连接CD ,若点D 在CE 的垂直平分线上且满足∠A =2∠BDC ,CE =10,则线段AB 的长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC 中,∠ABC =45°,F 是高AD 和高BE 的交点,AC BD =2.求线段DF 的长度.2、阅读下列一段文字,然后回答问题.已知在平面内两点()111,P x y 、()222,P x y ,其两点间的距离12PP =连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知A 、B 两点在平行于y 轴的直线上,点A 的纵坐标为4,点B 的纵坐标为1-,试求A 、B 两点之间的距离;(2)已知一个三角形各顶点坐标为(1,6)D 、(2,2)E -、(4,2)F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标以及PD PF +的最短长度.3、已知:△ABC 是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角三角形PCQ ,其中∠PCQ =90°,探究并解决以下问题:(1)如图1,若点P 在线段AB 上,且AC =4,PA PB = ,PC = .②猜想:222,,PA PB PQ 三者之间的数量关系为 .(2)如图2,若点P 在线段AB 的延长线上,则在(1)中所猜想的结论仍然成立,请你利用图2给出证明过程.(3)若动点P 满足13PA PB =,请直接写出PC AC的值.(提示:请你利用备用图探究)4、若实数b 的立方根为2,且实数a ,b ,c 2(4)8b a c +-+=.(1)求23a b c -+的值;(2)若a ,b ,c 是△ABC 的三边,试判断三角形的形状.5、(问题背景)学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边ABC ,D 是ABC 外一点,连接AD 、CD 、BD ,若30ADC ∠=︒,3AD =,5BD =,求CD 的长.该小组在研究如图2中OMN OPQ ≅中得到启示,于是作出如图3,从而获得了以下的解题思路,请你帮忙完善解题过程.解:如图3所示,以DC 为边作等边CDE △,连接AE .∵ABC ,DCE 是等边三角形,∴BC AC =,DC EC =,60BCA DCE ∠=∠=︒.∴BCA ACD ∠+∠= ACD +∠,∴BCD ACE ∠=∠,∴ ,∴5AE BD ==,∵30ADC ∠=︒,60CDE ∠=︒,∴90ADE ADC CDE ∠=∠+∠=︒.∵3AD =,∴CD DE == .(尝试应用)如图4,在ABC 中,45ABC ∠=︒,AB =4BC =,以AC 为直角边,A 为直角顶点作等腰直角ACD △,求BD 的长.(拓展创新)如图5,在ABC 中,4AB =,8AC =,以BC 为边向往外作等腰BCD △,BD CD =,120BDC ∠=︒,连接AD ,求AD 的最大值.-参考答案-一、单选题1、D【分析】先根据勾股定理求出AB ,再利用三角形面积求出BD 即可.【详解】解:∵90ABC ∠=︒,6AC =,3BC =,∴根据勾股定理AB ==,∵BD AC ⊥,∴S △ABC =1122AB BC AC BD ⋅=⋅,即113622BD ⨯=⨯⋅,解得:BD =故选择D .【点睛】 本题考查直角三角形的性质,勾股定理,三角形面积等积式,掌握直角三角形的性质,勾股定理,三角形面积等积式是解题关键.2、A【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【详解】解:A. 2223+4=5∴能组成直角三角形,故A 符合题意;B. 2222+35≠∴不能组成直角三角形,故B 不符合题意;C. 2220.2+0.30.5≠∴不能组成直角三角形,故C 不符合题意;D. 222111()+()()345≠∴不能组成直角三角形,故D 不符合题意, 故选:A .【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.3、D【分析】根据勾股定理的逆定理进行判断即可.【详解】解:A 、22251213+=,故A 不符合题意.B 、2226810+=,故B 不符合题意.C 、22291215+=,故C 不符合题意.D 、222346+≠,故D 符合题意.故选:D .【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键.4、D【分析】利用两点之间的距离公式即可得.【详解】解:点(3,4)P -到坐标原点(0,0)5,故选:D.【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.5、D【分析】由题意直接根据勾股定理的逆定理即如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形进行分析判断即可.【详解】解:A、32+42=52,符合勾股定理的逆定理,故选项错误;B、22223+=,符合勾股定理的逆定理,故选项错误;C、82+152=172,符合勾股定理的逆定理,故选项错误;D、∵(32)2+(42)2=81+256=337,(52)2=625,∴(32)2+(42)2≠(52)2,不符合勾股定理的逆定理即此时三角形不是直角三角形,故选项正确.故选:D.【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6、C【分析】根据两小边的平方和是否等于最长边的平方进行判断是否是直角三角形.【详解】A、选项:222+=≠,不能构成直角三角形,故本选项不符合题意;23135B、选项:222+=≠,不能构成直角三角形,故本选项不符合题意;681009C 、选项:22251216913+==,能构成直角三角形,故本选项符合题意;D 、选项:22261218013+=≠,不能构成直角三角形,故本选项不符合题意;故选:C【点睛】考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.7、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意; ③∵111::::345a b c =,设a =3k,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.8、A【分析】根据题意结合图形可得:3OE =m ,1239OB =-=m ,15312OD =-=m ,15AB CD ==m ,在两个直角三角形ABO ∆和ΔΔΔΔ中,分别运用勾股定理求出AO ,CO ,即可得出移动的距离.【详解】解:如图所示:3OE =m ,1239OB =-=m ,15312OD =-=m ,15AB CD ==m ,在Rt ABO ∆中,12AO ==m ,在ΔΔΔΔΔΔ中,9CO m ,3AC AO CO =-=m ,故选:A .题目主要考查勾股定理的应用,理解题意,找出相应的线段运用勾股定理是解题关键.9、A【分析】根据勾股定理和正方形的性质即可得出结果.【详解】解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289-225=64.故选:A.【点睛】本题考查了勾股定理,以及正方形的面积公式,勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.10、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解:∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.二、填空题1、4【分析】连接QG 解直角三角形求出DF ,再证明QM QN DF +=,即可解决问题.【详解】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,DF , 4EF =222EF DE DF =+,2248168k k ∴=+,k ∴或,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅,4QM QN DF ∴+==, 故答案为:4.【点睛】本题考查解直角三角形,勾股定理,等腰三角形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.2、50 20【分析】根据勾股定理计算AC ,计算AB +BC -AC 的值即可.【详解】∵90ABC ∠=︒,30AB =,40BC =,∴AC (米),∴AB +BC -AC =30+40-50=20(米),故答案为:50,20.【点睛】本题考查了勾股定理,准确用定理计算是解题的关键.3、②③④【分析】条件①利用SSA 不能证明全等;条件②可以用SAS 证明两个三角形全等;条件③先证明Rt CME Rt DNF ≌,再利用AAS 即可证明ACE BDF ≌;条件④可利用AAS 证明两个三角形全等.【详解】解:①如图1,过C 作CM AB ⊥于M ,过D 作DN AB ⊥于N ,∵45A B ∠=∠=︒,∴ACM △和BDN 是等腰直角三角形,∵AC BD ==∴4CM DN ==,∵45<<∵5CE DF ==∴符合条件的E 和F 在线段AB 上各有两个点,如图1,ACE 不一定和BDF 全等,故①不符合题意;②如图2,∵AF BE =,∴AE BF =在ACE 和BDF 中,∵AC BD A B AE BF =⎧⎪∠=∠⎨⎪=⎩, ∴()ACE BDF SAS ≌,故②符合题意;③如图3,过C 作CM AB ⊥于M ,过D 作DN AB ⊥于N ,由①知CM DN =∵7CE DF ==,且7>,∴E 和F 在线段AB 上各存在一个点,在Rt CME 和Rt DNF △中,∵CM DN CB DF =⎧⎨=⎩, ∴()Rt CME Rt DNF HL ≌,∴CEM DFN ∠=∠,在ACE 和BDF 中,∵A B CEM DFN AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ACE BDF AAS ≌,故③符合题意;④如图4,∵CEB DFA ∠=∠,∴AEC BFD ∠=∠,在ACE 和BDF 中,∵A B AEC DFB AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ACE BDF AAS ≌,故④符合题意.故答案为:②③④.【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.4、245【分析】根据勾股定理的逆定理,得这个三角形是直角三角形;根据直角三角形的面积计算,即可得到答案.【详解】∵三角形的三边分别是6,8,10,又∵2226810+=∴这个三角形是直角三角形∵12⨯最长边上的高110682⨯=⨯⨯ ∴最长边上的高为:6824105⨯= 故答案为:245. 【点睛】本题考查了勾股定理逆定理的知识;解题的关键是熟练掌握勾股定理的逆定理,从而完成求解. 5、554【分析】根据题意过点D 作DG ⊥EC ,CF ⊥AB ,连接AC 、DE ,先证明△ADE ≅△BCD 和△GDC ≅△FDC ,进而设AD =BC =5x ,AE = BD =11x ,AF =y ,则BF =16x -y ,通过勾股定理建立方程求解即可.【详解】解:过点D 作DG ⊥EC ,CF ⊥AB ,连接AC 、DE ,∵点D 在CE 的垂直平分线上,DG ⊥EC ,∴DE =DC ,EDG CDG ∠=∠,∵∠AEC =90°,DG ⊥EC ,∠EAD =2∠BDC ,∴//AE DG ,2,EAD GDF BDC AED GDE ∠=∠=∠∠=∠,∴BDC CDG EDG AED ∠=∠=∠=∠,∵∠B=∠EAD,BDC AED∠=∠,DE=DC,∴△ADE≅△BCD,AE=BD,∵DG⊥EC,CF⊥AB,BDC CDG∠=∠,CD=CD,∴△GDC≅△FDC,又∵CE=10,CG=CE,∴CF=CG=5,∵AD∶BD=5∶11,设AD=BC=5x,AE= BD=11x,AF=y,则BF=16x-y,由勾股定理AC2=AE2+CE2=CF2+AF2得到121x2+100=25+y2①由勾股定理得BC2=CF2+BF2得到25x2=25+(16x-y)2②联立①②可解得54x=,∴5551144 BD=⨯=.故答案为:554.【点睛】本题考查全等三角形的判定与性质以及勾股定理的应用和垂直平分线性质,熟练掌握通过垂直平分线性质和角平分线性质构造全等三角形是解题的关键.三、解答题1、1【分析】由勾股定理可求CD=1,由“AAS”可证△BFD≌△ACD,可得CD=DF=1.【详解】解:∵AD 和BE 是△ABC 的高,∴∠ADB =∠ADC =∠BEC =90°.∴∠C +∠DAC =90°;∠C +∠DBF =90°.∴∠DAC =∠DBF .∵∠ABC =45°,∴∠DAB =45°.∴∠ABC =∠DAB .∴DA =DB .在△ADC 与△BDF 中,ADC BDF DA DBDAC DBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADC ≌△BDF (ASA ).∴AC =BF在Rt △BDF 中,∠BDF =90°,∴BD 2+DF 2=BF 2.∵BD =2,BF∴DF =1【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,掌握全等三角形的判定定理是本题的关键.2、(1)5;(2)能,理由见解析;(3)13,04⎛⎫ ⎪⎝⎭【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE 、DF 、EF 的长度,再根据三边的长度即可作出判断;(3)画好图,作点F 关于x 轴的对称点G ,连接DG ,则DG 与x 轴的交点P 即为使PD +PF 最短,然后有待定系数法求出直线DG 的解析式即可求得点P 的坐标,由两点间距离也可求得最小值.【详解】(1)∵A 、B 两点在平行于y 轴的直线上∴AB =4(1)5--=即A 、B 两点间的距离为5(2)能判定△DEF 的形状由两点间距离公式得:5DE =,5DF =,4(2)6EF =--=∵DE =DF∴△DEF 是等腰三角形(3)如图,作点F 关于x 轴的对称点G ,连接DG ,则DG 与x 轴的交点P 即为使PD +PF 最小 由对称性知:点G 的坐标为(4,2)-,且PG =PF∴PD +PF =PD +PG ≥DG即PD +PF 的最小值为线段DG 的长设直线DG 的解析式为(0)y kx b k =+≠,把D 、G 的坐标分别代入得:642k b k b +=⎧⎨+=-⎩ 解得:83263k b ⎧=-⎪⎪⎨⎪=⎪⎩即直线DG 的解析式为82633y x =-+ 上式中令y =0,即826033x -+=,解得134x = 即点P 的坐标为13,04⎛⎫ ⎪⎝⎭ 由两点间距离得:DG=DG =所以PD +PF【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.3、(1)①AP 2+BP 2=PQ 2;(2)见解析;(3【分析】(1)①在等腰直角三角形ACB中,由勾股定理先求得AB的长,然后根据PA的长,可求得PB的长,再利用SAS证明△APC≌△BQC,得出BQ=AP CBQ=∠A=45°,那么△PBQ为直角三角形,依据勾股定理求出PQ=PC;②过点C作CD⊥AB,垂足为D,由△ACB为等腰直角三角形,可求得:CD=AD=DB,然后根据AP=DC-PD,PB=DC+PD,可证明AP2+BP2=2PC2,因为在Rt△PCQ中,PQ2=2CP2,所以可得出AP2+BP2=PQ2的结论;(2)过点C作CD⊥AB,垂足为D,则可证明AP2+BP2=2PC2,在Rt△PCQ中,PQ2=2CP2,可得出AP2+BP2=PQ2的结论;(3)根据点P所在的位置画出图形,然后依据题目中的比值关系求得PA、PD的长(用含有CD的式子表示),然后在Rt△ACD和Rt△PCD中由勾股定理求得AC和PC的长度即可.【详解】解:(1)如图①.连接BQ,①△ABC是等腰直角三角形,AC=4,∴AB∵PA∴PB==∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,∠ACP=∠BCQ,PC=CQ,∴△APC≌△BQC(SAS).∴BQ =AP CBQ =∠A =45°.∴△PBQ 为直角三角形.∴PQ =∵22220PC PQ ==,∴PC =故答案为:②如图①.过点C 作CD ⊥AB ,垂足为D .∵△ACB 为等腰直角三角形,CD ⊥AB ,∴CD =AD =DB .∵AP 2=(AD -PD )2=(DC -PD )2=DC 2-2DC •PD +PD 2,PB 2=(DB +PD )2=(DC +DP )2=CD 2+2DC •PD +PD 2,∴AP 2+BP 2=2CD 2+2PD 2,∵在Rt △PCD 中,由勾股定理可知:PC 2=DC 2+PD 2,∴AP 2+BP 2=2PC 2.∵△CPQ 为等腰直角三角形,∴2PC 2=PQ 2.∴AP 2+BP 2=PQ 2;故答案为:AP2+BP2=PQ2;(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP-BD)2=(PD-DC)2=DC2-2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2;(3)如图③:过点C作CD⊥AB,垂足为D.①点P位于点P1处时.∵111 3P APB=,∴P1A=14AB=12CD,11122PD AD CD==,在Rt△P1CD中,由勾股定理得:1PC==,在Rt△ACD中,由勾股定理得:AC=,∴1PCAC==②当点P位于点P2处时.∵2213P AP B=,∴P2A=12AB=CD,222P D P A AD CD=+=,在Rt△P2CD中,由勾股定理得:2P C,在Rt△ACD中,由勾股定理得:AC=,∴2P CAC=综合上述,PCAC【点睛】本题主要考查的是等腰直角三角形的性质和勾股定理的应用,以及全等三角形的判定和性质,正确作出辅助线,根据等腰直角三角形的性质得CD =AD =DB ,将PA 、PB 、PQ 、AC 、PC 用含DC 的式子表示出来是解题的关键.注意运用数形结合的思想和分类讨论的思想进行求解.4、(1)232a b c -+=-;(2)△ABC 是直角三角形.【分析】(1)先根据立方根的定义求出b 的值,然后根据非负数的性质求出a 、c 的值,最后代值计算即可;(2)根据(1)所求,利用勾股定理的逆定理求解即可.【详解】解:(1)∵实数b 的立方根是2,∴b =8,2(4)8b a c +-+=,28(4)8a c +-+=,2(4)0a c -+=,0≥,2(4)0a c -+≥,∴6040a a c -=⎧⎨-+=⎩, ∴a =6,c =10,∴232638102a b c -+=⨯-⨯+=-;(2)∵a 2+b 2=36+64=100,c 2=100,∴a 2+b 2=c 2.∴△ABC 是直角三角形.【点睛】本题主要考查了立方根,非负数的性质,代数式求值,勾股定理的逆定理,熟知相关知识是解题的关键.5、 [问题背景]DCE ∠;BCD ACE ≌;4;[尝试应用][拓展创新]【分析】[问题背景]根据等式的性质,三角形全等的判定与性质,勾股定理填空即可;[尝试应用]以AB 为直角边,A 为直角顶点作等腰Rt ABF ,连接,,AF BF CF ,进而证明BAD FAC △≌△,根据勾股定理求得FC ,即可求得BD 的长;[拓展创新] 以DA 为腰,作等腰DAG △,DA DG =,120ADG ∠=︒,过点D 作DH AG ⊥,同理证明ABD GCD ≌,进而根据含30度角的直角三角形的性质,勾股定理求得,DH AH ,根据三角形三边关系确定AD 最大值时,,,A C G 三点共线,进而即可求得AD 的最大值.【详解】[问题背景] 解:如图3所示,以DC 为边作等边CDE △,连接AE .∵ABC ,DCE 是等边三角形,∴BC AC =,DC EC =,60BCA DCE ∠=∠=︒.∴BCA ACD ∠+∠=DCE ∠ACD +∠,∴BCD ACE ∠=∠,∴BCD ACE ≌,∴5AE BD ==,∵30ADC ∠=︒,60CDE ∠=︒,∴90ADE ADC CDE ∠=∠+∠=︒.∵3AD =,∴CD DE ==4.[尝试应用] 解:如图4所示,以AB 为直角边,A 为直角顶点作等腰Rt ABF ,连接,,AF BF CF .∵DAC △,FAB 是等腰直角三角形, ∴AF AB =,AD AC =,90FAB DAC ∠=∠=︒. ∴BAF FAD CAD FAD ∠+∠=∠+∠, ∴FAC BAD ∠=∠,∴BAD FAC △≌△,∴AF AB ==2FB ∴==∵45ABC ∠=︒,45ABF ∠=︒, ∴90FBC ABF ABC ∠=∠+∠=︒. ∵4BC =,∴BD FC =[拓展创新]解:如图,以DA 为腰,作等腰DAG △,DA DG =,120ADG ∠=︒,过点D 作DH AG ⊥,90,30DHA HAD ∴∠=︒∠=︒,12AH HG AG == 12HD AD ∴=AH AD ∴==即AD == ∵DBC △,DAG △是等腰三角形,,DC DB DG DA ∴==∴GDA CDA CDB CDA ∠-∠=∠-∠GDC ADB ∴∠=∠∴ABD GCD ≌4CG AB ∴==AD =AG = 则当AG 取得最大值时,AD 取得最大12AG CG AC AB AC ≤+=+=当,,A C G 三点共线时,AD 取得最大值,如图,AD ∴AG == 【点睛】本题考查了等腰三角形的性质与判定,三角形全等的性质与判定,勾股定理,线段最值问题,从题干部分理解作等腰三角形辅助线是解题的关键.。

