2021中考数学必刷题 (340)

合集下载

2021中考数学必刷题 (375)

2021中考数学必刷题 (375)
4. 【考点】V2:全面调查与抽样调查.菁优网版权所有 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽 样调查得到的调查结果比较近似. 【解答】解:A、国家旅游局调查国民对“五一”期间出行旅游的满意程度调查范 围广适合抽样调查,故 A 不符合题意; B、调查中国民众对美国在韩部署萨德系统持反对态度的比例调查范围广适合抽 样调查,故 B 不符合题意; C、调查中国国产航母各零部件的质量是事关重大的调查适合普查,故 C 符合题 意; D、调查重庆市初 2017 级学生的中考体考成绩调查范围广适合抽样调查,故 D 不符合题意; 故选:C. 【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据 所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行 普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事 关重大的调查往往选用普查.
23.(10.00 分)2017 年 3 月 19 日上午 8 时,一年一度的重庆国际马拉松赛在南 滨路和巴滨路上正式开跑,3 万名来自世界各地的马拉松运动员沿长江母亲河畔 展示了速度与激情.某广告公司抓住这一商机自制了一款文化衫,每件成本为 20 元,调研发现这一天可以销售 150 件. (1)如果广告公司要求当天的利润不低于 2250 元,则文化衫销售单价至少为多 少元? (2)为了扩大该广告公司的认知度,公司在比赛当天开展促销活动,使销售量 尽可能大,决定销售单价在(1)中的最低销售价的基础上再降低 m%,则销售 量可以在 150 件的基础上增加 m 件,结果当天的销售额为 5670 元,求出 m 的值. 24.(10.00 分)如图,在等腰三角形 ABC 中,AB=AC,∠BAC=90°,点 D 为 AC 上一点,连接 BD,过 C 点作 BD 的垂线交 BD 的延长线于点 E,连接 AE,过点 A 作 AF⊥AE 交 BD 于点 F,连接 CF. (1)若 CE=2,AE= ,求 BC 的长; (2)若点 D 为 AC 的中点,求证:CF=2CD.

2021中考数学必刷题 (370)

2021中考数学必刷题 (370)

2021中考数学必刷题370一、选择题(每小题3分,共42分)1.(3.00分)﹣的相反数是()A.B.﹣C.﹣2D.22.(3.00分)下列计算正确的是()A.3x2•4x2=12x4B.x3•x5=x15C.x4÷x=x4D.(x5)2=x73.(3.00分)海南已建成瓜菜基地3000000亩,成为全国人民冬季的菜篮子,数据3000000用科学记数法表示为()A.3×106B.0.3×107C.3×107D.30×1054.(3.00分)某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3.5,5,5,3.5.这组数据的众数是()A.3B.3.5C.4D.55.(3.00分)不等式组的解集是()A.x<2B.0<x<5C.2<x<3D.2<x<56.(3.00分)如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()A.B.C.D.7.(3.00分)若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12B.9C.12或9D.9或78.(3.00分)甲、乙、丙、丁四名选手参加200米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第1道的概率是()A.0B.C.D.19.(3.00分)如图,直线a平行b平行c,直角三角板的直角顶点落在直线b上,若∠1=36°,则∠2等于()A.36°B.44°C.54°D.64°10.(3.00分)已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y轴对称,则点A的对应点A′的坐标是()A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)11.(3.00分)已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b12.(3.00分)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为()A.x(20+x)=64B.x(20﹣x)=64C.x(40+x)=64D.x(40﹣x)=64 13.(3.00分)如图,点A、B、C在⊙O上,∠OBC=18°,则∠A=()A.18°B.36°C.72°D.144°14.(3.00分)如图,将矩形ABCD绕点A旋转至AB′C′D′位置,此时AC′的中点恰好与D的点重合,AB′交CD于点E,若AD=3,则△AEC的面积为()A.12B.4C.3D.6二、填空题(每小4分,共16分)15.(4.00分)分解因式:3m2﹣27=.16.(4.00分)在函数y=中,自变量x的取值范围是.17.(4.00分)如图,在菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB,若NF=NM=2,ME=3,则AN的长度为.18.(4.00分)如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为cm.三、解答题(满分62分)19.(10.00分)(1)计算:﹣(﹣2)+(﹣1)0﹣(2)解方程:.20.(8.00分)“六一”儿童节期间海南省某旅游景区的成人票和学生票均对折,李明同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元,则夏雨同学和妈妈去该景区游玩时,门票需要花费多少元?21.(8.00分)“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?22.(8.00分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).23.(14.00分)如图1,正方形ABCD的边长为a,E为边CD上一动点(点E与点C、D不重合),连接AE交对角线BD于点P,过点P作PF⊥AE交BC于点F.(1)求证:PA=PF;(2)如图2,过点F作FQ⊥BD于Q,在点E的运动过程中,PQ的长度是否发生变化?若不变,求出PQ的长;若变化,请说明变化规律.(3)请写出线段AB、BF、BP之间满足的数量关系,不必说明理由.24.(14.00分)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.(1)求这条抛物线的解析式;(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;(3)如图二,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共42分)1.【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法;49:单项式乘单项式.【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、3x2•4x2=12x4,故此选项正确;B、x3•x5=x8,故此选项错误;C、x4÷x=x3,故此选项错误;D、(x5)2=x10,故此选项错误.故选:A.【点评】此题主要考查了单项式乘以单项式以及同底数幂的乘除运算、幂的乘方运算等知识,正确掌握运算法则是解题关键.3.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3000000=3×106,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【考点】W5:众数.【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:在这一组数据中3.5出现了3次,次数最多,故众数是3.5.故选:B.【点评】本题考查了众数的定义,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.5.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式>x,得:x>2,解不等式1﹣(x﹣4)>0,得:x<5,则不等式组得解集为2<x<5,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有2个正方形,第二层有2个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.【考点】K6:三角形三边关系;KH:等腰三角形的性质.【分析】利用等腰三角形的性质以及三角形三边关系得出其周长即可.【解答】解:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12.故选:A.【点评】此题主要考查了等腰三角形的性质以及三角形三边关系,正确分类讨论得出是解题关键.8.【考点】X4:概率公式.【分析】由赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.【解答】解:∵赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:;故选:B.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.9.【考点】JA:平行线的性质.【分析】首先根据两直线平行,内错角相等,即可求得∠3的度数,然后求得∠4的度数,然后根据两直线平行,内错角相等,即可求得∠2的度数.【解答】解:∵a∥b,∴∠3=∠1=36°,∴∠4=90°﹣∠3=90°﹣36°=54°.∵b∥c,∴∠2=∠4=54°.故选:C.【点评】本题利用了平行线的性质:两直线平行,内错角相等.10.【考点】P6:坐标与图形变化﹣对称.【分析】让点A的横坐标为原来横坐标的相反数,纵坐标不变可得所求点的坐标.【解答】解:∵A的坐标为(﹣3,2),∴A关于y轴的对应点的坐标为(3,2).故选:B.【点评】考查图形的对称变换;用到的知识点为:两点关于y轴对称,纵坐标不变,横坐标互为相反数.11.【考点】G6:反比例函数图象上点的坐标特征.【分析】利用反比例函数的增减性可判断a和b的大小关系,可求得答案.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选:D.【点评】本题主要考查反比例函数的性质,掌握反比例函数在各象限内的增减性是解题的关键.12.【考点】AC:由实际问题抽象出一元二次方程.【分析】本题可根据长方形的周长可以用x表示宽的值,然后根据面积公式即可列出方程.【解答】解:设长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=64.故选:B.【点评】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S=ab来解题的方法.13.【考点】M5:圆周角定理.【分析】根据圆周角定理可知∠A=∠BOC,求出∠BOC的度数即可得出答案.【解答】解:∵OB=OC,∴∠BOC=180°﹣2∠OBC=144°,由圆周角定理可知:∠A=∠BOC=72°故选:C.【点评】本题考查圆周角定理,注意圆的半径都相等,这是解本题的关键.14.【考点】LB:矩形的性质;R2:旋转的性质.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,根据正切的概念求出CD,确定出EC的长,即可求出三角形AEC面积.【解答】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵四边形ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE=AE=CE,∴CE=2DE,CD=AD=3,∴EC=2,∴△AEC的面积=×EC×AD=3.故选:C.【点评】本题考查了旋转的性质、矩形的性质、特殊角的三角函数,三角形面积计算等知识点,清楚旋转的“不变”特性是解答的关键.二、填空题(每小4分,共16分)15.【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3m2﹣27,=3(m2﹣9),=3(m2﹣32),=3(m+3)(m﹣3).故答案为:3(m+3)(m﹣3).【点评】本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.16.【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.【考点】L8:菱形的性质.【分析】由△MAE∽△NAF,推出=,可得=,解方程即可解决问题.【解答】解:设AN=x,∵四边形ABCD是菱形,∴∠MAE=∠NAF,∵∠AEM=∠AFN=90°,∴△MAE∽△NAF,∴=,∴=,∴x=4,∴AN=4,故答案为4.【点评】本题考查菱形的性质、相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.18.【考点】M2:垂径定理.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.三、解答题(满分62分)19.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;B3:解分式方程.【分析】(1)先根据二次根式的性质、去括号法则、零指数幂、负整数指数幂分别求出每部分的值,再代入求出即可;(2)先把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:(1)原式=3+2+1﹣3=3;(2)方程两边都乘以(x+1)(x﹣1)得:2x(x﹣1)﹣3=2(x+1)(x﹣1),解得:x=﹣,检验:当x=﹣时,(x+1)(x﹣1)≠0,所以x=﹣是原方程的解,所以原方程的解为x=﹣.【点评】本题考查了二次根式的性质、去括号法则、零指数幂、负整数指数幂和解分式方程等知识点,能求出各个部分的值是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.20.【考点】9A:二元一次方程组的应用.【分析】设成人票是x元/张,学生票是y元/张,根据“李凯同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元”列出方程组,求得x、y的值即可.【解答】解:设成人票是x元/张,学生票是y元/张,依题意得:,解得,则x+y=120.即夏雨同学和妈妈去该景区游玩时,门票需要花费120元.【点评】本题考查了二元一次方程组的应用.此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.21.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)根据乙的瓶数40,所占比为20%,即可求出这四个品牌的总瓶数;(2)根据丁品牌饮料的瓶数70,总瓶数是200,即可求出丁所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以总瓶数,即可得出丙的瓶数,从而补全统计图;(3)根据甲所占的百分比,再乘以360°,即可得出答案;(4)用月销售量×(1﹣平均合格率)即可得到四个品牌的不合格饮料的瓶数.【解答】解:(1)四个品牌的总瓶数是:40÷20%=200(瓶);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙的瓶数是:200×15%=30(瓶);如图:(3)甲所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:200000×(1﹣95%)=10000(瓶).答:这四个品牌的不合格饮料有10000瓶.故答案为:200.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】作AD⊥BC于D,根据题意求出∠ABD=45°,得到AD=BD=30,求出∠C=60°,根据正切的概念求出CD的长,得到答案.【解答】解:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=30,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=30,则tanC=,∴CD==10,∴BC=30+10.故该船与B港口之间的距离CB的长为30+10海里.【点评】本题考查的是解直角三角形的知识的应用,掌握锐角三角函数的概念、选择正确的三角函数是解题的关键.23.【考点】LO:四边形综合题.【分析】(1)连结PC,由正方形的性质得到AB=BC,∠ABP=∠CBP,然后依据SAS证明△APB≌△CPB,由全等三角形的性质可知PA=PC,∠PCB=∠PAB,接下来利用四边形的内角和为360°可证明∠PFC=∠PCF,于是得到PF=PC,故此可证明PF=PA.(2)连结AC交BD于点O,依据正方形的性质可知△AOB为等腰直角三角形,于是可求得AO的长,接下来,证明△APO≌△PFQ,依据全等三角形的性质可得到PQ=AO;(3)过点P作PM⊥AB,PN⊥BC,垂足分别为M,N,首先证明△PBN为等腰直角三角形于是得到PN+BN=PB,由角平分线的性质可得到PM=PN,然后再依据LH证明△PAM≌△PFN可得到FN=AM,PM=PN,于是将AB+BF=可转化为BN+PN的长.【解答】解:(1)证明:连结PC.∵ABCD为正方形,∴AB=BC,∠ABP=∠CBP.在△APB和△CPB中,,∴△APB≌△CPB.∴PA=PC,∠PCB=∠PAB.∵∠ABF=∠APF=90°,∴∠PAB+∠PFB=180°.∵∠PFC+∠PFB=180°,∴∠PFC=∠PAB.∴∠PFC=∠PCF.∴PF=PC.∴PF=PA.(2)PQ的长不变.理由:连结AC交BD于点O,如图2.∵PF⊥AE,∴∠APO+∠FPQ=90°.∵FQ⊥BD,∴∠PFQ+∠FPQ=90°.∴∠APO=∠PFQ.又∵四边形ABCD为正方形,∴∠AOP=∠PQF=90°,AO=a.在△APO和△PFQ中,,∴△APO≌△PFQ.∴PQ=AO=a.(3)如图3所示:过点P作PM⊥AB,PN⊥BC,垂足分别为M,N.∵四边形ABCD为正方形,∴∠PBN=45°.∵PN⊥BN,∴BN=PN=BP.∴BN+PN=PB.∵BD平分∠ABC,PM⊥AB,PN⊥BC,∴PM=PN.在△PAM和△PFN中,,∴△PAM≌△PFN.∴AM=FN.∵∠MBN=∠BNP=∠BMP=90°,∴MB=PN.∴AB+BF=AM+MB+BF=FN+BF+PN=BN+PN=PB.【点评】本题考查四边形的综合题、全等三角形的性质和判断、正方形的性质、角平分线的性质、特殊锐角三角函数值、矩形的判断等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.24.【考点】HF:二次函数综合题.【分析】方法一:(1)利用待定系数法即可求得;(2)如答图1,四边形ABPC由△ABC与△PBC组成,△ABC面积固定,则只需要使得△PBC面积最大即可.求出△PBC面积的表达式,然后利用二次函数性质求出最值;(3)如答图2,DE为线段AC的垂直平分线,则点A、C关于直线DE对称.连接AM,与DE交于点G,此时△CMG的周长=CM+CG+MG=CM+AM最小,故点G 为所求.分别求出直线DE、AM的解析式,联立后求出点G的坐标.方法二:(1)略.(2)由于△ABC面积为定值,因此只需△BCP面积最大时,四边形ABPC的面积最大,利用水平底与铅垂高乘积的一半可求出P点坐标.(3)因为点A,C关于直线DE对称,因此直线AM与直线DE的交点即为点G.联立AM与DE的直线方程,可求出G点坐标.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.∴,解得,∴这条抛物线的解析式为:y=﹣x2+x+2.(2)设直线BC的解析式为:y=kx+b,将B(2,0)、C(0,2)代入得:,解得,∴直线BC的解析式为:y=﹣x+2.如答图1,连接BC.四边形ABPC由△ABC与△PBC组成,△ABC面积固定,则只需要使得△PBC面积最大即可.设P(x,﹣x2+x+2),过点P作PF∥y轴,交BC于点F,则F(x,﹣x+2).∴PF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x.S△PBC=S△PFC+S△PFB=PF(x F﹣x C)+PF(x B﹣x F)=PF(x B﹣x C)=PF=﹣x2+2x=﹣(x﹣1)2+1∴S△PBC∴当x=1时,△PBC面积最大,即四边形ABPC面积最大.此时P(1,2).∴当点P坐标为(1,2)时,四边形ABPC的面积最大.(3)存在.∵∠CAO+∠ACO=90°,∠CAO+∠AED=90°,∴∠ACO=∠AED,又∵∠CAO=∠CAO,∴△AOC∽△ADE,∴=,即=,解得AE=,∴E(,0).∵DE为线段AC的垂直平分线,∴点D为AC的中点,∴D(﹣,1).可求得直线DE的解析式为:y=﹣x+①.∵y=﹣x2+x+2=﹣(x﹣)2+,∴M(,).又A(﹣1,0),则可求得直线AM的解析式为:y=x+②.∵DE为线段AC的垂直平分线,∴点A、C关于直线DE对称.如答图2,连接AM,与DE交于点G,此时△CMG的周长=CM+CG+MG=CM+AM最小,故点G为所求.联立①②式,可求得交点G的坐标为(﹣,).∴在直线DE上存在一点G,使△CMG的周长最小,点G的坐标为(﹣,).方法二:(1)略.(2)连接BC,过点P作x轴垂线,交BC′于F,当△BCP面积最大时,四边形ABPC的面积最大.∵B(2,0)、C(0,2),∴lBC:y=﹣x+2,设P(t,﹣t2+t+2),∴F(t,﹣t+2),S△BCP=(P Y﹣F Y)(B X﹣C X)=(﹣t2+t+2+t﹣2)×2=﹣t2+2t,有最大值,即四边形ABPC的面积最大.∴当t=1时,S△BCP∴P(1,2).(3)∵DE为线段AC的垂直平分线,∴点A是点C关于直线DE对称,∴GC=GA,∴△CMG的周长最小时,M,G,A三点共线.∵抛物线y=﹣x2+x+2,∴M(,),A(﹣1,0),∴l MA:y=x+,∵A(﹣1,0),C(0,2),∴K AC==2,∵AC⊥DE,∴K AC×K DE=﹣1,K DE=﹣,∵点D为AC的中点,∴D x==﹣,D Y==1,∴D(﹣,1),∴l DE:y=﹣x+,∴⇒,∴G(﹣,).【点评】本题是二次函数综合题,难度适中,综合考查了二次函数的图象与性质、待定系数法求解析式、相似三角形、轴对称﹣最短路线、图形面积计算、最值等知识点.。

