圆的面积及组合图形面积练习试题.docx

合集下载

圆的组合图形面积及答案

圆的组合图形面积及答案

圆的组合图形面积姓名:【常识与办法】要解决与圆有关的标题,须要留意以下几点:1、闇练控制有关圆的概念和面试公式:圆的面积= 圆的周长=扇形的面积= 扇形的弧长=(n是圆心角的度数)2.控制解题技能息争题办法:加减法.朋分重组法.扭转平移法.半数法.抵消法.等积变形法.等量代换法.添帮助线法.例1.求暗影部分的面积.(单位:厘米)解:这是最根本的办法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求暗影部分的面积.(单位:厘米)解:这也是一种最根本的办法用正方形的面积减去圆的面积.设圆的半径为 r,因为正方形的面积为7平方厘米,所以=7, 所以暗影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中暗影部分的面积.(单位:厘米)解:最根本的办法之一.用四个圆构成一个圆,用正方形的面积减去圆的面积,所以暗影部分的面积:2×2-π=0.86平方厘米.例4.求暗影部分的面积.(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求暗影部分的面积.(单位:厘米)解:这是一个用最经常应用的办法解最罕有的题,为便利起见,我们把暗影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米别的:此题还可以算作是1题中暗影部分的8倍.例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多若干厘米?解:两个空白部分面积之差就是两圆面积之差(全加上暗影部分)π-π()=100.48平方厘米(注:这和两个圆是否订交.交的情形若何无关)例7.求暗影部分的面积.(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以暗影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割.补.增.减变形) 例8.求暗影部分的面积.(单位:厘米)解:右面正方形上部暗影部分的面积,等于左面正方形下部空白部分面积,割补今后为圆,所以暗影部分面积为:π()=3.14平方厘米例9.求暗影部分的面积.(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则暗影部分合成一个长方形,所以暗影部分面积为:2×3=6平方厘米例10.求暗影部分的面积.(单位:厘米)解:同上,平移阁下两部分至中央部分,则合成一个长方形,所以暗影部分面积为2×1=2平方厘米(注: 8.9.10三题是简略割.补或平移)11.例13.求暗影部分的面积.(单位:厘米)解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.所以暗影部分面积为:8×8÷2=32平方厘米12.例14.求暗影部分的面积.(单位:厘米)解:梯形面积减去圆面积,(4+10)×4-π=28-4π=15.44平方厘米 .13.例16.求暗影部分的面积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6平方厘米14.例17.图中圆的半径为5厘米,求暗影部分的面积.(单位:厘米) 解:上面的暗影部分以AB为轴翻转后,全部暗影部分成为梯形减去直角三角形,或两个小直角三角形AED.BCD面积和.所以暗影部分面积为:5×5÷2+5×10÷2=37.5平方厘米16.例19.正方形边长为2厘米,求暗影部分的面积.解:右半部分上面部分逆时针,下面部分顺时针扭转到左半部分,构成一个矩形.所以面积为:1×2=2平方厘米17.例25.如图,四个扇形的半径相等,求暗影部分的面积.(单位:厘米)剖析:四个空白部分可以拼成一个以2为半径的圆.所以暗影部分的面积为梯形面积减去圆的面积,4×(4+7)÷2-π=22-4π=9.44平方厘米18.例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB是以AC为直径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,求暗影部分的面积.解: 因为2==4,所以=2以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14平方厘米19.例28.求暗影部分的面积.(单位:厘米)解法一:设AC中点为B,暗影面积为三角形ABD面积加弓形BD的面积,三角形ABD的面积为:5×5÷2=12.5弓形面积为:[π÷2-5×5]÷2=7.125所以暗影面积为:12.5+7.125=19.625平方厘米20.例30.如图,三角形ABC是直角三角形,暗影部分甲比暗影部分乙面积大28平方厘米,AB=40厘米.求BC的长度.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC 长为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米21.例33.求暗影部分的面积.(单位:厘米)解:用大圆的面积减去长方形面积再加上一个以2为半径的圆ABE面积,为(π+π)-6=×13π-6=4.205平方厘米22.例34.求暗影部分的面积.(单位:厘米)解:两个弓形面积为:π-3×4÷2=π-6 暗影部分为两个半圆面积减去两个弓形面积,成果为π+π-(π-6)=π(4+-)+6=6平方厘米。

小升初圆与组合图形面积专题(含解析)

小升初圆与组合图形面积专题(含解析)