安徽专版八年级数学下册第18章勾股定理达标测试卷新版沪科版(含答案)

安徽专版八年级数学下册第18章勾股定理达标测试卷新版沪科版(含答案)

八年级数学下册新版沪科版:第18章达标测试卷一、选择题(每题3分,共30分)1.在Rt △AOB 中,∠AOB =90°,若AB =10,AO =6,则OB 的长为( )A .5B .6C .8D .102.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.53.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( )A .10B .15C .20D .304.如图,P 是第一象限的角平分线上一点,且OP =2,则P 点的坐标为( )A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第4题) (第6题) (第9题) (第10题) 5.若等腰直角三角形斜边上的高为1,则它的周长是( )A .4B .2 2+1C .4 2D .2 2+26.如图,在四边形ABCD 中,AB =BC =2,CD =1,AD =3,若∠B =90°,则∠BCD 的度数为( )A .100°B .120°C .135°D .145°7.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是有一块三角形沙田,三边长分别为5里,12里,13里(1里=500米),问这块沙田面积有多大?则这块沙田的面积为( ) A .7.5平方千米 B .15平方千米 C .75平方千米D .750平方千米8.在△ABC 中,AC =9,BC =12,AB =15,则AB 边上的高是( )A.365B.1225C.94D.3 349.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线上的点D ′处.若AB =3,AD =4,则ED 的长为( ) A.32B .3C .1D.4310.四个全等的直角三角形按如图所示的方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 的较长直角边,若AM =2 3EF ,则正方形ABCD 的面积为( ) A .14SB .13SC .12SD .11S二、填空题(每题3分,共18分)11.小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开与旗杆底部相距5米后,发现绳子的下端刚好接触地面,则旗杆的高度是________. 12.若直角三角形的两直角边长分别为a ,b ,且满足a 2-6a +9+|b -4|=0,则该直角三角形的斜边长为__________.13.如图,从点A (0,2)发出的一束光,经x 轴反射后,过点B (4,3),则这束光从点A 到点B 所经过的路径的长为________.(第13题) (第14题)14.如图,在△ABC 中,AC =3,BC =4,AB =5,P 为直线AB 上一动点,连接PC ,则线段PC的最小值是______________________________________.15.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐,问葛长几何?”大意:有一根木头长2丈,上、下底面的周长为3尺,葛藤生长在木头下的A 点,缠绕木头7周,葛梢与木头上端B 点刚好齐平(如图).则葛藤长是________尺.(注:1丈等于10尺,葛藤缠绕木头以最短的路径向上长,误差忽略不计)(第15题) (第16题)16.如图,在△ABC 中,AB =AC =10 cm ,BC =16 cm ,现点P 从点B 出发,沿BC 向C 点运动,运动速度为14cm/s ,若点P 的运动时间为t s ,则当△ABP 是直角三角形时,t 的值是____________.三、解答题(17~20题每题8分,21~22题每题10分,共52分)17.如图,有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)在图①中画一个直角边长为4,面积为6的直角三角形; (2)在图②中画一个底边长为4,面积为8的等腰三角形; (3)在图③中画一个面积为5的等腰直角三角形;(4)在图④中画一个一边长为2 2,面积为6的等腰三角形.(第17题)18.如图,在笔直的铁路上A ,B 两点相距25 km ,C ,D 为两个村庄,DA ⊥AB 于点A ,CB ⊥AB于点B ,若DA =10 km ,CB =15 km ,现要在AB 上建一个周转站E ,使得C ,D 两个村庄到周转站E 的距离相等,则周转站E 应建在距A 点多远处?(第18题)19.如图,在B 港有甲、乙两艘渔船,若甲渔船沿北偏东60°方向以每小时8海里的速度前进,乙渔船沿南偏东30°方向以每小时15海里的速度前进,两艘渔船同时出发,2小时后,甲渔船到达M 岛,乙渔船到达P 岛.求P 岛与M 岛之间的距离.(第19题)20.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.(第20题)21.在△ABC中,BC=a,AC=b,AB=c,设c为最长边长,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为________三角形;当△ABC三边长分别为6,8,11时,△ABC为________三角形.(2)猜想:当a2+b2________c2时,△ABC为锐角三角形;当a2+b2________c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.22.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为________,点E的坐标为________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(第22题)答案一、1.C 2.C3.B 点拨:设较短直角边长为x (x >0),则有x 2+(3x )2=102,解得x =10,∴直角三角形的面积为12x ·3x =15.4.B 5.D6.C 点拨:如图,连接AC ,在Rt △ABC 中,由勾股定理,得AC =AB 2+BC 2=2 2. ∵AB =BC ,∴∠BAC =∠ACB =45°. ∵CD =1,AD =3,AC =2 2, ∴AC 2+CD 2=9=AD 2, ∴△ACD 是直角三角形, 且∠ACD =90°,∴∠DCB =90°+45°=135°.(第6题)7.A 点拨:由题意可得三角形沙田的三边长分别为2.5千米,6千米,6.5千米.因为2.52+62=6.52,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以这块沙田的面积为12×6×2.5=7.5(平方千米),故选A.8.A9.A 点拨:在Rt △ABC 中,AC =AB 2+BC 2=32+42=5.设ED =x ,则D ′E =x ,AE =4-x ,在Rt △AD ′E 中,AD ′=AC -CD ′=2,根据勾股定理可得方程22+x 2=(4-x )2,再解方程即可.10.B 点拨:设AM =2a ,BM =b ,则正方形ABCD 的面积=4a 2+b 2.由题意知,EF =(2a -b )-2(a -b )=2a -b -2a +2b =b . ∵AM =2 3EF ,∴2a =2 3b , ∴a =3b .∵正方形EFGH 的面积为S ,∴b 2=S ,∴正方形ABCD 的面积为4a 2+b 2=13b 2=13S .故选B. 二、11.12米12.5 点拨:∵a 2-6a +9+|b -4|=0,∴(a -3)2+|b -4|=0,∴a -3=0,b -4=0,解得a =3,b =4,∴该直角三角形的斜边长为a 2+b 2=32+42=5. 13.41 14.12515.2916.32或50 点拨:如图①,当∠APB =90°时,AP ⊥BC ,∵AB =AC ,AP ⊥BC ,∴BP =CP =12BC=8 cm ,∴14t =8,解得t =32;如图②,当∠PAB =90°时,过点A 作AE ⊥BC 于点E .∵AB =AC ,AE ⊥BC ,∴BE =CE =12BC =8 cm ,∴PE =BP -BE =⎝ ⎛⎭⎪⎫14t -8cm.在Rt △AEC 中,AE 2=AC 2-CE 2,∴AE =AC 2-CE 2=6 cm.在Rt △PAB 中,AP 2=BP 2-AB 2,在Rt △AEP 中,AP 2=PE 2+AE 2,∴⎝ ⎛⎭⎪⎫14t 2-100=⎝ ⎛⎭⎪⎫14t -82+36,解得t =50.综上所述,t 的值为32或50.(第16题)三、17.解:(1)所画图形如图①所示. (2)所画图形如图②所示. (3)所画图形如图③所示. (4)所画图形如图④所示.(第17题)18.解:设周转站E建在距A点x km处,则AE=x km,由题意知AB=25 km,∴BE=(25-x)km.∵DA⊥AB,∴△DAE是直角三角形.∴DE2=AD2+AE2=102+x2.同理可得CE2=CB2+BE2=152+(25-x)2,∵DE=CE,∴DE2=CE2,∴102+x2=152+(25-x)2,解得x=15.答:周转站E应建在距A点15 km处.19.解:由题意可知△BMP为直角三角形,BM=8×2=16(海里),BP=15×2=30(海里),∴MP=BM2+BP2=34海里.答:P岛与M岛之间的距离为34海里.20.解:如图,过B点作BM⊥FD于点M.(第20题)在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC=AB2-AC2=202-102=10 3.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM =12BC =5 3,∴CM =BC 2-BM 2=(10 3)2-(5 3)2=15. 在△EFD 中,∵∠F =90°,∠E =45°, ∴∠EDF =45°, ∴∠DBM =∠BDM =45°, ∴MD =BM =5 3, ∴CD =CM -MD =15-5 3. 21.解:(1)锐角;钝角(2)>;<(3)∵c 为最长边长,2+4=6, ∴4≤c <6.a 2+b 2=22+42=20.①当a 2+b 2>c 2,即c 2<20时,4≤c <2 5, ∴当4≤c <2 5时,△ABC 是锐角三角形; ②当a 2+b 2=c 2,即c 2=20时,c =2 5, ∴当c =2 5时,△ABC 是直角三角形; ③当a 2+b 2<c 2,即c 2>20时,2 5<c <6, ∴当2 5<c <6时,△ABC 是钝角三角形. 22.解:(1)(3,4);(0,1)(2)点E 能恰好落在x 轴上. ∵四边形OABC 为长方形,∴BC =OA =4,∠AOC =∠DCO =90°,由折叠的性质可得,DE =BD =BC -CD =4-1=3,AE =AB =OC =m . 如图,假设点E 恰好落在x 轴上. 在Rt △CDE 中,由勾股定理可得EC =DE 2-CD 2=32-12=2 2, 则OE =OC -CE =m -2 2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2 2)2=m2,解得m=3 2.(第22题)。

