计算机组成原理 主存储器设计举例
数字逻辑与计算机组成原理:第三章 存储器系统(1)
A3 0
字线
地0 A2 0 址
译
A1
0码 器
A0 0
15
读 / 写选通
… …
…
0,0 … 0,7
16×8矩阵
15,0 … 15,7
0
…
7 位线
读/写控制电路
D0
… D7
(2) 重合法(双译码方式)
0 A4
0,00
…
0 A3
阵
A2
译
0码
31,0
…
A1
器 X 31
0 A0
… …
或低表示存储的是1或0。 T5和T6是两个门控管,读写操作时,两管需导通。
六管存储单元
保持
字驱动线处于低电位时,T5、T6 截止, 切断了两根位线与触发器之间的 联系。
六管存储单元
单译码方式
读出时: 字线接通 1)位线1和位线2上加高电平; 2)若存储元原存0,A点为低电
平,B点为高电平,位线2无电 流,读出0。
3)若存储元原存1,A点为高电 平,B点为低电平,位线2有电
流,读出1。
静态 RAM 基本电路的 读 操作(双译码方式)
位线A1
A T1 ~ T4 B
位线2
T5
行地址选择
T6
行选
T5、T6 开
列选
T7、T8 开
T7
T8
读选择有效
列地址选择 写放大器
写放大器
VA
T6
读放
读放
DOUT
T8 DOUT
DIN
1.主存与CPU的连接
是由总线支持的; 总线包括数据总线、地址总线和控制总线; CPU通过使用MAR(存储器地址寄存器)和MDR(存储
计算机组成原理与汇编实验报告
计算机组成原理与汇编实验报告姓名:学号:学院:信息科学与工程学院班级:实验1 存储器实验实验目的⏹掌握静态存储随机存储器RAM的工作特性⏹掌握静态存储随机存储器RAM的读写方法实验设备74LS273(一片),静态存储器MEMORY 6116(一片),与门(一片),与非门(一片),单脉冲(一片),开关若干,灯泡若干实验原理在微机系统中,常用的静态RAM 有6116、6264、62256 等。
在本实验中使用的是6116。
6116 为2K╳8 位的静态RAM,其逻辑图3.1如下:图3.1 6116逻辑图其中A0~10 为11 根地址线,I/O0~7 为8 根数据线,CS 为片选端,OE 为数据输出选通端,WR 为写信号端。
其工作方式见下表3-1:表3-1工作方式表实验所用的半导体静态存储器电路原理如图3.2 所示,实验中的静态存储器一片6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。
地址灯AD0—AD7 与地址线相连,显示地址线内容。
数据开关经一三态门(74LS245)连至数据总线,分时给出地址和数据。
图3.2 存储器实验原理图因地址寄存器为8 位,接入6116 的地址A7—A0,而高三位A8—A10 接地,所以其实际容量为256 字节。
6116 有三个控制线:CE(片选线)、OE(读线)、WE(写线)。
当片选有效(CE=0)时,OE=0时进行读操作,WE=0时进行写操作。
本实验中将OE 常接地,在此情况下,当CE=0、WE=0 时进行读操作,CE=0、WE=1 时进行写操作,其写时间与T3 脉冲宽度一致。
控制信号SW-B 为低电平有效,控制信号LDAR 为高电平有效。
实验步骤1. 选择实验设备:根据实验原理图,将所需要的组件从组件列表中拖到实验设计流程栏中。
搭建实验流程:将已选择的组件进行连线(鼠标从一个引脚的端点拖动到另一组件的引脚端,即完成连线)。
计算机组成原理存储器(1)(1)
计算机组成原理存储器(1)(1)1.存储器⼀、单选题(题数 54,共7 )1在下述存储器中,允许随机访问的存储器是()。
(1.2分)A、磁带 B 、磁盘 C 、磁⿎ D 、半导体存储器正确答案 D2若存储周期250ns,每次读出16位,则该存储器的数据传送率为()。
(1.2分)A、4×10^6字节/秒B、4M字节/秒C、8×10^6字节/秒D、8M字节/秒正确答案 C3下列有关RAM和ROM得叙述中正确的是()。
IRAM是易失性存储器,ROM是⾮易失性存储器IIRAM和ROM都是采⽤随机存取⽅式进⾏信息访问IIIRAM和ROM都可⽤做CacheIVRAM和ROM都需要进⾏刷新(1.2分)A、仅I和IIB、仅I和IIIC、仅I,II,IIID、仅II,III,IV正确答案 A4静态RAM利⽤()。
(1.2分)A、电容存储信息B、触发器存储信息C、门电路存储信息D、读电流存储信息正确答案 B5关于计算机中存储容量单位的叙述,其中错误的是()。
(1.2分)A、最⼩的计量单位为位(bit),表⽰⼀位“0”或“1”B、最基本的计量单位是字节(Byte),⼀个字节等于8bC、⼀台计算机的编址单位、指令字长和数据字长都⼀样,且是字节的整数倍D、主存容量为1KB,其含义是主存中能存放1024个字节的⼆进制信息正确答案 C6若CPU的地址线为16根,则能够直接访问的存储区最⼤容量为()。
(1.2分)A、1MB、640KC、64KD、384K正确答案 C7由2K×4的芯⽚组成容量为4KB的存储器需要()⽚这样的存储芯⽚。
(1.2分)A、2B、4C、8D、16正确答案 B8下⾯什么存储器是⽬前已被淘汰的存储器。
(1.2分)A、半导体存储器B、磁表⾯存储器C、磁芯存储器D、光盘存储器正确答案 C9下列⼏种存储器中,()是易失性存储器。