小学数学圆与组合图形面积专题1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,( )A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断 3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯ B .22166 3.14() 3.1422⨯⨯-⨯ C .2216[6 3.14() 3.14]22⨯⨯-⨯ D .1(62 3.146 3.14)2⨯⨯⨯-⨯ 4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大5.如图,长方形ABCD 的面积是26m ,圆的面积是 2m6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 平方厘米.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 平方厘米.8.如图,这个图形的周长是 厘米.9.如图阴影部分的面积是25cm ,环形的面积是 2cm .三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.11.求如图阴影部分的面积.(单位:厘米)12.计算如图图形中阴影部分的面积.13.求如图阴影部分的面积.14.求图中阴影部分面积.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?cm16.求阴影部分的面积.(单位:)17.求如图阴影部分的面积和周长.面积:.周长:.18.如图,三角形ABC是等腰直角三角形,8C∠=︒,求:==,45AB AC cm(1)弧AD的长度;(2)图中阴影部分的面积.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知==厘米,求阴影部分的面积.AB BC1020.如图,ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)25.一个容积为550mL的水瓶,里面装了一些水,正放时,水面高20cm,倒放时,空气高7.5cm.求水有多少升?26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.27.如图四边形ABCD中,角DAB和角DCB都是直角,边CD和边BC的长度相等,从点C 到边AB的垂线CE长为10厘米,求四边形ABCD的面积.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 平方厘米.29.如图,1S 的面积比2S 的面积大多少?30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.。

圆和组合图形的面积问题练习(2)

圆和组合图形的面积问题练习(2)

圆和组合图形的面积问题练习(2)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .7.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)2二、解答题11.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率22)取12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位. 2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米). 3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米). 4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++=5.204.1645=⨯=(厘米). 6. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米). 又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米). 7. 19.1416.花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是⌒1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).8. 2.43平方厘米. 如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即 43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x ⨯⨯⨯=⨯⨯ππ,解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米11. 如图,小正方形的边长为2r,则①的面积为:72227224122r r r r =⨯-⎪⎭⎫ ⎝⎛⨯⨯,②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1)又9232=-x S ,于是有23184+-=S x ,解得S=6.14. 圆板的正面滚过的部分如右图阴影部分所求, 它的面积为:D)420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).。

