模式识别-3_分类器的设计

合集下载

模式识别--第二讲 线性分类器

模式识别--第二讲 线性分类器

第 1 页第二讲 线性分类器一、 判别函数1、 决策论方法在模式识别中,如果根据模式特征信息,按照决策论的思路,以一定的数量规则来采取不同的分类决策,将待识别的模式划分到不同的类别中去,就称为模式识别的决策论方法。

在决策论方法中,特征空间被划分成不同的区域,每个区域对应一个模式类,称为决策区域(Decision Region )。

当我们判定待识别的模式位于某个决策区域时,就判决它可以划归到对应的类别中。

图1 决策区域需要注意的是:决策区域包含模式类中样本的分布区域,但不等于模式类的真实分布范围。

2、 判别函数如果特征空间中的决策区域边界(Decision Boundary )可以用一组方程0)( x i G来表示,则将一个模式对应的特征向量x 代入边界方程中的)(x i G ,确定其正负符号,就可以确定该模式位于决策区域边界的哪一边,从而可以判别其应当属于的类别,)(x i G 称为判别函数(Discriminant Function )。

判别函数的形式可以是线性的(Linear )或非线性(Non-linear)的。

第 2 页例如图2就显示了一个非线性判别函数,当G (x )>0时,可判别模式x ∈ω1;当G (x )<0时,可判别x ∈ω2。

图2 非线性判别函数非线性判别函数的处理比较复杂,如果决策区域边界可以用线性方程来表达,则决策区域可以用超平面(Hyperplane )来划分,无论在分类器的学习还是分类决策时都比较方便。

例如图3中的特征空间可以用两个线性判别函数来进行分类决策:当G 21(x )>0且G 13(x )>0时,x ∈ω2; 当G 13(x )<0且G 21(x )<0时,x ∈ω3; 当G 21(x )<0 且 G 13(x )>0时,x ∈ω1;当G 21(x )>0且G 13(x )<0时,x 所属类别无法判别。

《模式识别》线性分类器设计实验报告

《模式识别》线性分类器设计实验报告

《模式识别》实验报告三、线性分类器实验1.(a)产生两个都具有200 个二维向量的数据集X1 和X1 ’。

向量的前半部分来自m1=[-5;0]的正态分布,并且S1=I 。

向量的后半部分来自m2=[5;0]的正态分布,并且S1=I。

其中I是一个2×2 的单位矩阵。

(b)在上面产生的数据集上运用Fisher 线性判别、感知器算法和最小平方误差判别算法,需要初始化参数的方法使用不同的初始值。

(c)测试每一种方法在X1 和X1 ’ 上的性能(错误率)。

(d)画出数据集X1 和X1 ’,已经每种方法得到对应参数向量W 的分界线。

Fisher线性判别图1 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数向量w = [-9.9406, 0.9030]’错误率error=0,感知器算法:图2 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=2参数向量w = [-4.8925, 0.0920]’错误率error=0图3 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];迭代次数iter=2参数向量w = [-3.9925, 0.9920]’错误率error=0图4 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10; 10];迭代次数iter=122参数向量w = [-5.6569, 7.8096]’错误率error=0图5 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 50];迭代次数iter=600参数向量w = [-27.0945, 37.4194]’错误率error=0图6 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 100];迭代次数iter=1190参数向量w = [-54.0048, 74.5875]’错误率error=0最小平方误差判别算法:图7 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.1908, -0.0001]’错误率error=0图8 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.1924, 0.1492]’错误率error=0图9 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 0.5];参数向量w = [-0.1914, 0.0564]’错误率error=0图10 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];参数向量w = [-0.1943, 0.3359]’错误率error= 0.00502.重复1.中的实验内容,数据集为X2 和X2 ’。

模式识别试验(基于Fisher准则线性分类器设计)

模式识别试验(基于Fisher准则线性分类器设计)

模式识别实验(三)一、实验名称基于Fisher准则线性分类器设计二、实验目的:本实验旨在让同学进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识,理解Fisher准则方法确定最佳线性分界面方法的原理,以及Lagrange乘子求解的原理。

三、实验原理:线性判别函数的一般形式可表示成其中根据Fisher选择投影方向W的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W的函数为:上面的公式是使用Fisher准则求最佳法线向量的解,该式比较重要。