(1.2分)A、cacheB、EPROMC、FlashMemoryD 、 C D-ROM正确答案 A10下⾯关于半导体存储器组织叙述中,错误的是什么。
计算机组成原理 存储器课件举例讲解
刷新按行进行,用于提供对所要刷新的行进行计数;
仲裁电路
对同时产生的来自CPU的访问存储器的请求和来自刷新定
时器的刷新请求的优先权进行裁定;
定时发生器
提供行地址选通/RAS、列地址选通/CAS和写信号/WE。
2020/3/22
38
3.3.3 读/写周期 行、列地址分开传送
读时序
写时序
行地址 RAS 有效
硬盘 磁带
光盘存储器:用光介质(光学性质)构成的存储器; 光盘
按存取方式分
半导体
随机存储器:存取时间和存储单元的物理位置无关; 存储器
顺序存储器:存取时间和存储单元的物理位置有关; 磁带
半顺序存储器:存取时间部分地依赖于存储单元的物理位置;
磁盘存储器
2020/3/22
5
3.1.1 存储器分类(2/3)
一个写操作 中数据不允 许改变
32
正确的SRAM的写入时序图
2020/3/22
33
3.3 DRAM存储器
动态RAM(DRAM) 因为该存储器必须定时刷新,才能维持其中的信息不变;
DRAM的存储元 由MOS晶体管和电容组成的记忆电路; 电容上的电量来表现存储的信息; 充电—1,放电—0。 结构形式 四管存储元 单管存储元
2、内存包括cache和主存
2、虚存系统包括主存和辅存
在CPU看来,容量相当于辅存容量,速度相当于CACHE速度。
2020/3/22
9
3.1.2 存储器的分级结构(2/2)
存储器分级结构中应解决的问题: 当需从辅存中寻找指定内容调入主存时,如何准确定位? 依靠相应的辅助软硬件。 当CPU访问cache,而待访问内容不在cache中时,应如何 处理? 从主存向cache中调入相应内容。
计算机组成原理4第四章存储器PPT课件精选全文
4.2
11
4.2
请问: 主机存储容量为4GB,按字节寻址,其地址线 位数应为多少位?数据线位数多少位? 按字寻址(16位为一个字),则地址线和数据线 各是多少根呢?
12
数据在主存中的存放
设存储字长为64位(8个字节),即一个存 取周期最多能够从主存读或写64位数据。
读写的数据有4种不同长度:
字节 半字 单字 双字
34
3. 动态 RAM 和静态 RAM 的比较
主存
DRAM
SRAM
存储原理
电容
触发器
集成度
高
低
芯片引脚
少
多
功耗
小
大
价格
低
高
速度
慢
快
刷新
有
无
4.2
缓存
35
内容回顾: 半导体存储芯片的基本结构 4.2
…… ……
地
译
存
读
数
址
码
储
写
据
线
驱
矩
电
线
动
阵
路
片选线
读/写控制线
地址线(单向) 数据线(双向) 芯片容量
D0
…… D 7
22
(2) 重合法(1K*1位重合法存储器芯片)
0 A4
0,00
…
0,31
0 A3
X 地
X0
32×32
… …
0址
矩阵
A2
译
0码
31,0
…
31,31
A1
器 X 31
0 A0
Y0 Y 地址译码器 Y31 A 9 0A 8 0A 7 0A 6 0A 5 0
计算机组成原理9-存储器
ABC 0 0 00 0 0 11 0 1 02 0 1 13 1 0 04 1 0 15 1 1 06 1 1 17
ABC 0 0 00 001 010 0 1 13 100 1 0 11 1 1 02 111
30
奇偶校验码
• 奇偶校验码是主存采用的一种最简单的行之有效的方法。
1)构成法则:
1011 0001 1011 0001 1 1011 0001 0
//1的个数为奇数 //1的个数为偶数
校验码包含 有效信息和校验位
• 奇偶校验逻辑 主要采用异或门校验码的生成和检错。
32
奇偶校验码
校验位( 偶形成 ) ⊕
1:奇数个1 0:偶数个1
⊕
⊕
⊕⊕⊕⊕ D7 D6 D5 D4 D3 D2 D1 D0
37
海明校验
例:N=7,k=4 , r=3的海明码位数为:
位号 Pi占位
123456 7 P1 P2 A1 P3 A2 A3 A4
A1~A4 为有效信息, 海明码的每一位都被P1,P2,…,Pr中的一至若干位所校验。 规律:第i位由校验位位号之和等于i的那些校验位所校验。 如:第5位,被P1、P3校验,
• 部分译码方式 地址不唯一
A15 A14 A13 A12 A11 C A10 P U A9
A0
D4~D7 D0~D3
3/8
译码器
12
CPU和主存的连接
• 系统模式 1)最小系统模式 2)较大系统模式 3)专用存储总线模式 速度匹配与时序控制
CPU 操作和访存操作的时钟周期 时钟周期 总线周期:CPU通过系统总线对存储器的一次读 写操作。由数个时钟周期组成
A15 A14 A13 A12
主存储器设计举例
❖ 例题 已知: ① CPU的地址总线16根(A15—A0,A0为低位) ② 双向数据总线8根(D7—D0) ③ 控制总线中与主存有关的信号有MREQ(允许访
存,低电平有效),R/ W(高电平为读命令,低电 平为写命令) 要求:主存地址空间满足如下分配: ① 0—8191为系统程序区,由只读存储芯片组成. ② 8192—32767为用户程序区;最后(最大地 址)2K 地址空间为系统程序工作区. ③ 地址用十进制且按字节编址.