圆的组合图形面积及答案

圆的组合图形面积及答案

圆的拉拢图形里积之阳早格格创做姓名:【知识取要领】要办理取圆有闭的题目,需要注意以下几面:1、流利掌握有闭圆的观念战里试公式:圆的里积= 圆的周少=扇形的里积= 扇形的弧少=(n是圆心角的度数)2、掌握解题本领妥协题要领:加减法、分隔沉组法、转动仄移法、对于合法、对消法、等积变形法、等量代换法、加辅帮线法.例1.供阳影部分的里积.(单位:厘米)解:那是最基原的要领:圆里积减去等腰曲角三角形的里积,×-2×1=1.14(仄圆厘米)例2.正圆形里积是7仄圆厘米,供阳影部分的里积.(单位:厘米)解:那也是一种最基原的要领用正圆形的里积减去圆的里积.设圆的半径为r,果为正圆形的里积为7仄圆厘米,所以=7,所以阳影部分的里积为:7-=7-×7=1.505仄圆厘米例3.供图中阳影部分的里积.(单位:厘米)解:最基原的要领之一.用四个圆组成一个圆,用正圆形的里积减去圆的里积,所以阳影部分的里积:2×2-π=0.86仄圆厘米.例4.供阳影部分的里积.(单位:厘米)解:共上,正圆形里积减去圆里积,16-π()=16-4π=3.44仄圆厘米例5.供阳影部分的里积.(单位:厘米)解:那是一个用最时常使用的要领解最罕睹的题,为便当起睹,咱们把阳影部分的每一个小部分称为“叶形”,是用二个圆减去一个正圆形,π()×2-16=8π-16=9.12仄圆厘米其余:此题还不妨瞅成是1题中阳影部分的8倍.例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空黑部分甲比乙的里积多几厘米?解:二个空黑部分里积之好便是二圆里积之好(齐加上阳影部分)π-π()=100.48仄圆厘米(注:那战二个圆是可相接、接的情况怎么样无闭)例7.供阳影部分的里积.(单位:厘米)解:正圆形里积可用(对于角线少×对于角线少÷2,供) 正圆形里积为:5×5÷2=12.5所以阳影里积为:π÷4-12.5=7.125仄圆厘米(注:以上几个题皆不妨间接用图形的好去供,无需割、补、删、减变形) 例8.供阳影部分的里积.(单位:厘米)解:左里正圆形上部阳影部分的里积,等于左里正圆形下部空黑部分里积,割补以去为圆,所以阳影部分里积为:π()=3.14仄圆厘米例9.供阳影部分的里积.(单位:厘米)解:把左里的正圆形仄移至左边的正圆形部分,则阳影部分合成一个少圆形,所以阳影部分里积为:2×3=6仄圆厘米例10.供阳影部分的里积.(单位:厘米)解:共上,仄移安排二部分至中间部分,则合成一个少圆形,所以阳影部分里积为2×1=2仄圆厘米(注: 8、9、10三题是简朴割、补或者仄移)11、例13.供阳影部分的里积.(单位:厘米)解: 连对于角线后将"叶形"剪启移到左上头的空黑部分,凑成正圆形的一半.所以阳影部分里积为:8×8÷2=32仄圆厘米12、例14.供阳影部分的里积.(单位:厘米)解:梯形里积减去圆里积,(4+10)×4-π=28-4π=15.44仄圆厘米 . 13、例16.供阳影部分的里积.(单位:厘米)解:[π+π-π]=π(116-36)=40π=125.6仄圆厘米14、例17.图中圆的半径为5厘米,供阳影部分的里积.(单位:厘米)解:上头的阳影部分以AB为轴翻转后,所有阳影部分成为梯形减去曲角三角形,或者二个小曲角三角形AED、BCD里积战.所以阳影部分里积为:5×5÷2+5×10÷2=37.5仄圆厘米16、例19.正圆形边少为2厘米,供阳影部分的里积.解:左半部分上头部分顺时针,底下部分顺时针转动到左半部分,组成一个矩形.所以里积为:1×2=2仄圆厘米17、例25.如图,四个扇形的半径相等,供阳影部分的里积.(单位:厘米)分解:四个空黑部分不妨拼成一个以2为半径的圆.所以阳影部分的里积为梯形里积减去圆的里积,4×(4+7)÷2-π=22-4π=9.44仄圆厘米18、例27.如图,正圆形ABCD的对于角线AC=2厘米,扇形ACB是以AC为曲径的半圆,扇形DAC是以D为圆心,AD为半径的圆的一部分,供阳影部分的里积.解: 果为2==4,所以=2以AC为曲径的圆里积减去三角形ABC里积加上弓形AC里积,π-2×2÷4+[π÷4-2]=π-1+(π-1)=π-2=1.14仄圆厘米19、例28.供阳影部分的里积.(单位:厘米)解法一:设AC中面为B,阳影里积为三角形ABD里积加弓形BD的里积,三角形ABD的里积为:5×5÷2=12.5弓形里积为:[π÷2-5×5]÷2=7.125所以阳影里积为:12.5+7.125=19.625仄圆厘米20、例30.如图,三角形ABC是曲角三角形,阳影部分甲比阳影部分乙里积大28仄圆厘米,AB=40厘米.供BC的少度. 解:二部分共补上空黑部分后为曲角三角形ABC,一个为半圆,设BC少为X,则40X÷2-π÷2=28所以40X-400π=56 则X=32.8厘米21、例33.供阳影部分的里积.(单位:厘米)解:用大圆的里积减去少圆形里积再加上一个以2为半径的圆ABE里积,为(π+π)-6=×13π-6=4.205仄圆厘米22、例34.供阳影部分的里积.(单位:厘米)解:二个弓形里积为:π-3×4÷2=π-6 阳影部分为二个半圆里积减去二个弓形里积,截止为π+π-(π-6)=π(4+-)+6=6仄圆厘米。

