计量经济学课件虚拟变量
合集下载
第四讲 虚拟变量ppt课件
① 若定性变量含有 m 个类别,则模型中最多只能引入 m-1 个虚拟变量,例如对于季 据(有 4 个季节) ,最多只能引入 3 个虚拟变量。当引入 4 个虚拟变量时,就会导致多 注意: (1) 当定性变量含有 m 个类别时,模型不能引入 m个虚 线性。看表 8-1 数据,4 个虚拟变量定义为, 拟变量。最多只能引入 m -1个虚拟变量,否则当模型中存在
2. 测量斜率变动
以上介绍了用虚拟变量测量回归函数的截距变化。实际上,也可以用虚拟 变量考察回归函数的斜率是否发生变化。方法是在模型中加入定量变量与
虚拟变量的乘积项。设模型如下,
Yi = 0 + 1 Xi + 2 Di + 3 (Xi Di) + ui
100 Y 80
按2,3 是否为零,回归函数可有如下四种形式。
表 8-1 xt 和虚拟变量 D1、D2、D3、D4 截距项时就会产生完全多重共线性,无法估计回归参数。比 t xt D1 D2 D3 D4 如,对于季节数据引入 4个虚拟变量,数据如下表, 1995.2 1995.1 x1 1995.3 1995.2 x2 1995.4 1995.3 x3 1996.1 1995.4 x4 1996.2 1996.1 x5 1996.3 1996.2 x6 1996.4 1996.3 x7 1997.1 1996.4 x8 1997.1 … x9
Yˆ i = - 0.5667 + 0.0963 Xi
(-3.5) (11.6) R2 = 0.88, DW = 1.85
比较回归方程,前者的确定系数为0.99,后者的确定系数仅为0.88。说 明该回归模型中引入虚拟变量非常必要。
把“季节”因素引入模型
“季节”是在研究经济问题中常常遇到的定性因素。比如,酒,肉的销量 在冬季要超过其它季节,而饮料的销量又以夏季为最大。当建立这类问 题的计量模型时,就要考虑把“季节”因素引入模型。由于一年有四个 季节,所以这是一个含有四个类别的定性变量。应该向模型引入三个虚 拟变量。
计量经济学课件虚拟变量
提高模型精度和预测能力
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。
通过引入虚拟变量,可以更准确地刻画经济现象的非线性特征,从而提高计量经济学模型 的精度和预测能力。
拓展应用领域
虚拟变量的引入使得计量经济学模型能够应用于更多的领域,如金融、环境、社会等,进 一步拓展了计量经济学的应用范围。
未来研究方向和趋势
深入研究虚拟变量的理论 和方法
未来研究将进一步深入探讨虚 拟变量的理论和方法,包括虚 拟变量的选择、设定和估计方 法等,以更准确地刻画经济现 象。
https://
未来研究将积极推动虚拟变量 在交叉学科领域的应用,如环 境经济学、金融经济学等,以 促进不同学科之间的交流和合 作。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
要点二
虚拟变量的设置原则
在设置虚拟变量时,需要遵循完备性 和互斥性的原则。完备性要求虚拟变 量的取值能够覆盖所有可能的情况, 而互斥性则要求不同虚拟变量之间不 能存在重叠或交叉的情况。
要点三
虚拟变量的回归系数 解释
在线性回归模型中,虚拟变量的回归 系数表示该定性因素对因变量的影响 程度。当虚拟变量取值为1时,其对 应的回归系数表示该水平与参照水平 相比对因变量的影响;当虚拟变量取 值为0时,则表示该水平对因变量没 有影响。
参数估计与假设检验
参数估计
采用最小二乘法等估计方法,对引入虚拟变量后的模型进行参数估计,得到各 解释变量的系数估计值。
假设检验
根据研究问题和假设,构建相应的原假设和备择假设,通过t检验、F检验等方 法对参数进行假设检验,判断虚拟变量对模型的影响是否显著。
计量经济学虚拟变量模型课件
计量经济学虚拟变量模型
21
1 正常年份 D1i 0 非正常年份
式(5.2)也可表示为
1 非正常年份 D2i 0 正常年份
Y i 0 X 1 i 1 X 2 i 2 X 3 i 3 X i u i (5.3)
其中,X 1i1 ,X 2iD 1i,X 3iD 2i,显然如下等式成立。
X1i X2i X3i
计量经济学虚拟变量模型
3
例如,性别可表现为男或女;人种可表 现为白种人和非白种人;宗教信仰可表 现为教徒和非教徒;政府的经济政策可 表现为改革开放前和改革开放后,如此 等等。
Hale Waihona Puke 计量经济学虚拟变量模型4
显然,这种不同的具体形式是无法直接引 入经济计量模型中去的。但由于这类变量 通常表现为品质、属性、种类的出现或者 未出现,所以我们可以根据质量变量的这 一特征将其数量化。