人教版八年级数学下册各单元及期中期末测试题及答案

人教版八年级数学下册各单元及期中期末测试题及答案

人教版八年级数学下册各单元及期中期末测试题及答案 精品全套 共7套第十六章 分式单元测试题时间90分钟 满分100分班级____________姓名____________学号____________成绩______一、选一选请将唯一正确答案代号填入题后的括号内;每小题3分;共30分 1.已知x ≠y;下列各式与x yx y-+相等的是 .A ()5()5x y x y -+++B 22x yx y-+ C 222()x y x y -- D 2222x y x y -+2.化简212293m m +-+的结果是 . A269m m +- B 23m - C 23m + D 2299m m +- 3.化简3222121()11x x x x x x x x --+-÷+++的结果为 .Ax-1 B2x-1 C2x+1 Dx+14.计算11()a a a a -÷-的正确结果是 . A 11a + B1 C 11a - D-1 5.分式方程1212x x =-- . A 无解 B 有解x=1 C 有解x=2 D 有解x=0 6.若分式21x +的值为正整数;则整数x 的值为A0 B1 C0或1 D0或-17.一水池有甲乙两个进水管;若单独开甲、乙管各需要a 小时、b 小时可注满空池;现两管同时打开;那么注满空池的时间是A11a b + B 1ab C 1a b + D ab a b+ 8.汽车从甲地开往乙地;每小时行驶1v km;t 小时可以到达;如果每小时多行驶2v km;那么可以提前到达的小时数为A212v t v v + B 112v t v v + C 1212v vv v + D 1221v t v t v v -9.下列说法:①若a ≠0;m;n 是任意整数;则a m.a n=a m+n; ②若a 是有理数;m;n 是整数;且mn>0;则a mn =a mn ;③若a ≠b 且ab ≠0;则a+b 0=1;④若a 是自然数;则a -3.a 2=a -1.其中;正确的是 .A ①B ①②C ②③④D ①②③④10.张老师和李老师同时从学校出发;步行15千米去县城购买书籍;张老师比李老师每小时多走1千米;结果比李老师早到半小时;两位老师每小时各走多少千米 设李老师每小时走x 千米;依题意;得到的方程是:A1515112x x -=+ B 1515112x x -=+ C 1515112x x -=- D 1515112xx -=- 二、填一填每小题4分;共20分 11.计算22142a a a -=-- . 12.方程 3470x x=-的解是 . 13.计算 a 2b 3ab 2-2= . 14.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到巴尔末公式;从而打开了光谱奥秘的大门;请你按这种规律写出第七个数据是 .15.如果记 221x y x =+ =fx;并且f1表示当x=1时y 的值;即f1=2211211=+;f 12表示当x=12时y 的值;即f 12=221()12151()2=+;……那么f1+f2+f 12+f3+f 13+…+fn+f 1n=结果用含n 的代数式表示.三、做一做16.7分先化简;再求值:62393m m m m -÷+--;其中m=-2.17.7分解方程:11115867x x x x +=+++++.18.8分有一道题“先化简;再求值: 2221()244x x x x x -+÷+-- 其中;x=-3”小玲做题时把“x=-3”错抄成了“x=3”;但她的计算结果也是正确的;请你解释这是怎么回事19.9分学校用一笔钱买奖品;若以1支钢笔和2本日记本为一份奖品;则可买60份奖品;若以1支钢笔和3本日记本为一份奖品;则可买50份奖品;问这笔钱全部用来买钢笔或日记本;可买多少20.9分A 、B 两地相距80千米;甲骑车从A 地出发1小时后;乙也从A 地出发;以甲的速度的1.5倍追赶;当乙到达B 地时;甲已先到20分钟;求甲、乙的速度.四、试一试21.10分在数学活动中;小明为了求2341111122222n+++++的值结果用n 表示;设计如图1所示的几何图形.1请你利用这个几何图形求2341111122222n+++++的值为 ; 2请你利用图2;再设计一个能求2341111122222n+++++的值的几何图形.12212图2图1第十七章 反比例函数单元测试题时间90分钟 满分100分班级____________姓名__________________座号____________成绩____________ 一、选择题每题4分;共24分1.下列函数关系式中不是表示反比例函数的是 A .xy=5 B .y=53x C .y=-3x -1 D .y=23x - 2.若函数y=m+1231m m x++是反比例函数;则m 的值为A .m=-2B .m=1C .m=2或m=1D .m=-2或-1 3.满足函数y=kx-1和函数y=kxk ≠0的图象大致是4.在反比例函数y=-1x的图象上有三点x 1;y 1;x 2;y 2;x 3;y 3;若x 1>x 2>0>x 3;则下列各式正确的是 A .y 3>y 1>y 2 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 1>y 3>y 25.如图所示;A 、C 是函数y=1x的图象上的任意两点;过A 点作AB ⊥x 轴于点B;过C•点作CD ⊥y 轴于点D;记△AOB 的面积为S 1;△COD 的面积为S 2;则A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定 6.如果反比例函数y=kx的图象经过点-4;-5;那么这个函数的解析式为 A .y=-20x B .y=20x C .y=20x D .y=-20x 二、填空题每题5分;共30分 7.已知y=a-122a x-是反比例函数;则a=_____.8.在函数y=25x -+13x -中自变量x 的取值范围是_________.9.反比例函数y=kxk ≠0的图象过点-2;1;则函数的解析式为______;在每一象限内 y 随x 的增大而_________.10.已知函数y=kx的图象经过-1;3点;如果点2;m•也在这个函数图象上;•则m=_____. 11.已知反比例函数y=12mx-的图象上两点A x 1;y 1;Bx 2;y 2;当x 1〈0〈x 2时有y 1〈y 2;则m 的取值范围是________.12.若点A x 1;y 1;Bx 2;y 2在双曲线y=kxk>0上;且x 1>x 2>0;则y 1_______y 2. 三、解答题共46分 13.10分设函数y=m-2255m m x -+;当m 取何值时;它是反比例函数 •它的图象位于哪些象限 求当12≤x ≤2时函数值y 的变化范围. 14.12分已知y =y 1+y 2;y 1与x 成正比例;y 2与x 成反比例;并且当x=-1时;y=-1;•当x=2时;y=5;求y 关于x 的函数关系式.15.10分水池内储水40m3;设放净全池水的时间为T小时;每小时放水量为Wm3;规定放水时间不得超过20小时;求T与W之间的函数关系式;指出是什么函数;并求W的取值范围.16.14分如图所示;点A、B在反比例函数y=kx的图象上;且点A、B•的横坐标分别为a、2aa>0;AC⊥x轴于点C;且△AOC的面积为2.1求该反比例函数的解析式.2若点-a;y1、-2a;y2在该函数的图象上;试比较y1与y2的大小. 3求△AOB的面积.第18章勾股定理单元测试时间:100分钟 总分:120分班级 学号 姓名 得分一、相信你一定能选对每小题4分;共32分1. 三角形的三边长分别为6;8;10;它的最短边上的高为A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7;8;9;②12;9;15;③m 2 + n 2; m 2–n 2; 2mnm ;n 均为正整数;m >n ;④2a ;12+a ;22+a .其中能组成直角三角形的三边长的是 A . ①② B . ②③ C . ①③ D . ③④3. 三角形的三边为a 、b 、c ;由下列条件不能判断它是直角三角形的是A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=b+cb-cD . a :b :c =13∶5∶124. 三角形的三边长为ab c b a 2)(22+=+;则这个三角形是A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4;则第三边长是 A .5 B .25 C .7 D .5或76.已知Rt △ABC 中;∠C =90°;若a +b =14cm ;c =10cm ;则Rt △ABC 的面积是A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9;另两边为连续自然数;则直角三角形的周长为A .121B .120C .90D .不能确定8. 放学以后;小红和小颖从学校分手;分别沿东南方向和西南方向回家;若小红和小颖行走的速度都是40米/分;小红用15分钟到家;小颖20分钟到家;小红和小颖家的直线距离为 A .600米 B . 800米 C . 1000米 D. 不能确定 二、你能填得又快又对吗 每小题4分;共32分9. 在△ABC 中;∠C=90°; AB =5;则2AB +2AC +2BC =_______.10. 如图;是2002年8月北京第24届国际数学家大会会标;由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4;那么一个直角三角形的两直角边的和等于 .11.直角三角形两直角边长分别为5和12;则它斜边上的高为_______. 12.直角三角形的三边长为连续偶数;则这三个数分别为__________.13. 如图;一根树在离地面9米处断裂;树的顶部落在离底部12米处.树折断之前有______米. 14.如图所示;是一个外轮廓为矩形的机器零件平面示意图;根据图中标出尺寸单位:mm 计算两圆孔中心A 和B 的距离为 .15.如图;梯子AB 靠在墙上;梯子的底端A 到墙根O 的距离为2米;梯子的顶端B 到地面的距6012014060BA C 第10题图 第13题图 第14题图 第15题图离为7米.现将梯子的底端A向外移动到A’;使梯子的底端A’到墙根O的距离等于3米;同时梯子的顶端B下降至B’;那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度;他把一根竹竿插到离岸边1.5m远的水底;竹竿高出水面0.5m;把竹竿的顶端拉向岸边;竿顶和岸边的水面刚好相齐;河水的深度为 .三、认真解答;一定要细心哟共72分17.5分右图是由16个边长为1的小正方形拼成的;任意连结这些小正方形的若干个顶点;可得到一些线段;试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.6分已知a、b、c是三角形的三边长;a=2n2+2n;b=2n+1;c=2n2+2n+1n为大于1的自然数;试说明△ABC为直角三角形.19.6分小东拿着一根长竹竿进一个宽为3米的城门;他先横着拿不进去;又竖起来拿;结果竿比城门高1米;当他把竿斜着时;两端刚好顶着城门的对角;问竿长多少米20.6分如图所示;某人到岛上去探宝;从A处登陆后先往东走4km;又往北走1.5km;遇到障碍后又往西走2km;再折回向北走到4.5km处往东一拐;仅走0.5km就找到宝藏..问登陆点A与宝藏埋藏点B之间的距离是多少AB41.524.50.521.7分如图;将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中;求细木棒露在盒外面的最短长度是多少22.8分印度数学家什迦逻1141年-1225“平平湖水清可鉴;面上半尺生红莲; 出泥不染亭亭立;忽被强风吹一边;渔人观看忙向前;花离原位二尺远; 能算诸君请解题;湖水如何知深浅 ” 请用学过的数学知识回答这个问题. 23.8分如图;甲乙两船从港口A 同时出发;甲船以16海里/时速度向北偏东40°航行;乙船向南偏东50°航行;3小时后;甲船到达C 岛;乙船到达B 岛.若C 、B 两岛相距60海里;问乙船的航速是多少24.10分如图;有一个直角三角形纸片;两直角边AC =6cm ;BC =8cm ;现将直角边AC 沿 ∠CAB 的角平分线AD 折叠;使它落在斜边AB 上;且与AE 重合;你能求出CD 的长吗25.10分如图;铁路上A 、B 两点相距25km ; C 、D 为两村庄;若DA =10km ;CB =15km ;DA ⊥AB 于A ;CB ⊥AB 于B ;现要在AB 上建一个中转站E ;使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处26.10分如图;一个牧童在小河的南4km 的A 处牧马;而他正位于他的小屋B 的西8km 北7km处;他想把他的马牵到小河边去饮水;然后回家.他要完成这件事情所走的最短路程是多少时间90分钟 满分100分小河A B班级 学号 姓名 得分一、选择题每小题3分;共24分1.在平行四边形ABCD 中;∠B =110°;延长AD 至F ; 延长CD 至E ;连结EF ;则∠E +∠F = A .110°B .30°C .50°D .70°2.菱形具有而矩形不具有的性质是 A .对角相等B .四边相等C .对角线互相平分D .四角相等3.如图;平行四边形ABCD 中;对角线AC 、BD 交于点O;点E 是BC 的中点.若OE =3 cm ;则AB 的长为 A .3 cm B .6 cm C .9 cm D .12 cm 4.已知:如图;在矩形ABCD 中;E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2;AD =4;则图中阴影部分的面积为A .8B .6C .4D .35.用两块全等的含有30°角的三角板拼成形状不同的平行四边形;最多可以拼成 A .1个B .2个C .3个D .4个6.如图是一块电脑主板的示意图;每一转角处都是直角;数据如图所示单位:mm ;则该主板的周长是 A .88 mm B .96 mm C .80 mmD .84 mm7.如图;平行四边形ABCD 中;对角线AC 、BD 相交于点O ;E 、F 是AC 上的两点;当E 、F 满足下列哪个条件时;四边形DEBF 不一定是平行四边形 A .∠ADE =∠CBF B .∠ABE =∠CDF C .OE =OFD .DE =BF8.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49;小正方形的面积为4;若用x 、y 表示小矩形的两边长x >y ;请观察图案;指出以下关系式中不正确的是A .7=+y xB .2=-y x第7题第6题C .4944=+xyD .2522=+y x二、填空题每小题4分;共24分9.若四边形ABCD 是平行四边形;请补充条件 写一个即可;使四边形ABCD 是菱形.10.如图;在平行四边形ABCD 中;已知对角线AC 和BD 相交于点O ;△ABO 的周长为15;AB =6;那么对角线AC +BD = 11.如图;延长正方形ABCD 的边AB 到E ;使BE =AC ;则∠E= °.12.已知菱形ABCD 的边长为6;∠A =60°;如果点P 是菱形内一点;且PB =PD =32;那么AP 的长为 .13.在平面直角坐标系中;点A 、B 、C 的坐标分别是A -2;5;B -3;-1;C1;-1;在第一象限内找一点D ;使四边形ABCD 是平行四边形;那么 点D 的坐标是 .14.如图;四边形ABCD 的两条对角线AC 、BD 互相垂直;A 1B 1C 1D 1是中点四边形.如果AC =3;BD =4; 那么A 1B 1C 1D 1的面积为 三、解答题52分15.8分如图;在矩形ABCD 中;AE 平分∠BAD ;∠1=15°.1求∠2的度数.2求证:BO =BE .16.8分已知:如图;D 是△ABC 的边BC 上的中点;DE ⊥AC ;DF ⊥AB ;垂足分别为E 、F ;且BF =CE .当∠A 满足什么条件时;四边形AFDE 是正方形 请证明你的结论.第14题第10题 第11题17.8分如图;在平行四边形ABCD中;O是对角线AC的中点;过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.18.8分已知:如图;在正方形ABCD中;AC、BD交于点O;延长CB到点F;使BF=BC;连结DF交AB于E.求证:OE=BF在括号中填人一个适当的常数;再证明.19.8分在一次数学探究活动中;小强用两条直线把平行四边形ABCD分割成四个部分;使含有一组对顶角的两个图形全等.1根据小强的分割方法;你认为把平行四边形分割成满足以上全等关系的直线有组.2请在下图的三个平行四边形中画出满足小强分割方法的直线.3由上述实验操作过程;你发现所画的两条直线有什么规律20.12分已知:如图;在△ABC中;AB=AC;若将△ABC绕点C顺时针旋转180°得到△FEC.1试猜想线段AE与BF有何关系说明理由.2若△ABC的面积为3cm2;请求四边形ABFE的面积.3当∠ACB为多少度时;四边形ABFE为矩形说明理由.第二十章数据分析单元测试班级____________姓名____________学号____________成绩______一、填空题每空4分;共32分1.对于数据组3;3;2;3;6;3;6;3;2中;众数是_______;平均数是______;•极差是_______;中位数是______.2.数据3;5;4;2;5;1;3;1的方差是________.3.某学生7门学科考试成绩的总分是560分;其中3门学科的总分是234分;则另外4门学科成绩的平均分是_________.4.在n个数中;若x1出现f1次;x2出现f2次;…x k出现f k次;且f1+f2+…+f k=n;则它的加权平均数x=________略.5.一组数据同时减去80;实得新的一组数据的平均数为 2.3;•那么原数据的平均数为__________.二、选择题每题5分;共20分6.已知样本数据为5;6;7;8;9;则它的方差为.A.10 B.2 D7.8个数的平均数12;4个数的平均为18;则这12个数的平均数为.A.12 B.18 C.14 D.128.甲、乙两个样本的容量相同;甲样本的方差为0.102;乙样本的方差是0.06;那么.A.甲的波动比乙的波动大 B.乙的波动比甲的波动大C.甲、乙的波动大小一样 D.甲、乙的波动大小无法确定9.在某次数学测验中;随机抽取了10份试卷;其成绩如下:85;81;89;81;72;82;77;81;79;83则这组数据的众数、平均数与中位数分别为.A.81;82;81 B.81;81;76.5C.83;81;77 D.81;81;81三、解答题每题16分;共48分10.某公司员工的月工资如下:员工经理副经理职员A 职员B 职员C 职员D 职员E月工资元 6000 3500 1500 1500 1500 1100 10001求该公司员工月工资的中位数、众数、平均数;2用平均数还是用中位数和众数描述该公司员工月工资的一般水平比较恰当11.为了了解学校开展“尊敬父母;从家务事做起”活动的实施情况;•该校抽取初二年级50名学生;调查他们一周按七天计算的家务所用时间单位:小时;•得到一组数据;并绘制成下表;请根据该表完成下列各题:1填写频率分布表中未完成的部分;2这组数据的中位数落在什么范围内;3由以上信息判断;每周做家务的时间不超过1.5小时的学生所占的百分比.12.小红的奶奶开了一个金键牛奶销售店;主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”;可奶奶经营不善;经常有品种的牛奶滞销没卖完或脱销量不够;造成了浪费或亏损;细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况;并绘制了下表:1计算各品种牛奶的日平均销售量;并说明哪种牛奶销量最高2计算各品种牛奶的方差保留两位小数;并比较哪种牛奶销量最稳定3假如你是小红;你会对奶奶有哪些好的建议.附加题10分下图是某篮球队队员年龄结构直方图;根据图中信息解答下列问题: 1该队队员年龄的平均数;2该队队员年龄的众数和中位数.八年级下期期中数学综合测试时间:120分钟 总分:120分班级 学号 姓名 得分一、选择题每小题3分;共30分1. 在式子a 1;π xy 2;2334a b c ;x + 65; 7x +8y ;9 x +y 10 ;x x 2 中;分式的个数是A .5B .4C .3D .2 2. 下列各式;正确的是A .1)()(22=--a b b a B .ba b a b a +=++122 C .b a b a +=+111 D .x x ÷2=2 3. 下列关于分式的判断;正确的是A .当x =2时;21-+x x 的值为零 B .无论x 为何值;132+x 的值总为正数 C .无论x 为何值;13+x 不可能得整数值 D .当x ≠3时;xx 3-有意义4. 把分式)0,0(22≠≠+y x yx x中的分子分母的x 、y 都同时扩大为原来的2倍;那么分式的值将是原分式值的A .2倍B .4倍C .一半D .不变 5. 下列三角形中是直角三角形的是A .三边之比为5∶6∶7B .三边满足关系a +b =cC .三边之长为9、40、41D .其中一边等于另一边的一半 6.如果△ABC 的三边分别为12-m ;m 2;12+m ;其中m 为大于1的正整数;则 A .△ABC 是直角三角形;且斜边为12-m ;B .△ABC 是直角三角形;且斜边为m 2 C .△ABC 是直角三角形;且斜边为12+m ; D .△ABC 不是直角三角形 7.直角三角形有一条直角边为6;另两条边长是连续偶数;则该三角形周长为 A. 20 B . 22 C . 24 D . 26 8.已知函数xky =的图象经过点2;3;下列说法正确的是 A .y 随x 的增大而增大 B.函数的图象只在第一象限 C .当x <0时;必有y <0 D.点-2;-3不在此函数的图象上 9.在函数xky =k >0的图象上有三点A 1x 1; y 1 、A 2x 2; y 2、A 3x 3; y 3 ;已知x 1<x 2<0<x 3;则下列各式中;正确的是A.y 1<y 2<y 3B.y 3<y 2<y 1C. y 2< y 1<y 3D.y 3<y 1<y 2 10.如图;函数y =kx +1与xky =k <0在同一坐标系中;图象只能是下图中的二、填空题每小题2分;共20分11.不改变分式的值;使分子、分母的第一项系数都是正数;则________=--+-yx yx .12.化简:3286ab a =________; 1111+--x x =___________. 13.已知a 1 -b1 =5;则b ab a b ab a ---2232+ 的值是 .14.正方形的对角线为4;则它的边长AB = .15.如果梯子的底端离建筑物9米;那么15米长的梯子可以到达建筑物的高度是______米. 16.一艘帆船由于风向的原因先向正东方向航行了160km;然后向正北方向航行了120km;这时它离出发点有____________km.17.如下图;已知OA =OB ;那么数轴上点A 所表示的数是____________.18.某食用油生产厂要制造一种容积为5升1升=1立方分米的圆柱形油桶;油桶的底面面积s与桶高h 的函数关系式为 . 19.如果点2;3和-3;a 都在反比例函数xk y = 的图象上;则a = . 20.如图所示;设A 为反比例函数xky =图象上一点;且矩形ABOC 的面积为3;则这个反比例函数解析式为 .三、解答题共70分21.每小题4分;共16分化简下列各式:1422-a a +a -21 . 2)()()(3222a b a b b a -÷-⋅-.ABCD第14题图1-30-1-2-4231BA 第20题图3)252(423--+÷--x x x x . 4y x x - -y x y -2 ·y x xy 2- ÷x 1 +y 1 .22.每小题4分;共8分解下列方程:1223-x +x -11 =3. 2482222-=-+-+x x x x x .23.6分比邻而居的蜗牛神和蚂蚁王相约;第二天上午8时结伴出发;到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训;于是给蚂蚁王留下一纸便条后提前2小时独自先行;蚂蚁王按既定时间出发;结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍;求它们各自的速度.24.6分如图;某人欲横渡一条河;由于水流的影响;实际上岸地点C偏离欲到达地点B相距50米;结果他在水中实际游的路程比河的宽度多10米;求该河的宽度AB为多少米B CA25.6分如图;一个梯子AB长2.5 米;顶端A靠在墙AC上;这时梯子下端B与墙角C距离为1.5米;梯子滑动后停在DE的位置上;测得BD长为0.5米;求梯子顶端A下落了多少米26.8分某空调厂的装配车间原计划用2个月时间每月以30天计算;每天组装150台空调.1从组装空调开始;每天组装的台数m单位:台/天与生产的时间t单位:天之间有怎样的函数关系2由于气温提前升高、厂家决定这批空调提前十天上市;那么装配车间每天至少要组装多少空调27.10分如图;正方形OABC 的面积为9;点O 为坐标原点;点B 在函数xky =k >0;x >0的图象上;点Pm 、n 是函数xky =k >0;x >0的图象上任意一点;过点P 分别作x 轴、y 轴的垂线;垂足分别为E 、F ;并设矩形OEPF 和正方形OABC 不重合部分的面积为S .1求B 点坐标和k 的值;2当S =错误!时;求点P 的坐标;3写出S 关于m 的函数关系式.28.10分如图;要在河边修建一个水泵站;分别向张村A 和李庄B 送水;已知张村A 、李庄B到河边的距离分别为2km 和7km;且张、李二村庄相距13km .1水泵应建在什么地方;可使所用的水管最短 请在图中设计出水泵站的位置;2如果铺设水管的工程费用为每千米1500元;为使铺设水管费用最节省;请求出最节省的铺设水管的费用为多少元AB河边l人教实验版八年级下期末测试题学校______班级_______姓名______得分_________一、选择题每题2分;共24分1、下列各式中;分式的个数有31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223y x y-中的x 和y 都扩大5倍;那么分式的值 A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍3、已知正比例函数y =k 1xk 1≠0与反比例函数y =2k xk 2≠0的图象有一个交点的坐标为 -2;-1;则它的另一个交点的坐标是A. 2;1B. -2;-1C. -2;1D. 2;-1 4、一棵大树在一次强台风中于离地面5米处折断倒下;倒下部分与地面成30°夹角;这棵大树在折断前的高度为A .10米B .15米C .25米D .30米 5、一组对边平行;并且对角线互相垂直且相等的四边形是A 、菱形或矩形B 、正方形或等腰梯形C 、矩形或等腰梯形D 、菱形或直角梯形 6、把分式方程12121=----xx x 的两边同时乘以x-2; 约去分母;得A .1-1-x=1B .1+1-x=1C .1-1-x=x-2D .1+1-x=x-2 7、如图;正方形网格中的△ABC;若小方格边长为1;则△ABC 是A 、直角三角形B 、锐角三角形C 、钝角三角形D 、以上答案都不对第7题 第8题 第9题8、如图;等腰梯形ABCD 中;AB ∥DC;AD=BC=8;AB=10;CD=6;则梯形ABCD 的面积是 A 、1516 B 、516 C 、1532 D 、17169、如图;一次函数与反比例函数的图像相交于A 、B 两点;则图中使反比例函数的值小于一次函数的值的x 的取值范围是A 、x <-1B 、x >2C 、-1<x <0;或x >2D 、x <-1;或0<x <210、在一次科技知识竞赛中;两组学生成绩统计如下表;通过计算可知两组的方差为2S 172甲=;2S 256乙=..下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80;但成绩≥80的人数甲组比乙组多;从中位数来看;甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多;高分段乙组成绩比甲组好..其中正确的共有 .分数 50 60 70 80 90 100 人 数甲组251013146乙组 4 4 16 2 12 12A2种 B3种 C4种 D5种11、小明通常上学时走上坡路;途中平均速度为m 千米/时;放学回家时;沿原路返回;通常的速度为n 千米/时;则小明上学和放学路上的平均速度为 千米/时A B CD A BCAB C DEGA 、2n m + B 、 n m mn + C 、 n m mn +2 D 、mnnm + 12、李大伯承包了一个果园;种植了100棵樱桃树;今年已进入收获期..收获时;从中任选并采樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为A. 2000千克;3000元B. 1900千克;28500元C. 2000千克;30000元D. 1850千克;27750元 二、填空题每题2分;共24分 13、当x 时;分式15x -无意义;当m = 时;分式2(1)(3)32m m m m ---+的值为零 14、各分式121,1,11222++---x x x x x x 的最简公分母是_________________15、已知双曲线xky =经过点-1;3;如果A 11,b a ;B 22,b a 两点在该双曲线上;且1a <2a <0;那么1b 2b .16、梯形ABCD 中;BC AD //;1===AD CD AB ;︒=∠60B 直线MN 为梯形ABCD 的对称轴;P 为MN 上一点;那么PD PC +的最小值 .. 第16题 第17题 第19题17、已知任意直线l 把□ABCD 分成两部分;要使这两部分的面积相等;直线l 所在位置需满足的条件是 _________ 18、如图;把矩形ABCD 沿EF 折叠;使点C 落在点A 处;点D 落在点G 处;若∠CFE=60°;且DE=1;则边BC 的长为 .19、如图;在□ABCD 中;E 、F 分别是边AD 、BC 的中点;AC 分别交BE 、DF 于G 、H;试判断下列结论:①ΔABE ≌ΔCDF ;②AG=GH=HC ;③EG=;21BG ④S ΔABE =S ΔAGE ;其中正确的结论是 __ 个 20、点A 是反比例函数图象上一点;它到原点的距离为10;到x 轴的距离为8;则此函数表达式可能为_________________A E DH CB F GD21、已知:24111A Bx x x =+--+是一个恒等式;则A =______;B=________.. 22、如图; ΔP 1OA 1 、ΔP 2A 1A 2是等腰直角三角形;点1P 、2P 在函数4(0)y x x=>的图象上;斜边1OA 、12A A 都在x 轴上;则点2A 的坐标是____________.第24题 23、小林在初三第一学期的数学书面测验成绩分别为:平时考试第一单元得84分;第二单元得76分;第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算;那么小林该学期数学书面测验的总评成绩应为_____________分..24、在直线l 上依次摆放着七个正方形如图所示..已知斜放置的三个正方形的面积分别是1、2、3;正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4;则S 1+S 2+S 3+S 4=_______.. 三、解答题共52分25、5分已知实数a 满足a 2+2a -8=0;求22213211143a a a a a a a +-+-⨯+-++的值.26、5分解分式方程:22416222-+=--+x x x x x -27、6分作图题:如图;Rt ΔABC 中;∠ACB=90°;∠CAB=30°;用圆规和直尺作图;用两种方法把它分成两个三角形;且要求其中一个三角形的等腰三角形..保留作图痕迹;不要求写作法和证l321S 4S 3S 2S 1第22题明28、6分如图;已知四边形ABCD 是平行四边形;∠BCD 的平分线CF 交边AB 于F ;∠ADC 的平分线DG 交边AB 于G .. 1求证:AF=GB ;2请你在已知条件的基础上再添加一个条件;使得△EFG 为等腰直角三角形;并说明理由.29、6分张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”;对两位同学进行了辅导;并在辅导期间进行了10次测验;两位同学测验成绩记录如下表:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 第9次 第10次王军 68 80 78 79 81 77 78 84 83 92 张成86807583857779808075利用表中提供的数据;解答下列问题:平均成绩 中位数 众数 王军8079.5AB C ABC1填写完成下表:2张老师从测验成绩记录表中;求得王军 10次测验成绩的方差2S 王=33.2;请你帮助张老师计算张成10次测验成绩的方差2S 张;3请你根据上面的信息;运用所学的统计知识;帮助张老师做出选择;并简要说明理由..30、8分制作一种产品;需先将材料加热达到60℃后;再进行操作.设该材料温度为y ℃;从加热开始计算的时间为x 分钟.据了解;设该材料加热时;温度y 与时间x 成一次函数关系;停止加热进行操作时;温度y 与时间x 成反比例关系如图.已知该材料在操作加工前的温度为15℃;加热5分钟后温度达到60℃.1分别求出将材料加热和停止加热进行操作时;y 与x 的函数关系式;2根据工艺要求;当材料的温度低于15℃时;须停止操作;那么从开始加热到停止操作;共经历了多少时间31、6分甲、乙两个工程队合做一项工程;需要16天完成;现在两队合做9天;甲队因有其他任务调走;乙队再做21天完成任务..甲、乙两队独做各需几天才能完成任务张成 80 80。