另外,该式这种形式的运算,我们称为线性变换,其中(m1-m2)式一个向量,Sw-1是Sw的逆矩阵,如(m1-m2)是d维,Sw和Sw-1都是d×d维,得到的也是一个d维的向量。

向量就是使Fisher准则函数达极大值的解,也就是按Fisher准则将d维X 空间投影到一维Y空间的最佳投影方向,该向量的各分量值是对原d维特征向量求加权和的权值。

以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量 的计算方法,但是判别函数中的另一项w0尚未确定,一般可采用以下几种方法确定w0如或者或当与已知时可用……当W 0确定之后,则可按以下规则分类,使用Fisher 准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时间比较早,仍见有人使用。

四、实验内容:已知有两类数据1ω和2ω二者的概率已知=0.6,=0.4。

1ω中数据点的坐标对应一一如下:数据:x =0.2331 1.5207 0.6499 0.7757 1.0524 1.19740.2908 0.2518 0.6682 0.5622 0.9023 0.1333-0.5431 0.9407 -0.2126 0.0507 -0.0810 0.73150.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099 y =2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.83401.87042.2948 1.7714 2.3939 1.5648 1.93292.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604 z =0.5338 0.8514 1.0831 0.4164 1.1176 0.55360.6071 0.4439 0.4928 0.5901 1.0927 1.07561.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548 数据点的对应的三维坐标为2x2 =1.4010 1.23012.0814 1.1655 1.3740 1.1829 1.7632 1.9739 2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.79091.3322 1.1466 1.7087 1.59202.9353 1.46642.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414y2 =1.0298 0.9611 0.9154 1.4901 0.8200 0.93991.1405 1.0678 0.8050 1.2889 1.4601 1.43340.7091 1.2942 1.3744 0.9387 1.2266 1.18330.8798 0.5592 0.5150 0.9983 0.9120 0.71261.2833 1.1029 1.2680 0.7140 1.2446 1.33921.1808 0.5503 1.4708 1.1435 0.7679 1.1288z2 =0.6210 1.3656 0.5498 0.6708 0.8932 1.43420.9508 0.7324 0.5784 1.4943 1.0915 0.76441.2159 1.3049 1.1408 0.9398 0.6197 0.66031.3928 1.4084 0.6909 0.8400 0.5381 1.37290.7731 0.7319 1.3439 0.8142 0.9586 0.73790.7548 0.7393 0.6739 0.8651 1.3699 1.1458数据的样本点分布如下图:0.511.522.5五、实验要求:1. 可以选择二维的数据,或者选择三维的数据作为样本。

模式识别:线性分类器

模式识别:线性分类器

模式识别:线性分类器一、实验目的和要求目的:了解线性分类器,对分类器的参数做一定的了解,理解参数设置对算法的影响。

要求:1. 产生两类样本2. 采用线性分类器生成出两类样本的分类面3. 对比线性分类器的性能,对比参数设置的结果二、实验环境、内容和方法环境:windows 7,matlab R2010a内容:通过实验,对生成的实验数据样本进行分类。