Y i1 D 1 i2 D 2 i3 X i u i (5.5)
显然模型(5.5)中,解释变量D1,D2和X之间 无完全的多重共线性。可以使用普通最小二乘 法估计式(5.5)的参数。
第五章 虚拟变量模型
在经济计量模型中除了有量的因素外 还有质的因素,质的因素包括被解释变量 为质的因素和解释变量为质的因素。如果 被解释变量为质的因素,主要是逻辑回归 要涉及的内容。
计量经济学虚拟变量模型
1
第一节 虚拟变量的概念与设定
一、虚拟变量的概念 在经济计量分析中, 经常会碰到所建模
型的被解释变量不仅受诸如收入、产量 、价格、 成本、需求、投资等数量变量
(5.4)
计量经济学虚拟变量模型
22
式(5.4)表明模型(5.3)即原模型(5.2)中有 完全的多重共线性,将导致最小二乘估计无 解。我们称该情景为掉入虚拟变量陷阱。所 以,在有截距项的情况下,如果一个质的因 素有多少个特征就引入多少个虚拟变量是行 不通的。
计量经济第七章虚拟变量模型课件
log
P2i P1i
21
21 X i ;
log
P3i P1i
31
31 X i ;
log
P3i P2i
32
32 X i .
其中 P1i、P2i、P3i 分别表示第 个决策者做出 第1、2、3个选择的概率。
23
Yi 0 1D1i ui ,
i 1,2, ,n.
其中 Yi
为个人月支出,
D1i
=
1,已婚 0,未婚
6
• 未婚者的月期望支出为:
E Yi | D1i 0 E 0 1 0 ui 0
• 已婚者的月期望支出为:
E Yi | D1i 1 E 0 1 1 ui 0 1
0 :未婚者的月平均支出 1 :未婚者与已婚者的月平均支出差距 0 1 :已婚者的月平均支出
Zi
f
1
Pi
ln
1
Pi Pi
ln
Pi 1 Pi
0
1
X1i
+
+k X ki
17
二、二元Logit模型估计
• 1.可重复观测数据的二元Logit模型 参数估计
• P144 【相关链接】
• 2.不可重复观测数据的二元Logit模 型参数估计
• P145 【相关链接】
18
三、模型检验与拟合优度
定义:以虚拟变量为因变量的线性回 归模型称为线性概率模型。
(linear probability model,LPM) 模型的基本形式为:
Yi 0 1X1i +2 X2i k Xki ui ,
E Yi | X 0 1X1i +2 X2i k Xki ,
i 1,2, ,n.
计量经济学课件PPT虚拟变量
35
load c:\lx4\jjtzh.wf1 genr q2=(cos(t*2*3.14159/4)<-0.999999) genr q3=(sin(t*2*3.14159/4)<-0.999999) genr q4=(cos(t*2*3.14159/4)>0.999999) equation jjtzheq.ls xshe c t q2 q3 q4 forecast xshef1 equation wjjtzheq.ls xshe c t forecast xshef2 group xsh xshe xshef1 xshef2 show xsh.line
• 虚拟变量是一用以反映质的属性的一个人 工变量,通常记为D(Dummy)。 • 虚拟变量D只取0或1两个值 • 对基础类型或肯定类型设D=1 • 对比较类型或否定类型设D=0
6
虚拟变量举例
• • D= •
• • D= •
1
0 0 1
本科学历
非本科学历 “文革”时期 非“文革”时期
7
虚拟变量的引入
加法与乘法组合引入——— 截距与斜率均不同
• • • • • • D=1 异常时期 D=0 正常时期 设定模型 Y=b0+ b1x+ b2D + b3Dx +e 异常时期模型:(截距与斜率均不同) Y= (b0 + b2) + (b1 +b3) x +e 反常时期模型:(截距与斜率均不同) Y= b0 + b1 x +e
虚拟变量设置的原则
• 在模型中引入多个虚拟变量时,虚拟变量 的个数应按下列原则确定: • 如果有 m 种互斥的属性类型,在模型中引 入 m-1 个虚拟变量 (虚拟变量的陷阱) • 例如,性别有2个互斥的属性,引用2-1=1个 虚拟变量 • 再如,文化程度分小学、初中、高中、大 学、研究生5类,引用4个虚拟变量
load c:\lx4\jjtzh.wf1 genr q2=(cos(t*2*3.14159/4)<-0.999999) genr q3=(sin(t*2*3.14159/4)<-0.999999) genr q4=(cos(t*2*3.14159/4)>0.999999) equation jjtzheq.ls xshe c t q2 q3 q4 forecast xshef1 equation wjjtzheq.ls xshe c t forecast xshef2 group xsh xshe xshef1 xshef2 show xsh.line