2021中考数学必刷题 (284)

2021中考数学必刷题 (284)

2021中考数学必刷题284一、选择题(每小题3分,共30分)1.(3分)﹣3的绝对值等于()A.﹣3B.﹣C.±3D.32.(3分)“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是()A.0.24×103B.2.4×106C.2.4×105D.24×1043.(3分)下列运算结果正确的是()A.b3•b3=2b3B.(a5)2=a7C.(﹣ab2)3=﹣ab6D.(﹣c)4÷(﹣c)2=c2 4.(3分)下面四个几何体中,主视图与俯视图相同的几何体共有()A.1个B.2个C.3个D.4个5.(3分)下列说法中不正确的是()A.函数y=2(x﹣1)2﹣1的一次项系数是﹣4B.“明天降雨的概率是50%”表示明天有半天都在降雨C.若a为实数,则|a|<0是不可能事件D.一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同),如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n 的和是66.(3分)如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数y=的图象经过点E,则k的值是()A.33B.34C.35D.367.(3分)如图,数轴上点A表示的数是﹣1,原点O是线段AB的中点,∠BAC=30°,∠ABC=90°,以点A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数是()A.B.C.D.8.(3分)如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB 的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°9.(3分)如图,直线l与x轴、y轴分别相交于A、B两点,已知B(0,),∠BAO=30°,圆心P的坐标为(1,0).⊙P与y轴相切于点O,若将⊙P沿x轴向左移动,当⊙P与该直线相交时,横坐标为整数的P′的个数是()A.2B.3C.4D.510.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(每小题3分,共18分)11.(3分)3的算术平方根是.12.(3分)分解因式:a2b﹣b3=.13.(3分)已知关于x的分式方程=3的解是正数,那么字母m的取值范围是.14.(3分)如图,在平面直角坐标系中,点P的坐标为(1,2),将线段OP沿y轴正方向移动m(m>0)个单位长度至O′P′,以O′P′为直角边在第一象限内作等腰直角△O′P′Q,若点Q在直线y=x上,则m的值为.15.(3分)在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.16.(3分)如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A n﹣1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n代数式表示)三、解答题(共23分)17.(5分)计算:﹣|1﹣|+3tan30°+(2018﹣π)0.18.(6分)先化简(﹣)÷,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.19.(6分)如图,平行四边形ABCD中,点E,F在直线AC上(点E在F左侧,)BE∥DF(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.20.(6分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A(﹣4,2)、B(2,n)两点,且与x轴交于点C.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)根据图象写出一次函数的值<反比例函数的值x的取值范围.四、实践应用(共30分)21.(6分)为了调查某校学生对“校园足球”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了如下两幅不完整的统计图,请解答下列问题:(1)扇形统计图中表示“C”的扇形的圆心角度数为度,并请补全男生的条形统计图;(2)选择“C”的男生中有2人是九年级的,选择“D”的女生中有1人是九年级的,现在要从选择“C”的男生和选择“D”的女生中各选1人来谈谈各自对“校园足球”的感想,请用画树状图或列表法求选中的两人刚好都来自九年级的概率.22.(8分)某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?23.(8分)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有结果精确到个位)24.(8分)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC 边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折:S▱ABCD=.痕分别是线段,;S矩形AEFG(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.五、推理论证题(共9分)25.(9分)已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O 上的一点,且AD平分∠FAE,ED⊥AF交AF的延长线于点C.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若AF:FC=5:3,AE=16,求⊙O的直径AB的长.六、拓展探索题(共10分)26.(10分)已知,如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)若点M为抛物线上一动点,是否存在点M,使△ACM与△ABC的面积相等?若存在,求点M的坐标;若不存在,请说明理由.(3)在x轴上是否存在点N使△ADN为直角三角形?若存在,确定点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.【考点】15:绝对值.【分析】根据绝对值的性质解答即可.【解答】解:|﹣3|=3.故选:D.【点评】此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2400000用科学记数法表示为:2.4×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解.【解答】解:A、b3•b3=b3+3=b6,故本选项错误;B、(a5)2=a5×2=a10,故本选项错误;C、(﹣ab2)3=﹣a3b6,故本选项错误;D、(﹣c)4÷(﹣c)2=(﹣c)4﹣2=(﹣c)2=c2,故本选项正确.故选:D.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.【考点】U1:简单几何体的三视图.【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形进行分析.【解答】解:①正方体的主视图与俯视图都是正方形;②圆锥主视图是三角形,俯视图是圆;③球的主视图与俯视图都是圆;④圆柱主视图是矩形,俯视图是圆;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【考点】X3:概率的意义;H1:二次函数的定义;X1:随机事件;X4:概率公式.【分析】分别利用概率的意义以及随机事件的意义和二次函数的定义以及概率公式分别求出即可.【解答】解:A、函数y=2(x﹣1)2﹣1=2x2﹣4x+1故一次项系数是﹣4,此选项正确,不合题意;B、“明天降雨的概率是50%”表示降雨的可能性,故此选项错误,符合题意;C、若a为实数,则|a|<0是不可能事件,此选项正确,不合题意;D、一个盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同),如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6,此选项正确,不合题意.故选:B.【点评】此题主要考查了概率的意义以及随机事件的意义和二次函数的定义以及概率公式等知识,正确把握相关定义是解题关键.6.【考点】G6:反比例函数图象上点的坐标特征;LE:正方形的性质.【分析】作EH⊥x轴于H,求出AB的长,根据△AOB∽△BCG,求出DG的长,再根据△AOB∽△EHA,求出AE的长,得到答案.【解答】解:作EH⊥x轴于H,∵OA=1,OB=2,由勾股定理得,AB=,∵AB∥CD,∴△AOB∽△BCG,∴CG=2BC=2,∴DG=3,AE=4,∵∠AOB=∠BAD=∠EHA=90°,∴△AOB∽△EHA,∴AH=2EH,又AE=4,∴EH=4,AH=8,点E的坐标为(9,4),k=36,故选:D.【点评】本题考查的是正方形的性质和反比例函数图象上点的特征,运用相似三角形求出图中直角三角形两直角边是关系是解题的关键,解答时,要认真观察图形,找出两正方形边长之间的关系.7.【考点】KQ:勾股定理;29:实数与数轴.【分析】首先求得AB的长,然后在直角△ABC中利用三角函数即可求得AC的长,则AD=AC即可求得,然后求得OD即可.【解答】解:∵点A表示﹣1,O是AB的中点,∴OA=OB=1,∴AB=2,在直角△ABC中,AC===,∴AD=AC=,∴OD=.故选:D.【点评】本题考查了三角函数,在直角三角形中利用三角函数求得AC的长是关键.8.【考点】PB:翻折变换(折叠问题);KG:线段垂直平分线的性质;KH:等腰三角形的性质.【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【解答】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC﹣∠ABO=65°﹣25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣40°﹣40°=100°,∴∠CEF=∠CEO=50°.故选:C.【点评】该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.9.【考点】MR:圆的综合题.【分析】求出函数与x轴、y轴的交点坐标,求出函数与x轴的夹角,计算出当⊙P与AB线切时点P的坐标,判断出P的横坐标的取值范围.【解答】解:如图,作⊙P′与⊙P″切AB于D、E.∵B(0,),∠BAO=30°,∴OA=OBcot30°=3.则A点坐标为(﹣3,0);连接P′D、P″E,则P′D⊥AB、P″E⊥AB,则在Rt△ADP′中,AP′=2×DP′=2,同理可得,AP″=2,则P′横坐标为﹣3+2=﹣1,P″横坐标为﹣1﹣4=﹣5,∴P横坐标x的取值范围为:﹣5<x<﹣1,∴横坐标为整数的点P坐标为(﹣2,0)、(﹣3,0)、(﹣4,0).故选:B.【点评】本题考查圆的综合题,熟悉一次函数的性质和切线的性质是解题的关键.10.【考点】H4:二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵﹣=﹣2,∴b=4a,ab>0,∴b﹣4a=0,∴①错误,④正确,∵抛物线与x轴交于﹣4,0处两点,∴b2﹣4ac>0,方程ax2+bx=0的两个根为x1=0,x2=﹣4,∴②⑤正确,∵当x=﹣3时y>0,即9a﹣3b+c>0,∴③正确,故正确的有②③④⑤.故选:C.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.二、填空题(每小题3分,共18分)11.【考点】22:算术平方根.【分析】根据开平方的意义,可得算术平方根.【解答】解:3的算术平方根是,故答案为:.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.12.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),故答案为:b(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】先分式方程求解,然后令x>0且x+1≠0即可求出m的范围【解答】解:2x﹣m=3x+3∴2x﹣3x=m+3∴x=﹣m﹣3∵x>0,且x+1≠0,∴x>0∴﹣m﹣3>0∴m<﹣3故答案为:m<﹣3【点评】本题考查分式方程的解法,涉及不等式的解法,属于基础题型.14.【考点】F8:一次函数图象上点的坐标特征;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】以O′P′为直角边在第一象限内作等腰直角△O′P′Q,需要分两种情况进行讨论,先根据等腰直角三角形的性质,判定全等三角形,再根据全等三角形的性质,得出对应边相等,最后根据线段的和差关系以及平移的方向,得出平移的距离即可.【解答】解:①如图所示,当△O′P′Q为等腰直角三角形时,过点P'作P'A⊥y轴于A,过Q作QB⊥y轴于B,则∠O'AP'=90°=∠QBO',∠P'O'Q=90°,∴∠AO'P'+∠BO'Q=90°=∠O'QB+∠BO'Q,∴∠AO'P'=∠O'QB,又∵O'P'=QO',∴△O'AP'≌△QBO',∴AP'=BO',AO'=BQ,∵点P的坐标为(1,2),∴由平移可得,AP'=1,AO'=2,∴BO'=1,当点Q在直线y=x上时,BQ=2=BO,此时OO'=BO'+BO=1+2=3,即平移的距离m为3;②如图所示,过点P'作x轴的平行线交y轴于C,过点Q作y轴的平行线,交直线CP'于点D,过点Q作QE⊥y轴于E,同理可得,△O'CP'≌△P'DQ,∴CE=DQ=CP'=1,DP'=CO'=2,∴CD=EQ=1+2=3=OE,EO'=CO'﹣CE=2﹣1=1,∴OO'=OE﹣O'E=3﹣1=2,即平移的距离m为2,故答案为:2或3.【点评】本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质以及平移的性质,解决问题的关键是根据图形进行分类讨论,运用全等三角形的对应边相等进行计算求解.15.【考点】M8:点与圆的位置关系;KP:直角三角形斜边上的中线;KX:三角形中位线定理.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.【解答】解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∴在△CEM中,5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故答案为:7.【点评】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.16.【考点】G6:反比例函数图象上点的坐标特征;G2:反比例函数的图象;L5:平行四边形的性质.【分析】根据反比例函数图象上点的坐标特征求得点P1、P2的纵坐标,由平行四边形对边平行且相等的性质求得点B1的纵坐标是y2+y1、B2的纵坐标是y3+y2、B3的纵坐标是y4+y3,据此可以推知点B n的纵坐标是:y n+1+y n=+=.【解答】解:∵点P1(1,y1),P2(2,y2)在反比例函数的图象上,∴y1=3,y2=;∴P1A1=y1=3;又∵四边形A1P1B1P2,是平行四边形,∴P1A1=B1P2=3,P1A1∥B1P2,∴点B1的纵坐标是:y2+y1=+3,即点B1的纵坐标是;同理求得,点B2的纵坐标是:y3+y2=1+=;点B3的纵坐标是:y4+y3=+1=;…点B n的纵坐标是:y n+1+y n=+=;故答案是:.【点评】本题考查了平行四边形的性质、反比例函数图象上点的坐标特征、反比例函数的图象.解答此题的关键是根据平行四边形的对边平行且相等的性质求得点B n的纵坐标y n+1+y n.三、解答题(共23分)17.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用负指数幂的性质以及特殊角的三角函数值和零指数幂的性质、绝对值的性质分别化简各数得出答案.【解答】解:原式=﹣4﹣+1+3×+1=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【考点】6D:分式的化简求值.【分析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.【解答】解:(﹣)÷=•=,∵a≠±1,∴当a=时,原式==2.【点评】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.19.【考点】LB:矩形的性质;L7:平行四边形的判定与性质.【分析】(1)通过全等三角形△BEC≌△DFA的对应边相等推知BE=DF,则结合已知条件证得结论;(2)连接BD,再根据矩形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BEC与△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图:∵AB⊥AC,AB=4,BC=2,∴AC=6,∴AO=3,∴Rt△BAO中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.【点评】本题考查了全等三角形的判定与性质、平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.20.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y=,再求出B的坐标是(2,﹣4),利用待定系数法求一次函数的解析式;=×2×4+×2×2=6;(2)把△AOB的面积分成两个部分求解S△AOB(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值<反比例函数的值x的取值范围﹣4<x<0或x>2.【解答】解:(1)设反比例函数的解析式为y=,因为经过A(﹣4,2),∴k=﹣8,∴反比例函数的解析式为y=.因为B(2,n)在y=上,∴n==﹣4,∴B的坐标是(2,﹣4)把A(﹣4,2)、B(2,﹣4)代入y=ax+b,得,解得:,∴y=﹣x﹣2;(2)y=﹣x﹣2中,当y=0时,x=﹣2;∴直线y=﹣x﹣2和x轴交点是C(﹣2,0),∴OC=2=×2×4+×2×2=6;∴S△AOB(3)﹣4<x<0或x>2.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.四、实践应用(共30分)21.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)先利用B等级的人数和它所占的百分比计算出调查的总人数,再利用D等级所占的百分比计算D等级的人数,则可得到D等级中男生人数,接着用调查的总人数分别减去A、B、D等级的人数得到C等级的人数,则可计算出C等级中男生人数,然后用×360°得到C等级的扇形的圆心角度数;最后补全条形统计图;(2)C组的男生有4人,用C3表示九年级的,D组的女生有3人,用D3表示九年级的,画树状图展示所有12种等可能的结果,找出两人都来自九年级的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数=(4+2)÷15%=40,所以D等级的人数=40×10%=4,D等级中男生人数为4﹣3=1,所以C等级的人数=40﹣18﹣6﹣4=12,所以C等级中男生人数=12﹣8=4,C等级所占的百分比=×100%=30%,C等级的扇形的圆心角度数=360°×30%=108°;条形统计图为:故答案为108;(2)C组的男生有4人,用C3表示九年级的,D组的女生有3人,用D3表示九年级的,画树状图如下:共有12种等可能的结果,其中两人都来自九年级的结果数为2,所以P(两人都来自九年级)==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.23.【考点】T8:解直角三角形的应用.【分析】(1)Rt△ABC中利用三角函数即可直接求解;(2)延长FE交DG于点I,利用三角函数求得∠DEI即可求得β的值,从而作出判断.【解答】解:(1)∵Rt△ABC中,tanA=,∴AB====55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI===,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.【点评】此题综合性比较强,解此题的关键是把实际问题转化为数学问题,本题只要把实际问题抽象到几何图形中来考虑,就能迎刃而解.24.【考点】LO:四边形综合题.【分析】(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S=S▱ABCD,即可得出答案;矩形AEFG(2)由矩形的性质和勾股定理求出FH,即可得出答案;(3)折法1中,由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM﹣GM=1,BC=BM+CM=7;折法2中,由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出FM=BM==3,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=﹣x,求出MC=BC﹣BM=﹣x﹣3,由MN=MC得出方程,解方程求出AD=,BC=;折法3中,由折叠的性质、正方形的性质、勾股定理即可求出BC、AD的长.【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;∴S矩形AEFG故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.【点评】本题是四边形综合题目,考查了折叠的性质、正方形的性质、勾股定理、梯形面积的计算、解方程等知识;本题综合性强,有一定难度.五、推理论证题(共9分)25.【考点】MD:切线的判定;KF:角平分线的性质;M5:圆周角定理.【分析】(1)连接OD,只要证明∠ODE=90°即可.(2)连接BF,根据圆周角定理及平行线性质不难求得AB的长.【解答】解:(1)直线CE与⊙O相切,证明:如图,连接OD,∵AD平分∠FAE,∴∠CAD=∠DAE.∵OA=OD,∴∠ODA=∠DAE.∴∠CAD=∠ODA.∴OD∥AC.∵EC⊥AC,∴OD⊥EC.∴CE是⊙O的切线.(2)如图,连接BF,∵AB是⊙O的直径,∴∠AFB=90°.∵∠C=90°,∴∠AFB=∠C.∴BF∥EC.∴AF:AC=AB:AE.∵AF:FC=5:3,AE=16,∴5:8=AB:16.∴AB=10.【点评】本题利用了角的平分线的性质,等边对等角,平行线的判定和性质,切线的概念,直径对的圆周角是直角求解.六、拓展探索题(共10分)26.【考点】HF:二次函数综合题.【分析】(1)先求得点A和点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求得b,c的值即可;(2)设M的坐标为(x,y),由△ACM与△ABC的面积相等可得到|y|=3,将y=3或y=﹣3代入抛物线的解析式求得对应的x的值,从而得到点M的坐标;(3)先利用配方法求得点D的坐标,当∠DNA=90°时,DN⊥OA,可得到点N的坐标,从而得到AN=2,然后再求得AD的长;当∠N′DA=90°时,依据sin∠DN′A=sin ∠ADN可求得AN′的长,从而可得到N′的坐标.【解答】解:(1)将x=0代入AB的解析式得:y=3,∴B(0,3).将y=0代入AB的解析式得:﹣x+3=0,解得x=3,A(3,0).将点A和点B的坐标代入得:,解得:b=2,c=3.∴抛物线的解析式为y=﹣x2+2x+3.(2)设M的坐标为(x,y).∵△ACM与△ABC的面积相等,∴AC•|y|=AC•OB.∴|y|=OB=3.当y=3时,﹣x2+2x+3=3,解得x=0或x=2,∴M(2,3)、(0、3).当y=﹣3时,﹣x2+2x+3=3,解得:x=1+或x=1﹣.∴M(1+,﹣3)或(1﹣,﹣3).综上所述点M的坐标为(0、3)或2,3)或(1+,﹣3)或(1﹣,﹣3).(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4).①当∠DNA=90°时,如图所示:∵∠DNA=90°时,∴DN⊥OA.又∵D(1,4)∴N(1,0).∴AN=2.∵DN=4,AN=2,∴AD=2.②当∠N′DA=90°时,则∠DN′A=∠NDA.∴=,即=,解得:AN′=10.∵A(3,0),∴N′(﹣7,0).综上所述点N的坐标为(1,0)或(﹣7,0).【点评】本题主要考查的是二次函数的应用,求得点A和点B的坐标是解答问题(1)的关键,求得点M的纵坐标是解答问题(2)的关键,求得AN′的长是解答问题(3)的关键.。