三、实验基本原理感知器基本原理:1.感知器的学习过程是不断改变权向量的输入,更新结构中的可变参数,最后实现在有限次迭代之后的收敛。

感知器的基本模型结构如图1所示:图1 感知器基本模型其中,X输入,Xi表示的是第i个输入;Y表示输出;W表示权向量;w0是阈值,f是一个阶跃函数。

感知器实现样本的线性分类主要过程是:特征向量的元素x1,x2,……,xk是网络的输入元素,每一个元素与相应的权wi相乘。

,乘积相加后再与阈值w0相加,结果通过f函数执行激活功能,f为系统的激活函数。

因为f是一个阶跃函数,故当自变量小于0时,f= -1;当自变量大于0时,f= 1。

这样,根据输出信号Y,把相应的特征向量分到为两类。

然而,权向量w并不是一个已知的参数,故感知器算法很重要的一个步骤即是寻找一个合理的决策超平面。

故设这个超平面为w,满足:(1)引入一个代价函数,定义为:(2)其中,Y是权向量w定义的超平面错误分类的训练向量的子集。

变量定义为:当时,= -1;当时,= +1。

显然,J(w)≥0。

当代价函数J(w)达到最小值0时,所有的训练向量分类都全部正确。

为了计算代价函数的最小迭代值,可以采用梯度下降法设计迭代算法,即:(3)其中,w(n)是第n次迭代的权向量,有多种取值方法,在本设计中采用固定非负值。

由J(w)的定义,可以进一步简化(3)得到:(4)通过(4)来不断更新w,这种算法就称为感知器算法(perceptron algorithm)。

可以证明,这种算法在经过有限次迭代之后是收敛的,也就是说,根据(4)规则修正权向量w,可以让所有的特征向量都正确分类。

模式识别及其分类课件

模式识别及其分类课件
模式识别及其分类课件
目录
• 引言 • 模式识别的基本概念 • 模式识别的分类方法 • 模式识别的应用案例 • 模式识别的未来趋势与挑战 • 总结与展望
01
引言
什么是模式识别
• 模式识别是指通过计算机自动识别和分类对象的技术。它通过 收集、处理和分析数据,从中提取出对象的特征和模式,并对 这些模式进行分类和识别。模式识别技术广泛应用于图像识别 、语音识别、自然语言处理等领域。
的挑战。
06
总结与展望
回顾模式识别的历史与成就
01 02 03
模式识别概念的起源
模式识别是指对输入的图像、声音、文本等数据进行分析 ,从中提取出有用的信息,并对其进行分类和识别的过程 。这个概念最早可以追溯到20世纪初,当时科学家们就开 始研究如何通过机器来识别和理解图像和声音等数据。
模式识别技术的发展历程
语音识别技术主要基于信号处理和机 器学习技术。通过对语音信号进行特 征提取和学习,实现语音识别。其中 ,关键的技术包括声学模型、语言模 型、解码器等。
发展趋势
随着深度学习技术的不断发展,语音 识别技术的准确性和稳定性不断提高 。未来,语音识别技术将更加注重隐 私保护和安全性,同时,也将与自然 语言处理等技术进一步融合,推动智 能化应用的发展。
手写数字识别
应用场景
手写数字识别技术主要用于银行支票、快递单据等手写文字的识别,以及各种需要手写输 入的应用场景。
技术原理
手写数字识别技术主要基于图像处理和机器学习技术。通过对手写数字图像进行特征提取 和学习,实现对手写数字的识别。其中,关键的技术包括特征提取、模型训练、数字识别 等。
发展趋势
随着深度学习技术的不断发展,手写数字识别技术的准确性和稳定性不断提高。未来,手 写数字识别技术将更加注重实时性和鲁棒性,同时,也将与自然语言处理等技术进一步融 合,推动智能化应用的发展。

《模式识别》课程实验 线性分类器设计实验

《模式识别》课程实验 线性分类器设计实验

《模式识别》课程实验线性分类器设计实验一、实验目的:1、掌握Fisher 线性分类器设计方法;2、掌握感知准则函数分类器设计方法。

二、实验内容:1、对下列两种情况,求采用Fisher 判决准则时的投影向量和分类界面,并做图。

12{(2,0),(2,2),(2,4),(3,3)}{(0,3),(2,2),(1,1),(1,2),(3,1)}T T T T T T T T T ωω⎧=⎪⎨=-----⎪⎩ 12{(1,1),(2,0),(2,1),(0,2),(1,3)}{(1,2),(0,0),(1,0),(1,1),(0,2)}T T T T T T T T T T ωω⎧=⎪⎨=-----⎪⎩ 2、对下面的两类分类问题,采用感知准则函数,利用迭代修正求权向量的方法求两类的线性判决函数及线性识别界面,并画出识别界面将训练样本区分的结果图。