2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)

2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)

2022—2023年学年度(沪科版)八年级数学下册章节练习18章勾股定理单元检测一(基础卷)一、选择题(本大题共10小题,每小题4分,总计40分)1.如图,AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥于点D ,PE OB ⊥于点E ,若8OD =,10OP =,则PE 的长为( )A .5B .6C .7D .82.下列各组数据中的三个数作为三角形的边长.其中能构成直角三角形的是( )AB .2,3,4C .6,7,8D .13.将一根24cm 的筷子置于底面直径为15cm ,高为8cm 的圆柱形水杯中,如图,设筷子露在杯子外面的长度为cm h ,则h 的取值范围是( )A .17hB .716hC .1516hD .8h4.若直角三角形的两直角边长分别为a ,b ,且满足()2340a b -+-=,则该直角三角形的第三边长的平方为( ) A .25B .7C .25或7D .25或165.如图,在直线m 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是3,6,9,正放置的四个正方形的面积依次是1S ,2S ,3S ,4S ,则14S S +=( )A .6B .6.5C .7D .86.如图,两个较大正方形的面积分别为 576、625,则字母 A 所代表的正方形的边长为( )A .1B .49C .16D .77.如图,ABC ∆中,=6AC ,=8BC ,10AB =.AD 为ABC ∆的角平分线,CD 的长度为( )A .2B .52C .3D .1038.在Rt ABC △中,90ABC ∠=︒,13AC =,12AB =,则图中五个小直角三角形的周长之和为( )A .25B .18C .17D .309.如图,在长方形ABCD 中,10cm AD =,6cm AB =.将C ∠沿BE 折叠,使点C 的对应点C '落在AD 上,则DE 的长度为( )A .2cmB .2.5cmC .4cm 3D .8cm 310.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=︒,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长二、填空题(本大题共4小题,每小题5分,总计20分)11.在直角三角形中,两直角边长分别为2___________. 12.如图,△ABC 中,AC =BC ,∠C =90°,AD 平分∠CAB 交BC 于D ,DE ∠AB 于点E ,且AC =6cm ,则DE +BD 等于 ___.13.如图,菱形ABCD 的边长为4,60BAD ∠=︒,点E 是AD 边上一动点(不与A ,D 重合),点F 是CD 边上一动点,4DE DF +=,BEF △面积的最小值为______14.如图,等腰ABC 的底边BC 的长为6cm ,面积是224cm ,腰AB 的垂直平分线EF 分别交AB ,AC 于点E ,F ,若D 为边BC 的中点,M 为线段EF 上一动点,则BDM 周长的最小值为______cm .三、(本大题共2小题,每小题8分,总计16分)15.如图,AD BC ∥,90D ,点P 为CD 中点,BP 平分ABC ∠.(1)求证:AP 平分DAB ∠;(2)若30BPC ∠=︒,2BC =,则AD =______.16.已知一个三角形的两边长分别是3和4,第三边是方程2650x x -+=的根. (1)求这个三角形的周长. (2)求这个三角形的面积.四、(本大题共2小题,每小题8分,总计16分)17.为响应政府的“公园城市建设”号召,某小区进行小范围绿化,要在一块如图四边形空地上种植草皮,测得90B ,4m AB =,7m BC =,15m CD =,20m AD =,如果种植草皮费用是200元/2m ,那么共需投入多少钱?18.如图,正方形网络中的每个小正方形的边长都是1,任意连接这些小正方形的顶点,可得一些线段.请在所给网格中按下列要求画出图形.(1)如图,格点上有一点A ,画一条线段10AB,并说明理由.(2)以(1)中AB 为一边,画一个边长均为无理数的直角三角形,并说明理由. 五、(本大题共2小题,每小题10分,总计20分)19.如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD =120°,BD =400米,∠D =30°.那么另一边开挖点E 离D 多远正好使A 、C 、E.732,结果精确到1米)?20.已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.六、(本大题共1小题,每小题12分,总计12分)21.请阅读《三角板中的学问》,并完成以下问题:三角板中的学问直角三角板是我们学习中常用的作图工具,我们知道一副直角三角板中,一个三角板是等腰直角三角形,另一个直角三角板有一个锐角为30︒,且30︒角所对的直角边是斜边的一半.数学小组的同学们在活动中进行了量一量、拼一拼的活动.(1)填空:如图∠,希望小组的同学们量出30︒的直角三角板最短直角边为6cm,则较长直角边约为.(2)探究一:智慧小组把一副直角三角形按如图∠所示方式叠放在一起,DE BC ∥,CE 与AB 交于点F ,求AFC ∠的度数并说明理由.(3)探究二:创新小组把一副直角三角形按如图∠所示方式叠放在一起,20CDE ∠=︒,求EFC ∠的度数并说明理由.七、(本大题共1小题,每小题12分,总计12分)22.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米/秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)八、(本大题共1小题,每小题14分,总计14分)23.如图,ABC 中,90ABC ∠=,6AB =,8BC =,10AC =,AD 平分BAC ∠,交BC 于点D .动点Q 从点B 发,按BC CA -的折线路径,以每秒1个单位长度的速度运动,设运动时间为t 秒.(1)当点Q 在AC 边上运动时,线段AQ ()0AQ >的长为______(用含t 的代数式表示): (2)当点Q 在AC 边上运动时,线段BQ 长度不可能是______(其序号即可). ∠7.2; ∠5.3; ∠4.8; ∠4.5.(3)设ADQ △的面积为S ,请用含t 的代数式表示S . (4)当ABQ 为轴对称图形时,请写出满足条件的t 的值.参考答案:1112.6cm13.14.1115.(1)证明:过点P 作PE AB ⊥于E ,AD BC ∥,90D ,18090C D ∴∠=︒-∠=︒,即PC BC ⊥,BP 平分ABC ∠,PE AB ⊥,PC BC ⊥,PC PE ∴=, ∠点P 是CD 的中点,PD PC ∴=,PE PD ∴=,又PE AB ⊥,PD AD ⊥,AP ∴平分DAB ∠;(2)解:90D ∠=︒,30BPC ∠=︒, 24PB BC ∴==,903060PBC ∠=︒-︒=︒PC ∴,∠点P 是CD 的中点,PD PC ∴== BP 平分ABC ∠,2120ABC PBC ∠∠∴==︒AD BC ∥,180********DAB ABC ∴∠=︒-∠=︒-︒=︒,由(1)知AP 平分DAB ∠, 1302DAP DAB ∴∠=∠=︒,∴在Rt ADP △中,2AP PD ==6AD ∴=故答案为:6.16.(1)解:()()510x x --=,50x -=或10x -=,15x ∴=,21x =,而134+=,∴三角形的第三边为5, ∴三角形的周长为34512++=;(2)222345+=, ∴这个三角形为直角三角形,∴ 三角形的面积为13462⨯⨯=.17.解:如图所示,连接AC .90B ∠=︒,24m AB =,7m BC =,22222247625AC AB BC ∴=+=+=,25m AC ∴=又15m CD =,20m AD =,222152025+=,即222AD DC AC +=,ACD ∴是直角三角形,1122ABCADCABCD S SSAB BC AD DC ∴=+=⋅⋅+⋅⋅四边形 2112472015234m 22=⨯⨯+⨯⨯= 所需费用为23420046800⨯=元. 答:共需投入46800元.18.(1)解:如图,则线段AB 即为所求作.根据勾股定理得:AB(2)解:如图,ABC 即为所求作(答案不唯一).AC BC =AB∠222+=,∠222AC BC AB +=,∠ABC 是直角三角形,且90BCA ∠=︒. 19.解:∠∠ABD =120°,∠D =30°,60EBD ∴∠=︒∠∠AED =120°﹣30°=90°,在Rt △BDE 中,BD =400m ,∠D =30°, ∠BE =12BD =200m ,∠DE(m ),答:另一边开挖点E 离D 346m ,正好使A ,C ,E 三点在一直线上. 20.解:根据题意得 a 2+b 2=52=25, a •2b =24,∠a 2+b 2+2ab=49, ∠a +b =7,由图2得(a -b )2=52-24=1, ∠a >b , ∠a -b=1,∠a 2﹣b 2=(a+b )(a -b )=7×1=7, ∠a 2+b 2=25,a 2﹣b 2=7.21.(1)解:经过测量知较长直角边约为10.4cm , 故答案为:10.4; (2)解:∠DE BC ∥, ∠30BCF E ∠=∠=︒,∠304575AFC BCF B ∠=∠+∠=︒+︒=︒; (3)解:∠20CDE ∠=︒,60FDE ∠=︒, ∠40FDC ∠=︒, ∠90C EFD ∠=∠=︒,∠90EFC DFC FDC DFC ∠+∠=∠+∠=︒, ∠40EFC FDC ∠=∠=︒.22.解:∠在Rt∠ABC 中,∠CAB =90°,BC =13米,AC =5米,∠AB 12(米),由题意,得CD =13-0.5×10=8(米),∠AD (米),∠BD =AB -AD =(12米,答:船向岸边移动了(12米.23.(1)解:∠90ABC ∠=,6AB =,8BC =,10AC = ∠18BC AC +=, ∠18AQ t =-, 故答案为:18t -;(2)解:过B 作BH AC ⊥于H ,如图1,∠1122ABC S AB BC BH AC ∆=⋅=⋅, ∠68 4.810AB BC BH AC ⋅⨯===, ∠ 4.8BQ BH ≥=∠当点Q 在BC 边上运动时,线段BQ 长度不可能是∠,故答案为:∠;(3)解:过D 作DE AC ⊥于E ,如图1,∠90ABC ∠=︒,AD 平分BAC ∠,∠BD DE =,∠8CD BD =-, ∠1122ADC S CD AB AC DE ∆=⋅=⋅, ∠()6810BD BD -=,∠3BD =,当03t ≤<时,1(3)6392S t t =⨯-⨯=-+. 当38t <≤时,1(3)6392S t t =⨯-⨯=-. 当818t <<时,13(18)32722S t t =⨯-⨯=-+. 综上所述()()()390339383278182t t S t t t t ⎧⎪-+≤<⎪=-<≤⎨⎪⎪+<<⎩;(4)解:当ABQ 为轴对称图形时,ABQ 是等腰三角形, ∠当点Q 在BC 边上运动时,∠90ABC ∠=︒,∠ABQ 是等腰直角三角形,∠6AB BQ ==,∠6t =;∠当点Q 在AC 边上运动时,ABQ 为轴对称图形,∠、如图2,当18AQ BQ t ==-时,ABQ 为轴对称图形,过Q 作QM AB ⊥于M ,∠AM BM =,∠90AMQ ABC ∠=∠=︒,∠QM BC ∥, ∠11852AQ CQ t AC ==-==, ∠13t =;∠、当186AQ AB t ==-=时,ABQ 为轴对称图形,∠12t =;∠、当6BQ AB ==时,ABQ 为轴对称图形,过B 作BN AC ⊥于N , ∠11922AN QN AQ t ===-, 由(2)知 4.8BN =,∠222AB BN AN -=, 即22216 4.892t ⎛⎫-=- ⎪⎝⎭,解得545t ,综上所述,当ABQ为轴对称图形时,t的值为6或13或12或545.。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1.在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D=120°,则该零件另一腰AB 的长是______cm (结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地6.飞机在空中水平飞行上方4000米处,过了209.如图,在四边形CD=3,求AB 的长10.如图,一个牧童在小河的南的小屋B 的西8km 2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC ,所以AB222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+,再利用面积法得,136011米,由勾所以飞机飞行的速度为CE=60.2⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9.解:延长BC 、AD 交于点E.(如图所示)第5题图第8题∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