湖北武汉专用2021年中考数学必刷试卷02含解析

湖北武汉专用2021年中考数学必刷试卷02含解析

中考数学必刷试卷02第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)---的结果等于()1.计算(6)(3)A.-9 B.9C.-3 D.3【答案】C---=-3,【解析】(6)(3)故选C.2有意义,则x的取值范围是()A.x≥3B.x≤3C.x≥﹣3 D.x≤﹣3【答案】C【解析】根据题意得:x+3≥0,解得:x≥﹣3.故选:C.3.计算3x2+2x2的结果()A.5 B.5x2C.5x4D.6x2【答案】B【解析】3x2+2x2,=(3+2)x2,=5x2故选B.4.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次()A.只有①正确B.只有②正确C.①②都正确D.①②都错误【答案】D【解析】①“明天的降水概率为80%”是指是指明天下雨的可能性是80%,不是有80%的时间在下雨,故①错误;②“连续抛一枚硬币50次,出现正面朝上的次数一定是25次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故②错误;①和②都是错误的.故选D.5.计算(a-1)2正确的是()A.a2-1 B.a2-2a+1 C.a2-2a-1 D.a2-a+1【答案】B【解析】∵(a−1)²=a²−2a+1,∴与(a−1)²相等的是B,故选:B.6.如图,四边形ABCD是平行四边形,点A、B、C的坐标分别为(2,0)、(0,1)、(1,2),则AB+BC的值为()A B.3 C.4 D.5 【答案】A【解析】∵点A、B的坐标分别为(2,0)、(0,1),∴OA=2,OB=1,∴AB=过C作CE⊥y轴于E,∵点C的坐标为(1,2),∴CE=1,OE=2,∴BE=1,∴BC=∴AB+BC故选:A.7.如图,下面几何体的左视图是()A.B.C.D.【答案】B【解析】从左边看,有两列,左边一列有三个正方形,右边有一个正方形故选B8.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、30【答案】C【解析】由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.9.如图,在底边BC为腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )A.B.C.4 D.【答案】B【解析】∵DE垂直平分AB,∴BE=AE,∴△ACE的周长故选B.10.如图,以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若23ADDB=,且AB=10,则CB的长为()A.B.C.D.4 【答案】A【解析】如图,若23ADDB=,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=故选A.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11_______.【答案】3,3,故答案为312.化简a2a−1−1−2a1−a的结果为_____.【答案】a-1【解析】原式=a2−2a+1a−1=a﹣1,故答案为:a﹣1,13.如图,在3×3的方格纸中,点A,B,C,D,E分别位于格点上.从A,D,E三点中任意取一点,以所取的这一点及B,C为顶点画三角形,则所画三角形是直角三角形的概率是______________.【答案】2 3【解析】以所取的这一点及B,C为顶点画三角形有△ABC、△DBC、△EBC三种情况,其中所画三角形是直角三角形的有△ABC、△DBC这2种结果,所以所画三角形是直角三角形的概率是23,故答案为23.14.如图,▱ABCD中,AD=2AB,AH⊥CD于点H,N为BC中点,若∠D=68°,则∠NAH=_____.【答案】34°【解析】∵四边形ABCD是平行四边形,∴AD=BC,∠B=∠D=68°,∠BAD=180°﹣∠D=112°,∵N 为BC 中点, ∴BC =2BN , ∵BC =AD =2AB , ∴AB =BN ,∴∠BAN =∠ANB =12(180°﹣68°)=56°, ∵AH ⊥CD ,∴∠DAH =90°﹣∠D =22°,∴∠NAH =∠BAD ﹣∠BAN ﹣∠DAH =34°; 故答案为:34°.15.如图,在Rt△ABC 中,∠C=90o ,AB=5,AC=4,线段AD 由线段AB 绕点A 按逆时针方向旋转90o 得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 过点D ,BD 交AE 于H ,则AH=________.【答案】257【解析】根据旋转的性质可知∠ADB=∠ABD=45°,根据平移的性质可知AB∥FD, ∴∠FDB=∠ABD=45°.∴∠ADE=45°+45°=90°,∴∠ADE=∠ACB. 又∵∠EAB+∠EAD=90°,∠EAB+∠BAC=90°,∴∠EAD=∠BAC. ∴△ADE∽△ACB.∴aaaa =aaaa =aaaa ,可得AE=aaaa ×aa =54×5=254,DE=aaaa ×aa =54×3=154,∵∠AHB=∠DHE, ∠FDB=∠ABD,∴△ABH∽△EDH,∴aaaa=aaaa,可得aaaa=34,∵AE=254,∴AH=257,故答案为257.16.二次函数y=﹣x2+2kx﹣4在﹣1≤x≤2时,y≤0恒成立,则实数k的取值范围是____.【答案】52 2-k≤≤.【解析】根据题意:函数图象对称轴为x=﹣22k-=k,①当k≤﹣1时,此时只需x=-1时y≤0即可,k≥5-2,故512-k≤≤-符合条件;②当﹣1<k<2时,此时只需x=k时y≤0即可,即22240-k k+-≤,故﹣1<k<2符合条件;③当k≥2时,此时只需x=2时y≤0即可,k≤2,故k=2符合题意,所以k的取值范围为52 2-k≤≤,故答案为52 2-k≤≤.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解方程组:235 321 x yx y-=-⎧⎨+=-⎩【解析】235 321 x yx y-=-⎧⎨+=-⎩①②依题意①×2得4x-6y=-10③②×3得9x+6y=-3④③+④得:13x=-13,解得x=-1,把x=-1代入①,解得y=1,∴原方程组的解为11x y =-⎧⎨=⎩18.(本小题满分8分)如图,已知A 、B 、C 、D 四点顺次在同一条直线上,AE∥FD,AE =FD ,AB =CD ,求证:∠ACE=∠DBF.【解析】∵AE∥DF, ∴∠A=∠D. ∵AB=CD , ∴AB+BC=CD+BC . 即AC =BD .在△AEC 和△DFB 中,AE DF A D AC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC≌△DFB(SAS ), ∴∠ACE=∠DBF.19.(本小题满分8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图1补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.【解析】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%, ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%, ∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人. 20.(本小题满分8分)武商量贩销售A ,B 两种商品,售出4件B 种商品所得利润为400元;售出3件A 种商品和5件B 种商品所得利润为1100元.(1) 求每件A 种商品和每件B 种商品售出后所得利润分别为多少元;(2) 由于需求量大,A ,B 两种商品很快售完,武商量贩决定再一次购进A ,B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么武商量贩至少需购进多少件A 种商品?【解析】(1)设每件A 种商品售出后所得利润为x 元,每件B 种商品售出后所得利润为y 元.由题意,得4400351100y x y =⎧⎨+=⎩解得:200100x y =⎧⎨=⎩.答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34-a)件.由题意,得200a+100(34-a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.21.(本小题满分8分)如图,△ABC内接于⊙O,BC为直径,∠BAC的平分线与BC和⊙O分别相交于D和E,P为CB延长线上一点,PB=5,PA=10,且∠DAP=∠ADP.(1)求证:PA与⊙O相切;(2)求sin∠BAP的值;(3)求AD•AE的值.【解析】(1)证明:连接OA,如图1所示:∵AE平分∠BAC,∴∠BAD=∠CAD,∵∠DAP=∠BAD+∠PAB,∠ADP=∠CAD+∠C,∠DAP=∠ADP,∴∠PAB=∠C,∵OA=OC,∴∠OAC=∠C=∠PAB,∵BC为直径,∴∠BAC =90°,即∠OAC +∠OAB =90°, ∴∠PAB +∠OAB =90°,即∠OAP =90°, ∴AP ⊥OA , ∴PA 与⊙O 相切;(2)解:∵∠P =∠P ,∠PAB =∠C , ∴△PAB ∽△PCA ,∴1,2AB PB AC PA == ∵∠CAB =90°,∴AB BC ==∴sin∠BAP =sin∠C ; (3)解:连接CE ,如图2所示: ∵PA 与⊙O 相切,∴PA 2=PB ×PC ,即102=5×PC , ∴PC =20, ∴BC =PC ﹣PB =15,∵5AB BC =∴AB BC ==2AC AB == ∵AE 是∠BAC 的角平分线,∴∠BAD =∠CAE , ∵∠E =∠ABD , ∴△ACE ∽△ADB ,∴AE ACAB AD=∴90AD AE AB AC ⋅=⋅==.22.(本小题满分10分)矩形AOBC 中,OB =8,OA =4.分别以OB ,OA 所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数y =kx(k >0)的图象与边AC 交于点E .(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF 、AB ,求证:EF∥AB;(3)如图2,将△CEF 沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式. 【解析】(1)∵四边形OACB 是矩形,OB =8,OA =4, ∴C (8,4),∵点F是BC中点,∴F(8,2),∵点F在y=kx上,∴k=16,反比例函数解析式为y=16 x∵点E在反比例函数图像上,且E点的纵坐标为4,∴4=16 x∴x=4∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC=8-24EC aFC a=-=2,在Rt△ACB中,tan∠ABC=ACBC=2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,(3)如图,设将△CEF 沿EF 折叠后,点C 恰好落在OB 上的G 点处, ∴∠EGF =∠C =90°,EC =EG ,CF =GF , ∴∠MGE +∠FGB =90°, 过点E 作EM ⊥OB , ∴∠MGE +∠MEG =90°, ∴∠MEG =∠FGB , ∴Rt△MEG ∽Rt△BGF ,∴EM EGGB GF=, ∵点E (4k ,4),F (8,8k ), ∴EC =AC ﹣AE =8﹣4k ,CF =BC ﹣BF =4﹣8k, ∴EG =EC =8﹣4k ,GF =CF =4﹣8k , ∵EM =4,∴84448kkGB -=-,在Rt△GBF 中,GF 2=GB 2+BF 2,即:(4﹣8k )2=(2)2+(8k )2, ∴k =12,∴反比例函数表达式为y =12x. 23.(本小题满分10分)如图(1),AB⊥BC,CD⊥BC,点E 在线段BC 上,AE⊥ED,求证:(1)AB CEBE CD. (2)在△ABC 中,记tanB =m ,点E 在边AB 上,点D 在直线BC 上.①如图(2),m =2,点D 在线段BC 上且AD⊥EC,垂足为F ,若AD =2EC ,求CDBE;②如图(3),m =3,点D 在线段BC 的延长线上,ED 交AC 于点H ,∠CHD=60°,ED =2AC ,若CD =BC =,直接写出△BED 的面积. 【解析】(1)∵AB⊥BC,CD⊥BC,AE⊥ED, ∴∠B=∠C=∠AED=90°, ∴∠A+∠AEB=∠AEB+∠DEC=90°, ∴∠A=∠DEC,∴△ABE∽△ECD,∴AB CEBE CD=; (2)如图,过点A 作AM⊥BC 于点M ,过点E 作EH⊥BC 于点H ,∵tanB=m =2=EH AMBH BM=, ∴设EH =2x ,BH =x ,AM =2BM ,∵AF⊥EC,AM⊥CD,∴∠ADC+∠DCE=90°,∠ADC+∠DAM=90°, ∴∠DAM=∠DCE,且∠AMD=∠EHC=90°, ∴△EHC∽△DMA,且AD =2EC ,∴2AD DM AMEC EH HC===, ∴DM=2EH =4x ,AM =2HC , ∵AM=2HC ,AM =2BM , ∴HC=BM , ∴HC﹣HM =BM ﹣HM , ∴BH=MC =x ,∴DC=DM+MC =5x ,∴CD BE == (3)如图,作∠BCF=∠B,交AB 于点F ,过点D 作GD⊥BD 交BA 的延长线于点G ,过点F 作FM⊥BC 于点M ,∵tanB=m =3, ∴∠B=30°, ∵∠BCF=∠B=30°,∴BF=FC ,且FM⊥BC,BC =∴BM=MC = ∴FM=2,BF =FC =4,∵CD=BC =,∴BD=又∵∠BCF=∠B=30°,GD⊥BD,∴∠G=60°,∠AFC=60°,GD =7,BG =2DG =14,∵∠BCA=∠BDE+∠CHD=∠BDE+60°=∠BCF+∠ACF=30°+∠ACF,∴∠ACF=30°+∠BDE,且∠AEH=∠B+∠BDE=30°+∠BDE,∴∠ACF=∠AEH,且∠G=∠AFC=60°,∴△GED∽△FCA, ∴DE GD EG AC AF FC==,且DE =2AC , ∴GD=2AF ,EG =2FC =8, ∴AF=72, ∴BE=BG ﹣EG =14﹣8=6,∵S △BGD =12,∴S △BED 668=+24.(本小题满分12分)已知开口向下的抛物线y =ax 2﹣2ax +3与x 轴的交点为A 、B 两点(点A 在点B 的左边),与y 轴的交点为C ,OC =3OA(1)请直接写出该抛物线解析式;(2)如图,D 为抛物线的顶点,连接BD 、BC ,P 为对称轴右侧抛物线上一点.若∠ABD =∠BCP ,求点P 的坐标(3)在(2)的条件下,M 、N 是抛物线上的动点.若∠MPN =90°,直线MN 必过一定点,请求出该定点的坐标.【解析】(1)当x=0时,y=ax2﹣2ax+3=3,∴C(0,3),OC=3OA=3,∴OA=1,A(﹣1,0),把点A(﹣1,0)代入抛物线解析式得:a+2a+3=0,解得:a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)如图1,若点P在抛物线对称轴右侧且在x轴上方,过点P作PE∥y轴交BC于点E,PF⊥BC于点F,过点D作DH⊥x轴于点H,∴∠CFP=∠BHD=90°,∵当y=﹣x2+2x+3=0时,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),∴DH=4,BH =3﹣1=2,==,∴Rt△BDH 中,sin∠ABD=5DH BD ==, ∵C(0,3)PC设直线BC 解析式为y =kx+b , ∴3003k b b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 解析式为y =﹣x+3,设P (p ,﹣p 2+2p+3)(1<p <3),则E (p ,﹣p+3),∴PE=﹣p 2+2p+3﹣(﹣p+3)=﹣p 2+3p ,∵S △BCP =12PE•OB=12BC•PF,∴PF=22PE OB BC ⋅==, ∵∠ABD=∠BCP,∴Rt△CPF 中,sin∠BCP=PE PC ,PC , ∴PF 2=45PC 2, 解得:p 1=﹣1(舍去),p 2=53,∴﹣p2+2p+3=329,∴点P坐标为(53,329)如图2,若点P在x轴下方,∵tan∠ABD=DHBH=2>tan45°,∴∠ABD>45°,∵∠BCP<∠BOC即∠BCP<45°,∴∠ABD与∠BCP不可能相等.综上所述,点P坐标为(53,329);(3)如图3,过P作PH∥y轴,分别过点M、N作MG⊥PH于G,NH⊥PH于H.设直线MN的解析式为y=kx+n,M(x1,y1)、N(x2,y3),令kx+n =﹣x 2+2x+3,即=x 2+(k ﹣2)x+n ﹣3=0,∴x 1+x 2=2﹣k ,x 1x 2=n ﹣3,∴y 1+y 2=k (x 1+x 2)+2n =k (2﹣k )+2n ,y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+nk (x 1+x 2)+n 2=﹣3k 2+2nk+n 2,∵∠G=∠MPN=∠H,∴△MPG∽△PNH, ∴MG GP PH HN= , ∵P 坐标为(53,329), MG =53﹣x 1,PH =y 1﹣329,HN =253x -,GP =2329y -, ∴12115323932593x y y x --=--, 整理,得12121212255321024()()93981x x x x y y y y -++=++-, ∴222255321024(2)3(22)3293981k n y k k n k nk n --+-=-++---, 解得 k 1=﹣3n+233,k 2=332515n -+, ∴直线MN ;y =(﹣3n+233)x+n =(﹣3x+1)n+233,过定点(13,239); 或y =(332515n -+)x+n =(513x -+)n+3215,过定点(53,329)即P 点,舍去.1 3,239).∴直线MN过定点(。

必刷卷01-2021年中考数学考前信息必刷卷【浙江杭州专用】(解析版)

必刷卷01-2021年中考数学考前信息必刷卷【浙江杭州专用】(解析版)

绝密★启用前2021年中考数学考前信息必刷卷【浙江杭州专用】必刷卷01注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图案中是中心对称图形但不是轴对称图形的是()A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴. 如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解析】A 、是中心对称图形,也是轴对称图形,不符合题意; B 、不是中心对称图形,是轴对称图形,不符合题意; C 、是中心对称图形,不是轴对称图形,符合题意; D 、不是轴对称图形,也不是中心对称图形,不符合题意. 故选:C .2.下列四个数,表示无理数的是( ) A .tan45°B .πC .13D .√16【分析】无限不循环小数叫做无理数,根据无理数的定义逐个排除即可. 【解析】A 、tan45°=1不是无理数,故本选项不符合题意; B 、π是无限不循环小数,是无理数,符合题意; C 、13不是无理数,故本选项不符合题意;D 、√16=4,不是无理数,故本选项不符合题意. 故选:B .3.下列运算正确的是( ) A .3a 2﹣2a 2=a 2 B .﹣(2a )2=﹣2a 2C .(a ﹣b )2=a 2﹣b 2D .﹣2(a ﹣1)=﹣2a +1【分析】根据合并同类项法则、单项式的乘方、完全平方公式和单项式乘多项式法则逐一计算可得. 【解析】A .3a 2﹣2a 2=a 2,此选项计算正确; B .﹣(2a )2=﹣4a 2,此选项计算错误;C.(a﹣b)2=a2﹣2ab+b2,此选项计算错误;D.﹣2(a﹣1)=﹣2a+2,此选项计算错误;故选:A.4.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解析】A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.5.永宁县某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是()日期星期一星期二星期三星期四星期五星期六星期天体温(℃)36.236.236.536.336.236.436.3A.36.3和36.2B.36.2和36.3C.36.2和36.2D.36.2和36.1【分析】根据众数和中位数的定义求解可得.【解析】将这组数据重新排列为36.2、36.2、36.2、36.3、36.3、36.4、36.5,所以这组数据的众数为36.2,中位数为36.3,故选:B.6.圆锥的主视图是边长为4的等边三角形,其侧面展开图的面积为()A .4πB .13πC .8πD .23π【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解析】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4, 所以这个几何体的侧面展开图的面积=12×4π×4=8π. 故选:C .7.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB =√3,AC =2,BD =4,则AE 的长为( )A .√32B .32C .√217D .2√217【分析】由勾股定理的逆定理可判定△BAO 是直角三角形,所以平行四边形ABCD 的面积即可求出. 【解析】∵AC =2,BD =4,四边形ABCD 是平行四边形, ∴AO =12AC =1,BO =12BD =2, ∵AB =√3, ∴AB 2+AO 2=BO 2, ∴∠BAC =90°,∵在Rt △BAC 中,BC =√AB 2+AC 2=√(√3)2+22=√7,S △BAC =12×AB ×AC =12×BC ×AE , ∴√3×2=√7AE , ∴AE =2√217, 故选:D .8.如图,AB ∥CD ∥MN ,点M ,N 分别在线段AD ,BC 上,AC 与MN 交于点E ,则( )A .DM AE=CE AMB .AM CN=BN DMC .DCME=AB END .AEAM=CE DM【分析】根据平行线分线段成比例定理,利用ME ∥CD 得到DM AM=CE AE,则利用比例的性质可判断D 选项正确.【解析】∵ME ∥CD , ∴DM AM =CE AE, ∴AE AM=CE DM.故选:D .9.如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,DF ⊥AB 交AC 于点G ,反比例函数y =√3x (x >0)经过线段DC 的中点E ,若BD =4,则AG 的长为( )A .4√33B .√3+2C .2√3+1D .3√32+1【分析】过E 作y 轴和x 的垂线EM ,EN ,证明四边形MENO 是矩形,设E (b ,a ),根据反比例函数图象上点的坐标特点可得ab =√3,进而可计算出CO 长,根据三角函数可得∠DCO =30°,再根据菱形的性质可得∠DAB =∠DCB =2∠DCO =60°,∠1=30°,AO =CO =2√3,然后利用勾股定理计算出DG 长,进而可得AG 长.【解析】过E 作y 轴和x 的垂线EM ,EN , 设E (b ,a ),∵反比例函数y =√3x (x >0)经过点E ,∴ab=√3,∵四边形ABCD是菱形,∴BD⊥AC,DO=12BD=2,∵EN⊥x,EM⊥y,∴四边形MENO是矩形,∴ME∥x,EN∥y,∵E为CD的中点,∴DO•CO=4√3,∴CO=2√3,∴tan∠DCO=DOCO=√33.∴∠DCO=30°,∵四边形ABCD是菱形,∴∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2√3,∵DF⊥AB,∴∠2=30°,∴DG=AG,设DG=r,则AG=r,GO=2√3−r,∵AD=AB,∠DAB=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠3=30°,在Rt△DOG中,DG2=GO2+DO2,∴r2=(2√3−r)2+22,解得:r=4√3 3,∴AG=4√3 3.故选:A.10.已知二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N(x2,﹣1),若MN 的长不小于2,则a的取值范围是()A.a≥13B.0<a≤13C.−13≤a<0D.a≤−13【分析】由于抛物线所经过的M、N两点的纵坐标为﹣1,说明抛物线与直线y=﹣1有两个交点,则x1,x2是方程ax2+2ax+3a﹣2=﹣1有两个不相等的根,由根与系数的关系求得|x1﹣x2|便为MN的长度,再根据MN的长不小于2,列出a的不等式求得a的取值范围,再结合方程根的判别式与解的情况的关系求得a的取值范围,便可得出最后结果.【解析】令y=﹣1,得y=ax2+2ax+3a﹣2=﹣1,化简得,ax2+2ax+3a﹣1=0,∵二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N(x2,﹣1),∴△=4a2﹣12a2+4a=﹣8a2+4a>0,∴0<a<1 2,∵ax2+2ax+3a﹣1=0,∴x1+x2=﹣2,x1x2=3a−1 a,∴(x1−x2)2=(x1+x2)2−4x1x2=4−8a a,即MN=√4−8a a,∵MN的长不小于2,∴√4−8aa≥2,∴a≤1 3,∵0<a<1 2,∴0<a≤1 3,故选:B.二、填空题:本题共6小题,每小题4分,共24分。