12{(1,1),(2,0),(2,1),(0,2),(1,3)}{(1,2),(0,0),(1,0),(1,1),(0,2)}T T T T T T T T T T ωω⎧=⎪⎨=-----⎪⎩ 三、实验原理:(1)Fisher 判决准则投影方向:*112()w w S μμ-=-(2)感知准则函数:()()kT p z Z J v v z ==-∑当k Z为空时,即()0J v ,*v即为所求p四、解题思路:1、fisher线性判决器:A.用mean函数求两类样本的均值B.求两类样本的均值的类内离散矩阵SiC.利用类内离散矩阵求总类内离散矩阵SwD.求最佳投影方向WoE.定义阈值,并求得分界面2、感知准则函数分类器:A.获得增广样本向量和初始增广权向量B.对样本进行规范化处理C.获得解区,并用权向量迭代修正错分样本集,得到最终解区五、实验结果:1、fisher线性判决分类器:条件:取pw1=pw2=0.5,阈值系数为0.5A.第一种情况B.第二种情况2、感知准则函数判决:条件:取步长row为1判决结果:六、结果分析:1、fisher线性判决器中,调整阈值系数时,分界面会随之平行上下移动,通过调整阈值系数的大小,就能比较合理的得到分界面。

人工智能的模式识别和模式分类方法

人工智能的模式识别和模式分类方法

人工智能的模式识别和模式分类方法人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、扩展和拓展人的智能的理论、方法、技术及应用系统的学科。

模式识别和模式分类是人工智能的重要领域之一,在计算机视觉、语音识别、自然语言处理等众多应用领域发挥着重要作用。

本文将探讨人工智能中模式识别和模式分类的方法及其应用。

一、模式识别与模式分类的定义模式识别(Pattern Recognition)是指通过对对象的观察、测量,选择关键特征并建模,最后根据模型的规则决策、分类对象的过程。