苏教版五年级数学下册第六单元圆的面积及组合图形专项试卷附答案

苏教版五年级数学下册第六单元圆的面积及组合图形专项试卷附答案

苏教版五年级数学下册核心考点突破卷11.圆的面积及组合图形一、认真填空。

( 每空2 分,共28 分)1.把圆平均分成若干份,可以拼成一个近似的长方形。

拼成的长方形的长相当于圆的( ),宽相当于圆的( ),拼成的长方形的面积与圆的面积( ),所以说圆的面积计算公式是( )。

2.小伟的书桌上有一个底面半径是4 厘米的笔筒,这个笔筒的底面面积是( )平方厘米。

3.数学课上,老师想在黑板上画一个周长是31.4厘米的圆,那圆规两脚之间的距离是( )厘米,这个圆的面积是( )平方厘米。

4.有一面20米长的墙,爷爷想用一段长25.12米的篱笆靠墙围一个半圆形鸡舍。

这个鸡舍的半径是( )米,面积是( )平方米,如果每只鸡的活动面积是1.5平方米,这个鸡舍最多可以养鸡( )只。

5.已知大圆的半径是小圆半径的3倍,那大圆周长是小圆周长的( )倍,小圆面积是大圆面积的( )。

6.在一张周长是40厘米的正方形纸上剪一个最大的圆,这个圆的半径是( )米,剩下图形的面积是( )平方厘米。

二、慎重选择。

(将正确答案的字母填在括号里)(每小题2分,共12 分)1.我国古代的数学著作《周髀算经》中记载的“周三径一”是指在同一个圆中,( )的三倍。

A.直径是半径B.周长大约是半径C.周长大约是直径D.面积大约是半径2.一个圆的半径由5 cm增加到8 cm,面积就增加( )cm2。

A.3πB.9πC.39πD.39 3.如图,每个扇形的半径是3 cm,则涂色部分的面积和是( )cm2。

A.28.26B.14.13C.56.52D.20.134.如图,两个图形的涂色部分相比,( )。

A.周长相等,面积相等B.周长相等,面积不相等C.周长不相等,面积相等D.周长不相等,面积也不相等5.如图,长方形的面积是10 cm2,圆的面积是( )cm2。

A.78.5 B.31.4C.15.7 D.无法确定6.下列说法中不正确的是( )。

A.半径是2 cm的圆,它的周长和面积相等B.同一个圆中半圆形的面积就是圆面积的一半C.圆的半径越大,面积就越大D.圆的半径增加一倍,面积就增加3 倍三、计算下面阴影部分的周长和面积。

完整版)圆形面积计算练习题

完整版)圆形面积计算练习题

完整版)圆形面积计算练习题
本文档为圆形面积计算的练题,旨在帮助读者巩固对圆形面积
计算的理解和应用。

以下是一些练题,每题都包含了一个圆的半径,请根据给定的半径计算圆的面积。

练题一
圆的半径为 5cm,计算其面积。

练题二
一个圆的直径为 10m,计算其面积。

练题三
圆的半径为 3.5cm,计算其面积。

练题四
一个圆的直径为 14m,计算其面积。

练题五
圆的半径为 6.2cm,计算其面积。

练题六
一个圆的直径为 8.5m,计算其面积。

练题七
圆的半径为 2.8cm,计算其面积。

练题八
一个圆的直径为 16.4m,计算其面积。

请根据给定的半径计算每个圆的面积,并将结果填写在对应的练题后。

如果需要,可以使用以下圆的面积计算公式:
面积= π \times 半径^2
其中,π 的近似值可以使用 3.14.
请注意,这些练习题旨在帮助读者巩固对圆形面积的计算方法的理解和应用。

希望这些练习题能帮助你更好地掌握圆形面积的计算方法。

完成练习后,你可以检查答案并核对是否正确。

五年级下册数学-圆和简单组合图形的面积练习(含答案)

五年级下册数学-圆和简单组合图形的面积练习(含答案)

圆和简单组合图形的面积一、填空。

(每空2分,共30分)1. 我们先把一个圆平均分成若干份,再拼成一个近似的长方形,这个近似的长方形的长相当于(),宽相当于(),因为长方形的面积等于(),所以圆的面积=()。

2. 用圆规画一个圆,如果圆规两脚之间的距离是6厘米,那么画出的这个圆的周长是()厘米,这个圆的面积是()平方厘米。

3. 把一个圆形铁片剪成两个相同的半圆形,如果周长增加了12 cm,那么这个圆形铁片的面积是()cm2。

4. 甲圆半径是乙圆半径的3倍,甲圆周长是乙圆周长的()倍,甲圆面积是乙圆面积的()倍。

5. 一个能自动旋转的喷水龙头的有效射程是10米,那么它的喷洒面积最大是()平方米。

6. 圆的半径由6厘米增加到9厘米,圆的面积增加了()平方厘米。

7. 在一张边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是()。

8. 一根铁丝可围成边长是3. 14厘米的正方形,如果用这根铁丝围成一个圆,那么圆的半径是()厘米,面积是()平方厘米。

9. 一种钟表的表面是圆形,它的周长是25. 12厘米,它的面积是()平方厘米。

二、判断。

(对的在括号里打“√”,错的打“×”。

每题2分,共8分)1. 半径是2 cm的圆,它的面积和周长相等。

()2. 一个圆的半径扩大到原来的3倍,面积也扩大到原来的3倍。

()3. 由几个同心圆组成的图形有无数条对称轴。

()4. 周长相等的长方形、正方形和圆,面积最大的是圆。

()三、选择。

(将正确答案的字母填在括号里。

每题2分,共10分)1. 一个圆的面积是28. 26平方厘米,它的半径是()。

A. 3厘米B. 4. 5厘米C. 6厘米D. 9厘米2. 如果一个圆的面积扩大到原来的4倍,那么它的直径()。

A. 扩大到原来的2倍B. 扩大到原来的4倍C. 扩大到原来的8倍D. 扩大到原来的16倍3. 车轮转动一周所行的路程是车轮的()。

A. 半径B. 直径C. 周长D. 面积4. 一个圆的直径与正方形的边长相等。

圆的面积和组合图形面积练习题

圆的面积和组合图形面积练习题

圆的面积练习题一、复习。

3.14×12= 3.14×22= 3.14×32= 3.14×42= 3.14×52=3.14×62= 3.14×72= 3.14×82= 3.14×92= 3.14×102=二、巩固新知。

