实验四Δm及CVSD编译码实验
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(1)FFT变换,抽样频谱、点数是什么,频谱分辨率由什么决定?
(2)什么是基带传输,基带传输码型选取的考虑是什么?
(3)实验中归零、不归零信号的频谱有何差异?
(4)结合实验说说时钟同步。
编码输入与输出数据 CMI
编码输入与译码输出规则CMI
误码检测CMI
编码输入输出BPH编码
编码输入译码输出BPH
2、CVSD编译码
(1)实验原理框图
图二 CVSD编译码框图
(2)实验框图说明
与Δm相比,CVSD多了量阶调整的过程。而量阶是根据一致脉冲进行调整的。一致性脉冲是指比较结果连续三个相同就会给出一个脉冲信号,这个脉冲信号就是一致脉冲。其他的编译码过程均与Δm一样。
四、实验步骤
项目一:△M编码规则实验
项目二:量化噪声观测
2.比较增量调制和PCM。
答:增量调制与脉码调制(PCM)相比,具有以下三个特点:①电路简单,而脉码调制编码器需要较多逻辑电路;②数据率低于40千比特/秒时,话音质量比脉码调制的好,增量调制一般采用的数据率为32千比特/秒或16千比特/秒;③抗信道误码性能好,能工作于误码率为10-3的信道,而脉码调制要求信道误码率低于10-5~10-6。因此,增量调制适用于军事通信、散射通信和农村电话网等中等质量的通信系统。增量调制技术还可应用于图像信号的数字化处理。
项目三:不同量阶△M编译码的性能
项目四:△M编译码语音传输系统
项目五:CVSD量阶观测
项目六:CVSD一致脉冲观测
项目七;CVSD量化噪声观测
项目八:CVSD码语音传输系统
五、实验记录
TP4(信源延时)和TH14(编码输出) TP4(信源延时)和TP3(本地译码)
项目二 CH1信源延时,CH2本地译码项目三 量阶3000,Vpp=3V
7. 在什么情况下会输出一致脉冲信号。
答:当进行CVSD编码时,编码中出现连续的1或者连续的0时会输出一致脉冲。而CVSD的原理则是根据一致脉冲对编码做出检测并自适应的调整量化阶电平,尽量使调制器能够跟得上信号的变化。
七、实验小结
这次实验做的时间比较久,感觉难度也挺大的,特别是对于示波器的使用,感觉到了自己的很大的不足,课后需要多去了解示波器的功能使用,课堂上抓紧时间了解熟悉掌握示波器的使用。由实验可知:当幅值不变时,量阶越大,量化噪声越大;当量阶不变时,幅值越大,量化噪声越小;所以在实际中可通过减小量阶或者增大信号幅值来减小量化噪声。对于此的观察,可以听过音乐的噪声大小以及示波器中的波形图噪声感染都可以验证。对于一致信号的判断,当进行CVSD编码时,编码中出现连续的1或者连续的0时会输出一致脉冲。其是进行CVSD编码的检测及调整,使调制器能跟上信号变化。
实验四 Δm及CVSD编译码实验
一、实验目的
1、掌握简单增量调制的工作原理。
2、理解量化噪声及过载量化噪声的定义,掌握其测试方法。
3、了解简单增量调制与CVSD工作原理不同之处及性能上的差别。
二、实验器材
1、主控&信号源模块、21号、3号模块 各一块
2、双踪示波器 一台
3、连接线 若干
三、实验原理
1、Δm编译码
六、思考题回答
1.增量调制的速率可以是32kbps、16kbps相比PCM 64kbps产生的原因怎样?(请查找资料)今天VoIP采用什么样的信源编码?视频的MPEG2编码又是什么?
答:PCM的速率是增量调制的整数倍,利用此特点,可进行信道的复用,扩大信息量的传输。提高信道的传输效率和利用率。即在保证传输质量的同时,还可以利用增量调制在PCM调制的信道中传输更多的信息。VoIP采用ITU-T 定义的G.729、G.723(G.723.1)等来进行信源编码。其中G.729 可将经过采样的64kbit/s 话音以几乎不失真的质量压缩至8kbit/s。视频的MPEG2编码(图像压缩)是指针对标准数字电视和高清晰电视在各种应用下的压缩方案和系统层的详细规定。
编码输入输出AMI(非归零)
AMI编码规则频谱
AMI奇偶相减
AMI编码输入译码输出
AMI编码译码时钟(有延迟)
补偿信号频谱分析
HDB3编码规则
HDB3编码输出频谱
HDB3编码输入输出
HDB3常连零时的编码输出
下一次实验预习内容:
ASK FSK PSK调制解调实验。
查找开关芯片4066的手册。
ASK是一种相对简单的调制方式,幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。其解调电路用鉴幅器,最简单的使用二极管检波
5.实验中增量调制编码输出的基带码型是什么?