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练

2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练一. 选择题.1.对于任意实数m,下列函数一定是二次函数的是( )A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x22.二次函数y=x2-3x+2的图象不经过第象限.A.一B.二C.三D.四3.已知二次函数y=1-11x-6x2,其二次项系数为a,一次项系数为b,常数项为c,则a+b+c= ( )A.+16B.6C.-6D.-164.二次函数2=-的图象是一条抛物线,下列关于该抛物线的说法,正确的23y x是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线1x=D.抛物线与x轴有两个交点5.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )6.如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b27.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax 2+bx+c(a ≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为 ( )A.10 mB.15 mC.20 mD.22.5 m8.如图,二次函数y=ax 2+bx+c 的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b 29.一位运动员在距篮下4 m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05 m,该运动员身高1.9 m,在这次跳投中,球在头顶上方0.25 m 处出手时,他跳离地面的高度是( )A.0.1 mB.0.2 mC.0.3 mD.0.4 m10.已知二次函数2y ax bx c =++满足:(1)a b c <<;(2)0a b c ++=;(3)图象与x 轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有( ) ①0a <;②0a b c -+<;③0c >;④20a b ->;⑤124b a -<. A .1个 B .2个 C .3个 D .4个二.填空题.11.抛物线y=4(x-2)2+1的顶点坐标是 .12.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则y1,y2,y3的大小关系为.13.如图,抛物线y=ax2+bx+4(a≠0)经过点A(-3,0),点B在抛物线上,CB∥x轴,且AB平分∠CAO,则此抛物线的解析式是 .14.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是 .15.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为米.16.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB 向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过s,四边形APQC的面积最小.17.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为元.18. 如图为函数y=ax2+bx+c与y=x的图象,下列结论:①b2-4ac>0;②3b+c+6=0;③当1<x<3时,x2+(b-1)x+c<0;④=3. 其中正确的有 .三.解答题.19. 在平面直角坐标系中,二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示.(1)求这个二次函数的解析式;(2)当-2≤x≤2时,求y的取值范围.20. 如图所示,甲、乙两船分别从A地和C地同时开出,各沿箭头所指方向航行,已知AC=10海里,甲、乙两船的速度分别是每小时16海里和每小时12海里,同时出发多长时间后,两船相距最近?最近距离是多少?21. 某公司从年初以来累计利润S(万元)与时间t(月)之间的关系(即前t个月的利润总和S和t之间的关系)为二次函数关系.试根据图象提供的信息,解答下列问题:(1)求累计利润S(万元)与时间t(月)之间的函数解析式;(2)截至几月末该公司累计利润可达16万元?(3)第10个月该公司所获利润是多少万元?。

2021中考数学必刷题 (433)

2021中考数学必刷题 (433)

2021中考数学必刷题433一、选择题(每小题3分,共30分)1.(3.00分)下列四个数中,绝对值最小的数是()A.﹣2B.0C.1D.72.(3.00分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×10133.(3.00分)如图,立体图形的俯视图是()A.B.C.D.4.(3.00分)下列调查中,最适宜采用全面调查方式的是()A.对三门峡全市初中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对三门峡全市初中学生视力情况的调查5.(3.00分)在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17B.14C.12D.106.(3.00分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为()A.40°B.36°C.50°D.45°7.(3.00分)关于x的一元二次方程有实数根,则实数a满足()A.B.C.a≤且a≠3D.8.(3.00分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6B.8C.10D.8或109.(3.00分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE的度数为()A.15°B.15°或45°C.45°D.45°或60°10.(3.00分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3.00分)因式分解:9a3b﹣ab=.12.(3.00分)如图,BD是菱形ABCD的对角线,AE⊥BC于点E,交BD于点F,且E为BC的中点,则cos∠BFE的值是.13.(3.00分)如图,抛物线y=ax2﹣4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,则a的值为.14.(3.00分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数是.15.(3.00分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB 为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为.三、解答题(本大题共8个题,共75分)16.(8.00分)先化简:(2x﹣)÷,然后从﹣2≤x≤2中选择一个适当的整数作为x的值代入求值.17.(9.00分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.18.(9.00分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC 边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形OEDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).19.(9.00分)一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).20.(9.00分)如图,在同一直角坐标系中,直线y=x+4与y=﹣3x﹣3相交于A点,分别与x轴交于B、C两点.(1)求△ABC的面积;(2)P、Q分别为直线y=x+4与y=﹣3x﹣3上的点,且P、Q关于原点对称,求P点的坐标.21.(10.00分)某商城销售A,B两种自行车.A型自行车售价为2100元/辆,B型自行车售价为1750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与用64000元购进B型自行车的数量相等.(1)求每辆A,B两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润.22.(10.00分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;(3)若BF=3,请直接写出此时AE的长.23.(11.00分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.【考点】15:绝对值;18:有理数大小比较.【分析】根据绝对值具有非负性可得绝对值最小的数是0.【解答】解:绝对值最小的数是0,故选:B.【点评】此题主要考查了绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】U2:简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:如图所示的立体图形的俯视图是C.故选:C.【点评】本题考查了三视图的知识,掌握所看的位置,注意所有的看到的棱都应表现在视图中.4.【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、对三门峡全市初中学生每天学习所用时间的调查,适合抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,适合抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,适合全面调查,故此选项正确;D、对三门峡全市初中学生视力情况的调查,适合抽样调查,故此选项错误.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【考点】M5:圆周角定理.【分析】连接CD,根据圆周角定理得到CD为圆的直径,根据勾股定理计算即可.【解答】解:连接CD,∵∠AOB=90°,∴CD为圆的直径,CD=≈12,故选:C.【点评】本题考查的是圆周角定理和勾股定理的应用,掌握90°的圆周角所对的弦是直径是解题的关键.6.【考点】L5:平行四边形的性质;PB:翻折变换(折叠问题).【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故选:B.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.7.【考点】A1:一元二次方程的定义;AA:根的判别式.【分析】讨论:当a﹣3=0,原方程变形为一元一次方程,有一个实数根;当a ﹣3≠0,△=(﹣)2﹣4×(a﹣3)×1≥0,然后综合这两种情况即可.【解答】解:当a﹣3=0,方程变形为﹣x+1=0,此方程为一元一次方程,有一个实数根;当a﹣3≠0,△=(﹣)2﹣4×(a﹣3)×1≥0,解得a≤且a≠3.所以a的取值范围为a≤且a≠3.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.8.【考点】A3:一元二次方程的解;K6:三角形三边关系;KH:等腰三角形的性质.【分析】先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.9.【考点】KH:等腰三角形的性质;R2:旋转的性质.【分析】分两种情况进行讨论:OE在∠BOD内部,OE'在∠BOD外部,分别根据全等三角形的性质以及角的和差关系进行计算,即可得到∠BOE的度数.【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE'在∠BOD外部时,则由OD=OC,∠DOE'=∠COB,OB=OE可得,△ODE'≌△OCB,故DE'=CB,此时∠BOE'=45°﹣15°+15°=45°;故选:B.【点评】本题主要考查了旋转的性质,解题时注意:对应点到旋转中心的距离相等,旋转前、后的图形全等.10.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x ≤4),图象为:故选:A.【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式.二、填空题(每小题3分,共15分)11.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【考点】L8:菱形的性质;T7:解直角三角形.【分析】直接利用菱形的性质结合线段垂直平分线的性质得出AB=BC=AC,进而得出∠BFE=60°,即可得出答案.【解答】解:∵E为BC的中点,AE⊥BC,∴AB=AC,∵四边形ABCD是菱形,∴AB=BC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∠BAE=30°,∴∠BFE=60°,∴cos∠BFE=.故答案为.【点评】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出△ABC是等边三角形是解题关键.13.【考点】HA:抛物线与x轴的交点.【分析】根据抛物线的对称性易求对称轴x===1,则易求a=2.【解答】解:∵如图,抛物线y=ax2+4x+c的图象与x轴交于A(﹣3,0)、B(5,0)两点,∴该抛物线的对称轴x===1,即=1,解得,a=2.故答案是:2.【点评】本题考查了抛物线与x轴的交点.此题利用抛物线的对称性、对称轴的定义来求a的值.14.【考点】V8:频数(率)分布直方图;W5:众数.【分析】读懂统计图,利用众数的定义即可得出答案.【解答】解:一名射击运动员连续打靶8次,其中有3次为8环,所以数据的众数是8,故答案为:8.【点评】本题主要考查了众数,解题的关键是读懂统计图,准确的获取信息.15.【考点】I2:点、线、面、体;M2:垂径定理;MO:扇形面积的计算.【分析】连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出AF=BF,进而可得出DE=CE=3,再根据圆环的面积公式结合勾股定理即可得出CD 边扫过的面积.【解答】解:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,如图所示.∵PE⊥CD,AB∥CD,∴PF⊥AB.又∵AB为⊙P的弦,∴AF=BF,∴DE=CE=CD=AB=3,∴CD边扫过的面积为π(PD2﹣PE2)=π•DE2=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.三、解答题(本大题共8个题,共75分)16.【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后在﹣2≤x≤2中选择一个使得原分式有意义的整数值代入化简后的式子即可解答本题.【解答】解:(2x﹣)÷===,当x=1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据条形统计图中的数据,找出中位数即可;(2)根据扇形统计图找出的百分比,乘以3000即可得到结果;(3)画树状图得出所有等可能的情况数,找出恰好是甲与乙的情况,即可确定出所求概率.【解答】解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,∴中位数为50;(2)根据题意得:3000×(1﹣25%)=2250人,则该校帮助父母做家务的学生大约有2250人;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.【考点】MR:圆的综合题.【分析】(1)根据已知条件即可得到结论;(2)根据角平分线的性质得到DE=DF,有AD是⊙O的直径,得到∠DEA=90°,由三角形的内角和得到∠EDA=60°,推出△OED是等边三角形,得到ED=OE,根据菱形的判定定理即可得到结论;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF由最小值,连接OE,OF,过O作OH⊥EF于H,解直角三角形即可得到结论.【解答】解:(1)∵∠BAC=60°,∴∠EOF=120°,∵OE=OF,∴=;(2)当AD平分∠BAC时,四边形OEDF是菱形,理由:∵AD平分∠BAC,∴DE=DF,∠BAD=30°,∵AD是⊙O的直径,∴∠DEA=90°,∴∠EDA=60°,∵OE=OD,∴△OED是等边三角形,即ED=OE,∴OE=OF=DE=DF,∴四边形OEDF是菱形;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF有最小值,如图,过O作OH⊥EF于H,在Rt△ADB中,∵∠ABC=45°,AB=10,∴AD=BD=10,即此时,⊙O的直径为10,∵∠EOH=∠EOH=∠BAC=60°,∴EH=OE•sin∠EOH=5×=,由垂径定理可得EF=2EH=5.线段EF的最小值为5,故答案为:5.【点评】本题考查了菱形的判定,垂径定理,圆周角定理,解直角三角形,关键是根据运动变化,找出满足条件的最小圆.19.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)由题意知∠QPB=60°、∠PQB=60°,从而得△BPQ是等边三角形,据此可得答案;(2)由(1)知PQ=BQ=900m,从而得AQ==600,根据∠AQB=180°﹣60°﹣30°=90°知AB==300.【解答】解:(1)相等,由图知∠QPB=60°、∠PQB=60°,∴△BPQ是等边三角形,∴BQ=PQ;(2)由(1)知PQ=BQ=900m,在Rt△APQ中,AQ===600,又∵∠AQB=180°﹣60°﹣30°=90°,∴在Rt△AQB中,AB===300(m),答:A、B间的距离为300m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.20.【考点】FF:两条直线相交或平行问题;R6:关于原点对称的点的坐标.【分析】(1)先依据一次函数解析式,求得点B,C的坐标,再根据解方程组,求得点A的坐标,即可得到△ABC的面积;(2)根据P在直线y=x+4上,即可设P(m,m+4),再根据P、Q关于原点成中心对称,可得Q(﹣m,﹣m﹣4).最后根据点Q在直线y=﹣3x﹣3上,可得﹣m﹣4=3m﹣3,进而得到m的值.【解答】解:(1)令y=x+4中y=0,则x=﹣4,∴B(﹣4,0);令y=﹣3x﹣3中y=0,则x=﹣1,∴C(﹣1,0);解方程组,得,∴A(﹣,).∴S=×[﹣1﹣(﹣4)]×=.△ABC(2)∵点P在直线y=x+4上,∴设P(m,m+4),∵P、Q关于原点成中心对称,∴Q(﹣m,﹣m﹣4).∵点Q在直线y=﹣3x﹣3上,∴﹣m﹣4=3m﹣3,解得:m=﹣,∴m+4=,∴点P的坐标为(﹣,).【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积公式,解题的关键是掌握关于原点对称的点的坐标特征.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).21.【考点】B7:分式方程的应用;CE:一元一次不等式组的应用;FH:一次函数的应用.【分析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.【解答】解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【点评】此题考查了一次函数的应用,分式方程的应用,以及一元一次不等式组的应用,弄清题意是解本题的关键.22.【考点】LO:四边形综合题.【分析】(1)作FH⊥AB于H,由AAS证明△EFH≌△CED,得出FH=CD=4,AH=AD=4,求出BH=AB+AH=8,由勾股定理即可得出答案;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,则FM=AH,AM=FH,①同(1)得:△EFH≌△CED,得出FH=DE=3,EH=CD=4即可;②求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同(1)得::△EFH≌△CED,得出FH=DE=4+AE,EH=CD=4,得出FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得出方程,解方程即可;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,同理得AE的长.【解答】解:(1)作FH⊥AB于H,如图1所示:则∠FHE=90°,∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=4,EF=CE,∠ADC=∠DAH=∠BAD=∠CEF=90°,∴∠FEH=∠CED,在△EFH和△CED中,,∴△EFH≌△CED(AAS),∴FH=CD=4,AH=AD=4,∴BH=AB+AH=8,∴BF===4;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF===;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD于点H,交BC延长线于K.如图3所示:同(1)得::△EFH≌△CED,∴FH=DE=AE﹣4,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=(3)2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=2+或2﹣(舍去).③当点E在AD上时,可得:(8﹣AE)2+(4+AE)2=90,解得AE=5或﹣1,5>4不符合题意.综上所述:AE的长为1或2+.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.23.【考点】HF :二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P (m ,m 2+2m +1),表示出PE=﹣m 2﹣3m ,再用S 四边形AECP =S △AEC +S△APC =AC ×PE ,建立函数关系式,求出极值即可;(3)先判断出PF=CF ,再得到∠PCA=∠EAC ,以C 、P 、Q 为顶点的三角形与△ABC 相似,分两种情况计算即可.【解答】解:(1)∵点A (0,1).B (﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x 2+2x +1,(2)∵AC ∥x 轴,A (0,1)∴x 2+2x +1=1,∴x 1=﹣6,x 2=0,∴点C 的坐标(﹣6,1),∵点A (0,1).B (﹣9,10),∴直线AB 的解析式为y=﹣x +1,设点P (m ,m 2+2m +1)∴E (m ,﹣m +1)∴PE=﹣m +1﹣(m 2+2m +1)=﹣m 2﹣3m ,∵AC ⊥EP ,AC=6,∴S 四边形AECP=S △AEC +S △APC=AC ×EF +AC ×PF=AC ×(EF +PF )=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣);(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4或t=﹣8(不符合题意,舍)∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3或t=﹣15(不符合题意,舍)∴Q(3,1)【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.。