• 虚拟变量是一用以反映质的属性的一个人 工变量,通常记为D(Dummy)。 • 虚拟变量D只取0或1两个值 • 对基础类型或肯定类型设D=1 • 对比较类型或否定类型设D=0
6
虚拟变量举例
• • D= •
• • D= •
1
0 0 1
本科学历
非本科学历 “文革”时期 非“文革”时期
7
虚拟变量的引入
加法与乘法组合引入——— 截距与斜率均不同
• • • • • • D=1 异常时期 D=0 正常时期 设定模型 Y=b0+ b1x+ b2D + b3Dx +e 异常时期模型:(截距与斜率均不同) Y= (b0 + b2) + (b1 +b3) x +e 反常时期模型:(截距与斜率均不同) Y= b0 + b1 x +e
虚拟变量设置的原则
• 在模型中引入多个虚拟变量时,虚拟变量 的个数应按下列原则确定: • 如果有 m 种互斥的属性类型,在模型中引 入 m-1 个虚拟变量 (虚拟变量的陷阱) • 例如,性别有2个互斥的属性,引用2-1=1个 虚拟变量 • 再如,文化程度分小学、初中、高中、大 学、研究生5类,引用4个虚拟变量
计量经济学(共33张PPT)
假定3>2,其几何意义:
问题:
虚拟变量为何只选“0”, ‘1“,选择0,1,2 等 可以吗
同一种属性,两个变量能够表示几种状态? 思考,如果在模型中引入季节效应?月份效应?
(3)多个虚拟变量的引入——多种因素
例:研究学历(本科及以上,本科以下),性别(男、女)对员工工资的 影响。
在例1基础上,再引入代表学历的虚拟变量D2:
离散选择模型(离散被解释变量)
D (2)多个虚拟变量的设定和引入 0 女职工本科以上学历的平均薪金:
本科以下
当回归模型有截距项时,只能引入 m-1 个虚拟变量
注意:加法方式引入虚拟变量,考察了截距的不同。
交互作用的引入方法:在模型中引入相关变量的乘积。
反映性别的虚拟变量可取为: 女职工本科以下学历的平均薪金:
几何意义:
•两个函数有相同的斜率,说明男女职工平均薪金对工龄的变 化率是一样的。
•如果2>0,表明两个函数截距不相同,且男职工平均薪金比 女职工高,两者平均薪金水平相差2。 •如果2<0,表明两个函数截距不相同,且男职工平均薪金比女 职工低,两者平均薪金水平相差2。 •如果2=0,表明两个函数截距相同,即男职工,女职工的平
均薪金没有显著差异。
可以通过传统的回归检验,对2的统计显著性进行 检验,以判断企业男女职工的平均薪金水平是否有 显著差异。
2
0
(2)多个虚拟变量的设定和引入
——一种因素多种状态(水平):
例:研究收入和教育水平(分为高,中,低三类)对个人保健支出的影响。
教育水平考虑三个层次:
低学历:高中以下,
中等学历:高中,及大中专 高学历:大学及其以上。
2、基本概念
定量因素——可直接测度,数值性的因素 定性因素——属性因素,表征某种属性存在
庞浩计量经济学课件第八章 虚拟变量回归
二、虚拟变量的设置规则
1.虚拟变量个数的设置规则 若定性因素有m个相互排斥的类型(或属性、水 平),则: 在有截距项的模型中,只能引入m-1个虚拟变 量,否则会陷入“虚拟变量陷阱”(即:出 现完全的多重共线性); 在无截距项的模型中,可以引入m个虚拟变量, 不会导致完全的多重共线性。
4
例如:研究城乡居民的可支配收入对居民住房消费支 出的影响 C Y D u i 1 1 i 2 i i
21
分段线性回归
适合于社会经济现象会在解释变量达到某个临界值时 发生突变,考虑下述模型: Yt 1 1 X t 2 ( X t X * ) Dt ut 0, X t X * Dt * 1, X t X
当X t X *时, Yt 1 1 X t ut 当X t X 时, Yt 1 1 X t 2 ( X t X * ) ut
18
二、用虚拟变量表示不同斜率的回归—— 乘法类型
回归模型的比较——结构变化检验
分段线性回归
19
回归模型的比较——结构变化检验
研究改革开放前后(1950-2004),储蓄与收入的关系: Yi 1 2 Di 1 X i 2 ( Di X i ) ui
( 1950 1977 ) 0, 改革开放前 Di ( 1978 2004 ) 1, 改革开放后
Yi 1 2 Di 1 X i ui
0, 租房户 Di 1, 有房户
15
i 1 2 3 4 5 6 7 8 9 10