改错题:
1.用64K*32位的DRAM芯片组成一个2M*64位 的半导体主存储器,该主存的地址寄存器和
2数.码静寄态存存器储分器别(S是RA1M6位)是与属3于2位非。易失性存贮 器。
1.用256K*16位的EDRAM芯片组成一个内存条,若 要构建4M*16位的半导体主存储器。试求:
(1) 该主存的地址寄存器和数码寄存器各需要多少位? (2)该主存共需几个内存条? (3) 当每个内存条的地址线均采用双译码实现时,其需
3 .扩展型操作码意指: 指令字长度不变,但让操作
码的长度随
的减少而增加,因而是一种
指令优化技术。
4 .在操作数寻址方式中,若D表示形式地址时,相
对寻址方式的操作数有效地址为
;若采
用基址寻址方式 (其中基址寄存器为32位,形式
地址D为20位),则其操作数的最大存储空间是
存储单元。
5.条件转移、无条件转移、转子程序、返回主程序、 中断返回指令都属于 类指令,这类指令在指 令格式中所表示的地址是 的地址。
需的实际刷新时间是多少?
设计题:
1.① 试设计出字长为4位的X±Y的补码加法器 逻辑图(含溢出判断电路).
② 写出三种判溢的逻辑表达式
计算机组成原理-第3章_存储系统
存储周期 RW 刷新1 RW 刷新2 …
500ns 500ns
刷新间隔2ms
用在低速系统中
各刷新周期分散安排 在存取周期中。
… RW 128 RW
例如上图所示的DRAM有128行,如果刷新周期为 2ms,则每一行必须每隔2ms÷128=62.5us进行一次。
5、存储器控制电路
DRAM刷新需要硬件电路支持,它们集成在一个芯片 上,形成DRAM控制器,是CPU和DRAM间的接口电路。
写周期:实现写操作,要求CS和WE同时有效,有效期间地址 和数据信号不能变化;为了保证CS和WE变为无效前能把数据 可靠的写入,数据必须提前一段时间在数据总线上稳定存在; 而在WE变为高电平后再经过一段时间地址信号才允许改变。
*** DRAM存储器
1、DRAM存储元的记忆原理
SRAM存储器的存储元是一个 触发器,它具有两个稳定的状态。
外存储器:简称“外存”,大容量辅助存储器;磁表面存储
器或光盘存储器;存放需联机保存但暂时不需要的程序和数 据。容量从几十MB到几百GB,甚至更大。存取速度为若干
ms。
其他功能的存储器:如微程序控制器的控存、在显示和印刷 输出设备中的字库和数据缓冲存储器。
*** 主存储器的技术指标
主要性能指标:存储容量、存取时间、存储周期和存储器带宽。
地址信息到达时,使T5、T6、T7、T8导通,存储 元的信息被送到I/O与I/O线上, I/O与I/O线接上一个 差动读出放大器,从其电流方向,可以得出所存信息 是“1”或“0”。也可I/O或I/O一端接到外部,看其 有无电流通过,得出所存信息。
扩充:存储芯片规格的表示
在很多内存产品介绍文档中,都会用M×W的方式来表示芯 片的容量。
计算机组成原理实验(存储器)
实验一 存储器实验
• 实验接线 ⑴ MBUS连BUS2; ⑵ EXJ1连BUS3; ⑶ 跳线器J22的T3连TS3; ⑷ 跳线器J16的SP连H23; ⑸ 跳线器SWB、CE、WE、LDAR拨在左边 (手动位置)。
实验一 存储器实验
• 实验步骤 给存储器的00地址单元中写入数据11 一.写存储器 1.写地址: 关掉存储器的片选(CE=1),打开地址锁存器门控信号 (LDAR=1),打开数据开关三态门(SW-B=0),由开关给出要写 入的存储单元地址,T3产生一正向脉冲将地址打入到地址锁存器中。 此时总线地址显示灯应显示开关输入的数。 2. 写数据: 关掉地址锁存器门控信号(LDAR=0),打开存储器的片选 (CE=0),使之处于写状态(WE=1),由开关给出此单元要写入的 数据,T3给一正向脉冲将数据写入到当前的地址单元中。此时总线数 据显示灯应显示开关输入的数。
15H 0 1 0 1 0 0 1 1 53H
实验一 存储器实验
• 对随机存储器的操作有写操作和读操作。 • CPU对存储器进行读/写操作,首先由地址 总线给出地址信号,然后要发出读操作或写 操作的控制信号,最后在数据总线上进行信 息交流。因此,存储器同CPU连接时,要 完成地址线的连接、数据线的连接和控制线 的连接。
实验一 存储器实验
• 存储器实验报告册要求: 1.画出实验原理简图(其中八位线即用 一根连接线表示即可)。 2.要求写清实验步骤(最好用图示意)。 3.要求写清实验结果。
•
• •
问题
• 从计算机体系结构的角度来看,计算机是 由哪几部分组成的? • 运算器是由哪些部件组成的? • CPU是由哪几部分组成的?