2021中考数学必刷题 (320)

2021中考数学必刷题 (320)

2021中考数学必刷题320一、选择题:1.(3分)﹣4的相反数的绝对值是()A.4B.﹣4C.D.2.(3分)在下列四个新能源汽车车标的设计图中,属于中心对称图形的是()A.B.C.D.3.(3分)2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×10104.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分5.(3分)下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形6.(3分)下列各式中正确的是()A.=±3B.=﹣3C.=3D.﹣=7.(3分)下面运算结果为a6的是()A.a3+a3B.a8÷a2C.a2•a3D.(﹣a2)38.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x19.(3分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10B.﹣=10C.﹣=10D.+=1010.(3分)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1C.D.11.(3分)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C (x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1B.m C.m2D.12.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题13.(3分)因式分解:x2﹣4=.14.(3分)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.16.(3分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为.三、解答题17.计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|18.解不等式组:19.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.20.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)21.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?22.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?23.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:1.【考点】15:绝对值;14:相反数.【分析】直接利用相反数的定义结合绝对值的定义分析得出答案.【解答】解:﹣4的相反数为4,则4的绝对值是4.故选:A.【点评】此题主要考查了绝对值和相反数,正确把握相关定义是解题关键.2.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.【点评】此题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1800000000=1.8×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.【考点】O1:命题与定理.【分析】根据平行四边形、矩形、菱形、正方形的判定定理判断即可.【解答】解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.【考点】24:立方根;22:算术平方根.【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.7.【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【解答】解:A、a3+a3=2a3,此选项不符合题意;B、a8÷a2=a6,此选项符合题意;C、a2•a3=a5,此选项不符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.8.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.9.【考点】B6:由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=10亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为:﹣=10.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.10.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】只要证明BE=BC即可解决问题;【解答】解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE﹣AB=1,故选:B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.11.【考点】G6:反比例函数图象上点的坐标特征;G2:反比例函数的图象;H2:二次函数的图象;H5:二次函数图象上点的坐标特征.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.【点评】本题考查二次函数图象的轴对称性,二次函数图象上点纵坐标相同时,对应点关于抛物线对称轴对称.12.【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=﹣2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a<0,所以①正确;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题13.【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.14.【考点】AA:根的判别式.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.15.【考点】JA:平行线的性质.【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.【点评】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.16.【考点】F8:一次函数图象上点的坐标特征.【分析】根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.【解答】解:由题意可得,A1(1,﹣),A2(1,1),A3(﹣2,1),A4(﹣2,﹣2),A5(4,﹣2),…,∵2018÷4=504…2,2018÷2=1009,∴点A2018的横坐标为:21008,故答案为:21008.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.三、解答题17.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣2×+1+=1﹣+1+=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【考点】CB:解一元一次不等式组.【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.19.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【解答】解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【点评】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.20.【考点】T8:解直角三角形的应用.【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.21.【考点】HE:二次函数的应用.【分析】(1)利用待定系数法求解可得y关于x的函数解析式;(2)根据“总利润=每件的利润×销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【解答】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤16);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.22.【考点】MR:圆的综合题.【分析】(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得=,即BF•BG=BE•AB,将BF=BC ﹣CF=BC﹣AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2﹣AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=BC=k求得DM==k,可知OM=OD﹣DM=3﹣k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,继而知BC2=(2MC)2=36﹣4d2、AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.【解答】解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=AE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴BC=2k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=BC=k,∴DM==k,∴OM=OD﹣DM=3﹣k,在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,解得:k=或k=0(舍),∴BC=2k=4;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴当x=,即OM=时,AB•AC最大,最大值为,∴DC2=,∴AC=DC=,∴AB=,此时=.【点评】本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.23.【考点】HF:二次函数综合题.【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)将直线l的解析式代入抛物线F的解析式中,可求出x1、x2的值,利用一次函数图象上点的坐标特征可求出y1、y2的值,做差后即可得出y2﹣y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P 的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F的解析式为y=x2+x.(2)将y=x+m代入y=x2+x,得:x2=m,解得:x1=﹣,x2=,∴y1=﹣+m,y2=+m,∴y2﹣y1=(+m)﹣(﹣+m)=(m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,2).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴AA′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P 的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2,);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣,)和(﹣,﹣2).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)将一次函数解析式代入二次函数解析式中求出x1、x2的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.。

2021年中考真题必刷题《第二专题:方程与不等式》

2021年中考真题必刷题《第二专题:方程与不等式》

2021年中考真题必刷题《第二专题:方程与不等式》一、选择题1. (2020年安徽)下列方程中,有两个相等实数根的是A. X 2+1=2XB. X 2+1=0 C ・ X 2-2X =3 D ・ X 2-2X =02. (2020年南充)某工程队承接了 80万平方米的荒山绿化任务,为 了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了 35%, 结果提前40天完成了这一任务。

设实际工作时每天绿化的而积为X 万平方米,则下而所列方程中正确的是()° 80 80 “ 小 8° 80(1 + 35%)B. — ------------------- = 40 D. — ----------------- --- ---------- =40 X (1 + 35%)X X X3. (2020年河南省)国家统计数据显示,我国快递业务收入逐年增加。

2017年至2019年我国快递业务收入由5000亿元增加到7500亿元。

设我国2017年至2019年快递业务收入的年平均增长率为X,则可列 方程为()A. 5000(l+2x) =7500B. 5000x2(l+x)=7500C. 5000(1+X )2=7500A. 80(1 + 35%) X 80 — = 40 XB. 80 80 - -- —=40 (1 + 35%)X X -D. 5000+5000(1+X )+5000(1+X )2=75004. (2020年浙江)不等式组卩3-4的解集在数轴上表示正确的 3x > 2x -1 是()5. (2020年遵义)如图,把一块长为40cm,宽为30cm 的矩形硬纸 板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并 用胶带粘好,即可做成一个无盖纸盒。

若该无盖纸盒的底而积为 600cm 2,设剪去小正方形的边长为xcm,则可列方程为A. (30-2x) (40-x) =600B. (30-x)(40-x)=600C. (30-x)(40-2x)=600C.(30-2x)(40-2x)=6006. (2020年随州市)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何”。

2021中考数学必刷题 (202)

2021中考数学必刷题 (202)

(Ⅰ)解不等式①,得

(Ⅱ)解不等式②,得

(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不均每天体育锻炼时间”的情况,某地区教育部门随机
调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解
答下列问题:
(I)本次接受随机抽样调查的中学生人数为
点 E.
(I)如图①,点 P 在线段 OA 上,若∠OBQ=15°,求∠AQE 的大小; (Ⅱ)如图②,点 P 在 OA 的延长线上,若∠OBQ=65°,求∠AQE 的大小. 22.(10 分)如图,一枚运载火箭从距雷达站 C 处 5km 的地面 O 处发射,当火 箭到达点 A,B 时,在雷达站 C 处测得点 A,B 的仰角分别为 34°,45°,其中点 O, A,B 在同一条直线上.求 AC 和 AB 的长(结果保留小数点后一位)(参考数据: sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)
A.
B.
C.
D.
4.(3 分)我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧 130 000
000kg 的煤所产生的能量.把 130 000 000kg 用科学记数法可表示为( )
A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg
5.(3 分)如图是一个由 5 个相同的正方体组成的立体图形,它的俯视图是( )
,图①中 m 的值是

(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;
(Ⅲ)根据统计数据,估计该地区 250000 名中学生中,每天在校体育锻炼时间
大于等于 1.5h 的人数.
21.(10 分)已知 OA,OB 是⊙O 的半径,且 OA⊥OB,垂足为 O,P 是射线 OA