模式分类(Pattern Classification)是指将对象按照事先定义好的类别进行归类的过程。

模式识别是模式分类的前置步骤,而模式分类是模式识别的结果。

二、模式识别的方法1.特征提取特征提取是模式识别的重要一步,通过选取合适的特征来描述模式的内在属性。

特征提取常用的方法有:几何特征(如位置、形状、大小)提取、颜色直方图提取、纹理特征提取等。

特征提取的目的是使不同的模式在特征空间中有明显的区分度,便于进一步分类。

2.特征选择特征选择是在众多特征中选取最有用的特征进行分类,以减少计算量和提高分类精度。

常见的特征选择方法有:信息增益、方差选择、互信息等。

特征选择的关键是在保证模式信息丢失最小的情况下,尽可能地选取更少的特征。

3.分类器设计分类器设计是模式识别的核心部分,决定了模式识别的整体性能。

目前常见的分类器有:几何分类器(如K近邻分类器)、统计分类器(如朴素贝叶斯分类器)、神经网络分类器、支持向量机等。

不同的分类器适应不同的应用场景,需要根据具体情况选取。

三、模式分类的方法1.监督学习监督学习是指通过已标记的训练数据建立模型,然后使用这个模型对未知数据进行分类。

常用的监督学习方法有:决策树、朴素贝叶斯、支持向量机等。

监督学习方法需要较多的标记数据,但其分类效果较好。

2.无监督学习无监督学习是指通过未标记的训练数据发现模式,并将数据进行聚类。

模式识别的基本方法

模式识别的基本方法

模式识别的基本方法模式识别指的是对数据进行分类、识别、预测等操作的过程,它是人工智能中的一个重要分支。

在实际应用中,模式识别的基本方法主要包括以下几种。

一、特征提取特征提取指的是从原始数据中提取出有意义的特征用于分类或预测。

在模式识别中,特征提取是非常关键的一步。

因为原始数据可能存在噪声、冗余或不必要的信息,而特征提取可以通过减少数据维度、去除冗余信息等方式来提高分类或预测的准确性。

二、分类器设计分类器是模式识别中最为常用的工具,它是一种从已知数据中学习分类规则,然后将这些规则应用到新数据中进行分类的算法。

常用的分类器包括朴素贝叶斯、支持向量机、神经网络等。

分类器的设计需要考虑多种因素,包括分类精度、计算速度、内存占用等。

三、特征选择特征选择是指从原始数据中选择最具有代表性的特征,用于分类或预测。

与特征提取不同,特征选择是在原始数据的基础上进行的,它可以减少分类器的计算复杂度、提高分类精度等。

常用的特征选择方法包括卡方检验、信息增益、相关系数等。

四、聚类分析聚类分析是一种将数据按照相似度进行分组的方法,它可以帮助我们发现数据中的潜在模式和规律。

聚类分析的基本思想是将数据划分为若干个簇,每个簇内的样本相似度高,而不同簇之间的相似度较低。

常用的聚类算法包括k-means、层次聚类、密度聚类等。

五、降维算法降维算法是指通过减少数据的维度来简化数据,降低计算复杂度,同时保留数据的主要特征。

常用的降维算法包括主成分分析、因子分析、独立成分分析等。

降维算法可以帮助我们处理高维数据,减少数据冗余和噪声,提高分类或预测的准确性。

六、特征重要性评估特征重要性评估是指对特征进行排序,以确定哪些特征对分类或预测最为重要。

常用的特征重要性评估方法包括信息增益、基尼系数、决策树等。

通过特征重要性评估,我们可以选择最具有代表性的特征,提高分类或预测的准确性。

模式识别的基本方法是多种多样的,每种方法都有其适用的场景和优缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.未知子类数目时的设计方法 当每类应分成的子类数也不知 时,这是最一般情况,方法很 多,举例如下。 树状分段线性分类器: 设两类情况ω1, ω2。如图所示 ① 先用两类线性判别函数求 出W1,超平面H1分成两个区 间,每个区间包含两类。 ②再利用二类分类求出W2(H2), W3(H3)。 ③ 如果每个部分仍包含两类, 继续上面的过程。
树状决策框图 Y
w1 N
Tx>0
N N
Y
w2
Tx≥0
Y ω1
w3
Tx≥0
ω1
Y
ω1
w4
Tx≥0
N
ω2
ω2
• 关键是初始权向量W1的选择:一般先选两类中距离最近 的两个子类的均值连线做垂直线作为 H 1 (w 1 ) 初始值再 求最优解。
§3 非线性分类器的设计
• 电位函数分类器,用非线性判别函数区分线性不可分的 类别 • 电位函数分类器:每个特征作为一个点电荷,把特征空间 作为能量场. 电位分布函数有下面三种形式。 K(x) 1. K( XXk ) exp{- || x xk ||2} 3
1 2. K( XXk ) 1 || x xk ||2
2
x 1 x
sin || x xk ||2 3. K( XXk ) | | 2 || x xk ||
α为系数 xk为某一特定点
上图是这些函数在一维时的图形,第三条是振荡曲线, 只有第一周期才是可用范围。
电位函数算法的训练过程是在逐个样本输入时,逐渐积 累电位的过程,对于二类问题,经过若干循环后,如积 累电位方程的运算结果能以正、负来区分二类样本,则 训练就可结束。 算法: 设初始电位为K0(x)=0 1.输入样本x1计算积累电位K1(x) 若x∈ω1 K1(x)= K0(x)+K(xx1) 若x∈ω2 K1(x)= K0(x)-K(xx1) 设ω1为正电荷,ω2为负电荷 在K0(x)=0时 若x1∈ω1 K1(x)= K(xx1) 若x1∈ω2 K1(x)= -K(xx1)
§2 分段线形分类器的设计
先求子类的权向量Wi l,再求总的权向量Wi 1. 已知子类划分时的设计方法 把每一个子类作为独立类,利用每个子类的训练样本, 求每个子类的线性判别函数,总的判别函数就可获得。 子类的划分可用以下方法: ① 用先验知识直接划分 ② 用聚类分析,聚成多个子类 2. 已知子类的数目的设计方法 ① 设各个子类的初始权向量:Wi 1 , Wi 2 …Wi li ② 若第K步迭代时ωj 类样本Xj 同ωj类某个子类的权向量 Wj n (k)的内积值最大, 即Wj n (k)l xj = max{ Wj n (k)l xj } n = 1,2,…lj
为各模式增1矩阵
为N*(n+1)矩阵 N为样本数,n为特征数
训练过程就是对已知类别的样本集求解权向量 w, 这是一个线性联立不等式方程组求解的过程。 求解时: ① 只有对线性可分的问题,g(x) =WTX才有解 ② 联立方程的解是非单值,在不同条件下,有不 同的解,所以就产生了求最优解的问题 ③ 求解W的过程就是训练的过程。训练方法的共 同点是,先给出准则函数,再寻找使准则函数 趋于极值的优化算法,不同的算法有不同的准 则函数。算法可以分为迭代法和非迭代法。
通常通过特征抽取可以获得n维特征向量,因此n维 权向量是要求解的。 求解权向量的过程就是分类器的训练过程,使用已 知类别的有限的学习样本来获得分类器的权向量被称为 有监督的分类。
利用已知类别学习样本来获得权向量的训练过程如下
x1 x2 …….
w1 w2
W 1 X1 W 2 X2
g(x)=wTx