解答
• 从计算机体系结构的角度来看,计算机是 由运算器、存储器、控制器、输入设备和 输出设备组成。 • 运算器是由算术逻辑部件(ALU)和若干通 用寄存器组成。 • 运算器和控制器合在一起称为CPU。
计算机组成原理(第三版)第 3 章 存储器及存储系统
16
3.2 主存储器
• 主存储器按其功能可分为RAM和 ROM。
一 二 随机存取存储器RAM 只读存储器ROM
INFO DEPT@ZUFE HANGZHOU.CHINA
17
一、随机存取存储器RAM
MM
Y0
Bm-1
Y1
……
B0
An-1…A0
M A R
M A D
…
Y2n-2
Y2n-1
…
CS
WE
R/W读写 控制电路
INFO DEPT@ZUFE HANGZHOU.CHINA
9
三、存储器的层次结构
1.分级原理: 根据程序执行的集中性和局部性原理而构建的分层结构。信 息流动分规律为从低速、大容量层次向高速、小容量层次流动 ,解决速度、价格、价格这三者之间的矛盾,层次间信息块的 调度由硬件和软件自动完成,其过程对用户透明。 2.三级存储管理系统: • Cache: • ·采用TTL工艺的SRAM,哈佛结构; • ·采用MOS工艺的SRAM,指令与数据混存,其与内存之间信息块 的调度(几十字节)全由Cache控制器硬件完成。 • 主存: • ·ROM常用FROM,E2PROM等构成; • ·RAM常用DRAM构成,RAM和ROM采用统一编码。 • 虚存: • 采用磁盘存储器,主存+OS中的存储器管理软件联合构成,其 信息块常用页、段表示,其间的信息块调度由管理软件完成。
字线
数 据 线 Cd
T
C
单管MOS动态存储器结构
INFO DEPT@ZUFE HANGZHOU.CHINA
29
(2)DRAM存储器
RAS CAS WE OE 定时和控制
4M×4位的DRAM
计算机组成原理第三章(3.1,3.2,3.3,姜,15-春,版5)
图3.4(a) SRAM读周期时序图
35
• 各参数意义:
tRC :对存储芯片进行连续两次读操作时所必须间隔 的(最小)时间;
tAQ :从给出有效地址,至外部数据总线上稳定地出 现所读出的数据信息所经历的时间。
tEQ:地址信号有效后,从片选有效,至数据稳定地 出现外部总线上所经历的时间。
• 构成存储器的存储介质:目前主要采用半导体器 件和磁性材料。
• 存储器中最小的存储单位就是一个双稳态半导体 电路或一个CMOS晶体管或磁性材料的存储元, 它可存储一个二进制代码。由若干个存储元组成 一个存储单元,再由诸多个存储单元组成一个存 储器。
5
• 存储器的分类:
按存储介质分:
• 半导体存储器:用半导体器件组成的存储器。
• 高速缓冲存储器 (Cache):高速小容量半导体存储器,是为解决CPU和主存之间 速度不匹配而设置的。用于存放最活跃的程序块和数据。
• 主存和Cache一起构成计算机的内存储器(内存),是CPU能直接访问的存储器。
9
总结: ① 通过计算机的多级存储管理,发挥各级存储器
的效能; ② Cache主要强调高速存取速度,以便使存储系
1. CPU对存储器的读/写操作过程:
• 通过地址总线给出地址信号; • 通过控制总线发出读操作或写操作的控制信号; • 在数据总线上进行信息交流。
因此,存储器与CPU连接时,要完成三种 总线的连接:地址线、数据线和控制线;同时, 还须使各种信号的时序与存储器的(固有)读 写周期相配合。
25
2. 主存储器的构成
字节存储单元即存放一个字节的存储单元,相应的地 址称为字节地址。一个机器字可以包含数个字节。
若计算机中可编址的最小单位是字存储单元,则称该 计算机为按字寻址的计算机。
计算机组成原理多层次的存储器
1. 一个组关联Cache由64个行组成,每组4行。
主存储器包含4k个块,每块128字节,请表示主存地址格式2.设某机主存容量为2MB ,Cache 容量为16KB ,每块包含4 个字,每字32 位,设计一个四路组相联映像(即Cache 每组内共有四个块)的内存组织结构。
3. 考虑一个机器带有字节可寻址的主存,其容量是256字节,块(行)的大小是8字节,假设它使用直接映射式cache,其容量是32行(1)16位存储器地址如何划分成标记、行号、和字节号?(2)如下地址的内容将存入cache的哪些行?0001 0001 0001 10111100 0011 0011 01001101 0000 0001 11011010 1010 1010 1010 地址是什么?(3)存储器总共有多少字节能保存于cache中?4.某机字长8位,设计一个存储器,容量为10KB,其中RAM为高8KB,ROM为低2KB,最低地址为0,选用的芯片类型为4KB*8,ROM芯片类型为2KB*4,问:1.地址线,数据线各多少根?2.RAM和ROM的地址范围分别是多少?3.各种芯片各需要多少片?4.画出存储器结构图与CPU连接示意图5.计算机主存储器由8k字的ROM区和2K字的RAM区组成,主存字长16位,容量总共10k字。
RAM区选用2K*8位的6116组成,地址分配2000~27FF ROM区选用8k*8位的58c65组成,地址分配在0000~1FFF5.一个计算机有cache,主存和用于虚拟存储的磁盘。