八年级数学上册勾股定理单元综合测试题(含答案解析)

八年级数学上册勾股定理单元综合测试题(含答案解析)

第1章勾股定理一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为__________.2.求如图中直角三角形中未知的长度:b=__________,c=__________.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为__________cm2.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:__________(填“能”、或“不能”)5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为__________.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为__________dm.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.410.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.511.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:513.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.北师大新版八年级上册《第1章勾股定理》2015年单元测试卷(广东省深圳市观澜二中)一、填空:(每空4分,共计28分)1.已知一个Rt△的两边长分别为3和4,则第三边长的平方为7或25.【考点】勾股定理.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:当3、4都为直角边时,第三边长的平方=32+42=25;当3为直角边,4为斜边时,第三边长的平方=42﹣32=7.故答案为:7或25.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.求如图中直角三角形中未知的长度:b=12,c=10.【考点】勾股定理.【分析】根据勾股定理进行计算即可.【解答】解:b==12;c==10,故答案为:12;10.【点评】本题考查的是勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.4.小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答:能(填“能”、或“不能”)【考点】勾股定理的应用.【分析】能,在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较即可.【解答】解:能,理由如下:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案为能.【点评】本题考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.5.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为2.4cm.【考点】勾股定理.【专题】计算题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为3cm,4cm,∴斜边为=5cm,设斜边上的高为h,则直角三角形的面积为×3×4=×5h,h=2.4cm,这个直角三角形斜边上的高为2.4cm.故答案为:2.4cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.6.如图,四边形ABCD中,CD∥AB,AD⊥DC,DC=5,CB=15,AB=17.则四边形ABCD的面积为99.【考点】勾股定理;勾股定理的逆定理.【分析】作CE⊥AB于E,则四边形AECD是矩形,∠BEC=90°,得出AE=CD=5,BE=AB﹣AE=12,由勾股定理求出CE,即可求出四边形ABCD的面积.【解答】解:作CE⊥AB于E,如图所示:则四边形AECD是矩形,∠BEC=90°,∴AE=CD=5,∴BE=AB﹣AE=17﹣5=12,由勾股定理得:CE===9,∵CD∥AB,∴四边形ABCD的面积=(AB+CD)×CE=(17+5)×9=99;故答案为:99.【点评】本题考查了梯形的性质、勾股定理、矩形的判定与性质,熟练掌握梯形的性质,由勾股定理求出梯形的高是解决问题的关键.7.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为25dm.【考点】平面展开-最短路径问题.【专题】计算题;压轴题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.二、选择题(每题4分,共28分)8.Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cm B.3cm C.4cm D.5cm【考点】勾股定理;三角形中位线定理.【分析】利用勾股定理列式求出斜边,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【解答】解:∵Rt△ABC两直角边的长分别为6cm和8cm,∴斜边==10cm,∴连接这两条直角边中点的线段长为×10=5cm.故选D.【点评】本题考查了勾股定理,三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.9.观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )组.A.1 B.2 C.3 D.4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:①82+152=172,根据勾股定理的逆定理是直角三角形,故正确;②72+122≠152,根据勾股定理的逆定理不是直角三角形,故错误;③122+152≠202,根据勾股定理的逆定理不是直角三角形,故错误;④72+242=252,根据勾股定理的逆定理是直角三角形,故正确.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.如图,正方形ABCD的边长为1,则正方形ACEF的面积为( )A.2 B.3 C.4 D.5【考点】算术平方根.【分析】根据勾股定理,可得AC的长,再根据乘方运算,可得答案.【解答】解:由勾股定理,得AC=,乘方,得()2=2,故选:A.【点评】本题考查了算术平方根,先求出AC的长,再求出正方形的面积.11.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.12.满足下列条件的△ABC中,不是直角三角形的是( )A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】由勾股定理的逆定理得出A、C是直角三角形,D不是直角三角形;由三角形内角和定理得出B是直角三角形;即可得出结果.【解答】解:∵a:b:c=3:4:5,32+42=52,∴这个三角形是直角三角形,A是直角三角形;∵∠A:∠B:∠C=1:2:3,∴∠C=90°,B是直角三角形;∵a2:b2:c2=1:2:3,∴a2+b2=c2,∴三角形是直角三角形,C是直角三角形;∵a2:b2:c2=3:4:5,∴a2+b2≠c2,∴三角形不是直角三角形;故选:D【点评】本题考查了勾股定理的逆定理、三角形内角和定理;熟练掌握勾股定理的逆定理和三角形内角和定理,通过计算得出结果是解决问题的关键.13.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为( )A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出BD,然后在RT△ABD中,可根据勾股定理进行求解.【解答】解:如图:由题意得:AB=AC=10cm,BC=16cm,作AD⊥BC于点D,则有DB=BC=8cm,在Rt△ABD中,AD==6cm.故选D.【点评】本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理直角三角形的边长.14.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.三、解答题:(每题11分,共计44分)15.一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)【考点】勾股定理的应用.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.【解答】解:如图所示:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?【考点】勾股定理的应用.【分析】根据题意求出小东与哥哥各自行走的距离,根据勾股定理计算即可.【解答】解:由题意得,AC=6×=3km,BC=8×=4km,∠ACB=90°,则AB==5km.【点评】本题考查的是勾股定理的应用,正确构造直角三角形、灵活运用勾股定理是解题的关键.17.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°;(1)求BD的长;(2)求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】(1)在Rt△ABD中,利用勾股定理可求出BD的长度;(2)利用勾股定理的逆定理判断出△BDC为直角三角形,根据S四边形ABCD=S△ABD+S△BDC,即可得出答案.【解答】解:(1)∵∠A=90°,∴△ABD为直角三角形,则BD2=AB2+AD2=25,解得:BD=5.(2)∵BC=13cm,CD=12cm,BD=5cm,∴BD2+CD2=BC2,∴BD⊥CD,故S四边形ABCD=S△ABD+S△BDC=AB×AD+BD×DC=6+30=36.【点评】本题考查了勾股定理及勾股定理的逆定理,在求不规则图形的面积时,我们可以利用分解法,将不规则图形的面积转化为几个规则图形的面积之和.18.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?【考点】翻折变换(折叠问题).【专题】应用题;操作型.【分析】由折叠的性质得到三角形BDC与三角形BDE全等,进而得到对应边相等,对应角相等,再由两直线平行内错角相等,等量代换及等角对等边得到FD=FB,设FD=FB=xcm,则AF=(8﹣x)cm,在直角三角形AFB中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出FD的长,进而求出三角形BDF面积.【解答】解:由折叠可得:△BDC≌△BDE,∴∠CBD=∠EBD,BC=BE=8cm,ED=DC=AB=6cm,∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴FD=FB,设FD=FB=xcm,则有AF=AD﹣FD=(8﹣x)cm,在Rt△ABF中,根据勾股定理得:x2=(8﹣x)2+62,解得:x=,即FD=cm,则S△BDF=FD•AB=cm2.【点评】此题考查了翻折变换(折叠问题),涉及的知识有:折叠的性质,全等三角形的性质,平行线的性质,等腰三角形的判定,以及勾股定理,熟练掌握性质及定理是解本题的关键.四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.【考点】勾股定理的应用;三角形的面积;勾股定理的逆定理.【专题】应用题.【分析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.【点评】解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)延长ED至点G,使得EG=DE,连接FG,CG,易证EF=FG和△BDE≌△CDG,可得BE=CG,∠DCG=∠DBE,即可求得∠FCG=90°,根据勾股定理即可解题;(2)连接AD,易证∠ADE=∠CDF,即可证明△ADE≌△CDF,可得AE=CF,BE=AF,S四边形AEDF=S△ABC,再根据△DEF的面积=S△ABC﹣S△AEF,即可解题.【解答】(1)证明:延长ED至点G,使得DG=DE,连接FG,CG,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2;(2)解:连接AD,∵AB=AC,D是BC中点,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,BE=AF,AB=AC=17,∴S四边形AEDF=S△ABC,∴S△AEF=×5×12=30,∴△DEF的面积=S△ABC﹣S△AEF=.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BDE≌△CDG和△ADE≌△CDF是解题的关键.7、我们各种习气中再没有一种象克服骄傲那麽难的了。

沪科版八年级下册数学第18章勾股定理单元测试卷(含答案)

沪科版八年级下册数学第18章勾股定理单元测试卷(含答案)

沪科版八年级数学第18章 勾股定理 单元测试卷一、选择题(每题3分,共30分)1、在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .82、如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. 53,54,1 B.3,4,5 C.6,8,10 D. 2,3,43、如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数有( )个A .0B .1C .2D .34、如图,数轴上点A 对应的数是0,点B 对应的数是1,BC ⊥AB ,垂足为B ,且BC =3,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为( )A .2.2B .C .√10D .5、)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.36、有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为( )A.3B.√41C.3或√41D.无法确定7、如图,已知正方形B的面积为144,正方形C的面积为169,那么正方形A的边长为()A.√5B.25C.5D.6.258、.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3√349、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD5,则BC的长为()A.3-1B.3+1C.5-1D.5 +110、在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设这个人的身高是5尺,秋千的绳索始终拉的很直,则绳索长为()A.12.5尺B.13.5尺C.14.5尺D.15.5尺二、填空题(每小题3分,共24分)11、若CD是△ABC的高,AB=2√3,AC=2,BC=2√2,则CD的长为.12、.如图,在△ABC 中,∠ACB =90°,AC =40,CB =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为13、三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.14、如图所示,有两棵树,一棵树高10 m ,另一棵树高4 m ,两树相距8 m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 米 15、如图,长方形网格中每个小正方形的边长是1,△ABC 是格点三角形(顶点都在格点上),则点C 到AB 的距离为 .16、如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则x 2+(y −4)2的值为_________.17、如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________. M A BCN18、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为三、解答题(共66分)19、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.(8分)20、“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)(8分)21、已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,求BC的长(10分)22、如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗? (10分)23、如图,一个长为2.5m的梯子,斜靠在竖直的墙上,这时梯子的底端距离墙面0.7m;如果梯子顶端沿墙下滑0.4m,那么梯子底端将向左滑动多少米?(10分)24、如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.(8分)25、如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.(12分)参考答案一、选择题ADDCD CCADC√612、8 13、直角24 14、10 15、1.2二、11、2316、16 17、√4118、24三、19、解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC=√AB2-AC2=√202-102=10√3.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=1BC=5√3,2∴CM=√BC2-BM2=√(10√3)2-(5√3)2=15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5√3,∴CD=CM-MD=15-5√3.20、解:如图,设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.21、解:分两种情况:①当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC 是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2; 综上所述,BC 的长为2或2. 故答案为:2或2. 22、解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =12ab,S △C'A'D'=12ab,S 直角梯形A'D'BA =12(a+b)(a+b)=12(a+b)2,S △ACA'=12c 2.(2)由题意可知S △ACA'=S 直角梯形A'D'BA -S △ABC -S △C'A'D'=12(a+b)2-12ab-12ab=12(a 2+b 2),而S △ACA'=12c 2.所以 a 2+b 2=c 2.23、解:如图AB =CD =2.5米,AO =0.7米,BD =0.4,求AC 的长. 在直角三角形AOB 中,AB =2.5,AO =0.7,由勾股定理,得BO =2.4, ∵BD =0.4,∴OD =2,∵CD =2.5,在直角三角形COD 中,由勾股定理,得OC =1.5,∵OA =0.7,∴AC =0.8.即梯子底端将滑动了0.8米. 24、解:连接AC ,∵∠B =90°∴AC 2=AB 2+BC 2.∵AB =BC =2∴AC 2=8.∵∠D =90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.25、解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.。