>0 x∈ω1
2. 输入样本x2计算积累电荷有以下几种情况 a. 若x2∈ω1 并且K1(x2)>0 若x2∈ω2 并且K1(x2)<0 K1(x)= K2(x) 不修正 b. 若x2∈ω1 并且K1(x2)≤0 若x2∈ω2 并且K1(x2)≥0 K2(x)= K1(x)±K(xx2)= ±K1(xx1)±K(xx2) 修正 直到第k+1步,已输入x1, x2, ….xk个样本
分类器的设计
• 线性分类器的设计 • 分段线性分类器的设计 • 非线性分类器的设计

14Leabharlann §1 线性分类器的设计线性判别函数形式为:g(x)=WTX 其中 X= (X1, X2…Xn) n维特征向量 W= (W1, W2 … Wn , Wn+1) n维权向量
x 1 , g ( x) 0 分类准则 x 2 , g ( x) 0
i = 1,2,…M Wi中有Li个子类
并且满足条件Wj n (k) xj >Wi n (k)l xj i =1,2,…M类 j =1,2,…li子类 i≠j 则权向量Wi 1 (k),Wi 2(k),… ,Wi li (k)不影响分类, 所以权向量不需要修正。 若有某个或某几个子类不满足条件即: 存在Wi n(k)使Wj n (k) xj ≤Wi n (k)l xj i≠j 所以xj 错分类,要修改权向量。 设Wi n (k)l xj = max{ Wi n (k)l xj } n = 1,2,…li i≠j 则修改权向量Wjn(k+1)= Wj n(k) ± ρkxj ③ 重复以上迭代,直到收敛,此法类似于固定增量法.
将③ ④式正规化,得 -X1cW1- X2cW2- W3 >0 -X1dW1- X2dW2- W3 >0 所以 g(x) =WTX >0 其中W = (W1 , W2, W3)T
X 1a X 1b X X 1c X 1d X 2a X 2b X 2c X 2d 1 1 1 1
• 积累电荷Kk+1(x)有三种情况: 1.若xk+1∈ω1并且Kk(xk+1)>0或xk+1∈ω2 并且Kk(xk+1)<0 则Kk+1(x)= Kk(x) 不修正 2. 若xk+1∈ω1并且Kk(xk+1) ≤0 则Kk+1(x)= Kk(x)+K(xxk) 3. 若xk+1∈ω2并且Kk(xk+1) ≥ 0 则Kk+1(x)= Kk(x)-K(xxk) • 综合式: Kk+1(x)= Kk(x)+rk+1K(x,xk) 其中: xk+1∈ω1并且Kk(xk+1)>0时 rk+1= 0 xk+1∈ω1并且Kk(xk+1) ≤ 0时 rk+1= 1 xk+1∈ω2并且Kk(xk+1)<0时 rk+1= 0 xk+1∈ω2并且Kk(xk+1) ≥ 0时 rk+1= -1
<0 x∈ω2
xn
1
wn
wn+1
W n Xn Wn+1
检测 (已知类别)
W1 W
已知x1 ∈ω1, 通过检测调整权向量,最终使x1 ∈ω1 已知x2 ∈ω2, 通过检测调整权向量,最终使x2 ∈ω2 这样就可以通过有限的样本去决定权向量
利用方程组来求解权向量 对二类判别函数g(x) = W1X1+ W2X2 +W3 已知训练集:Xa, Xb, Xc, Xd且 当 (Xa, Xb) ∈W1时 g(x)>0 当 (Xc, Xd) ∈W2时 g(x)<0 设 Xa = (X1a, X2a)T Xb = (X1b, X2b)T Xc = (X1c, X2c)T Xd = (X1d, X2d)T 判别函数可联立成: X1aW1+ X2aW2+ W3>0 ① X1bW1+ X2bW2+ W3>0 ② X1cW1+ X2cW2+ W3<0 ③ X1dW1+ X2dW2+ W3<0 ④ 求出W1 , W2, W3
相关文档
最新文档