若所访问的字在cache中,则存取它只需20ns。
若字在主存而不在cache中,则需要60ns将它装入cache,然后从cache中存取。
若字不在主存中,则需要12ms将它从磁盘取来装入主存,再用60ns复制到cache,最后从cache存取。
Cache的命中率0.9,主存命中率0.6,那么此系统访问一个字的平均存取时间是多少?。
计算机组成原理典型例题讲解
.分析设计计算:1.CPU结构如图1所示,其中有一个累加寄存器AC,一个状态条件寄存器,各部分之间的连线表示数据通路,箭头表示信息传送方向。
(1) 标明图中四个寄存器的名称。
(2) 简述指令从主存取到控制器的数据通路。
(3) 简述数据在运算器和主存之间进行存 / 取访问的数据通路。
图1解:(1) a为数据缓冲寄存器 DR ,b为指令寄存器 IR ,c为主存地址寄存器,d为程序计数器PC。
(2) 主存 M →缓冲寄存器 DR →指令寄存器 IR →操作控制器。
(3) 存贮器读 :M →缓冲寄存器DR →ALU →AC存贮器写 :AC →缓冲寄存器DR →M.2. 某机器中,配有一个ROM 芯片,地址空间0000H —3FFFH 。
现在再用几个16K ×8的芯片构成一个32K ×8的RAM 区域,使其地址空间为8000H —FFFFH 。
假设此RAM 芯片有/CS 和/WE 信号控制端。
CPU 地址总线为A15A15——A0,数据总线为D7D7——D0,控制信号为R//W ,MREQ(存储器请求),当且仅当MREQ 和R//W 同时有效时,CPU 才能对有存储器进行读(或写)。
(1)满足已知条件的存储器,画出地址码方案。
(2)画出此CPU 与上述ROM 芯片和RAM 芯片的连接图。
解:存储器地址空间分布如图1所示,分三组,每组16K 16K××8位。
由此可得存储器方案要点如下:(1) 用两片16K*8 RAM 芯片位进行串联连接,构成32K*8的RAM 区域。
片内地址 :A 0 ————A A 13 ,片选地址为:A 14————A A 15;(2) 译码使用2 :4 译码器;(3) 用 /MREQ 作为2 :4译码器使能控制端,该信号低电平(有效)时,译码器工作。
(4) CPU 的R / /W 信 号与RAM 的/WE 端连接,当R // W = 1时存储器执行读操作, 当R // W = 0时,存储器执行写操作。
计算机组成原理存储器
计算机组成原理存储器(期末论文)绵阳师范学院计算机组成原理(期末论文)题目微型计算机的存储器作者 ***单位数计学院07级7班(07084207**)指导教师 ***论文工作时间 2009年5月摘要随着微型计算机的迅速普及和发展,人们对计算机的功能要求已不再是限于单纯的计算和数据处理了,而是向着融合图像、声音、文字为一体的多媒体机和大型娱乐型机发展,在这一发展过程中,存储器逐渐成为了人们关注的热点,这里,我们将对存储器的有关知识做进一步详细的介绍。
关键字微型计算机存储器分类性能指标存储器是计算机系统内最主要的记忆装置,能够把大量计算机程序和数据存储起来,既能接收计算机内的信息(数据和程序),又能保存信息,还可以根据命令读取已保存的信息。
存储器按功能可分为主存储器和辅助存储器,按存放位置又可分为内存储器和外存储器。
存储器的性能指标主要由容量、存取速度、可靠性和性能/性价比决定。
存储器的分类存储器按功能可分为主存储器(简称主存)和辅助存储器(简称辅存)。
主存是相对存取速度快而容量小的一类存储器,辅存则是相对存取速度慢而容量很大的一类存储器。
主存储器,也称为内存储器(简称内存),内存直接与CPU相连接,是计算机中主要的工作存储器,当前运行的程序与数据存放在内存中。
辅助存储器也称为外存储器(简称外存),计算机执行程序和加工处理数据时,外存中的信息按信息块或信息组先送入内存后才能使用,即计算机通过外存与内存不断交换数据的方式使用外存中的信息。
一个存储器中所包含的字节数称为该存储器的容量,简称存储容量。
存储容量通常用KB、MB或GB表示,其中B是字节(Byte),并且1KB=1024B,1MB=1024KB,1GB=1024MB。
例如,640KB就表示640×1024=655360个字节。
(1)内存储器现代的内存储器多半是半导体存储器,采用大规模集成电路或超大规模集成电路器件。
内存储器按其工作方式的不同,可以分为随机存取存储器(简称随机存储器或RAM)和只读存储器(简称ROM)。
计算机组成原理
输出Y /OE
二选一 F
F3 F=0000 OVR Cn+4
ALU
S
R Cn
三选一 二选一
Q寄存器
B锁存器 A锁存器 输入D
一组三选一门和 另一组二选一门 用来选择送向 ALU的 S、R输 入端的数据来源 ,包括Q寄存器、 A口、 B口、外 部输入D数据的 8 种不同组合。
B 16个 A A口地址
控制总线
接口
输入设备
输出设备
三. 定点运算器的功能与组成
完成算数与逻辑运算 ALU: 计算出结果及其特征 通用寄存器组: 存放参加运算的数据 和运算结果 (包括标志寄存器) 乘商寄存器: 用于完成硬件乘除法
数据通路(data path)
输出Y /OE
二选一 F
F3 F=0000 OVR Cn+4
输出