Y 1.0 1.3 0.7 0.8 0.5 2.4 0.3 3.2 2.8 0.0
X 20.0 24.0 12.0 16.0 11.0 32.0 10.0 40.0 32.0 7.0
计量经济学课件-第五章
Yt a b0 X t b1 X t1 bp X t p Ut
假定系数服从以下多项式分布
bj a0 a1 j ar jr j 1, 2, p
• 则:
b0 a0 b1 a0 a1
ar
b p
a0 a1 p
ar p r
• 如果 r 2
b0 a0 b1 a0 a1 a2
b0 b1 b2
b0
b0
b0
2
对原模型做Koyck变换
Yt b0 X t b0 X t 1 b0 2 X t 2
Ut
1
Yt 1 b0 X t 1 b0 X t 2 b0 2 X t 3
U t 1 2
Yt 1 b0 X t 1 b0 2 X t 2 b0 3 X t 3 U t 1
p
i 1
bt
i
称为长期(long-run)或均衡乘数(total
distributed-lag multiplier),表示X变动一个单位,由于
滞后效应而形成的对Y均值总影响的大小。
• (2)自回归分布滞后模型(autoregressive distributed-lag model)
模型中的解释变量仅包含X的当期值与被解释 变量Y的一个或多个滞后值
Yt a b0 X t b1Yt1 b2Yt2 bqYtq Ut
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
假定系数服从以下多项式分布
bj a0 a1 j ar jr j 1, 2, p
• 则:
b0 a0 b1 a0 a1
ar
b p
a0 a1 p
ar p r
• 如果 r 2
b0 a0 b1 a0 a1 a2
b0 b1 b2
b0
b0
b0
2
对原模型做Koyck变换
Yt b0 X t b0 X t 1 b0 2 X t 2
Ut
1
Yt 1 b0 X t 1 b0 X t 2 b0 2 X t 3
U t 1 2
Yt 1 b0 X t 1 b0 2 X t 2 b0 3 X t 3 U t 1
p
i 1
bt
i
称为长期(long-run)或均衡乘数(total
distributed-lag multiplier),表示X变动一个单位,由于
滞后效应而形成的对Y均值总影响的大小。
• (2)自回归分布滞后模型(autoregressive distributed-lag model)
模型中的解释变量仅包含X的当期值与被解释 变量Y的一个或多个滞后值
Yt a b0 X t b1Yt1 b2Yt2 bqYtq Ut
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
计量经济学第二版第8章-虚拟变量ppt课件
表1 我国各地区城乡居民收入 单位:元、人
地区 城镇居民
农村居民
人均可支配收入
人均纯收入
北 京 26738.48
11668.59
天 津 21402.01
8687.56
河 北 14718.25
5149.67
山 西 13996.55
4244.10
内蒙古 15849.19
4937.80
辽 宁 15761.38
➢ 了解线性概率模型、Logit模型和Probit模型的基 本思想和估计方法。
精品课件
引例:男女大学生的消费差异
在校大学生的消费行为越来越受到社会的关 注,学生家长也很关心自己的子女上大学的 花费问题。由共青团、全国学联共同发布的 《2004中国大学生消费与生活形态研究报告》 显示,当代大学生在消费结构方面呈现多元 化趋势。大学生除了日常生活费开支以外, 还有人际交往、网络通信、书报、衣着类、 化妆品类、电脑类、旅游类、食品类、学习 用品类、各类考证类等多重消费。
Yi=(a+α2)+ bxi+εi 研究生(D1=0,D2=1)
三类年薪函数的差异情况如下图所示:
上图直观地描述了三类 年薪函数的差异情况, 通过检验、 α1 、α2的 显著性,可以判断学历 层次对职员的年薪是否 有显著影响。
年薪
α1
精品课件
α2 -α1
研究生 本科 大专以下
工龄
虚拟变量数量的设置规则
4478.35
四 川 13839.40
4462.05
贵 州 12862.53
3005.41
云 南 14423.93
3369.34
西 藏 13544.41
3531.72
虚拟变量回归课件
例1
(1)
D
=
1 0
男 女
( 2)D=1 0
改 革 开 放 以 后 改 革 开 放 以 前
(3)D1 =0 1
天气阴 其 他(4)D2
=1 0
天气雨 其他
问题:
为何只选0、1,选2、3、4行吗?为什么?