人教版 勾股定理综合检测题检测试题及答案(共2套)

人教版 勾股定理综合检测题检测试题及答案(共2套)

数学:第18章勾股定理综合检测题检测试题(1)(总分:120分,时间:90分钟)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( )A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52B.3C.3+2D.332+ 4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B.800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )A.L 1 C.L 3 D.L 47,(2006年山西吕梁课改)如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A.1B.2C.3D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________.14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.17,[2008年河北省]如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .18,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里. 三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一AB CABC图25mBCAD图1BCAED 图3图5图420,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m=k;第三步:分别用3、4、5乘以k,得三边长”.(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.24,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.图6AB小河东北牧童小屋图7图8 图9北A图10数学:第18章勾股定理综合检测题检测试题(1)参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt △ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x =253≈2.8868,所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,另一直角边为22(13)(5)x x -=12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE =22DE AD +=221CD AC++=2211BC AB+++=211++=2;10,A .二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76 ;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形.20,15m.21,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt △A ′DB 中,由勾股定理求得A ′B =17km.22,(1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab=6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM数学:第18章勾股定理综合检测题检测试题(2)一﹑选择题(每小题3分, 共30分)1. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )A . 4B . 8C . 10D . 122.小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( ) A. 小丰认为指的是屏幕的长度 B. 小丰的妈妈认为指的是屏幕的宽度 C. 小丰的爸爸认为指的是屏幕的周长 D. 售货员认为指的是屏幕对角线的长度3.如图1,中字母A 所代表的正方形的面积为( ) A. 4 B. 8 C. 16 D. 644. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形5. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( ) A. 18cm B. 20 cm C. 24 cm D. 25cm6. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450;③∠A=320, ∠B=580;④;25,24,7===c b a⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个 7. 在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是( )A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形8. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( ) A. 15° B. 30° C. 45° D. 60° 9.已知,如图2,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) 2222北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A .25海里B .30海里C .35海里D .40海里二﹑填空题 (每小题3分, 共24分)11. (2008年湖州市)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .12.如图5, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6, 则腰长AB 的长为____________. 13.如图6,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为_________ m.14. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________=AB 米.15. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形.16. 木工做一个长方形桌面, 量得桌面的长为60cm, 宽为32cm, 对角线为68cm, 这个桌面(填”合格”或”不合格”).17. 直角三角形一直角边为cm 12,斜边长为cm 13,则它的面积为 .18. 如图7,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着A289225(图1)(图4) ( 图5) AB C200m520mDCBA(图6)D CB AOA BEFD北南 A东(图3)D ˊABCD A ˊB ˊC ˊ三、 解答题 (共66分)19. (8分) 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)20. (8分)如图, 在△ABC 中, AD ⊥BC 于D, AB=3, BD=2, DC=1, 求AC 2的值. AB D C21. (10分) “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?22. (10分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?23.(10分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”: “平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”24.(10分)如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1) A 城是否受到这次台风的影响?为什么?(2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?四、创新探索题(10分)一只蚂蚁如果沿长方体的表面从A 点爬到B ’点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm 、宽为1cm 、高为4cm.八年级勾股定理单元检测题参考答案(2)一1.C 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.A 10.D 二11、勾股定理,222ab c +=;12、10;13、480; 14、15;15、直角;16、合格;17、观测点BCA东北 FE AB30;18、25. 三19、13米 20、AC 2=6 21、20 v米/秒=72千米/时>70千米/时,超速。

勾股定理单元测试及解析

勾股定理单元测试及解析

一、选择题1.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DG QM 的值为( )A .32B .53C .45D .31-2.如图,将一个等腰直角三角形按图示方式依次翻折,若DE a =,则下列说法正确的是( )①DC '平分BDE ∠;②BC 长为()22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.A .①②③B .②④C .②③④D .③④3.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .14.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .5.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A .1B .2C .3D .46.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)7.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =8.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .89.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .45 10.如图,BD 为ABCD 的对角线,45,DBC DE BC ︒∠=⊥于点E ,BF ⊥DC 于点F ,DE 、BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①12CE BE = ;②A BHE ∠=∠;③AB=BH;④BHD BDG ∠=∠;⑤222BH BG AG +=;其中正确的结论有( )A .①②③B .②③⑤C .①⑤D .③④二、填空题11.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.12.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)13.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.14.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.15.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.16.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.17.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.18.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l AB ,F 是l 上的一点,且AB AF =,则FC =__________.19.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM =7EF ,则正方形ABCD 的面积为_______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.26.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.27.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)28.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .29.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,312PQ =,所以32QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DG QM的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠,∴△EAB ≌△CAM (SAS ),∴30EBA CMA ==︒∠∠,∴60BPQ APM ==︒∠∠,∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM=,1PB =,12PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BC AC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴1DG GM==. 故选D .【点睛】 本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.2.B解析:B【分析】根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC 和DE 的关系.【详解】解:根据折叠的性质知,△C ED CED '≅∆,且都是等腰直角三角形,∴90BDE ∠<︒,45C DE ∠'=︒, ∴12C DE BDE ∠'≠∠ ∴DC '不能平分BDE ∠①错误;45DC E DCE ∴∠'=∠=︒,C E CE DE AD a '====,CD DC ='=,AC a ∴=,2)BC a ==,∴②正确;2ABC DBC ∠=∠,22.5DBC ∴∠=︒,45DCB ∠=︒,112.5BDC ∴∠=︒,BCD ∴∆不是等腰三角形,故③错误;CED ∴∆的周长(2CE DE CD a a a BC =++=+==,故④正确.故选:B .【点睛】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.3.D解析:D【分析】作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C ,此时△ABC 周长最小,根据题意及作图可得出△OAD 是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE 是直角三角形,然后设AB=x ,则OB=3+x ,根据周长最小值可表示出BE=6-x ,最后在Rt △OBE 中,利用勾股定理建立方程求解即可.【详解】解:作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C , 此时△ABC 周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE ,∵△ABC 周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD ⊥OM ,∴△OAD 是等腰直角三角形,∠OAD=45°,由作图可知OM 垂直平分AE ,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.4.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A 中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确; B 中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C 中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D 中,根据A 可得,C 可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A 、B 、C 选项的等式中需理解等式的各个部分表示的几何意义,对于D 选项是由A 、C 选项联立得出的. 5.C解析:C【解析】试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE . ∵在△BAD 和△CAE 中,AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△BAD ≌△CAE (SAS ).∴BD=CE .本结论正确.②∵△BAD ≌△CAE ,∴∠ABD=∠ACE .∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°. ∴BD ⊥CE .本结论正确.③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE ,∴∠ACE+∠DBC=45°.本结论正确.④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得:BE 2=BD 2+DE 2.∵△ADE 为等腰直角三角形,∴DE=2AD ,即DE 2=2AD 2.∴BE 2=BD 2+DE 2=BD 2+2AD 2.而BD 2≠2AB 2,本结论错误.综上所述,正确的个数为3个.故选C .6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.7.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.8.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A 的面积等于100-64=36;故选:B .【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.9.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.B解析:B【分析】根据直角三角形的意义和性质可以得到解答.【详解】解:由题意,90BHE HBE C HBE A C ∠+∠=∠+∠=︒∠=∠,∴A BHE C ∠=∠=∠,②正确;∵∠DBC=45°,DE ⊥BC ,∴∠EDB=∠DBC=45°,∴BE=DE∴Rt BEH Rt DEC ≅,∴BH=CD=AB ,③正确;∵AB CD BF CD ⊥,,∴AB ⊥CD ,∴222AB BG AG +=即 222BH BG AG +=,⑤正确,∵没有依据支持①④成立,∴②③⑤正确故选B .【点睛】本题考查直角三角形的意义和性质,灵活应用有关知识求解是解题关键.二、填空题11.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.12.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),222021+=29(尺).答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.13.5【分析】在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =, ∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒ ∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.14.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 1510【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-= ∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+ ∴33417OE = ∴221234EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴16342FG EC ==∴2034BE BO OE =+=∴17342GO GE OE BE OE =-=-= ∴22=10OF GO GF -=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.162【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD 、CF.∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长2, 2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..17.310232【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y 223332+=;当x=9时,x 、y 2293310+=;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:310,62或32.【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.18.31+或31-【解析】如图,l AB ,2AC =,作AD l ⊥于点D ,∴1AD =,∵222AF AB ===,且F 有2个, ∴2212213DF DF ==-=∵1DC AD ==, ∴1113CF CD DF =+= 2231CF DF CD =-=.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.19.485【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM 7EF ,2,,2a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM 22=3BD BM BM -,∴)3x y x y +=-,整理,得(23y x =.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:22224652213BQ BP +=+==∴出发2秒后,线段PQ 的长为13(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴2268+=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以CE=22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.23.(1) 出发10s后,△BMN为等边三角形;(2)出发6s或15s后,△BMN为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15, 答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE的值为.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73在Rt △BCD 中,()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.26.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.27.(1)∠CBD=20°;(2)AD=164;(3) △BCD的周长为m+2【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB ,设CD=x ,则AD=BD=8-x ,在Rt △CDB 中,CD 2+CB 2=BD 2,x 2+62=(8-x )2,解得:x=74, AD=8-74=164; (3)∵△ABC 的面积为m+1, ∴12AC •BC=m+1, ∴AC •BC=2m+2, ∵在Rt △CAB 中,CA 2+CB 2=BA 2,∴CA 2+CB 2+2AC •BC=BA 2+2AC •BC ,∴(CA+BC )2=m 2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB ,∴CD+DB+BC=m+2.即△BCD 的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.28.(1)见解析;(2)BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中, ∴2223OC CF OF =-=.在Rt △BOC 中, ∴22224(23)27BC BO OC =+=+=【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.29.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333-.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,。

北师大八年级数学上册单元测试题全套及答案

北师大八年级数学上册单元测试题全套及答案

最新北师大版八年级数学上册单元测试题全套及答案第一章勾股定理综合测评时间: 满分:120分、精心选一选(每小题4分,共32 分)1. 在厶 ABC 中,/ B=90° ,若 BC=3 AC=5,贝U AB 等于( )A.3B.4C.5D.62. 下列几组数中,能组成直角三角形的是()4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖 6 cm,10分钟后,两只小鼹鼠相距( )6.图2中的小方格都是边长为 1的正方形,试判断厶 ABC 的形状为()、耐心填一填(每小题4分,共32 分)9. 写出两组勾股数: ________________ . _______________10. 在厶ABC 中,ZC = 90° , 若 BC : AC = 3 :4 , AB= 10,则 BC= ___ , AC = _____ .班级: ________ 姓名: _______ 得分: _______1 1 1A.—,B.3 ,4, 6C.5 ,12, 13D.0.8 , 1.2 , 1.53 4 ,53.如图 1, 正方形 ABCD 的面积为 100 cm 2, △ ABP 为直角三角形, / P=90 ° ,且PB=6 cm ,则AP 的长为 ( )A.10 cmB.6 cmC.8 cmD.无法确定A.50 cmB.80 cmC.100 cm D.140 cm5.已知a , b , cABC 的三边,且满足 a 2 b 2 a 2 b 2 c 2 = 0,则它的形状为( A.直角三角形C.等腰直角三角形B.等腰三角形D. 等腰三角形或直角三角形A .钝角三角形 B. 锐角三角形 C.直角三角形 D.以上都有可能[来源:学科网7. 如图3, 一圆柱高8 cm,底面半径为2 cm, —只蚂蚁从点 A 爬到点B 处吃食,要爬行的最短路程( 取3 )是()A. 20 cmB.10 cmC.14 cmD.无法确定8.已知 Rt △ ABC 中,/ C=90°, 若 BC + AC = 14 cm , AB= 10 cm ,则该三角形的面积是( 2A.24 cm2B.36 cmC.48 cm2D.60 cm11. 如图4,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为___________13. 一个三角形的三边长之比为 5 : 12 : 13,它的周长为60,则它的面积是 _______ . 14. 图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面 爬行到B 点的最短路程是 米.屋门只有242 cm 高,100 cm 宽.你认为小明能把床垫拿进屋吗?________________________________________________________________________ .(填"能”或"不能”)16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得 米,AC = 4.5米,MC= 6米,则太阳光线 MA 的长度为 _______ 米.17. (10分)如图8,甲渔船以8海里/时的速度离开港口 O 向东北方向航行,乙渔船以5 4 BN ^ —米,NC=—米,BC = 133三、细心做一做(共56分)12.如图 5,/ OAB =Z OBC=Z OCD= 90°, AB= BC = CD= 1, OA= 2,贝U OD 2 = _____15. 一天,小明买了一张底面是边长为 260 cm 的正方形,厚30 cm 的床垫回家,至U 了家门口,才 发现6海里/时的10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树 20米处的池塘D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的19. (12分)如图 A 处.另一只爬到树顶速度离开港口 O 向西北方向航行,它们同时出发 .一个半小时后,甲、乙两渔船相距多少海里?9,已知在厶 ABC 中,AB=13, AD=12 AC=15, CD=9 求厶 ABC 的面积.18. (10分)如图高度.20. (12分)如图11, 一块草坪的形状为四边形 ABCDr 其中/ B=90 , AB=8 m BC=6 m CD=24 mAD=26 m.求这块草坪的面积.来源:Z#xx#]21. (12分)对任意符合条件的直角三角形保持其锐角顶点 A 不动,改变BC 的位置,使 E , D ,且/ BAE = 90°,/ CAD = 90° (如图 12).【分析】所给数据如图中所示,且四边形 ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.第一章勾股定理综合测评一、 1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、 9.答案不唯一,如 3,4,5 ; 60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.台匕冃匕16.7.533三、 17.解:由题意得 OA — 812 (海里),OB — 69 (海里), AOB 90,所以△ AOB22是直角三角形.由勾股定理,得 OA 2 OB 2 AB 2,即AB 2 =92+122=225,所以AB= 15 (海里).答略.18. 解:因为 AD=12 AC=15 CD=9所以AD+cD=144+8仁225= AC 2,所以△ ADC 为直角三角形,且/ ADC=90 .在 Rt △ ABD 中,AB=13, AD=12 由勾股定理得 BD 2 =AB 2 - AD 2 = 25,所以ED =5,所以 BC = BD+DC=5+9=1411所以 S AABC =• BC• AD=— X 14X 12=84 .2 219. 解:由题意知 AD+DB=BC+CA 且 CA=20米,BC=10米,设 BD=x 贝U AD=30-x .【解答】结合上面的分析过程验证勾股定理[来源:学科网]在Rt △ ACD中,CD+CA^AE2,即(30-x ) 2= ( 10+x) 2+202,解得x=5,故树高CD=10+x=15 (米).20. 解:如图,连接AC,因为/ B=90,所以在Rt△ ABC中,由勾股定理得AC2=AB2+BC2=82+62=100, 所以AC=10.又因为CD=24, AD=26所以在△ ACD中, AC+CD^A E J,所以△ ACD是直角三角形.1 1 1 1” *所以S 四边形ABC=S^ACD-S△ AB(= — AC?CD ——AB?BC —X 10X 24 -——X 8X6 =120-24=96 (m)."22 2 2 2/故该草坪的面积为96 m. '-一/21解:由分析可得S 正方形ACFD= S 四边形ABFE=S^ BAE+ S^ BFE・1 1即b2= c2+ (b+a) (b-a).2 2整理,得2b2= c2+ (b+ a) (b-a) .*源学一科网心所以a2+ b2= c2.第二章实数检测题【本检测题满分:100分,时间:90分钟】、选择题(每小题3分,共30分)1 .下列无理数中,在一2与1之间的是()A. —LB.—:;C.D .2. (2014 •南京中考)8的平方根是()A . 4B . ±4C .2 .刁D . ±皿3.若a,b为实数,且满足|a—2|+ . b2 =0, 则b —a的值为()A . 2B . 0C.—2 D . 以上都不对4.卜列说法错误的是()A. 5是25的算术平方根B.1是1的一个平方根C . (—4)2的平方根是一4D.0的平方根与算术平方根都是5.要使式子- x有意义,则x的取值范围是()A . x> 0 B. x>- 2 C. x> 2 D. x< 26.若a, b均为正整数,且a> .7 , b> 3 2,则a + b的最小值是( )A. 3B.4C.57.在实数-,。