2021年江苏省中考数学考前必刷真题试卷附解析

2021年江苏省中考数学考前必刷真题试卷附解析

2021年江苏省中考数学考前必刷真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. Rt△ABC中,∠C=900,a、b、c分别为∠A、∠B、∠C的对边,则有()A.b=atanA B.b=csinA C.a=ccosB D.c=asinA2.把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有()A.b=3,c=7 B.b=-9,c=-15 C.b=3,c=3 D.b=-9,c=213.如图,直角坐标系中,△ABC的三个顶点都在小正方形的顶点上,则△ABC的面积为()A.3 5 B.3 5 +5 C. 5 D.54.如图1所示,将长为20cm,宽为2cm的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为()A.34 cm2B.36 cm2C.38 cm2D.40 cm25.顺次连结菱形的各边中点所得到的四边形是()A.平行四边形 B.菱形 C.矩形 D.正方形6.下列各点在函数y=1-2x的图象上的是()A.(2.5,-l)B.(0,34)C.(0,12)D.(1,-l)7.下面四个图形中,经过折叠能围成如图所示的立方体纸盒的是()A. B. C.D.8.如图AB=AC,DE⊥AB,DF⊥AC,AD⊥BC,则图中的全等三角形有()A.1对B.2对C.3对D.4对9.如图,AB∥CD,∠1=110°, ∠ECD =70°,∠E 等于()A.30°B. 40°C. 50°D. 60°10.用科学记数法表示的数1.2×103,则这个数的原数是( ) A . 1200B .120C .12D .1200011.下列各组量中具有相反意义的量是( ) A .向东行 4km 与向南行4 km B .队伍前进与队伍后退 C .6 个小人与 5 个大人 D .增长3%与减少2%二、填空题12. 二次函数2(0)y ax bx c a =++≠的部分对应值如下表, 则不等式20ax bx c ++>的解集为 .13.sin60°= ,sin70°= , sin50°= , 并把它们用“<”号连结 .14.在半径为 1 的圆中,长度等于2的弦所对的圆心角是 .15.将50个数据分成5组列出频数分布表,其中第一组的频数6,•第二组与第五组的频数和为20,那么第三组与第四组的频数和为__ ____.16.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程0102=+-m x x 的两根,则m 的值是 .17.一元二次方程2(1)5x -=的根是 .18.如图.根据图中的程序,当输入3时,输出的结果y = .19.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是 .x -3 -2 -1 0 1 2 3 4 y6-4-6-6-4620.两位同学在解方程组时,甲同学由278ax bycx y+=⎧⎨-=⎩正确地解出32xy=⎧⎨=-⎩,乙同学因把c写错而得解22xy=-⎧⎨=⎩,那么a= ,b= ,c= .21.如图,在△ABC 中,AB 的垂直平分线交 AC 于 D,如果AC= 7 cm,BC=4 cm,则△BDC 的周长为 cm.22.某段铁路长 392 km,某客运车的行车速度每小时比原来增加 40 km,使得行完这段铁路所需时间短了 1 小时. 如果设该列车提速前的速度为每小时 x(km),那么为求x所列出的方程为.23.合并同类项22224-25x xy x y x-+= .三、解答题24.如图,在半径等于5㎝的圆0内有长为53㎝的弦 AB,求此弦所对的圆周角的度数.25.如图,AB 是⊙O的弦,直径 CD⊥AB,垂足为 P,如果AB = 8,PD = 2,试求⊙O的半径R.26.如图所示,已知AB∥EF.求∠B+∠C+∠D+∠E的度数.27.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图,三个汉字可以分别看成是轴对称图形.(1)请再写出2个类似轴对称图形的汉字;(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜. 你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并对构成的汉字进行说明.28.在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩. 下面是购买门票时,小明与他爸爸的对话:爸爸:大人门票35元,学生门票半价优惠,我们共有 12人,共需350元.小明:爸爸,等一下,让我算一算. 换一种方式买票是否可以更省钱.问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.29.50 名学生搬桌椅,两人抬一张桌子,一人拿两把椅子,怎样分配人数,才能使一次搬运 的桌椅配套?(提示:1 张桌子配 1 把椅子)30.如图,某市有一块长为(3a b +)m ,宽为(2a b +)m 的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少m 2?并求出当3a =,2b =时的绿化面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.D4.B5.C6.D7.B8.C9.B10.A11.D二、填空题 12. x<—2 或 x>313.2,0.9397,0. 7660, sin50°< sin60°< sin70° 14.90°15.2416.16或2517.1x =.219.42x y =-⎧⎨=-⎩20. 4,5,-221.1122.392392140x x -=+23. 2224x xy +三、解答题 24.连结 AO 、BO ,过0作 OC ⊥AB ,交 AB 于C ,∵OC ⊥AB 且平分AB ,∴,△AOC 为直角三角形,∴∠AOC= 60° ,∵∠AOC=∠BOC,∴∠AOB= 120° , ∴AB 所对圆周角为 60°或 120°.25.设⊙O的半径为R,则AO=R,OP=R- 2 ,AP=12AB=4,得22(2)16R R=-+,∴R= 5.答:⊙O的半径为5.26.540°27.(1)如:田、日等(2)这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表法)土口木土(土,土)(土,口)(土,木)口(口,土)(口,口)(口,木)木(木,土)(木,口)(木,木)(树状图法)总共有 9种结果,每种结果出现的可能性相同,其中能组成上下结构的汉字的结果有 4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏” .所以P(小敏获胜)= 49, P(小慧获胜)= 59.∵P(小敏获胜)<P(小慧获胜),∴游戏对小慧有利.28.(1)成人8人,学生4人 (2)买团体票需252元,即买团体票省钱29.设x 人搬桌子,y 人搬椅子,则5022x y x y +=⎧⎪⎨=⎪⎩,∴4010x y =⎧⎨=⎩30.(253a ab +)m 2;当3a =,2b =时,25363a ab +=m 2。

必刷卷04-2021年中考数学考前信息必刷卷(江苏无锡专用)(解析版)

必刷卷04-2021年中考数学考前信息必刷卷(江苏无锡专用)(解析版)