1、我能填:(在同一个圆内)2、填空。

①把一个圆沿着半径分成若干等份,剪开拼成一个近似的长方形,这个长方形的长相当于圆的(),宽就是圆的()。

因为长方形的面积是(),所以圆的面积是( )。

②圆的直径是6厘米,它的周长是(),它的面积是()。

③鼓楼中心岛是半径 10米的圆,它的占地面积是()平方米。

④圆的周长是25.12分米,它的面积是()平方分米。

⑤圆的半径扩大2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。

三、拓展练习。

1、一只羊栓在一块草地中央的树桩上,树桩到羊颈的绳长是 3米。

这只羊最多可以吃到多少平方米的草?2、一个圆形蓄水池的周长是18.84米,这个蓄水池的占地面积是多少平方米?3、从一个长9分米,宽8分米的长方形木板上锯下一个最大的圆,这个圆的面积是多少平方分米?组合图形面积练习题一、求下面图形中阴影部分的面积。

4cmr=8cm R=10cm 6cm二、解决问题。

1.一个环形的外圆半径是8分米,内圆半径5分米,求环形的面积?2.环形的外圆周长是 18.84厘米,内圆直径是 4厘米,求环形的面积?3.校园圆形花池的半径是 6米,在花池的周围修一条 1米宽的水泥路,求水泥路的面积是多少平方米?4.一个运动场如右图,两端是半圆形,中间是长方形。

已知长方形的长是100米,圆的半径是32米。

这个运动场的周长是多少米?面积是多少平方米?。

小升初圆与组合图形面积专题(含解析)

小升初圆与组合图形面积专题(含解析)