勾股定理练习题附答案(免费)

勾股定理练习题附答案(免费)

勾股定理同步练习题1.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( )A . 4cmB . 34cmC . 6cmD . 36cm2.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 333.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A . 9分米B . 15分米C . 5分米D . 8分米4. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.5. 在△ABC 中,∠C =90°,(1)已知 a =2.4,b =3.2,则c = ;(2)已知c =17,b =15,则△ABC 面积等于 ;(3)已知∠A =45°,c =18,则a = .6. 一个矩形的抽斗长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 .7. 在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB = .8. 等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 .9. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .10.一天,小明买了一张底面是边长为260cm 的正方形,厚30cm 的床垫回家.到了家门口,才发现门口只有242cm 高,宽100cm .你认为小明能拿进屋吗? .11.如图,你能计算出各直角三角形中未知边的长吗?12.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?13.有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?14.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?15.将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如右图. 求 5m13m第4题图 观测点彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm ).一、相信你的选择1、如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ).A .16πB .12πC .10πD .8π2、已知直角三角形两边的长为3和4,则此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m4、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm二、试试你的身手5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.三、挑战你的技能9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.(1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,a n ,请求出a 2,a 3,a 4的值;(2)根据以上规律写出a n 的表达式.10、如图,某公园内有一棵大树,为测量树高,小明C 150o20米30米处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,BC=30米,请帮助小明计算出树高AB.(3取1.732,结果保留三个有效数字)11、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?。

(完整版)勾股定理测试题及参考答案

(完整版)勾股定理测试题及参考答案

勾股定理测试题一、选择题(每小题4分,共40分)1.以下列各组数为边长能组成直角三角形的是( )A .567,,B .1084,,C .91517,,D .72425,,2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )(A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A)25(B )14 (C )7 (D )7或254.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A 。

直角三角形B.等腰三角形C 。

等腰直角三角形D.等腰三角形或直角三角形5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米EA BCDA .0.5B .1C .1.5D .2DCBA5米3米7.一只蚂蚁沿如图所示折线从A点爬到D点,共爬行了()(图中方格边长为1cm)A.12cm B.10cmC.14cm D.以上答案都不对8.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金().(A)50a元(B)600a元(C)1200a元(D)1500a元9.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()米A.8米B.10米C.12米D.14米10.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,B C/交AD于E,AD=8,AB=4,则DE的长为().A.3 B.4 C.5 D.6二、填空题(每小题4分,共16分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC中,斜边AB=2,则222AB AC BC++=______。

最新2019-2020年度北师大版八年级数学上册《勾股定理》综合测试题及答案解析-精品试题

最新2019-2020年度北师大版八年级数学上册《勾股定理》综合测试题及答案解析-精品试题

《第1章勾股定理》一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为,斜边上的高为.2.已知直角三角形的两边的长分别是3和4,则第三边长为.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为cm2.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行米.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= ;若a=12,b=5,则C= ;若c=15,b=13,则a= .9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= .10.若一个直角三角形的三边长分别是6、8、a,则a2= .11.等腰三角形的腰长为10,底边上的高为6,则底边长为.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行千米.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=1715.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=1516.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.16918.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.619.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.4823.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC 是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.31.已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的解题过程:《第1章勾股定理》(山东省济南市兴济中学)参考答案与试题解析一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为13 ,斜边上的高为.【考点】勾股定理.【分析】可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:AB2=52+122,则AB=13,直角三角形面积S=×5×12=×13×CD,可得:斜边的高CD=.故答案为:13,.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,解答本题的关键是熟练掌握勾股定理,此题难度不大.2.已知直角三角形的两边的长分别是3和4,则第三边长为5或.【考点】勾股定理.【专题】分类讨论.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为12 cm2.【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【解答】解:如图,作底边BC上的高AD,则AB=5cm,BD=×6=3cm,∴AD===4,∴三角形的面积为:×6×4=12cm2.【点评】本题利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为30 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积64,由此即可解决问题.【解答】解:如图记图中三个正方形分别为P、Q、M.根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P,Q的面积的和是M的面积.即A、B、C、D的面积之和为M的面积.∵M的面积是82=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,∴x=30.故答案为:30.【点评】此题考查了勾股定理,正方形的面积,得出正方形A,B,C,D的面积和即是最大正方形M的面积是解题的关键.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行10 米.【考点】勾股定理的应用.【分析】从题目中找出直角三角形并利用勾股定理解答.【解答】解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8﹣2=6米.根据勾股定理得BD=10米.【点评】注意作辅助线构造直角三角形,熟练运用勾股定理.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是 5 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形性质得出AB=CB,∠ABC=90°,求出∠EAB=∠FBC,证△AEB≌△BFC,求出BE=CF=2,在Rt△AEB中,由勾股定理求出AB,即可求出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠ABE+∠CBF=180°﹣90°=90°,∠ABE+∠EAB=90°,∴∠EAB=∠CBF,在△AEB和△BFC中,,∴△AEB≌△BFC(AAS),∴BE=CF=2,在Rt△AED中,由勾股定理得:AB==,即正方形ABCD的面积是5,故答案为:5.【点评】本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出BE=CF,主要考查学生分析问题和解决问题的能力,题型较好,难度适中.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为30 .【考点】勾股定理.【分析】在底面上,阴影三角形的边长是直角三角形的斜边,根据勾股定理即可求得,阴影部分是一个直角三角形,利用两直角边求出即可.【解答】解:如图所示,在直角△BCD中,根据勾股定理,得到BC===5.在直角△ABC中,根据勾股定理,得到AC===13.所以,图中阴影部分的三角形的周长为:AB+BC+AC=12+5+13=30.故答案是:30.【点评】本题考查了勾股定理.正确认识到阴影部分的形状是直角三角形是解题的关键;主要考查空间想象能力.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= 8 ;若a=12,b=5,则C= 13 ;若c=15,b=13,则a= 2.【考点】勾股定理.【专题】计算题.【分析】画出图形,根据勾股定理直接解答.【解答】解:如图:在Rt△ABC中,a=6,c=10,则b===8;在Rt△ABC中,a=12,b=5,则c===13;在Rt△ABC中,c=15,b=13,则a===2.故答案为8,13,2.【点评】本题考查了勾股定理,要注意分清直角边和斜边,另外,解答时要注意画出图形,找到相应的边和角,再代入公式计算.9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= 12 .【考点】勾股定理;等腰三角形的性质.【专题】几何图形问题.【分析】先根据等腰三角形的性质得出AD是BC边的中线,再根据勾股定理求出AD的长即可.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,AB=13,BC=10,∴BD=BC=×10=5,∴AD===12.故答案为:12.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质及勾股定理是解答此题的关键.10.若一个直角三角形的三边长分别是6、8、a ,则a 2= 100或28 .【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:(1)若8是直角边,则第三边x 是斜边,由勾股定理得:62+82=a 2,所以a 2=100;(2)若8是斜边,则第三边a 为直角边,由勾股定理得:62+x 2=82,所以a 2=28.故答案为:100或28.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.11.等腰三角形的腰长为10,底边上的高为6,则底边长为 16 .【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,利用勾股定理求解即可.【解答】解:如图,∵AB=AC=6,AD ⊥BC ,AD=6,∴BD===8,∴BC=2BD=16.故答案为:16.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是170 m.【考点】勾股定理的应用.【专题】计算题.【分析】根据正南方向和正东方向成九十度,利用勾股定理进行计算即可.【解答】解:∵正南方向和正东方向成90°,∴根据勾股定理得学校与书店之间的距离为=170(米).故答案为:170.【点评】此题考查的是勾股定理在实际生活中的运用,解答此题的关键是根据题意画出图形,再根据勾股定理进行计算.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行540 千米.【考点】勾股定理的应用.【分析】先画出图形,构造出直角三角形,利用勾股定理解答.【解答】解:设A点为小刚头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2﹣AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),故答案为:540.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.解题时注意运用数形结合的思想方法使问题直观化.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=17【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各个选项进行分析,从而得到答案.【解答】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.【点评】本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.15.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.【解答】解:A、因为92+402=412,能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项错误;C、因为32+42=52,故能构成直角三角形,此选项错误.D、因为112+122≠152,不能构成直角三角形,此选项正确.故选D.【点评】本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.16.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.169【考点】勾股定理.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方13,也就是两条直角边的平方和是13,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12.根据完全平方公式即可求解.【解答】解:根据题意,结合勾股定理a2+b2=13,四个三角形的面积=4×ab=13﹣1,∴2ab=12,联立解得:(a+b)2=13+12=25.故选C.【点评】本题考查了勾股定理和完全平方公式的运用,解题的关键是注意观察图形:发现各个图形的面积和a,b的关系.18.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8﹣x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.【解答】解:∵Rt△DC′B由Rt△DBC翻折而成,∴CD=C′D=AB=8,∠C=∠C′=90°,设DE=x,则AE=8﹣x,∵∠A=∠C′=90°,∠AEB=∠DEC′,∴∠ABE=∠C′DE,在Rt△ABE与Rt△C′DE中,,∴Rt△ABE≌Rt△C′DE(ASA),∴BE=DE=x,在Rt△ABE中,AB2+AE2=BE2,∴42+(8﹣x)2=x2,解得:x=5,∴DE的长为5.故选C.【点评】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.19.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm【考点】勾股定理的应用.【专题】应用题.【分析】首先根据题意知:它们挖的方向构成了直角.再根据路程=速度×时间,根据勾股定理即可求解.【解答】解:由图可知,AC=8×10=80cm,BC=6×10=60cm,由勾股定理得,AB===100cm.故选B.【点评】本题考查了勾股定理的应用,首先要正确理解题意,画出正确的图形,再熟练运用勾股定理进行计算.20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm .【考点】勾股定理的应用.【分析】先根据题意画出图形,再根据勾股定理解答即可.【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.【点评】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,解答此题的关键是根据题意画出图形求出h的最大及最小值,有一定难度.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.48【考点】勾股定理.【专题】方程思想.【分析】利用勾股定理求出两直角边,再代入三角形面积公式即可求解.【解答】解:直角三角形的周长为24,斜边长为10,则两直角边的和为24﹣10=14,设一直角边为x,则另一边14﹣x,根据勾股定理可知:x2+(14﹣x)2=100,解得x=6或8,所以面积为6×8÷2=24.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方;本题的关键是先求出两直角边,再计算面积.23.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC 是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个【考点】勾股定理的逆定理;勾股定理.【分析】欲求证是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【解答】解:①c不一定是斜边,故错误;②正确;③正确;④若△ABC是直角三角形,c不是斜边,则(a+b)(a﹣b)≠c2,故错误.共2个正确.故选C.【点评】本题考查勾股定理的逆定理的应用.三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.【考点】勾股定理.【分析】直接利用勾股定理得出a的值.【解答】解:∵∠C=90°,c=25,b=15,∴a==20.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?【考点】勾股定理的应用.【分析】根据题意画出示意图,然后根据勾股定理计算出CB的长.【解答】解:过C作CA⊥BA,由题意得:=20(米),答:此时甲、乙两同学相距20米.【点评】此题主要考查了勾股定理的应用,关键是画出示意图,掌握勾股定理.26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?【考点】勾股定理的应用.【专题】数形结合.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长9m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】:解:如图:∵AC=9m,BC=12m,∠C=90°∴AB==15m∴梯子的长度为15米.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用,关键是从实际问题中整理出数学问题.27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理可求出AC的长,根据勾股定理的逆定理可求出∠ACB=90°,可求出△ACB 的面积,减去△ACD的面积,可求出四边形ABCD的面积.【解答】解:如图,连接AC.∵CD=6cm,AD=8cm,∠ADC=90°,∴AC==10(cm).∵AB=26cm,BC=24cm,102+242=262.即AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°.∴四边形ABCD的面积=S△ABC﹣S△ACD=×10×24﹣×6×8=96(cm2).【点评】本题考查了勾股定理和勾股定理的逆定理,关键判断出直角三角形从而可求出面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?【考点】勾股定理的应用.【专题】应用题.【分析】由题意可知滑杆AB与AC、CB正好构成直角三角形,故可用勾股定理进行计算.【解答】解:设AE的长为x米,依题意得CE=AC﹣x.∵AB=DE=2.5,BC=1.5,∠C=90°,∴AC===2∵BD=0.5,∴在Rt△ECD中,CE====1.5.∴2﹣x=1.5,x=0.5.即AE=0.5.答:滑杆顶端A下滑0.5米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.【考点】翻折变换(折叠问题);勾股定理.【分析】首先由折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,即可得:∠GDA=∠GDB,AD=ED,然后过点G作GE⊥BD于E,即可得AG=EG,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中利用勾股定理,即可求得AG的长.【解答】解:过点G作GE⊥BD于E,根据题意可得:∠GDA=∠GDB,AD=ED,∵四边形ABCD是矩形,∴∠A=90°,AD=BC=3,∴AG=EG,ED=3,∵AB=4,BC=3,∠A=90°,∴BD=5,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中,EG2+BE2=BG2,即:x2+4=(4﹣x)2,解得:x=,故AG=.【点评】此题考查了折叠的性质、矩形的性质以及勾股定理等知识.此题综合性很强,难度适中,解题的关键是方程思想与数形结合思想的应用.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质得到AD=BC=5,∠D=∠B=∠C=90°,由折叠的性质得到AE=AD=BC=5,根据勾股定理即可得到结果;(2)由(1)知BE=3,于是得到CE=BC﹣BE=2,根据折叠的性质得到EF=DF=4﹣CF,根据勾股定理即可得到结论.【解答】解:(1)长方形ABCD中,∵AD=BC=5,∠D=∠B=∠C=90°,∵△AEF是△ADF沿折痕AF折叠得到的,∴AE=AD=BC=5,∴BE===3;(2)由(1)知BE=3,∴CE=BC﹣BE=2,∵△AEF是△ADF沿折痕AF折叠得到的,∴EF=DF=4﹣CF,∵EF2=CE2+CF2,∴(4﹣CF)2=22+CF2,解得:CF=.【点评】本题主要考查了图形的翻折变换,以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.(2011•大田县校级模拟)已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:③;(2)错误的原因为除式可能为0 ;(3)本题正确的解题过程:【考点】勾股定理的逆定理.【专题】推理填空题.【分析】(1)(2)两边都除以a2﹣b2,而a2﹣b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.【解答】解:(1)③(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.。

第18章 勾股定理单元检测(含答案)

第18章 勾股定理单元检测(含答案)

第18章勾股定理单元检测姓名:__________班级:__________考号:__________一、选择题(本大题共12小题)1.由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=3,b=4,c=5 D.a=4,b=5,c=6 2.在Rt△ABC中,∠C=90°,AB=10,AC=8,那么BC的长是()A.4 B.5 C.6 D.83.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.104.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里6.在直角坐标系中,点P(2,﹣3)到原点的距离是()A.B.C.D.27.若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是()A.7cm B.10cm C.cm D.12cm8.如图,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形9.如图,若∠ABC=∠ACD=90°,AB=4,BC=3,CD=12,则AD=()A.5 B.13 C.17 D.1810.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A.2B.2C.2+2 D.2+211.如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2B.b2+a2C.(b+a)2D.a2+2ab12.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.261cm C.61cm D.234cm二、填空题(本大题共8小题)13.直角三角形两条直角边的长分别为5、12,则斜边长为,斜边上的高为.14.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.15.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为 .16.如图,AB =AD ,∠BAD =90°,AC ⊥BC 于点C ,DE ⊥AC 于点E ,且AB =10,BC =6,则CE = .17.一艘轮船以16km /h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km /h的速度向东南方向航行,它们离开港口1小时后相距 km . 18.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.19.如图,在每个小正方形的边长为1的网格中,A ,E 为格点,B ,F 为小正方形边的中点,C 为AE ,BF 的延长线的交点. (Ⅰ)AE 的长等于 ;(Ⅱ)若点P 在线段AC 上,点Q 在线段BC 上,且满足AP =PQ =QB ,请在如图所示的网格中,用无刻度的直尺,画出线段PQ ,并简要说明点P ,Q 的位置是如何找到的(不要求证明) .20.如图,在△ABC 中,AB =AC =2,点P 在BC 上:①若点P 为BC 的中点,且m =AP 2+BP •PC ,则m 的值为 ;ABC DE②若BC边上有2015个不同的点P1,P2,…,P2015,且相应的有m1=AP12+BP1•P1C,m2=AP22+BP2•P2C,…,m2015=AP20152+BP2015•P2015C,则m1+m2+…+m2015的值为.三、解答题(本大题共8小题)21.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是2的直角三角形;在图2中画出一条长度等于的线段.22.如图,两艘海舰在海上进行为时2小时的军事演习,一海舰以160海里/时的速度从港口A出发,向北偏东60°方向航行到达B,另一海舰以120海里/时的速度同时从港口A出发,向南偏东30°方向航行到达C,则此时两艘海舰相距多少海里?23.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.24.已知:如图,在△ABC,BC=2,S=3,∠ABC=135°,求AC、AB的长.△ABC25.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。