虚拟变量回归
14
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
虚拟变量回归
11
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量
数量的关系 3.虚拟变量在回归分析中的角色以及作用等
方面的问题
虚拟变量回归
12
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问题的 目的出发予以界定。
虚拟变量回归
16
一个例子(虚拟变量陷阱)
研究居民住房消费支出 Yi 和居民可支配收入 Xi 之间的
数量关系。回归模型的设定为:Y i= 0 + 1 X i+ u i( 1 )
现在要考虑城镇居民和农村居民之间的差异,如何办?
为了对 “城镇居民”、“农村居民”进行区分,分析
各自在住房消费支出 Yi上的差异,设 D1i = 1 为城镇;
非数值性的因素。 基本思想: 直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
虚拟变量回归
10
本科经济计量学第10章(第PPT课件
Schwarz criterion
6.656207
F-statistic
26.09857
Prob(F-statistic)
0.000006
回归结果表明,通过工人工作权利法的州中,工会化程度
平均为10.415%,未实施工人权利法的州中,工会化程度平均
为19.8%。因为虚拟变量的系数显著不为零。所以通过工作权
>65
1983 2987 2993 3156 2706 2217
11557 29387 31463 29554 25137 14952
2230 3757 3821 3291 3429 2533
11589 33328 36151 35448 32988 20437
首先对数据进行整理,得到表10-2。
6
S.E. of regression
178.7693 Akaike info criterion 13.42239
Sum squared resid 287626.1 Schwarz criterion
13.54361
Log likelihood
-77.53432 F-statistic
58.36471
-9.391667
R-squared
0.352214
Adjusted R-squared 0.338719
S.E. of regression
6.368320
Sum squared resid 1946.664
Log likelihood
-162.4932
Durbin-Watson stat 0.847527
Dependent Variable: Y Method: Least Squares
计量经济学课件虚拟变量
2. 检验模型结构的稳定性
定义: 如果模型中参数的估计值与样本的选取无关, 则称该模型结构是稳定的。 用途: (1)检验多重共线性; (2)比较两个回归模型是否存在显著差异。 例:不同时期、不同地区、不同行业
模型:
样本1
样本2
y a1 b1 x
y a2 b2 x
组合:y a bx D XD
1 D 0 1 D 0
1 D 0 1 D 0
宽松政策 紧缩政策 发达地区 不发达地区
销售旺季 销售淡季
高收入家庭 低收入家庭
作用:
⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的关系,提高模型的精度 ⑶便于处理异常数据。
本节学习要求: 1958 年 1 D 其他年份 ⑴如何设置虚拟变量; 0 ⑵如何描述和测量定性因素的影响。
东 中 西
中部地区 其他地区
α2 -α1
(a 1 ) bX
东部地区 其他地区
α1
a bX
方式3:设置3个虚拟变量
1 D1 0
1 D3 0
中部地区 其他地区
西部地区 其他地区
1 D2 0
东部地区 其他地区
D1 D2 D3 1
虚拟变量的设置原则 1:
第四节
虚拟变量
一、虚拟变量及其作用
问题: 在计量经济模型中如何反映定性因素影响?例如:
金融计量分析中的政策因素、心理因素 经济增长分析中的地区差异因素 产品销售分析中的季节因素、消费习惯等因素
定义: 用以描述定性因素影响、只取数值0和1的人工变 量为“虚拟变量”,一般用符号D表示。 (Dummy variable—哑变量)
计量经济学第九章虚拟变量
虚拟变量的类型
季节虚拟变量
用于反映季节变动对经济活动的影响。
政策虚拟变量
用于反映某项政策实施前后对经济活 动的不同影响。
地区虚拟变量