Fs
OVR
F1
Z
ALU
C
选通门 选通门
输入 通用寄存器组
选通门
必要完善:
单累加器变多累积器: 两个选通门均变为多路 送0还是送1到ALU处理 接收门送每个累加器。 支持寄存器移位功能: 接收门变为三选一,即 分别接收本位/低位/高 位送来的信息送累加器 与外部部件的入出联系
实现补码加减运算的逻辑电路
送入
Y 它应能接收与送出数据
通用寄存器组 乘商寄存器
选通门
选通门
实现补码加减运算的逻辑电路
输出
Fs
OVR
F1
Z
ALU
C
选通门 选通门
选择完善:
支持硬件乘除运算指令 需要增加一个Q寄存器 该寄存器应能自行移位
送入
Y 应能接收与送出数据。
计算机组成原理相联存储器的设计
沈阳航空航天大学课程设计报告目录第1章总体设计方案 (2)1.1设计原理 (2)1.2设计思路 (3)1.3设计环境 (4)第2章详细设计方案 (5)2.1顶层方案图的设计与实现 (5)2.1.1创建顶层图形设计文件 (5)2.1.2器件的选择与引脚锁定 (5)2.1.3编译、综合、适配 (6)2.2功能模块的设计与实现 (7)2.2.1 输入寄存器的实现 (7)2.2.2存储体的设计与实现 (8)2.2.3 数字比较器的实现 (10)2.2.4查找结果寄存器的实现 (12)2.3仿真调试 (13)第3章编程下载与硬件测试 (15)3.1编程下载 (15)3.2硬件测试及结果分析 (15)参考文献 (17)附录(电路原理图) (18)第1章 总体设计方案1.1 设计原理相联存储器(C ontent Addressed Memory ),它是一种按内容访问的存储器,可以根据数据记录地一部分内容查找其它部分的内容。
在相联存储器中,每个存储的数据记录都是固定长度的字,每个字由若干字段组成,每个字段描述了用一个对象的属性,也称一个内容。
相联存储器的结构框图如图1.1所示。
它主要实现将输入寄存器(CR)的信息与存储体的信息作比较,相匹配的置为“1”,不匹配的置为“0”, 将结果送入查找结果寄存器(SRR)中,并输出结果。
图1.1 相联存储器原理框图1.2 设计思路根据相联存储器的原理特点,即按照内容寻址,因此可以将相联存储器分为以下几个部分:输入寄存器,译码选择电路,存储体,数字比较器,查找结果寄存器。
输入寄存器(CR):用来存放检索字,其位数和相联存储器的字长相等。
译码选择电路:用3-8译码器进行译码电路选择,如当置输入端B2B1B0为“000”,时钟脉冲信号为高电位时,可以向存储体第一个单元地址输入八位二进制的字信息,同时其他的存储单元的信息被屏蔽掉。
当置输入端B2B1B0为“001”时,时钟信号为高电位时,可以向存储体第二个单元地址输入八位二进制的字信息,同时其他的存储信号单元被屏蔽掉。
计算机组成原理_第三章
第三章 存储器及存储系统3.1 存储器概述3.1.1存储器分类半导体存储器 集成度高 体积小 价格便宜 易维护 速度快 容量大 体积大 速度慢 比半导体容量大 数据不易丢失按照 存储 介质 分类磁表面存储器激光存储器随机存储器 主要为高速缓冲存储器和主存储器 存取时间与存储元的物理位置无关 (RAM)按照 存取 方式 分类串行访问存 储器 SAS 只读存储器 (ROM)存取时间与存储元的物理位置有关 顺序存取器 磁带 直接存储器 磁盘 只能读 不能写 掩模ROM: 生产厂家写可编程ROM(PROM): 用户自己写 可擦除可编程ROM EPROM :易失性半导体读/写存储器按照 可保 存性 分类存储器非易失性 存储器包括磁性材料半导体ROM半导体EEPROM主存储器按照 作用 分类辅助存储器缓冲存储器 控制存储器3.1.23级结构存储器的分级结构Cache 高速缓冲 存储器 主 存 主机 外 存1 高速缓 冲存储器 2 主存 3 外存CPU 寄 存 器3.2主存储器3.2.1 主存储器的技术指标1 存储容量 字存储单元 字节存储单元 2 存取时间 字地址 字节地址访问 写操作/读操作从存储器接收到访问命令后到从存 储器读出/写 入所需的时间 用TA表示 取决于介质的物理特性 和访问类型 3 存取周期 完成一次完整的存取所需要的时间用TM表示 TM > TA, 控制线路的稳定需要时间 有时还需要重写3.2.2 主存储器的基本结构地 址 译 码 器地址 CPUn位2n位存储体 主存 m位 数据寄存器 m位 CPUR/W CPU 控制线路3.2.3 主存储器的基本操作地址总线k位MAR数据总线n位主存容量 2K字 字长n位MDRCPUread write MAC 控制总线主存3.3半导体存储芯片工 艺速度很快 功耗大 容量小 PMOS 功耗小 容量大 电路结构 NMOS 静态MOS除外 MOS型 CMOS 静态MOS 工作方式 动态MOS 静态存储器SRAM 双极型 静态MOS型 双极型依靠双稳态电路内部交叉反馈的机制存储信息TTL型 ECL型存储 信息 原理动态存储器DRAM 动态MOS型功耗较小,容量大,速度较快,作主存3.3.1 静态MOS存储单元与存储芯片1.