小学数学圆与组合图形面积专题1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,()A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯B .22166 3.14() 3.1422⨯⨯-⨯C .2216[6 3.14() 3.14]22⨯⨯-⨯D .1(62 3.146 3.14)2⨯⨯⨯-⨯4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大5.如图,长方形ABCD 的面积是26m ,圆的面积是 2m6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 平方厘米.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 平方厘米.8.如图,这个图形的周长是 厘米.9.如图阴影部分的面积是25cm ,环形的面积是 2cm .三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.11.求如图阴影部分的面积.(单位:厘米)12.计算如图图形中阴影部分的面积.13.求如图阴影部分的面积.14.求图中阴影部分面积.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?cm16.求阴影部分的面积.(单位:)17.求如图阴影部分的面积和周长.面积:.周长:.18.如图,三角形ABC是等腰直角三角形,8C∠=︒,求:==,45AB AC cm(1)弧AD的长度;(2)图中阴影部分的面积.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知==厘米,求阴影部分的面积.AB BC1020.如图,ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)25.一个容积为550mL的水瓶,里面装了一些水,正放时,水面高20cm,倒放时,空气高7.5cm.求水有多少升?26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.27.如图四边形ABCD中,角DAB和角DCB都是直角,边CD和边BC的长度相等,从点C 到边AB的垂线CE长为10厘米,求四边形ABCD的面积.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 平方厘米.29.如图,1S 的面积比2S 的面积大多少?30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.圆与组合图形面积专题参考答案与试题解析一.选择题(共4小题)1.如图所示,大正方形与小正方形的面积之差为50平方厘米,阴影部分的面积是( )平方厘米.A .33.5πB .37.5πC .40πD .47.5π【解答】解:235037.5()4cm ππ⨯⨯= 答:阴影部分的面积是37.5π平方厘米. 故选:B .2.如图中,三角形ABC 是等腰直角三角形,图中阴影部分和空白部分的面积相比较,()A .阴影部分的面积大B .空白部分的面积大C .面积一样大D .无法判断【解答】解:根据分析可得,②=③+④=三角形ABC 面积的一半,①=③那么,空白部分的面积=②+③=三角形ABC 面积的一半+③ 阴影部分的面积=①+④=③+④=三角形ABC 面积的一半 所以,空白部分的面积大; 故选:B .3.计算如图阴影部分面积,正确的列式是( )A .266 3.14() 3.142⨯-⨯B .22166 3.14() 3.1422⨯⨯-⨯C .2216[6 3.14() 3.14]22⨯⨯-⨯D .1(62 3.146 3.14)2⨯⨯⨯-⨯【解答】解:2216[6 3.14() 3.14]22⨯⨯-⨯127 3.142=⨯⨯ 42.39=(平方厘米)答:阴影部分面积是42.39平方厘米; 故选:C .4.下面是两张同样大小的正方形纸,分别剪出不同规格的圆片,剩下的面积( )A .第一张纸剩下的面积大B .第二张纸剩下的面积大C .两张纸剩下的面积一样大 【解答】解:第一张纸剩下的面积是:244 3.14(42)⨯-⨯÷ 16 3.144=-⨯ 1612.56=- 3.44=第二张纸剩下的面积是:244 3.14(422)4⨯-⨯÷÷⨯ 16 3.1414=-⨯⨯ 1612.56=- 3.44=所以两张纸剩下的一样多.答:剪完圆后,两张纸剩下的一样多. 故选:C .二.填空题(共5小题)5.如图,长方形ABCD 的面积是26m ,圆的面积是 9.42 2m【解答】解:623÷=(平方米) 3.1439.42⨯=(平方米)答:圆的面积是9.42平方米. 故答案为:9.42.6.如图两个圆的半径都是4厘米,涂色部分的面积之和是 12.56 平方厘米.【解答】解:23.1444⨯÷ 50.244=÷12.56=(平方厘米)答:阴影部分的面积是12.56平方厘米. 故答案为:12.56.7.长方形里有两个圆(如图),阴影部分的面积是27cm ,那么一个圆的面积是 21.98 平方厘米.【解答】解:设圆的半径为r 厘米, 227r r ⨯÷=27r =3.14721.98⨯=(平方厘米)答:一个圆的面积是 21.98平方厘米.故答案为:21.98.8.如图,这个图形的周长是 23.98 厘米.【解答】解:3.1462 3.1482(86)⨯÷+⨯÷+-9.4212.562=++23.98=(厘米)答:这个图形的周长是 23.98厘米.故答案为:23.98.9.如图阴影部分的面积是25cm ,环形的面积是 31.4 2cm .【解答】解:设大圆的半径为R ,小圆的半径为r ,因为2211522R r -=, 则2210R r -=,环形的面积:223.14()R r ⨯-3.1410=⨯31.4=(平方厘米)答:环形的面积是31.4平方厘米.故答案为:31.4.三.计算题(共7小题)10.如图中正方形的边长为4cm ,求阴影部分的面积.【解答】解:244 3.14(42)⨯-⨯÷16 3.144=-⨯1612.56=-23.44()cm =答:阴影部分的面积是23.44cm .11.求如图阴影部分的面积.(单位:厘米)【解答】解:633-=(厘米)(63)32+⨯÷272=÷13.5=(平方厘米)答:阴影部分的面积是13.5平方厘米.12.计算如图图形中阴影部分的面积.【解答】解:222020 3.14204 3.14(202)2⨯-⨯÷+⨯÷÷400314157=-+243=(平方厘米)答:阴影部分的面积是243平方厘米.13.求如图阴影部分的面积.