2012年广东省高考数学试题(文科)-标准答案和解析

合集下载

2012年广东省高考文科数学试题参考答案+试卷分析

2012年广东省高考文科数学试题参考答案+试卷分析

2012年普通高等学校招生全国统一考试 (广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设i 为虚数单位,则复数34i i+=A. 43i i --B. 43i i -+C. 43i +D. 43i - 解:分子分母同乘以-i ,得D 选项为正确选项 2.设集合U={1.2.3.4.5.6},M={1.3.5},则U M ð= A.{2.4.6} B.{1.3.5} C.{1.2.4} D.U 解:A3.若向量(1,2)AB = ,(3,4)BC =,则AC =A.(4.6)B.(-4,-6)C.(-2,-2)D.(2,2) 解:AC=AB+BC=(4,6),选A 4.下列函数为偶函数的是.sin A y x = 3.B y x = .x C y e =2.l n 1D y x =+ 解:A 、B 为奇函数,C 非奇非偶函数,所以选D 分析:前4题难度不大,属于基础考察。

5.已知变量x ,y 满足约束条件11.10 x y x y x +≤⎧⎪-≤⎨⎪+≥⎩则z=x+2y 的最小值为 6.A .3 B.1 C.-5 D.-6 解:画出可行域可知,当x=-1,y=-2时Z 有最小值为-5,选C 6.在ABC 中,若A ∠=60°, ∠B=45°,BC=32,则AC= A .43 B 23 C.3 D32解:BC=a ,AC=b ,用正弦定理解得b=asinB/sinA=3√2*(√2/2)/(√3/2)=2√3,选B 7.某几何的三视图如图1所示,它的体积为A .72πB 48π C.30π D.24π解:上半部分为半圆,下半部分为圆锥,选C8.在平面直角坐标系xOy 中,直线3x+4y-5=0与圆2x +2y =4相交A 、B 两点,则弦AB 的长等于 A .33 B23 C 3 D 1 解:因为弦心距为1d =,所以弦AB 的长等于24123-=,选B 9.执行如图2所示的程序图,若输入n 的值为6,则输出s 的值为A .105B .16C .15D .1 解:选C分析:第56789题是中等难度的题型,计算量比前4题稍大 10.对任意两个非零的平面向量α和β,定义=αβαβββ. 若两个非零的平面向量a ,b 满足a 与b 的夹角,42ππθ⎛⎫∈ ⎪⎝⎭,且.a b 和.b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎭⎩中,则.a b =A .52 B .32 C .1 D .12解:a b =a ﹒b/b ﹒b=|a||b|cos θ/|b|^2=|a|cos θ/|b|b 。

2012年高考文科数学广东卷(含详细答案)

2012年高考文科数学广东卷(含详细答案)

数学试卷 第1页(共33页)数学试卷 第2页(共33页)数学试卷 第3页(共33页)绝密★启用前2012年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共6页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:球的体积公式34π3V R =,其中R 为球的半径.锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一组数据12,,,n x x x的标准差s = 其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设i 为虚数单位,则复数3+4ii= ( )A .43i --B .43i -+C .43i +D .43i - 2. 设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U M =ð( )A .{2,4,6}B . {1,3,5}C . {1,2,4}D .U3. 若向量(1,2)AB =,(3,4)BC =,则AC = ( )A .(4,6)B .(4,6)--C .(2,2)--D .(2,2) 4. 下列函数为偶函数的是( )A .sin y x =B .3y x =C .e x y =D.y =5. 已知变量x ,y 满足约束条件1110 x y x y x +⎧⎪-⎨⎪+⎩≤≤≥,则2z x y =+的最小值为( )A .3B .1C .5-D .6-6. 在△ABC 中,若60A ∠=,45B ∠=,BC =,则AC = ( )A. B. CD7. 某几何体的三视图如图1所示,它的体积为 ( )A .72πB .48πC .30πD .24π8. 在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( )A. B. CD .19. 执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为( )A .105B .16C .15D .110. 对任意两个非零的平面向量α和β,定义=αβαβββ. 若两个非零的平面向量a ,b 满足a 与b 的夹角ππ()42θ∈,,且a b 和b a 都在集合{|}2n n ∈Z 中,则=a b( ) A .52B .32C .1D .12二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.函数y =_______. 12.若等比数列{}n a 满足2412a a =,则2135a a a =________.13.由正整数组成的一组数据1x ,2x ,3x ,4x ,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)(二)选做题(14—15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,π02θ≤≤)和1x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为________.15.(几何证明选讲选做题)如图3所示,直线PB 与圆O相切于点B ,D 是弦AC 上的点,PBA DBA ∠=∠.若AD m =,AC n =,则AB =_______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()cos()46x f x A =+,x ∈R ,且π()3f =. (Ⅰ)求A 的值;(Ⅱ)设π[0,]2αβ,∈,430(4π)317f α+=-,28(4π)35f β-=,求cos()αβ+的值.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共33页) 数学试卷 第5页(共33页) 数学试卷 第6页(共33页)17.(本小题满分13分)某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中a 的值;(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;(Ⅲ)若这100名学生语文成绩某些分数段的人数()x 与数学成绩相应分数段的人数()y 之比如下表所示,求数学成绩在[50,90)之外的人数.18.(本小题满分13分)如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,AB CD ∥,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为PAD △中AD 边上的高. (Ⅰ)证明:PH ⊥平面ABCD ;(Ⅱ)若1PH =,AD 1FC =,求三棱锥E BCF -的体积; (Ⅲ)证明:EF ⊥平面PAB .19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n n T S n =-,*n ∈N . (Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式.20.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上. (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程.21.(本小题满分14分)设1a <<,集合{|0}A x x =∈>R ,2{|23(1)60}B x x a x a =∈-++>R ,D A B =.(Ⅰ)求集合D (用区间表示);(Ⅱ)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.3 / 11【答案】A【解析】(1,2)AC AB BC =+=【提示】给出两向量坐标,根据向量加法公式进行计算。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12 (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A )A +B 为1a ,2a ,…,N a 的和(B )2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0<x ≤12时,4log x a x <,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。