六管单元 1 组成T1 T2 工作管 T2 T4 负载管 T5 T6 T7 T8 控制管 XY字线 选择存储单元 T7 WY地址译码线 X地址 译码线Vcc T3 T4 A T1 T2 T8 W B T6T5WW 位线完成读/写操作2 定义 “0” T1导通 T2截止“1” T1截止 T2导通X地址 译码线Vcc T3 T4 A T1 T7 T2 T8Y地址译码线3 工作 XY 加高电平 T5 T6 T7 T8 导通 选中该 单元T5T6 BWW写入 在W W上分别读出 根据W W上有 加高 低电平 写1/0 无电流 读1/04保持XY 加低电平 只要电源正常 保证向导通管提供电流 便能维 持一管导通 另一管截止的状态不变 称静态2.静态MOS存储器的组成1 存储体 2 地址译码器 3 驱动器 4 片选/读写控制电路存储器外部信号引线D0 A0传送存储单元内容 根数与单元数据位数相同 9地址线 选择芯片内部一个存储单元 根数由存储器容量决定7数据线CS片选线 选择存储器芯片 当CS信号无效 其他信号线不起作用 R/W(OE/WE)读写允许线 打开数据通道 决定数据的传送方向和传 送时刻例.SRAM芯片2114 1K 4位Vcc A7 A8 A9 D0 D1 D2 D3 WE1外特性18 12114 1K 410 9地址端 数据端A9 A0 入 D3 D0 入/出 片选CS = 0 选中芯片 控制端 = 1 未选中芯片 写使能WE = 0 写 = 1 读 电源 地线A6 A5 A4 A3 A0 A1 A2 CS GND2内部寻址逻辑寻址空间1K 存储矩阵分为4个位平面 每面1K 1位 每面矩阵排成64行 16列 64 16 64 16 6 行 位 行 译 X0 地 1K 1K 码址 X63 X63 Y0 Y1564 161K64 161K列译码 4位列地址两 级 译 码一级 地址译码 选择字线 位线 二级 一根字线和一组位线交叉 选 择一位单元W W W WXi读/写线路 Yi存储器内部为双向地址译码 以节省内部 引线和驱动器 如 1K容量存储器 有10根地址线 单向译码需要1024根译码输出线和驱动器双向译码 X Y方向各为32根译码输出线和 驱动器 总共需要64根译码线和64个驱动器3.3.2 动态MOS存储单元与存储芯片1.四管单元 1 组成T1 T2 记忆管 C1 C2 柵极电容 T3 T4 控制门管W T3 T1C1 C2W A B T2 T4字线 W W 位线 Z 2 定义 “0” T1导通 T2截止 C1有电荷 C2无电荷 “1” T1截止 T2导通 C1无电荷 C2有电荷 3 工作 Z 加高电平 T3 T4导通 选中该单元Z写入 在W W上分别加高 低电平 写1/0 读出 W W先预 充电至高电平 断开充电回路 再根据W W上有 无电流 读1/0 W T3 T1C1 C2T4 T2W4保持Z 加低电平 需定期向电容补充电荷 动态刷新 称动态 四管单元是非破坏性读出 读出过程即实现刷新Z2.单管单元 C 记忆单元 T 控制门管 1 组成Z 字线 W 位线 W T Z C2定义“0” C无电荷 电平V0 低 “1” C有电荷 电平V1 高3工作写入 Z加高电平 T导通 读出 W先预充电 断开充电回路 Z加高电平 T导通 根据W线电位的变化 读1/0 4 保持 Z 加低电平 单管单元是破坏性读出 读出后需重写3.存储芯片例.DRAM芯片2164 64K 1位 外特性GND CAS Do A6 16 1 A3 A4 A5 A7 9 82164 64K 1空闲/刷新 Di WE RAS A0 A2 A1 VccA7—A0 入 分时复用 提供16位地址 数据端 Di 入 Do 出 = 0 写 写使能WE 高8位地址 = 1 读 控制端 行地址选通RAS =0时A7—A0为行地址 片选 列地址选通CAS =0时A7—A0为列地址 电源 地线 低8位地址 1脚未用 或在新型号中用于片内自动刷新 地址端动态存储器的刷新1.刷新定义和原因 定期向电容补充电荷 刷新动态存储器依靠电容电荷存储信息 平时无电源 供电 时间一长电容电荷会泄放 需定期向电容 补充电荷 以保持信息不变 注意刷新与重写的区别 破坏性读出后重写 以恢复原来的信息 非破坏性读出的动态M 需补充电荷以保持原来的 信息2.最大刷新间隔 2ms 3.刷新方法各动态芯片可同时刷新 片内按行刷新 刷新一行所用的时间 刷新周期 存取周期4.刷新周期的安排方式 1 集中刷新 2ms内集中安排所有刷新周期R/W R/W50ns刷新 刷新 2ms 死区用在实时要 求不高的场 合2分散刷新用在低速系 统中各刷新周期分散安排在存取周期中 R/W 刷新 R/W 刷新100ns3异步刷新 各刷新周期分散安排在2ms内 每隔一段时间刷新一行每隔15.6微秒提一次刷新请求 刷新一行 2毫秒内刷新完所有 15.6 微秒 行例. 2ms 128行R/W R/W 刷新 R/W R/W 刷新 R/W 15.6 微秒 15.6 微秒 15.6 微秒 刷新请求 刷新请求 DMA请求 DMA请求用在大多数计算机中3.3 只读存储器1掩模式只读存储器 MROM采用MOS管的1024 8位的结构图 UDDA0 A1 A90 地 址 译 1 码 驱 动 1023 器读出放大器读出放大器cs D7D0D12可编程读存储器 PROM用户可进行一次编程 存储单元电路由熔丝 相连 当加入写脉冲 某些存储单元熔丝熔 断 信息永久写入 不可再次改写3.EPROM 可擦除PROM用户可以多次编程 编程加写脉冲后 某些存 储单元的PN结表面形成浮动栅 阻挡通路 实 现信息写入 用紫外线照射可驱散浮动栅 原 有信息全部擦除 便可再次改写4.EEPROM 可电擦除PROM 既可全片擦除也可字节擦除 可在线擦除信息 又能失电保存信息 具备RAM ROM的优点 但写 入时间较长 .NOVRAM 不挥发随机存取存储器 实时性好 可以组成固态大容量存储装置 Flash Memor 闪存 集成度和价格接近EPROM,按块进行擦除 比普 通硬盘快的多3.4 主存储器组织存储器与微型机三总线的连接 1 数据线D0 2 地址线A0 3.