答:由实验图和可知该基带码型是单极性不归零二进制码。
6. 比较分析不同量阶,不同幅度情况下,量化噪声有什么不同。
答:由图可知,当幅值不变时,量阶越大,量化噪声越大;当量阶不变时,幅值越大,量化噪声越小;所以在实际中可通过减小量阶或者增大信号幅值来减小量化噪声。
3. 用PN15序列完成差分编码解码仿真实验。
4. 数据分析整理(尤其是实验过程中拍照记录的波形,尽可能将该照片的测量点(如编码输出、CLK等)标注在原理框图中,并将照片中CH1、CH2标出来)。实验中增量调制编码输出的基带码型是什么?
答:此图CH1表示增量调制的原信号;CH2表示增量调制的基带码型。
(3)AMI:全称为传号交替反转码。1码通常称为传号,0码则叫空号。
编码规则:消息代码中的0 传输码中的0消息代码中的1 传输码中的+1、-1交替。
特点:①由AMI码确定的基带信号中正负脉冲交替,而0电位保持不变;所以由AMI码确定的基带信号无直流分量,且只有很小的低频分量;
②在接收端不易提取定时信号,由于它可能出现长的连0串;
项目三量阶6000,Vpp=3V项目三量阶3000,Vpp=1V
项目五量阶6000,Vpp=1V 项目五 Vout=1V
项目五 Vout=2V 项目五 Vout=4V
项目七 Vpp=1V 项目七 Vpp=3V
CVSD量化噪声观测(2KHz)Vpp=3V的噪声CVSD量化噪声观测(2KHz)Vpp=1V的噪声
②HDB3中连0串的数目至多为3个,易于提取定时信号。
(5)
要求:
1. CMI和BPH实验只要4-5个实验波形或频谱图(自己筛选并说明)
2. AMI和HDB3实验只要4-5个实验波形或频谱图(自己筛选并说明)
3. 上一次检查过得实验报告不需要重新删减图片来重新打印了,就交打印的那一份即可。
思考题:
1. 所有实验讲义中的思考题回答
②若AMI码中连0的个数大于3,则将每4个连0小段的第4个0变换成与前一个非0符号(+1或-1)同极性的符号;
③为了不破坏极性交替反转,当相邻V符号之间有偶数个非0符号时,再将该小段的第1个0变换成+B或-B,符号的极性与前一非零符号的相反,并让后面的非零符号从符号开始再交替变化。
特点:①由HDB3码确定的基带信号无直流分量,且只有很小的低频分量;
(1)实验原理框图
图一Δm编译码框图
(2)实验框图说明
编码输入信号与本地译码的信号相比较,如果大于本地译码信号则输出正的量阶信号,如果小于本地译码则输出负的量阶。然后,量阶会对本地译码的信号进行调整,也就是编码部分“+”运算。编码输出是将正量阶变为1,负量阶变为0。
Δm译码的过程实际上就是编码的本地译码的过程。
③具有检错能力,如果在整个传输过程中,因传号极性交替规律受到破坏而出现误码时,在接收端很容易发现这种错误。
(4)HDB3:三阶高密度双极性码是一种适用于基带传输的编码方式,它是为了克服AMI码的缺点而出现的。
编码规则:①先将消息代码变Байду номын сангаас成AMI码,若AMI码中连0的个数小于4,此时的AMI码就是HDB3码;
八、实验预习内容
(1)CMI反转码:“1”交替用“11”和“00”表示,“0”用“01”表示。定时信息丰富。具有纠错能力。
同时具有以下优点:
①不存在直流分量,且低频分量较小;
②信息码流中具有很强的时钟分量,便于从信号中提取时钟信息;
③具有一定的检错能力。
(2)BPH:全称是数字双向码。又称分相码或曼彻斯特码,它是对每个二进制代码分别利用两个不同的二进制新码去取代。
增量调制是采用一位二进制数码来表示信号此时刻的值相对于前一个取样时刻的值是增大还是减少,增大发“1”码,减少发“0”码,数码的“1”,“0”只是表示信号相对于前一时刻的增减,不代表信号的绝对值。 当取样频率足够高时量价的大小取得恰当,收端恢复的信号与原信号非常接近,量化噪声可以很小。增量调制的突出优点是:设备简单,能以较低的数码率进行编码。
FSK:其优点是较容易实现,抗噪声与抗衰减性能好,解调方式有:相干解调、滤波非相干解调、正交相乘非相干解调。
PSK:相移键控(PSK):PSK就是根据数字基带信号的两个电平使载波相位在两个不同的数值之间切换的一种相位调制方法。
CD4066 是一种四路电子开关集成电路,CD4066功能特点:集成电路内部主要由四路功能完全相同的电子开关组成,各组开关分别受其相应引脚输入的电平控制,使电子开关接通或断开。
(2)什么是基带传输,基带传输码型选取的考虑是什么?