绝密★启用前2021年无锡市中考数学考前信息必刷卷第四模拟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列四个数中,最小的数是( )A .2-B .4-C .(1)--D .0【答案】A【分析】根据有理数的大小比较及绝对值可直接进行排除选项.【详解】解:∵()44,11-=--=,∴()4102->-->>-,∴最小的数是-2;故选A .【点睛】本题主要考查有理数的大小比较及绝对值,熟练掌握有理数的大小比较及绝对值是解题的关键.2.函数y x 的取值范围是( )A .x >0B .x ≥1C .x >﹣1D .x ≥﹣1 【答案】D【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【详解】解:根据题意得:x+1≥0,解得:x≥﹣1.故选:D .【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.下列运算正确的是( )A .243()a a =B .33()ab ab =C .532a a a ÷=D .22()b b a a= 【答案】C【分析】A 、根据幂的乘方法则判断即可;B 、根据积的乘方法则判断即可;C 、按同底数幂的除法判断即可;D 、按积的乘方法法则判断即可.解:A 、()42248a a a ⨯==,故A 错误不符合题意; B 、()333ab a b =,故B 错误不符合题意;C 、53532a a a a -÷==,故C 符合题意;D 、222b b a a ⎛⎫= ⎪⎝⎭,故D 错误不符合题意; 故选C .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法,属于基础题,熟记计算法则即可解题.4.在①圆、②等腰梯形、③正方形、④正三角形、⑤平行四边形这五个图形中,所有既是轴对称图形,又是中心对称图形的是( )A .①和②B .①和③C .①和⑤D .③和④ 【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:①圆和③正方形既是中心对称图形,也是轴对称图形;②等腰梯形和④正三角形只是轴对称图形;⑤平行四边形只是中心对称图形.故选:B .【点睛】本题考查了掌握中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.当1a =-,2b =时,代数式32(3)1a b a b ++++的值为( )A .2-B .0C .1D .3 【答案】A先把代数式进行化简,然后把1a =-,2b =代入计算,即可得到答案.【详解】解:32(3)1a b a b ++++=3621a b a b ++++=931a b ++;当1a =-,2b =时,原式=9(1)3212⨯-+⨯+=-;故选:A .【点睛】本题考查了整式的化简求值,整式的加减运算,以及求代数式的值,解题的关键是掌握运算法则,正确的进行化简.6.一组数1、2、2、3、3、a 、b 的众数为2,平均数为2,则这组数据的方差为( )A .17B .27C .37D .47【答案】D【分析】利用这组数据的平均数可求出+a b 的值,再利用这组数据的众数是2,可具体确定这组数据,最后即可求出其方差.【详解】∵这组数据的平均数为2, ∴1223327a b ++++++=, ∴3a b +=.又∵这组数据的众数是2,∴12a b ==,或21a b ==,.∴这组数据为1、1、2、2、2、3、3.∴这组数据方差为222142(12)3(22)2(32)77⎡⎤⨯-+⨯-+⨯-=⎣⎦. 故选:D .本题考查平均数,众数,方差.理解众数的定义,掌握求平均数和方差的公式是解答本题的关键. 7.国家实施“精准扶贫”政策以来,贫困地区逐渐走向了致富的道路.某地区2017年底有贫困人口7万人,通过社会各界的努力,2019年底贫困人口减少至1万人.设2017年底至2019年底该地区贫困人口的年平均下降率为x ,根据题意所列方程是( )A .7(12)1x -=B .27(1)1x -=C .7(12)1x +=D .27(1)1x +=【答案】B【分析】设年平均下降率为x ,根据题中2年时间贫困人口从7万人减少至1万人列出方程即可.【详解】设2017年底至2019年底该地区贫困人口的年平均下降率为x ,根据题意得 27(1)1x -=,故选:B .【点睛】本题主要考查列一元二次方程,读懂题意是关键.8.能说明命题“对于任何实数a ,都有2a a >”是假命题的反例是( )A .1a =-B .0a =C .2a =D .3a =【答案】B【分析】把数值逐一代入给定的不等式中,让不等式不能成立的数就是需要的反例.【详解】∵1a =-时,22(1)11a a =-=>-=,∴A 选项不符合题意;∵0a =时,2200a a ===,不等式不成立,∴B 选项符合题意;∵2a =时,22224a a ==>=,∴C 选项不符合题意;∵3a =时,22339a a ==>=,∴D 选项不符合题意;故选B .【点睛】本题考查了命题的定义、幂的运算,理解命题的定义,正确转为所求问题是解题关键.9.在矩形ABCD 中,已知4AB cm =,5BC cm =,现有一根长为4cm 的木棒EF 紧贴着矩形的边(即两个端点始终 落在矩形的边上),按逆时针方向滑动一周,则木棒EF 的中点P 在运动过程中所围成的图形的面积为( )A .220cmB .210cmC .()2204cm π+D .()2204cm π- 【答案】D【分析】 如图(见解析),先根据矩形的性质、直角三角形斜边上的中线可得122BP EF cm ==,从而可得出中点P 的运动轨迹,再利用矩形的面积公式和圆的面积公式即可得.【详解】如图1,连接BP ,四边形ABCD 是矩形, 90ABC ∴∠=︒,点P 是EF 的中点,4EF cm =,122BP EF cm ∴==, ∴当点E 在AB 边上,点F 在BC 边上时,中点P 的运动轨迹是在以点B 为圆心、2cm 长为半径的14圆上, 又5BC cm =,且522>⨯,∴木棒EF 的中点P 在运动过程中所围成的图形为图2中的阴影部分, 则所求的面积为矩形ABCD 的面积减去四个14圆的面积, 即所求的面积为()22145422044cm ππ⨯-⨯⨯=-,则木棒EF 的中点P 在运动过程中所围成的图形的面积为()2204cm π-, 故选:D .【点睛】本题考查了矩形的性质、直角三角形斜边上的中线、圆的面积公式等知识点,依据题意,正确得出中点P 的运动轨迹是解题关键.10.如图,在Rt △ABC 中,∠BAC =90°,以Rt △ABC 各边为斜边分别向外作等腰Rt △ADB 、等腰Rt △AFC 、等腰Rt △BEC ,然后将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC 中,其中BH =BA ,CI =CA ,已知,S 四边形GKJE =1,S 四边形KHCJ =8,则AC 的长为( )A .2B .52C .4D .6【答案】D【分析】 设AD =DB =a ,AF =CF =b ,BE =CE =c ,由勾股定理可求a 2+b 2=c 2,由S 四边形GHCE =S 四边形GKJE +S 四边形KHCJ =9,可求b =2,即可求解.【详解】解:设AD =DB =a ,AF =CF =b ,BE =CE =c ,∴AB 2=,AC 2=,BC 2=,∵∠BAC =90°,∴AB 2+AC 2=BC 2,∴2a 2+2b 2=2c 2,∴a 2+b 2=c 2,∵将等腰Rt △ADB 和等腰Rt △AFC 按如图方式叠放到等腰Rt △BEC ,∴BG =GH =a ,∵S 四边形GHCE =S 四边形GKJE +S 四边形KHCJ =9, ∴12(a +c )(c ﹣a )=9, ∴c 2﹣a 2=18,∴b 2=18,∴b =,∴AC ==6,故选:D .【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.二、填空题:(本题共8小题,每小题2分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021中考数学必刷题340一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将序号在答题卡上涂黑作答.1.(3分)﹣2018的绝对值的相反数是()A.B.﹣C.2018D.﹣20182.(3分)下列运算正确的是()A.3x﹣2=x B.(2x2)3=8x5C.x•x4=x5D.(a+b)2=a2+b23.(3分)如图,直线a∥b,将含30°角的直角三角板如图放置,直角顶点落在直线b上,若∠1=55°,则∠2的度数为()A.30°B.35°C.45°D.55°4.(3分)中国女排超级联赛2017﹣2018赛季,上海与天津女排经过七场决战,最终年轻的天津女排通过自己的拼搏站上了最高领奖台.赛后技术统计中,本赛季超级新星李盈莹共得到804分,创造了女排联赛得分的历史记录.804这个数用科学记数法表示为()A.8.04×102B.8.04×103C.0.84×103D.84.0×1025.(3分)下列几何体,其三视图都是全等图形的是()A.球B.圆柱C.三棱锥D.圆锥6.(3分)若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.7.(3分)从如图四张图片中随机抽取一张,概率为的事件是()A.是轴对称图形B.是中心对称图形C.既是轴对称图形又是中心对称图形D.是轴对称图形但不是中心对称图形8.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115°D.120°9.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF 上一动点,则△CDM周长的最小值为()A.6B.8C.10D.1210.(3分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<0;③当x<1时,y随x增大而增大;④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=0.其中正确的是()A.①②③B.①④⑤C.①②④D.③④⑤二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上.11.(3分)﹣=.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)有一组数据:2,a,4,6,7,它们的平均数是5,则这组数据的中位数是.14.(3分)如图,在△ABC中,D是AB上的一点,进行如下操作:①以B为圆心,BD长为半径作弧交BC于点F;②再分别以D,F为圆心,BD长为半径作弧,两弧恰好相交于AC上的点E处;③连接DE,FE.若AB=6,BC=4,那么AD=.15.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边A的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,若OA=2,则图中阴影部分的面积为.16.(3分)如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP 与△BCP相似时,DP=.三、解答题(本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.)17.(6分)先化简,再求值:,其中x=+1.18.(6分)我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,胡老师一共调查了名同学,其中女生共有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.19.(6分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)20.(7分)如图,某小区规划在一个长30m,宽20m的矩形场地上修建两横竖通道,横竖通道的宽度比为2:1,其余部分种植花草,若通道所占面积是整个场地面积的.(1)求横、竖通道的宽各为多少?(2)若修建1m2道路需投资750元,种植1m2花草需投资250元,此次修建需投资多少钱?21.(7分)如图,已知Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,反比例函数y=经过点B.(1)求反比例函数解析式;(2)连接BD,若点P是反比例函数图象上的一点,且OP将△OBD的周长分成相等的两部分,求点P的坐标.22.(8分)如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)若点B是EF的中点,AB=2,CB=2,求AE的长.23.(10分)“姹紫嫣红苗木种植基地”尝试用单价随天数而变化的销售模式销售某种果苗,利用30天时间销售一种成本为10元/株的果苗,售后经过统计得到此果苗,单价在第x天(x为整数)销售的相关信息,如图表所示:销售量n(株)n=﹣x+50销售单价m(元/株)当1≤x≤20时,m=当21≤x≤30时,m=10+(1)①请将表中当1≤x≤20时,m与x间关系式补充完整;②计算第几天该果苗单价为25元/株?(2)求该基地销售这种果苗30天里每天所获利润y(元)关于x(天)的函数关系式;(3)“吃水不忘挖井人”,为回馈本地居民,基地负责人决定将这30天中,其中获利最多的那天的利润全部捐出,进行“精准扶贫”.试问:基地负责人这次为“精准扶贫”捐赠多少钱?24.(11分)问题背景:如图1,△ABC为等边三角形,作AD⊥BC于点D,将∠ABC绕点B顺时针旋转30°后,BA,BC边与射线AD分别交于点E,F,求证:△BEF为等边三角形.迁移应用:如图2,△ABC为等边三角形,点P是△ABC外一点,∠BPC=60°,将∠BPC绕点P逆时针旋转60°后,PC边恰好经过点A,探究PA,PB,PC之间存在的数量关系,并证明你的结论;拓展延伸:如图3,在菱形ABCD中,∠ABC=60°,将∠ABC绕点B顺时针旋转到如图所在的位置得到∠MBN,F是BM上一点,连接AF,DF,DF交BN于点E,若B,E两点恰好关于直线AF对称.(1)证明△BEF是等边三角形;(2)若DE=6,BE=2,求AF的长.25.(11分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将序号在答题卡上涂黑作答.1.【考点】15:绝对值;14:相反数.【分析】直接利用绝对值以及相反数的定义分析得出答案.【解答】解:﹣2018的绝对值为:2018,故2018的相反数是:﹣2018.故选:D.【点评】此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.2.【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、积的乘方与积的乘方、同底数幂的乘法及完全平方公式依次计算可得.【解答】解:A、3x和﹣2不是同类项,不能合并,此选项错误;B、(2x2)3=8x6,此选项错误;C、x•x4=x5,此选项计算正确;D、(a+b)2=a2+2ab+b2,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是熟练掌握合并同类项法则、积的乘方与积的乘方、同底数幂的乘法法则及完全平方公式.3.【考点】JA:平行线的性质.【分析】依据直角顶点落在直线b上,∠1=55°,即可得到∠3=90°﹣55°=35°,再根据平行线的性质,即可得到∠2=∠3=35°.