片选线CS 连接地址总线高位ABN+1 4 读写线OE WE(R/W) 连接读写控制线RD WR微型机n nDB0 AB0Nn连接数据总线DB0ND0 A0 CSnNN连接地址总线低位AB0ABN+1 R/ WR/ W 存储器1存储器芯片的扩充用多片存储器芯片组成微型计算机系统所要求的存储器系统 要求扩充后的存储器系统引出线符合微型计算机 机的总线结构要求 一.扩充存储器位数 例1用2K 1位存储器芯片组成 2K 8位存储器系统 例2用2K 8位存储器芯片组成2K 16位存储器系统例1用2K 1位存储器芯片组成 2K 8位存储器系统当地址片选和读写信号有效 可并行存取8位信息例2用2K 8位存储器芯片组成2K 16位存储器系统D0D8715D0 R/W CE A0107R/W CE A010D0 R/W CE A0107地址片选和读写引线并联后引出 数据线并列引出二.扩充存储器容量字扩展法例用1K 4位存储器芯片组成4K 8位存储器系统存储器与单片机的连接存储器与微型机三总线 的一般连接方法和存储器 读写时序 1.数据总线与地址总线 为两组独立总线AB0 DB0NDB0 AB0n ND0 A0 CSn NABN+1 R/ W 微型机 地址输出 数据有效采 样 数 据R/ W 存储器nR/W2.微型机复用总线结构 数据与地址分时共用一 组总线AD0nD0Di Qi G 地址 锁存器nA0nALE R/W 单片机R/W 存储器ALE锁 存地 址 数据 有效 采 样 数 据 地址 输出 存锁 址地AD0n地址 输出数据 有效 采 样数 据R/W半导体存储器逻辑设计需解决 芯片的选用 地址分配与片选逻辑 信号线的连接例1.用2114 1K 4 SRAM芯片组成容量为4K 8的存储 器 地址总线A15 A0 低 ,双向数据总线D7 D0 低 ,读/写信号线R/W 1.计算芯片数 1 先扩展位数 再扩展单元数 2片1K 4 1K 8 8片 4组1K 8 4K 82 先扩展单元数 再扩展位数4片1K 4 4K 4 4K 8 2组4K 4 2.地址分配与片选逻辑存储器寻址逻辑8片芯片内的寻址系统(二级译码) 芯片外的地址分配与片选逻辑 由哪几位地址形成芯 片选择逻辑 以便寻 找芯片为芯片分配哪几位地址 以便寻找片内的存储单元 存储空间分配4KB存储器在16位地址空间 64KB 中占据 任意连续区间芯片地址 任意值 片选 A15…A12A11A10A9……A0 0 0 0 …… 0 0 0 1 …… 1 0 1 0 …… 0 0 1 1 …… 1 1 0 0 …… 0 1 0 1 …… 1 1 1 0 …… 0 1 1 1 …… 164KB1K 1K 1K 1K 4 4 4 4 1K 1K 1K 1K 4 4 4 44KB需12位地址 寻址 A11— A0低位地址分配给芯片 高位地址形成片选逻辑 芯片 芯片地址 片选信号 片选逻辑 1K A9 A0 CS0 A11A10 A11A10 1K A9 A0 CS1 A11A10 1K A9 A0 CS2 1K A9 A0 CS3 A11A103.连接方式1 扩展位数 2 扩展单元数 4 形成片选逻辑电路D7~D4 D3~D0 4 4 4 1K 4 4 R/W 1K 4 4 4 1K 4 4 4 1K 4 43 连接控制线1K 4 A9~A0 CS0 10 CS11K 4 10 CS21K 4 10 CS31K 4 10A11A10A11A10A11A10A11A10例2.某半导体存储器 按字节编址 其中 0000H 07FFH为ROM区 选用EPROM芯片 2KB/片 0800H 13FFH为RAM区 选用RAM芯片 2KB/片和1KB/片 地址总线A1 A0 低 给出地址分配和片选逻辑1.计算容量和芯片数ROM区 2KBRAM区 3KB2.地址分配与片选逻辑 存储空间分配 先安排大容量芯片 放地址低端 再安排小容量芯片便于拟定片选逻辑64KBA15A14A13A12A11A10A9…A00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 …… 0 …… 1 …… 0 …… 1 0 … 0 1 … 12K 2K 1KROM 5KB 需13 位地 RAM 址寻 址低位地址分配给芯片 高位地址形成片选逻辑 芯片 芯片地址 片选信号 片选逻辑 2K A10 A0 CS0 A12A11 2K A10 A0 CS1 A12A11 1K A9 A0 CS2 A12A11 A10 A15A14A13为全03.4.2 高速缓冲存储器。