用于反映不同地区之间经济活动的差 异。
行业虚拟变量
用于反映不同行业之间经济活动的差 异。
虚拟变量的引入原因
解决遗漏变量问题
01
当某些重要变量无法直接观测或获取时,可以通过引入虚拟变
在模型中引入虚拟变量与解释变量的交互项,通过 改变斜率的值来反映不同组别之间的差异。
斜率变动模型的应用
适用于研究不同组别之间在某一解释变量上 的边际效应差异,如不同教育水平对收入的 影响等。
含有多个虚拟变量的模型
含有多个虚拟变量的模型的定义
当模型中引入多个虚拟变量时,称为含有多个虚拟变量的模型。
含有多个虚拟变量的模型的设定
VS
使用计算变量功能
可以使用SPSS的计算变量功能手动创建虚 拟变量。在数据视图中,点击“转换”菜 单下的“计算变量”选项。在弹出的对话 框中,输入虚拟变量的名称和标签,并在 计算表达式中输入相应的逻辑表达式。例 如,对于分类变量`industry`,可以使用如 下表达式生成虚拟变量
SPSS中实现虚拟变量的方法
截距变动模型的设
定
在模型中引入虚拟变量,通过改 变截距项的值来反映不同组别之 间的差异。
截距变动模型的应
用
适用于研究不同组别之间在某一 解释变量上的平均差异,如不同 性别、不同地区等。
斜率变动模型
斜率变动模型的定义
当虚拟变量不仅影响模型的截距项,还影响 解释变量的斜率时,称为斜率变动模型。
斜率变动模型的设定
通过比较政策虚拟变量的系数,可以分析 出政策变动对市场需求的影响程度。
虚拟变量回归模型课件.ppt
第7章 单方程回归模型的几个专门问题
7.1 虚拟变量
7.1.1 虚拟变量的概念及作用
1.虚拟变量的内涵 在计量经济学中,我们把反映定性(或属性)因素变化,取值为0和1的人工变量称为 虚拟变量(Dummy Variable),或称为哑变量、虚设变量、属性变量、双值变量、类型变量、 定性变量、二元型变量、名义变量等,习惯上用字母D表示。例如
第2页,共32页。
虚拟变量
为什么要引入“虚拟变量” ?? 许多经济变量是可以定量度量的或者说是可以直接观测的
如商品需求量、价格、收入、产量等
但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测
如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等。
第3页,共32页。
第29页,共32页。
临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界指 标的虚拟变量模型来反映。
第30页,共32页。
第31页,共32页。
当截距与斜率发生变化时,则需要同时引入加法与乘 法形式的虚拟变量。
OLS法得到该模型的回归方程为
则两时期进口消费品函数分别为:
当t<t*=1978年, Dt = 0
•女职工本科以上学历的平均薪金: E(Yt | Xt , D1 = 0, D2 = 1) = (b 0 + b3 ) + b1 Xt
•男职工本科以上学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 1) = (b0 + b 2 + b3 ) + b1 Xt
第23页,共32页。
2、乘法方式
第8页,共32页。
这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些
7.1 虚拟变量
7.1.1 虚拟变量的概念及作用
1.虚拟变量的内涵 在计量经济学中,我们把反映定性(或属性)因素变化,取值为0和1的人工变量称为 虚拟变量(Dummy Variable),或称为哑变量、虚设变量、属性变量、双值变量、类型变量、 定性变量、二元型变量、名义变量等,习惯上用字母D表示。例如
第2页,共32页。
虚拟变量
为什么要引入“虚拟变量” ?? 许多经济变量是可以定量度量的或者说是可以直接观测的
如商品需求量、价格、收入、产量等
但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测
如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等。
第3页,共32页。
第29页,共32页。
临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界指 标的虚拟变量模型来反映。
第30页,共32页。
第31页,共32页。
当截距与斜率发生变化时,则需要同时引入加法与乘 法形式的虚拟变量。
OLS法得到该模型的回归方程为
则两时期进口消费品函数分别为:
当t<t*=1978年, Dt = 0