北京市西城区学探诊八年级数学下册第18章勾股定理(无答案)

北京市西城区学探诊八年级数学下册第18章勾股定理(无答案)

第十八章勾股定理测试1 勾股定理(1)一、填空题:1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么________=c2;这一定理在我国被称为________.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.①若a=5,b=12,则c=________;②若c=41,a=40,则b=________;③若∠A=30°,a=1,则c=________,b=________;④若∠A=45°,a=1.则b=________,c=________.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为________.4.等腰直角三角形的斜边为10,则腰长为________,斜边上的高为________.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为________.二、选择题:6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2 (C)225cm2 (D)无法计算三、解答题:9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,C=24,求C边上的高h c;(5)若a、b、c为连续整数,求a+b+c.10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是_________.12.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=_________.13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是△ABC的平分线,AD=20,求BC的长.14.如图,△ABC中,∠C=90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图①图②图③测试2 勾股定理(2)一、填空题:1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为__________.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距________km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________米路,却踩伤了花草.4.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞________米.二、选择题:5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ).(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).(A)212 (B)310 (C)56 (D)58三、解答题:7.如图是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm)计算两圆孔中心A 和B 的距离.8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求这里的水深是多少m .一、填空题:9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为________米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A 相对的上底面B 点,则蚂蚁爬的最短路线长约为________(π取3)二、解答题:11.如图所示,一架2.5m 长的梯子AB 斜靠在一竖直的墙AO 上,这时梯子顶端A 到墙底端O 的距离为2m ,如果梯子的顶端沿墙下滑0.8m ,那么梯足在地面上滑出的距离BB ’的长度是多少?(精确到0.1m)12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,每平方米地毯30元,那么这块地毯需花多少元?13.如图,两个村子A 、B 在河CD 的同侧,A 、B 两村到河的距离分别为AC =1千米,BD =3千米,CD =3千米.现要在河边CD 上建造一水厂,向A 、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W .测试3 勾股定理(3)一、填空题:1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则 AB =________,AB 边上的高CE =________.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =________,AC 边上的高BE =_____.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =________,AB 边上的高CD =________.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为________.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =________,AB =________,BC 边上的高AE =________.二、选择题:6.已知直角三角形的周长为,62+斜边为2,则该三角形的面积是( ). (A)41 (B)43 (C)21 (D)1 三、解答题:7.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,,102=BE 求AB 的长.8.在数轴上画出表示10-及13的点.9.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.10.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.11.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC 的长.12.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.13.已知:如图,△ABC中,BC=AC,∠ACB=90°,D、E分别为斜边AB上的点,且∠DCE=45°.求证:DE2=AD2+BE2.14.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……,已知正方形AB-CD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,……,S n(n为正整数),那么第8个正方形的面积S8=________,S n=__________.测试4 勾股定理的逆定理一、填空题:1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是_________三角形,我们把这个定理叫做勾股定理的_________.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做_________如果把其中一个命题叫做原命题,那么另一个命题叫做它的_________.3.分别以下列四组数为一个三角形的边长:(1)6、8,10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有_________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为_________;②若a 2+b 2=c 2,则∠c 为_________;③若a 2+b 2<c 2,则∠c 为_________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =_________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是________三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为________.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为________,此三角形为二、选择题:9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a(C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4(C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形(C)是直角三角形 (D)形状无法确定(二)综合运用诊断12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且,41CB CE求证:AF ⊥FE .15.写出下列命题的逆命题,并判断逆命题的真假.(1)两直线平行,同位角相等. (2)若a >b ,则a 2>b .(3)若a 2=b 2,则a =b .(4)如果△ABC ≌△A 'B 'C ',那么BC =B 'C ',AC =A 'C ',∠B =∠B '.(5)全等三角形的三组对应角相等.16.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.17.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.18.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.全章测试一、填空题:1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为________.2.若等边三角形的边长为2,则它的面积为________.3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm 2,则其中最大的正方形的边长为________cm .4.如图,B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是________米.5.已知直角三角形的三边长分别为a +1、a +2、a +3,则a =________.6.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =________.7.△ABC 中,AB =AC =13,若AB 边上的高CD =5,则BC =________.8.如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为________.二、选择题:9.下列三角形中,是直角三角形的是( ).(A)三角形的三边满足关系a +b =c (B)三角形的三边比为1∶2∶3(C)三角形的一边等于另一边的一半 (D)三角形的三边为9,40,4110.直角三角形的两条直角边长为a 、b ,斜边长为c ,斜边上的高长为h ,则下列各式中总能成立的是( ).(A)ab =h 2 (B)a 2+b 2=2h 2 (C)h b a 111=+ (D)222111hb a =+ 11.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于D ,AB =13,CD =6,则AC +BC 等于( )(A)5 (B)135(C)1313 (D)59三、解答题:12.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长.13.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD=10m,求这块草地的面积.14.已知:如图,△ABC中,AB>AC,AD是BC边上的高.求证:AB2-AC2=BC(BD-DC).15.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.16.如图所示,有一个长方体,其长、宽、高分别为4cm、4cm、6cm,在点A处有一只蚂蚁,它想拖走B处的食物,回到A处,那么它需要爬行的最短路程应为多少?17.图①是用硬纸板做成的两个完全一样的直角三角形,两直角边长分别为a和b,斜边长为c.图②是以c为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,指出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图①中的直角三角形有若干个,你能运用图①中所给的直角三角形拼出另一组能证明勾股定理的图形吗?请画出拼后的示意图.图①图②18.在大小为4×4的正方形方格中,三个顶点都在单位小正方形的顶点上的直角三角形共有多少个?(全等的三角形只算一个)。

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(一).doc

第18章《勾股定理》基础测试题(-)班级: ____________ 姓名: ____________ 得分:一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是() A 、6, 12, 13 B 、 3, 4, 7 C 、 15, 17, 8 D 、8, 15, 16 2、 要登上某建筑物,靠墙有一架梯子,底端离建筑物5///,顶端离地面12///,则梯子的长度为( ) A 、12/?7 B 、\3ni C 、14m D 、15m3、直角三角形的两条直角边长分别为&加和&加,则连接这两条直角边中点线段的长为( )A 、3cmB 、4cmC 、5cmD 、12cm4、 一艘小船早晨8: 00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时 的速度向南航行,上午10: 00两小船相距( )海里.A 、15B 、12C 、13D 、20 5、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )二. 填空题(共6小题,每小题4分,满分24分) B 、8 C 、106、在△ABC 中, Z4CB 二90。

,AC=\2, BC=5, AM=AC, BN 二BC 、 则MN 的长为( 4、2 B 、2.6A 、4 笫6ACB第11题7.已知在Rt/\ABC中,ZC=90°. ____ (1)若。

=3, b=4,则;(2)若°=6,尸10,则b= ____________ .8、已知甲乙在同一地点出发,甲往东走了4千米,乙往南走了3千米,这时甲、乙两人相距千米.9、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路=他们仅仅少走了__________ 步路(假设2步为1米),却踩伤了花草.10.某养殖厂有一个长2米.宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.11、如图,隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50m, CB=40m,那么A、B两点间的距离是__________________ m •12、如果直角三角形的斜边与一条直角边的长分别是13c税和5c/77,那么这个直角三角形的面积是2cm .三、解答题(共4小题,满分52分)塑料薄膜,试求需要多少平方米塑料薄膜?13、如图,要修建一个育苗棚,棚高肛1.8加,棚宽a=2.4 m,棚的长为12加,现要在棚顶上覆盖a14、如图,铁路上A、B两点相距25如?,C、D为两村庄,DA丄AB于A, CB丄AB于B,己知DA=\5km f CB二\0血,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在多少千米处?15、在△ABC 中,ZC=90°, AC=2A cm. BC=2.S cm.(1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2〉求斜边被分成的两部分4D和BD的长.16、在两千多年前我国古算术上记载有“勾三股四弦五”,你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1〉请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7, BC=4,请你研究参考答案与评分标准一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是()A、6, 12, 13B、 3, 4, 7C、15, 17, 8D、 8, 15, 16考点:勾股定理的逆定理;勾股数。

勾股定理单元测试卷(含答案)

勾股定理单元测试卷(含答案)

诚信教育学校第18章勾股定理测试题一、选择题(每题3分,共30分)1. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( ) A .1,2,3 B .2,3,4 C .3,4,5 D .4,5,62.在一个直角三角形中,若斜边长是13,一条直角边长为12,则这个直角三角形的面积是( ) A .30 B .40 C .50 D .603.如图1,一架2.5米长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( ) A .0.6米 B .0.7米 C .0.8米 D .0.9米(1)4.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是( ) A .132 B .121 C .120 D .以上答案都不对 5.直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( ) A2d Bd C.2d D.d6. 直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( ) A .61 B .71 C .81 D .917、已知一个直角三角形的两条边长分别为34和,则第三条边长为( )A .5B .25 CD58、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m9、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm 二、填空题(每题3分,共24分)1、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.2、 如图2,以三角形ABC ∆的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.3、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).4、如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.(3) (4) (5)5、如图4,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S =6、如图5,已知,Rt ABC ∆中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5,AD BE ==AB 之长为______.7、如图6,在长方形ABCD 中,5DC cm =,在DC 上存在一点E ,沿直线AE 把AED ∆折叠,使点D 恰好落在BC 边上,设此点为F ,若ABF ∆的面积为230cm ,那么折叠AED ∆的面积为_____.(6) (7) (8)8、如图7,已知:ABC ∆中,2BC =, 这边上的中线长1AD =,1AB AC +=AB AC ⋅为_____.9、一个三角形的三条边长分别为221,2,1m m m -+,则三角形中最大的角是_____.10、在ABC ∆中,=905C AB ︒∠=,则222AB AC BC ++=_____.11、如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 .12、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则x 的长为 厘米。

人教版八年级数学下册第十八章勾股定理测试【精品4套】

人教版八年级数学下册第十八章勾股定理测试【精品4套】

勾股定理测试卷(1)一、选择题(每题2分,共30分)1.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组A .1 B. 2 C. 3 D. 4 2.下列说法中, 不正确的是 ( )A . 三边长度之比为5:12:13的三角形是直角三角形 B. 三个角的度数之比为1:3:4的三角形是直角三角形 C. 三个角的度数之比为3:4:5的三角形是直角三角形 D. 三边长度之比为3:4:5的三角形是直角三角形3.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地.B ,在AB 间建一条直水管,则水管的长为( ) A .40cm B .45cm C .50cm D .56cm西南北东4.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30ο夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5.ABC ∆中,90B ο∠=,两直角边7,24AB BC ==,三角形内有一点P 到各边的距离相等,30°则这个距离是( )A .1B .3C .4D .56.已知一直角三角形的木板,三边的平方和为21800cm ,则斜边长为( ). A .80cm B .30cm C .90cm D .120cm.7.若三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A .12 cm B. 10 cm C. 8 cm D. 6 cm 8.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或79.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A .12米 B. 13米 C. 14米 D. 15米10.在直角三角形中,斜边与较小直角边的和.差分别为8,2,则较长直角边长为( ) A .5 B .4 C .3 D .211.ABC ∆的三条边长分别是a b c ,,,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 12.如图,正方形网格中的ABC ∆,若小方格边长为1,则ABC ∆是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对CBA13.如图,小方格都是面积为1的矩形,则图中四边形的面积是 ( ) A .25 B. 12.5 C. 9 D. 8.514.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.B15.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m; B. 2.5m; C. 2.25m; D. 3m.二、填空题(每空3分,共30分)16.已知,如图中字母B.M分别代表的正方形的面积分别为__________.___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18章“勾股定理”综合测试题(一)
(温馨提示:满分100+50分 时间100分钟)
基础巩固
一、选择题(每题5分,满分30分)
1.如图1,从电线杆离地面5m 处向地面拉一条长13m 的缆绳,则这条缆绳在地面的固定点距离电线杆底部 【 】.
(A )6m (B )8m (C )10m (D )12m
2. 小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒 【 】.
(A )20根 (B )14根
(C )24根 (D )30根
3.如图2,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 【 】.
(A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上答案都不对
4.如图3,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为
【 】
(A )4 (B ) 6 (C ) 16 (D ) 55
5. 已知三组数据:①2,3,4;②3,4,5;③1
2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有 【 】
(A )② (B ) ①② (C ) ①③ (D ) ②③
6. 已知直角三角形两边的长为3和4,则此三角形的周长为 【 】.
(A )12 (B )7+7 (C )12或7+7 (D )以上都不对
二、填空题(每小题5分,共30分)
7.若一个直角三角形三边长是三个连续的自然数,则这个三角形的周长是 .
8. 传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘
图 3 图
2 图1
米,______厘米,________厘米,其中的道理是______________________.
9. 如图4,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为_________m .
10. 在Rt △ABC 中,∠C =90°,c =20,a ∶b =3∶4,则a =_________,b =________.
11. 如图5,分别以直角三角形的三边为直径作半圆,其中两个半圆的面1S =258
π,22S π=,则3S 是
12. 在长方形纸片ABCD 中,AD =4㎝,AB =10㎝,按如图6方式折叠,使点B 与点D 重合,折痕为EF ,则DE = ㎝.
三、解答题(共40分)
13.(12分)如图7,每个小方格都是边长为1的正方形.
(1)求图中格点四边形ABCD 的周长;
(2)求∠ADC 的度数.
14. (14分)如图8,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.

7 图 5 图 6 图4
15. (14分)如图9,小刚准备测量一条河的深度,他把一根竹竿插到离岸边1.5米远的水
底,竹竿高出水面0.5米,再把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐;请计算并推断河水的深度为几米?
拓展创新(满分50分)
一、选择题(每题6分,满分12分) 1.若△ABC 的三边a ,b ,c 满足222
338102426a b c a b c +++=++,则此三角形为
【 】.
(A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )不能确定
2.国庆期间,小华与同学到“花鼓灯嘉年华”去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东拐,仅走了1千米,就找到了宝藏,则门口A 到藏宝点B 的直线距离是【 】.
(A )20千米 (B )14千米 (C )11千米 (D )10千米
二、填空题(每小题6分,共12分)
3.如图2,甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是
______________. 图9 图8
4.如图3,一只蚂蚁从点A 沿圆柱表面爬到点B ,如果圆柱的高为8cm ,圆柱的底面半径为
6
cm
,那么最短的路线长是 .
三、解答题(共26分)
5. (12分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图4
位置摆放,A 、B 、D 在同一直线上,EF ∥AD ,∠A =∠EDF =90°,∠C =45°,∠E =60°,量得DE =8,试求BD 的长.
6.(14分)如图5,A 、B 两座城市相距100千米,现计划要在两座城市之间修筑一条高等
级公路(即线段AB ).经测量,森林保护区中心P 点在A 城市的北偏东30°方向,B 城市的北偏西45°方向上.已知森林保护区的范围在以P 为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?
参考答案
基础巩固
1.D 2.C 3.A 4.C 5.D 6.C 7.12 8. 6 8 10 勾股

5 图
4 图
2 A B

3 图1
定理(222+=a b c ) 9.480 10. 12 16 11.98π 12.295
13.(1)四边形周长为:ADC 的度数为90.
15.若假设竹竿长x 米,则水深(x -0.5)米,由题意得,
2221.5(0.5)x x =+-,解之得, 2.5x =.所以水深2.5-0.5=2米.
拓展创新
一、选择题
1.C
2.D
二、填空题
3. 76
4. 10cm
三、解答题
∵∠C =45°,∴∠MFB =∠B =45°,
∴FM =BM =BD =DM -BM =12-
100x +=,1)x =, ∴PD 50(363.450=≈>. ∴不会穿过保护区.。

相关文档
最新文档