【解答】解:26226()cm ⨯÷=答:阴影部分的面积是26cm .14.求图中阴影部分面积.【解答】解:8822⨯÷÷6422=÷÷16=(平方厘米)答:图中阴影部分的面积是16平方厘米.15.如图中,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,图中阴影部分的面积是多少平方厘米?【解答】解:半径:25.12 3.1424÷÷=(厘米)233.1444⨯⨯3.1412=⨯37.68=(平方厘米)答:阴影部分的面积是37.68平方厘米.16.求阴影部分的面积.(单位:)cm【解答】解:(47)42+⨯÷112=⨯22=(平方厘米)答:阴影部分的面积是22平方厘米.四.解答题(共14小题)17.求如图阴影部分的面积和周长.面积:9平方厘米.周长:.【解答】解:面积:6(62)2⨯÷÷632=⨯÷9=(平方厘米)周长:3.14626⨯÷+9.426=+15.42=(厘米)故答案为:9平方厘米,15.42厘米.18.如图,三角形ABC是等腰直角三角形,8AB AC cm==,45C∠=︒,求:(1)弧AD的长度;(2)图中阴影部分的面积.【解答】解:(1)因为45n=︒,8r=厘米所以弧AD的长为:45 3.148180⨯⨯2 3.14=⨯6.28=(厘米)答:弧AD的长度6.28厘米.(2)22 180 3.144145 3.148(88)3602360⨯⨯⨯⨯-⨯⨯-8 3.14(328 3.14)=⨯--⨯16 3.1432=⨯-18.24=(平方厘米)答:阴影部分的面积是18.24平方厘米.19.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知10AB BC==厘米,求阴影部分的面积.【解答】解:连接BD 、OD 、OA ,由于DO BC ⊥,AB BC ⊥,所以//DO AB , 则AOD BOD S S ∆∆=,而阴影部分的面积AOB AOD BOD S S S ∆∆=+-扇形,AOB BOD BOD S S S ∆∆=+-扇形, 211101*********()242222π=⨯⨯÷+⨯⨯-⨯⨯ 2519.62512.5=+-,32.125=(平方厘米).20.如图,ABCD 是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求小路的面积.+⨯-⨯=(平方米),【解答】解:小路面积为:(2014)22264答:小路的面积是64平方米.21.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为多少平方厘米?【解答】解:如图,,阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以阴影部分的面积和等于正方形面积的一半,⨯÷=(平方厘米)4428答:图中阴影部分的面积为8平方厘米.22.如图所示的多边形是由一个三角形和三个长方形组成的.已知三个长方形的面积分别是12平方厘米、4平方厘米和6平方厘米.三角形面积是多少平方厘米?【解答】解:如图,设三角形面积为x平方厘米,则2:126:4x=x⨯=⨯42126x=872x÷=÷887289x=答:三角形面积是9平方厘米.23.公园里有一块长方形的草坪,为方便游客,在草坪中间开辟了两条小路(如图).现在m草坪的面积是多少?(单位:)⨯-⨯+⨯+⨯,【解答】解:2012(212220)22240(2440)4=-++,=-+,240644=(平方米);180答:现在草坪的面积是180平方米.24.如图,已知大圆半径为6cm,四个小圆的面积相等.阴影部分面积是多少平方厘米?(分合割补法)【解答】解:阴影部分的面积:(62)(62)2⨯⨯⨯÷,12122=⨯÷,1442=÷,272()cm =.答:阴影部分的面积是72平方厘米.25. 一个容积为550mL 的水瓶,里面装了一些水,正放时,水面高20cm ,倒放时,空气高7.5cm .求水有多少升?【解答】解:因为水的体积是不变的,瓶内空余部分的体积也是不变的, 所以水体积是空余部分体积的8207.53÷=倍, 885505504008311⨯=⨯=+毫升0.4=升, 答:水有0.4升.26.如图是直角三角形中有一个内接正方形,求图中阴影部分的面积.单位:厘米.提示:分拆图形时常用“分割、填补、组合、旋转”等方法.【解答】解:根据题干分析可得:18122108⨯÷=(平方厘米), 答:图中阴影部分的面积是108平方厘米.故答案为:108平方厘米.27.如图四边形ABCD 中,角DAB 和角DCB 都是直角,边CD 和边BC 的长度相等,从点C到边AB 的垂线CE 长为10厘米,求四边形ABCD 的面积.【解答】解:将三角形CEB 以C 点为中心顺时针旋转90度,如下图,四边形ABCD 的面积与新得到的正方形相等,所以面积为:1010100⨯=(平方厘米). 答:四边形ABCD 的面积是100平方厘米.28.图形计算(1)求下图阴影部分的周长和面积.(单位:厘米)(2)三条边长分别是6厘米、8厘米、10厘米的直角三角形.将它的最短边对折到斜边相重合,(如图)图中阴影部分面积是 6 平方厘米.【解答】解:(1)如图,阴影部分的周长:903.141022 3.1410231.415.747.1360︒⨯÷⨯+⨯⨯⨯=+=︒(厘米); 两个直角等腰三角形的面积:(直角边2+直角边22)210÷=(斜边2)2100250÷=÷=(平方厘米);阴影部分的面积:2903.141078.55028.5360︒⨯⨯-=-=︒(平方厘米). 答:阴影部分的周长是47.1厘米,面积是28.5平方厘米.(2)阴影部分大直角边长:1064-=(厘米);阴影部分小直角边长:623÷=(厘米);阴影部分面积:4326⨯÷=(平方厘米).答:图中阴影部分面积是6平方厘米.故答案为:(1)47.1厘米,28.5平方厘米;(2)629.如图,1S 的面积比2S 的面积大多少?【解答】解:如图:12S S -12()()BCGF BCGF S S S S =+-+ABC BCGE S S =-10(68)2106=⨯+÷-⨯7060=-10=(平方厘米)答:1S 的面积比2S 的面积大10平方厘米.30.图中正方形的边长是10厘米,三角形甲的面积比三角形乙的面积少20平方厘米,求线段AB 的长.【解答】解:三角形甲的面积比三角形乙的面积小20平方厘米;根据图形可得:三角形DCB的面积比正方形CDEA的面积大20平方厘米,所以三角形DCB的面积为:10102010020120⨯+=+=(平方厘米)又因为正方形的边长10CD=厘米所以CB的长度是:12021024⨯÷=(厘米)所以AB的长度为:241014-=(厘米)答:AB的长度是14厘米.。