•女职工本科以上学历的平均薪金: E(Yt | Xt , D1 = 0, D2 = 1) = (b 0 + b3 ) + b1 Xt
•男职工本科以上学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 1) = (b0 + b 2 + b3 ) + b1 Xt
第23页,共32页。
2、乘法方式
第8页,共32页。
这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些
第八章虚拟变量回归课件
9.房地产投机因素:投机者在房地产市场中的投机活动;
10.自然因素:包括自然环境、地质、地形、地势及气候等。
(资料来源:徐静; 武乐杰, 房地产价格影响因素的解释结构模型分析, 金融
经济, 2009年 10期)
第八章虚拟变量回归
2
在影响房地产价格的众多因素中,有定量的因素:
成本因素、房地产供求因素、经济因素、人口因素等;
Y t 0 1 X 1 t k X k 1 t D 1 t 2 D 2 t 3 D 3 t 4 D 4 t t
其矩阵形式为:
Y(XD, )α βμ
第八章虚拟变量回归
如果只取六个观测值,其中春季与夏季取了两次, 秋、冬各取到一次观测值,则式中的:
1 1
X 11 X 12
X k1 Xk2
被解释变量本身是定性变量
第八章虚拟变量回归
6
二、虚拟变量模型
虚拟变量模型:包含有虚拟变量的模型称虚拟变量模型 三种类型: 1、 解释变量中只包含虚拟变量
作用:假定其他因素都不变,只研究某种定性因素在某定
量变量上是否表现出显著差异
2、 解释变量中既含定量变量,又含虚拟变量
作用:研究定量变量和虚拟变量同时对被解释变量的影响
也有定性的因素:
社会因素、行政因素、区位因素、个别因素、投机因
素、 自然因素等。
在研究房地产价格影响机理时,需要分析那些不易量化
的定性因素对房地产价格是否真的有显著影响。
能否把定性的因素也引入计量经济模型中呢? 怎样才能
在模型中有效地表示这些定性因素的作用呢?
第八章虚拟变量回归
3
引子2 男女大学生的消费真的有差异吗?
例如:D=0 如果是女性(基础类型)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 D 0 1 D 0
1 D 0 1 D 0
宽松政策 紧缩政策 发达地区 不发达地区
销售旺季 销售淡季
高收入家庭 低收入家庭
作用:
⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的关系,提高模型的精度 ⑶便于处理异常数据。
本节学习要求: 1958 年 1 D 其他年份 ⑴如何设置虚拟变量; 0 ⑵如何描述和测量定性因素的影响。
pi 1 1 e ( a bxi }
极值分布
(Extreme value)模型
pi 1 exp( e a bx )
二、EViews实现
1、打开方程窗口: Quick\Estimate Equation 2、在Method栏选择估计方法—Binary; 3、输入被解释变量名和解释变量名; 4、选择分类估计方法(即分布函数类型): Probit Logit Extreme value
东 中 西
中部地区 其他地区
α2 -α1
(a 1 ) bX
东部地区 其他地区
α1
a bX
方式3:设置3个虚拟变量
1 D1 0
1 D3 0
中部地区 其他地区
西部地区 其他地区
1 D2 0
东部地区 其他地区
D1 D2 D3 1
虚拟变量的设置原则 1:
52 54 56 58 60 62
二、虚拟变量的设置
(一)虚拟变量的引入方式 1. 加法方式
形式:将虚拟变量D作为一个解释变量直接引入模型 例如:家庭教育费用支出模型
y a bx D
1 D 0 有适龄子女 无适龄子女
y a bx D 的等价形式:
2 D 1 0 东部地区 中部地区 西部地区
东 中 西
(a 2 ) bX (a ) bX
α
a bX
α
方式2:设置2个虚拟变量
Y a bX 1D1 2 D2
1 D1 0
1 D2 0
( a 2 ) bX
例题2:我国城镇居民彩电需求函数(P125 例7)
——利用虚拟变量描述不同收入层次居民的需求
1 D 0 中高收入家庭 低收入家庭
中高收入家庭
低收入家庭
(二)虚拟变量的设置原则
1.一个因素m个类型(或m个不同属性)
例:文教财政支出模型中“地区差异”因素的影响。
方式1:设置1个虚拟变量
Y a bX D
第四节
虚拟变量
一、虚拟变量及其作用
问题: 在计量经济模型中如何反映定性因素影响?例如:
金融计量分析中的政策因素、心理因素 经济增长分析中的地区差异因素 产品销售分析中的季节因素、消费习惯等因素
定义: 用以描述定性因素影响、只取数值0和1的人工变 量为“虚拟变量”,一般用符号D表示。 (Dummy variable—哑变量)
含义: 将被解释变量取成虚拟变量,表示决策过 程中的不同选择,利用计量经济模型分析各种因 素对决策过程的影响。
类型:
1、二元选择模型
2、排序选择模型
二元选择模型:
(一)线性概率模型(LPM)
模型: yi a bxi i 1 选择 A yi 0 选择 A
模型含义: 设: P( yi 1) pi E ( yi ) 1 pi 0 (1 pi ) pi 又 E ( yi ) a bxi a bxi P( yi 1) pi
如果一个因素有m 个不同属性, 则应设置 m -1 个虚拟变量。
2.多个因素各两种类型
例:居民住房消费函数中的“城乡差异”与“收入层
次” 的影响。
y a bx 1D1 2 D2
1 D1 0 城市家庭 农村家庭
1 D2 0 高收入家庭 低收入家庭
y a bx 1D1 2 D2 的等价形式
1 D 0 某属性或特征存在 某属性或特征不存在
基础类型、否定类型取值为0, 比较类型、肯定类型取值为1。
三、虚拟变量的特殊应用
1. 调整季节波动
y a bx 1 D1 2 D2 3 D3
1 Di 0 第i 1季度 其他季度源自例:股市波动的“周内效应”分析
虚拟变量的设置原则 2:
如果有 k 个因素,每个因素各2个属性, 则应设置 k 个虚拟变量。 其等价函数形式有:2k 个
问题:
1、如果收入分成“高、中、低”3个层次,如何设 置虚拟变量? 2、一个因素有m个属性时,要设置m-1个虚拟变量, 其等价函数形式是否也有2(m-1)个?
虚拟变量的设置原则 3(一般规则):
3. 一般方式
(1)同时以加法或乘法方式引入虚拟变量,即:
y a bx D XD
(2)利用t检验判断系数α、β是否显著地不 等于0,进而确定虚拟变量的引入方式,以及 定性因素影响的具体形式。
例题1:我国税收函数
——利用虚拟变量描述不同税收政策的影响
1 D 0 96 98年 85 95年
D=0时, D=1时,
y a bx y ( a ) bx
有适龄子女
a+α a
α
无适龄子女
作用:以加法方式引入虚拟变量,可以反映定性因素对截 距的影响,系数α描述了两类支出函数的平均差异程度。
2. 乘法方式
形式:将虚拟变量D乘以解释变量,再引入模型 例如:家庭教育费用支出模型中:
y a bx XD
其中:
XD x * D
y a bx
其等价形式:
D=0时, D=1时,
y a (b ) x
y a bx XD 的等价形式
有适龄子女
β
b
1
无适龄子女
作用:以乘法方式引入虚拟变量,反映定性因素对斜 率的影响,系数β描述了两类支出函数边际消费倾向 的差异程度。
其中:
a2 a1 b2 b1
1 D 0 样本2 样本1
3. 混合回归
例:我国城镇居民消费函数(P132 例8) (1)检验1998年和1999年的消费函数是否存在 显著差异—“同构”; (2)将1998年和1999年的数据合并成一个(混 合)样本,估计模型。
四、分类选择模型 ——虚拟被解释变量模型
2. 检验模型结构的稳定性
定义: 如果模型中参数的估计值与样本的选取无关, 则称该模型结构是稳定的。 用途: (1)检验多重共线性; (2)比较两个回归模型是否存在显著差异。 例:不同时期、不同地区、不同行业
模型:
样本1
样本2
y a1 b1 x
y a2 b2 x
组合:y a bx D XD
线性概率模型存在的问题:
1、随机误差项服从两点分布,非正态分布
——大样本时服从中心极限定理
2、模型存在异方差性——WLS估计
3、Yi的值可能会落在[0,1]区间之外
——人为定义成0和1
4、概率的增长幅度相同
处理方法:模型取成随机变量的分布函数
模型类型 Probit模型 Logit模型 分布函数 标准正态分布 Logistic分布
(D1,D2)
(0,0)农村低收入: (0,1)农村高收入: (1,0)城市低收入: (1,1)城市高收入:
各类家庭的消费函数
y a bx
y (a 2 ) bx y (a 1 ) bx y (a 1 2 ) bx
输出结果:
Log likelihood: 对数似然比值 Avg. log likelihood: L/n Restr. log likelihood: L(0) LR statistics: 检验模型的显著性 McFadden R.squared: 检验拟合优度