(3)实验中归零、不归零信号的频谱有何差异?
(4)结合实验说说时钟同步。
编码输入与输出数据 CMI
编码输入与译码输出规则CMI
误码检测CMI
编码输入输出BPH编码
编码输入译码输出BPH
2、CVSD编译码
(1)实验原理框图
图二 CVSD编译码框图
(2)实验框图说明
与Δm相比,CVSD多了量阶调整的过程。而量阶是根据一致脉冲进行调整的。一致性脉冲是指比较结果连续三个相同就会给出一个脉冲信号,这个脉冲信号就是一致脉冲。其他的编译码过程均与Δm一样。
四、实验步骤
项目一:△M编码规则实验
项目二:量化噪声观测
2.比较增量调制和PCM。
答:增量调制与脉码调制(PCM)相比,具有以下三个特点:①电路简单,而脉码调制编码器需要较多逻辑电路;②数据率低于40千比特/秒时,话音质量比脉码调制的好,增量调制一般采用的数据率为32千比特/秒或16千比特/秒;③抗信道误码性能好,能工作于误码率为10-3的信道,而脉码调制要求信道误码率低于10-5~10-6。因此,增量调制适用于军事通信、散射通信和农村电话网等中等质量的通信系统。增量调制技术还可应用于图像信号的数字化处理。
项目三:不同量阶△M编译码的性能
项目四:△M编译码语音传输系统
项目五:CVSD量阶观测
项目六:CVSD一致脉冲观测
项目七;CVSD量化噪声观测
项目八:CVSD码语音传输系统
五、实验记录
TP4(信源延时)和TH14(编码输出) TP4(信源延时)和TP3(本地译码)
项目二 CH1信源延时,CH2本地译码项目三 量阶3000,Vpp=3V
7. 在什么情况下会输出一致脉冲信号。
答:当进行CVSD编码时,编码中出现连续的1或者连续的0时会输出一致脉冲。而CVSD的原理则是根据一致脉冲对编码做出检测并自适应的调整量化阶电平,尽量使调制器能够跟得上信号的变化。
七、实验小结
这次实验做的时间比较久,感觉难度也挺大的,特别是对于示波器的使用,感觉到了自己的很大的不足,课后需要多去了解示波器的功能使用,课堂上抓紧时间了解熟悉掌握示波器的使用。由实验可知:当幅值不变时,量阶越大,量化噪声越大;当量阶不变时,幅值越大,量化噪声越小;所以在实际中可通过减小量阶或者增大信号幅值来减小量化噪声。对于此的观察,可以听过音乐的噪声大小以及示波器中的波形图噪声感染都可以验证。对于一致信号的判断,当进行CVSD编码时,编码中出现连续的1或者连续的0时会输出一致脉冲。其是进行CVSD编码的检测及调整,使调制器能跟上信号变化。
实验四 Δm及CVSD编译码实验
一、实验目的
1、掌握简单增量调制的工作原理。
2、理解量化噪声及过载量化噪声的定义,掌握其测试方法。
3、了解简单增量调制与CVSD工作原理不同之处及性能上的差别。
二、实验器材
1、主控&信号源模块、21号、3号模块 各一块
2、双踪示波器 一台
3、连接线 若干
三、实验原理
1、Δm编译码
六、思考题回答
1.增量调制的速率可以是32kbps、16kbps相比PCM 64kbps产生的原因怎样?(请查找资料)今天VoIP采用什么样的信源编码?视频的MPEG2编码又是什么?
答:PCM的速率是增量调制的整数倍,利用此特点,可进行信道的复用,扩大信息量的传输。提高信道的传输效率和利用率。即在保证传输质量的同时,还可以利用增量调制在PCM调制的信道中传输更多的信息。VoIP采用ITU-T 定义的G.729、G.723(G.723.1)等来进行信源编码。其中G.729 可将经过采样的64kbit/s 话音以几乎不失真的质量压缩至8kbit/s。视频的MPEG2编码(图像压缩)是指针对标准数字电视和高清晰电视在各种应用下的压缩方案和系统层的详细规定。
编码输入输出AMI(非归零)
AMI编码规则频谱
AMI奇偶相减
AMI编码输入译码输出
AMI编码译码时钟(有延迟)
补偿信号频谱分析
HDB3编码规则
HDB3编码输出频谱
HDB3编码输入输出
HDB3常连零时的编码输出
下一次实验预习内容:
ASK FSK PSK调制解调实验。
查找开关芯片4066的手册。
ASK是一种相对简单的调制方式,幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。其解调电路用鉴幅器,最简单的使用二极管检波
5.实验中增量调制编码输出的基带码型是什么?