2012年高考新课标卷数学(文科数学、理科数学)试卷真题及参考答案word版

2012年高考新课标卷数学(文科数学、理科数学)试卷真题及参考答案word版

2012年高考新课标卷数学(文科数学、理科数学)试卷真题及参考答案(河南、河北、黑龙江、吉林、宁夏、山西、内蒙古、新疆、云南)绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3、第Ⅰ卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。

在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。

(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。

在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。

(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。

2012年广东省高考数学试卷(文科)答案与解析

2012年广东省高考数学试卷(文科)答案与解析

2012年广东省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i为虚数单位,则复数=()A.﹣4﹣3i B.﹣4+3i C.4+3i D.4﹣3i2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,3,5},则∁U M=()A.{2,4,6} B.{1,3,5} C.{1,2,4} D.U3.(5分)(2012•广东)若向量=(1,2),=(3,4),则=()A.(4,6)B.(﹣4,﹣6)C.(﹣2,﹣2)D.(2,2)4.(5分)(2012•广东)下列函数为偶函数的是()A.y=sinx B.y=x3C.y=e x D.5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=x+2y的最小值为()A.3B.1C.﹣5 D.﹣66.(5分)(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.7.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.30πD.24π8.(5分)(2012•广东)在平面直角坐标系xOy中,直线3x+4y﹣5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于()A.3B.2C.D.19.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.110.(5分)(2012•广东)对任意两个非零的平面向量和,定义°=.若两个非零的平面向量,满足与的夹角,且•和•都在集合中,则•=()A.B.C.1D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)(二)选做题(14~15题,考生只能从中选做一题)11.(5分)(2012•广东)函数的定义域是.12.(5分)(2012•广东)若等比数列{a n}满足a2a4=,则a1a32a5=.13.(5分)(2012•广东)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为.(从小到大排列)14.(5分)(2012•广东)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为(θ为参数,)和(t为参数),则曲线C1和C2的交点坐标为.15.(2012•广东)如图所示,直线PB与圆O相切于点B,D是弦AC上的点,∠PBA=∠DBA.若AD=m,AC=n,则AB=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数,x∈R,且(1)求A的值;(2)设,,,求cos(α+β)的值.17.(13分)(2012•广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x:y 1:1 2:1 3:4 4:518.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,,FC=1,求三棱锥E﹣BCF的体积;(3)证明:EF⊥平面PAB.19.(14分)(2012•广东)设数列{a n}前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n ﹣n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C1:(a>b>0)的左焦点为F1(﹣1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.21.(14分)(2012•广东)设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a >0},D=A∩B.(1)求集合D(用区间表示)(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.2012年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•广东)设i为虚数单位,则复数=()A.﹣4﹣3i B.﹣4+3i C.4+3i D.4﹣3i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数相除,分子和分母同时乘以分母的共轭复数,以及虚数单位i的幂运算性质,运算求得结果.解答:解:∵,故选D.点评:本题主要考查两个复数代数形式的除法,两个复数相除,分子和分母同时乘以分母的共轭复数,虚数单位i的幂运算性质,属于基础题.2.(5分)(2012•广东)设集合U={1,2,3,4,5,6},M={1,3,5},则∁U M=()A.{2,4,6} B.{1,3,5} C.{1,2,4} D.U考点:补集及其运算.专题:集合.分析:直接根据集合的补集的定义以及条件,求出∁U M.解答:解:∵集合U={1,2,3,4,5,6},M={1,3,5},则∁U M={2,4,6},故选A.