圆、组合图形面积-小升初立体图形训练-圆、组合图形面积-无答案

圆、组合图形面积-小升初立体图形训练-圆、组合图形面积-无答案

圆、组合图形的面积第一部分 知识梳理字母意义:O 圆心,r 半径,d 直径,π 圆周率,C 周长,S 面积 特征:同一圆内,所有的半径、直径都分别相等,直径等于半径的2倍 对称性:圆是轴对称图形,圆的直径所在的直线是圆的对称轴1.圆 圆的周长计算公式:C=πd=2πr ,半圆周长计算公式:C 半圆=πr+2r=(π+2)r 圆的面积计算公式推导过程:将圆沿着直径等分成若干个扇形(偶数份),再拼成一 个近似的长方形(分成的扇形越多,越接近长方形),长方形的长相当于圆的周 长一半(πr ),宽相当与圆的半径,圆的面积等于长方形的面积。

所以:S 圆=S 长方形=πr ×r=πr 2概念:两个半径不等的同心圆之间的部分称之为圆环。

各部分名称:①外圆:圆环中较大的圆叫做外圆,其半径通常用R 表示。

2.圆环 ②内圆:圆环中较小的圆叫做内圆,其半径通常用r 表示。

③环宽:外圆到内圆的距离叫做环宽 环宽=R —r圆环的面积计算方法:外圆的面积与内圆的面积之差是圆环的面积。

即:S 圆环=S 外圆—S 内圆 ,S 圆环=π(R 2 — r 2)弧:圆上任意两点间的部分叫做弧3.扇形 圆心角:弧的两个端点与圆心连结,所得两条半径的夹角叫圆心角 扇形:由圆心角的两条半径和圆心角所对的弧组成的图形叫扇形割补(平移)法 组合图形的面积 加减法计算策略1 旋转、对称法4.组合图形的 要求阴影先求空白 面积计算 包含与排除组合图形的面积 总面积=两部分面积和-重叠部分面积 计算策略2 巧添辅助线 等积转化(代换)第二部分精讲点拨例1判断下列各题是否正确:(1)圆的周长是直径的3.14倍。

()(2)圆是轴对称图形,直径是圆的对称轴。

()(3)世界上第一位把圆周率精确到七位小数的人物是祖冲之。

()举一反三:1.填空题:(1)经过圆心并且两端都在圆上的线段叫做圆的(),圆有()条直径。

(2)圆的面积推导公式是:将圆分成若干个扇形,再拼成一个近似的长方形,长方形的长相当于圆的(),长方形的宽相当于圆的(),所以圆的面积公式为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的面积练习题
一、复习。

× 1 2=×2 2=× 3 2=×4 2=×5 2=
× 6 2=×7 2=× 8 2=×9 2=×10 2=
二、巩固新知。

1、我能填:(在同一个圆内)
半 4 厘 3 分米
径米
直 6 米

面平方米

2、填空。

①把一个圆沿着半径分成若干等份,剪开拼成一个近似的长方形,这个长方形的长相当于圆
的(),宽就是圆的()。

因为长方形的面积是(),所以圆的面积是()。

②圆的直径是 6 厘米,它的周长是(),它的面积是()。

③鼓楼中心岛是半径10 米的圆,它的占地面积是()平方米。

④圆的周长是分米,它的面积是()平方分米。

⑤圆的半径扩大 2 倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。

三、拓展练习。

1、一只羊栓在一块草地中央的树桩上,树桩到羊颈的绳长是 3 米。

这只羊最多可以吃到
多少平方米的草
2、一个圆形蓄水池的周长是米,这个蓄水池的占地面积是多少平方米
3、从一个长 9 分米,宽 8 分米的长方形木板上锯下一个最大的圆,这个圆的面积是多少平方分

组合图形面积练习题
一、求下面图形中阴影部分的面积。

4cm
r=8cm R=10cm6cm
二、解决问题。

1.一个环形的外圆半径是8 分米,内圆半径 5 分米,求环形的面积
2.环形的外圆周长是厘米,内圆直径是 4 厘米,求环形的面积
3.校园圆形花池的半径是 6 米,在花池的周围修一条 1 米宽的水泥路,求水泥路的面积是多少平方米
4.一个运动场如右图,两端是半圆形,中间是长方形。

已知长方形的长是100 米,圆的半径是32 米。

这个运动场的周长是多少米面积是多少平方米。

相关文档
最新文档