答:由实验图和可知该基带码型是单极性不归零二进制码。
6. 比较分析不同量阶,不同幅度情况下,量化噪声有什么不同。
答:由图可知,当幅值不变时,量阶越大,量化噪声越大;当量阶不变时,幅值越大,量化噪声越小;所以在实际中可通过减小量阶或者增大信号幅值来减小量化噪声。
3. 用PN15序列完成差分编码解码仿真实验。
4. 数据分析整理(尤其是实验过程中拍照记录的波形,尽可能将该照片的测量点(如编码输出、CLK等)标注在原理框图中,并将照片中CH1、CH2标出来)。实验中增量调制编码输出的基带码型是什么?
答:此图CH1表示增量调制的原信号;CH2表示增量调制的基带码型。
(3)AMI:全称为传号交替反转码。1码通常称为传号,0码则叫空号。
编码规则:消息代码中的0 传输码中的0消息代码中的1 传输码中的+1、-1交替。
特点:①由AMI码确定的基带信号中正负脉冲交替,而0电位保持不变;所以由AMI码确定的基带信号无直流分量,且只有很小的低频分量;
②在接收端不易提取定时信号,由于它可能出现长的连0串;
项目三量阶6000,Vpp=3V项目三量阶3000,Vpp=1V
项目五量阶6000,Vpp=1V 项目五 Vout=1V
项目五 Vout=2V 项目五 Vout=4V
项目七 Vpp=1V 项目七 Vpp=3V
CVSD量化噪声观测(2KHz)Vpp=3V的噪声CVSD量化噪声观测(2KHz)Vpp=1V的噪声
②HDB3中连0串的数目至多为3个,易于提取定时信号。
(5)
要求:
1. CMI和BPH实验只要4-5个实验波形或频谱图(自己筛选并说明)
2. AMI和HDB3实验只要4-5个实验波形或频谱图(自己筛选并说明)
3. 上一次检查过得实验报告不需要重新删减图片来重新打印了,就交打印的那一份即可。
思考题:
1. 所有实验讲义中的思考题回答
②若AMI码中连0的个数大于3,则将每4个连0小段的第4个0变换成与前一个非0符号(+1或-1)同极性的符号;
③为了不破坏极性交替反转,当相邻V符号之间有偶数个非0符号时,再将该小段的第1个0变换成+B或-B,符号的极性与前一非零符号的相反,并让后面的非零符号从符号开始再交替变化。
特点:①由HDB3码确定的基带信号无直流分量,且只有很小的低频分量;
(1)实验原理框图
图一Δm编译码框图
(2)实验框图说明
编码输入信号与本地译码的信号相比较,如果大于本地译码信号则输出正的量阶信号,如果小于本地译码则输出负的量阶。然后,量阶会对本地译码的信号进行调整,也就是编码部分“+”运算。编码输出是将正量阶变为1,负量阶变为0。
Δm译码的过程实际上就是编码的本地译码的过程。
③具有检错能力,如果在整个传输过程中,因传号极性交替规律受到破坏而出现误码时,在接收端很容易发现这种错误。
(4)HDB3:三阶高密度双极性码是一种适用于基带传输的编码方式,它是为了克服AMI码的缺点而出现的。
编码规则:①先将消息代码变Байду номын сангаас成AMI码,若AMI码中连0的个数小于4,此时的AMI码就是HDB3码;
八、实验预习内容
(1)CMI反转码:“1”交替用“11”和“00”表示,“0”用“01”表示。定时信息丰富。具有纠错能力。
同时具有以下优点:
①不存在直流分量,且低频分量较小;
②信息码流中具有很强的时钟分量,便于从信号中提取时钟信息;
③具有一定的检错能力。
(2)BPH:全称是数字双向码。又称分相码或曼彻斯特码,它是对每个二进制代码分别利用两个不同的二进制新码去取代。
增量调制是采用一位二进制数码来表示信号此时刻的值相对于前一个取样时刻的值是增大还是减少,增大发“1”码,减少发“0”码,数码的“1”,“0”只是表示信号相对于前一时刻的增减,不代表信号的绝对值。 当取样频率足够高时量价的大小取得恰当,收端恢复的信号与原信号非常接近,量化噪声可以很小。增量调制的突出优点是:设备简单,能以较低的数码率进行编码。
FSK:其优点是较容易实现,抗噪声与抗衰减性能好,解调方式有:相干解调、滤波非相干解调、正交相乘非相干解调。
PSK:相移键控(PSK):PSK就是根据数字基带信号的两个电平使载波相位在两个不同的数值之间切换的一种相位调制方法。
CD4066 是一种四路电子开关集成电路,CD4066功能特点:集成电路内部主要由四路功能完全相同的电子开关组成,各组开关分别受其相应引脚输入的电平控制,使电子开关接通或断开。