【解答】解:∵直角顶点落在直线b上,∠1=55°,∴∠3=90°﹣55°=35°,又∵a∥b,∴∠2=∠3=35°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:804=8.04×102,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【考点】U1:简单几何体的三视图.【分析】任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.【解答】解:三棱锥,圆柱,圆锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选:A.【点评】本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.6.【考点】AA:根的判别式;C4:在数轴上表示不等式的解集.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.【解答】解:∵关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,∴,解得:k>﹣1.故选:A.【点评】本题考查了根的判别式、一元二次方程的定义以及在数轴上表示不等式的解集,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.7.【考点】X4:概率公式.【分析】根据轴对称图形和中心对称图形的定义先找出图形,再根据概率公式即可得出答案.【解答】解:A、∵轴对称图形有①②④,∴是轴对称图形的概率是,故本选项错误;B、∵中心对称图形有②③,∴是中心对称图形的概率是,故本选项错误;C、∵轴对称图形又是中心对称图形②,∴是轴对称图形又是中心对称图形的概率是,故本选项正确;D、∵是轴对称图形但不是中心对称图形①④,∴是轴对称图形但不是中心对称图形的概率是,故本选项错误;故选:C.【点评】此题考查了概率公式,熟练掌握轴对称图形和中心对称图形的定义以及概率=所求情况数与总情况数之比是解题的关键.8.【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选:B.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.【考点】PA:轴对称﹣最短路线问题.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10.【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>0,得到a﹣b+c>0,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),∴抛物线过原点,结论①正确;②∵当x=﹣1时,y>0,∴a﹣b+c>0,结论②错误;③当x<1时,y随x增大而减小,③错误;④抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤∵抛物线的顶点坐标为(2,b),∴ax2+bx+c=b时,b2﹣4ac=0,⑤正确;综上所述,正确的结论有:①④⑤.故选:B.【点评】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上.11.【考点】78:二次根式的加减法.【分析】先化简二次根式,再合并同类二次根式即可得.【解答】解:原式=3﹣2=,故答案为:.【点评】本题主要考查二次根式的加减,解题的关键是掌握二次根式的加减运算顺序和法则.12.【考点】E4:函数自变量的取值范围;62:分式有意义的条件;72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可求出自变量x的取值范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.【考点】W4:中位数;W1:算术平均数.【分析】根据平均数为5,求出a的值,然后根据中位数的概念,求解即可.【解答】解:∵该组数据的平均数为5,∴,∴a=6,将这组数据按照从小到大的顺序排列为:2,4,6,6,7,可得中位数为:6,故答案为:6.【点评】本题考查了中位数和算术平均数的知识,解答本题的关键是排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据尺规作图可知四边形BDEF是菱形,然后利用相似三角形的性质即可求出答案.【解答】解:由尺规作图可知:四边形BDEF是菱形,∴DE∥BC,BD=DE,∴△ADE∽△ABC∴,设AD=x,∴BD=6﹣x ,∴解得:x=3.6故答案为:3.6【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用菱形的判定与性质,本题属于中等题型.15.【考点】MO :扇形面积的计算.【分析】先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC ,AC 的长,利用S △ABC ﹣S 扇形BOE =图中阴影部分的面积求出即可.【解答】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE ∥AD ,∵OA=2,∴AD=4,∴AB=ADcos30°=2,∴BC=AB=,∴AC===3,∴S △ABC =×BC ×AC=××3=,∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =﹣=﹣.故答案为:﹣.【点评】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE 和△ABE 面积相等是解题关键.16.【考点】S8:相似三角形的判定;LB :矩形的性质.【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【解答】解:①当△APD ∽△PBC 时,=,即=,解得:PD=1,或PD=4;②当△PAD ∽△PBC 时,=,即=,解得:DP=2.5.综上所述,DP 的长度是1或4或2.5.故答案是:1或4或2.5.【点评】本题考查了矩形的性质,相似三角形的判定与性质.对于动点问题,需要分类讨论,以防漏解.三、解答题(本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.)17.【考点】6D :分式的化简求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【解答】解:原式=÷[﹣]=•=,当x=+1时,原式===.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.18.【考点】VC:条形统计图;VB:扇形统计图;X6:列表法与树状图法.【分析】(1)用特别好(A)的人数÷特别好的百分数,得出调查的学生数,根据扇形图得出“D”类别人数及女生数,再求女生总人数;(2)由女生数及总人数,得出男生数及“D”类别男生数,再求“C”类别女生数,补充条形统计图;(3)由计算可知,A类别1男2女,D类别1男1女,利用列表法求解.【解答】解:(1)调查学生数为3÷15%=20(人),“D”类别学生数为20×(1﹣25%﹣15%﹣50%)=2(人),其中男生为2﹣1=1(人),调查女生数为20﹣1﹣4﹣3﹣1=11(人),故答案为:20,11;(2)补充条形统计图如图所示;(3)根据胡老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:利用图表可知所选两位同学恰好是一位男同学和一位女同学的概率为.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在Rt△CDE中,利用锐角三角函数的定义得出CE的长,根据BC=BE﹣CE即可得出结论.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m.答:障碍物B,C两点间的距离为(70﹣10)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.【考点】AD:一元二次方程的应用.【分析】(1)设竖通道的宽为xm,则横通道的宽为2xm,除通道外部分场地可拼成长(30﹣2x)m、宽(20﹣4x)m的长方形,根据长方形的面积公式结合通道所占面积是整个场地面积的,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总投资=道路面积×1m2道路造价+草地面积×种植1m2花草费用,即可求出结论.【解答】解:(1)设竖通道的宽为xm,则横通道的宽为2xm.根据题意得:(30﹣2x)(20﹣4x)=30×20×(1﹣),整理得:x2﹣20x+19=0,解得:x1=1,x2=19(不合题意,舍去),∴2x=2.答:横通道宽2m,竖通道宽1m.(2)30×20××750+30×20××250,=114000+112000,=226000(元).答:此次修建需要投资226000元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据总价=单价×数量,求出总投资钱数.21.【考点】G7:待定系数法求反比例函数解析式;G6:反比例函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】(1)根据线段OA、AB的长度易得点B的坐标,把点B的坐标代入函数解析式求得k的值即可;(2)由直线OP把△OBD的周长分成相等的两部分且OB=OD,知DQ=BQ,即点Q为BD的中点,从而得出点Q坐标,求得直线OP解析式,代入反比例函数解析式可得点P坐标.【解答】解:(1)∵OA=2,AB=1,∴B(2,1),把B(2,1)代入y=中,得k=2,∴y=;(2)设OP与BD交于点Q,∵OP将△OBD的周长分成相等的两部分,又OB=OD,OQ=OQ,∴BQ=DQ,即Q为BD的中点,∴Q(,).设直线OP的解析式为y=kx,把Q(,)代入y=kx,得=k,∴k=3.∴直线BD的解析式为y=3x.由,得,,∴P1(,),P2(﹣,﹣).【点评】本题主要考查待定系数求函数解析式及反比例函数图象上点的坐标特征,熟练掌握待定系数法求函数解析式及根据周长相等得出点Q的坐标是解题的关键.22.【考点】ME:切线的判定与性质;M5:圆周角定理.【分析】(1)连接BC,根据圆周角定理得到∠D=∠C,根据题意得到∠EAB=∠C,得到∠CAE=90°,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明Rt△AFE∽Rt△BAC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接BC,由圆周角定理得,∠D=∠C.∵∠EAB=∠D,∴∠EAB=∠C,∵AC是⊙O的直径,∴∠ABC=90°,∴∠EAB+∠CAB=90°,∴∠CAE=90°,∴AE与⊙O相切;(2)∵∠ABC=90°,AB=2,CB=2,∴AC==6,由(1)知∠OAE=90°,在Rt△EAF中,∵B是F的中点,∴EF=2AB=4,∴∠BAF=∠BFA.∵∠ABC=∠EAF,∴Rt△AFE∽Rt△BAC,∴=,即=,解得,AE=4.【点评】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.23.【考点】HE:二次函数的应用.【分析】(1)①根据图象可以求出当1≤x≤20时,m与x间关系式;②根据表格中的关系式可以解答本题;(2)根据题意和表格中的关系式可以得到该基地销售这种果苗30天里每天所获利润y(元)关于x(天)的函数关系式;(3)根据(2)中的关系式可以求得基地负责人这次为“精准扶贫”捐赠多少钱.【解答】解:(1)①设当1≤x≤20时,m与x之间的函数关系式为m=kx+b,,得,即当1≤x≤20时,m与x之间的函数关系式为m=,故答案为:m=;②当1≤x≤20时,令m=25,25=,解得,x=10,当21≤x≤30时,令m=25,则25=10+,解得,x=28,经检验x=28是原分式方程的解,答:第10天或第28天该果苗单价为25元/株;(2)分两种情况,①当1≤x≤20时,y=(m﹣10)n=(20+x﹣10)(﹣x+50)=﹣x2+15x+500,②当21≤x≤30时,y=(10+﹣10)(﹣x+50)=﹣420,综上,y=;(3)①当1≤x≤20时,y=﹣x2+15x+500=﹣(x﹣15)2+,∵a=﹣<0,=612.5,∴当x=15时,y最大=②21≤x≤30时,由y=﹣420知,y随x的增大而减小,﹣420=580,∴当x=21时,y最大=∵580<612.5,∴基地负责人向“精准扶贫”捐了612.5元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数关系式,利用数形结合的思想解答.24.【考点】LO:四边形综合题.【分析】问题背景:先判断出∠EBD=∠FBD=30°,进而得出∠BED=60°,即可得出结论;迁移应用:先判断出△BPG为等边三角形,进而得出BG=BP,∠PBG=60°,PB=BG,即可判断△APB≌△CBG,即可得出结论;拓展延伸:(1)利用对称即可得出结论;(2)由(1)知,△BEF是等边三角形,进而得出EF,AE=AB,即可求出DH=HE=DE=3,再判断出∠EFA=∠EFB=30°,最后用三角函数即可得出结论.【解答】解:问题背景:证明:∵△ABC为等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,由题意得,∠ABE=30°,∠EBF=60°,∴∠EBD=∠FBD=30°,∵BD⊥AC,∴∠BED=60°,∴△BEF为等边三角形;迁移应用:PC=PA+PB,证明:如图2,在PC上截取PD=PB,连接BD,∵∠BPC=60°,∴△BPG为等边三角形,∴BG=BP,∠PBG=60°,PB=BG,∴∠PBA+∠ABG=∠ABG+∠GBC=60°∴∠PBA=∠GBC,又AB=BC,∴△APB≌△CBG,∴PA=GC,∴PC=PG+CG=PB+PA,拓展延伸:(1)如图3,∵B,E两点关于直线AF对称,∴FE=FB,∵∠EBF=60°,∴△BEF是等边三角形;(2)由(1)知,△BEF是等边三角形,连接AE,过点A作AH⊥DE于点H,∵B,E两点关于直线AF对称,∴AE=AB,∵四边形ABCD是菱形,∴AB=AD,∴AE=AD,∴DH=HE=DE=3,∴HF=HE+EF=3+2=5,由(1)知,△BEF是等边三角形,FA⊥EB,∴∠EFA=∠EFB=30°,在Rt△AHF中,cos∠HFA==,∴AF===.【点评】此题是四边形综合题,主要考查了菱形的性质,等边三角形的判定和性质,旋转的性质,对称的性质,全等三角形的判定和性质,锐角三角函数,作出辅助线是解本题的关键.25.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△BEF,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△BEF中∴△PQN≌△BEF(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).【点评】本题为二次函数的综合应用,涉及待定系数法、平移的性质、全等三角形的判定和性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)注意待定系数法的应用,在(2)中求得平移后C点的对应点的坐标是解题的关键,在(3)中确定出Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档