点评:本题主要考查集合的表示方法、求集合的补集,属于基础题.3.(5分)(2012•广东)若向量=(1,2),=(3,4),则=()A.(4,6)B.(﹣4,﹣6)C.(﹣2,﹣2)D.(2,2)考点:平面向量的坐标运算.专题:平面向量及应用.分析:由,,利用能求出.解答:解:∵,,∴.故选A.点评:本题考查平面向量的坐标运算,是基础题.解题时要认真审题,仔细解答.4.(5分)(2012•广东)下列函数为偶函数的是()A.y=sinx B.y=x3C.y=e x D.考点:函数奇偶性的判断.专题:函数的性质及应用.分析:结合选项,逐项检验是否满足f(﹣x)=f(x),即可判断解答:解:A:y=sinx,则有f(﹣x)=sin(﹣x)=﹣sinx为奇函数B:y=x3,则有f(﹣x)=(﹣x)3=﹣x3=﹣f(x)为奇函数,C:y=e x,则有f(﹣x)=,为非奇非偶函数.D:y=ln,则有F(﹣x)=ln=f(x)为偶函数故选D点评:本题主要考查了函数的奇偶行的判断,解题的关键是熟练掌握基本定义5.(5分)(2012•广东)已知变量x,y满足约束条件,则z=x+2y的最小值为()A.3B.1C.﹣5 D.﹣6考点:简单线性规划.专题:不等式的解法及应用.分析:先画出线性约束条件的可行域,再将目标函数赋予几何意义,数形结合即可得目标函数的最值解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最小,此时z最小.由,解得,即B(﹣1,﹣2),代入目标函数z=x+2y得z=﹣1+2×(﹣2)=﹣5.即目标函数z=x+2y的最小值为﹣5.故选:C.点评:本题主要考查了线性规划的思想和方法,二元一次不等式表示平面区域的知识,数形结合解决问题的思想方法,属基础题6.(5分)(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:解三角形.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题7.(5分)(2012•广东)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.30πD.24π考点:由三视图求面积、体积.专题:空间位置关系与距离;立体几何.分析:由题意,结合图象可得该几何体是圆锥和半球体的组合体,根据图中的数据即可计算出组合体的体积选出正确选项解答:解:由图知,该几何体是圆锥和半球体的组合体,球的半径是3,圆锥底面圆的半径是3,圆锥母线长为5,由圆锥的几何特征可求得圆锥的高为4,则它的体积V=V圆锥+V半球体==30π故选C点评:本题考查由三视图求体积,解题的关键是由三视图得出几何体的几何特征及相关的数据,熟练掌握相关几何体的体积公式也是解题的关键8.(5分)(2012•广东)在平面直角坐标系xOy中,直线3x+4y﹣5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于()A.3B.2C.D.1考点:直线与圆相交的性质.专题:直线与圆.分析:由直线与圆相交的性质可知,,要求AB,只要求解圆心到直线3x+4y﹣5=0的距离解答:解:由题意可得,圆心(0,0)到直线3x+4y﹣5=0的距离,则由圆的性质可得,,即.故选B点评:本题主要考查了直线与圆相交性质的应用,点到直线的距离公式的应用,属于基础试题9.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.1考点:循环结构.专题:算法和程序框图.分析:本循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1),由此能够求出结果.解答:解:如图所示的循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1)∴输入n的值为6时,输出s的值s=1×3×5=15.故选C.点评:本题考查当型循环结构的性质和应用,是基础题.解题时要认真审题,仔细解答.10.(5分)(2012•广东)对任意两个非零的平面向量和,定义°=.若两个非零的平面向量,满足与的夹角,且•和•都在集合中,则•=()A.B.C.1D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求出•=,n∈N,•=,m∈N,再由cos2θ=∈(0,),故m=n=1,从而求得•=的值.解答:解:∵°•=====,n∈N.同理可得°•====,m∈N.再由与的夹角,可得cosθ∈(0,),∴cos2θ=∈(0,),故m=n=1,∴•==,故选:D.点评:本题主要考查两个向量的数量积的定义,求得m=n=1,是解题的关键,属于中档题.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)(二)选做题(14~15题,考生只能从中选做一题)11.(5分)(2012•广东)函数的定义域是[﹣1,0)∪(0,+∞).考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据影响定义域的因素知,分母不为零,且被开方式非负,即,解此不等式组即可求得函数的定义域.解答:解:要使函数有意义,须,解得x≥﹣1且x≠0∴函数的定义域是[﹣1,0)∪(0,+∞).故答案为[﹣1,0)∪(0,+∞).点评:此题是个基础题.考查函数定义域及其求法,注意影响函数定义域的因素有:分母不等于零,偶次方根的被开方式非负,对数的真数大于零等.12.(5分)(2012•广东)若等比数列{a n}满足a2a4=,则a1a32a5=.考点:等比数列的性质.专题:等差数列与等比数列.分析:由等比数列{a n}的性质可得=,再次利用等比数列的定义和性质可得.解答:解:∵等比数列{a n}满足=,则,故答案为.点评:本题主要考查等比数列的定义和性质,属于基础题.13.(5分)(2012•广东)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为1,1,3,3.(从小到大排列)考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:由题意,可设x1≤x2≤x3≤x4,,根据题设条件得出x1+x2+x3+x4=8,,再结合中位数是2,即可得出这组数据的值.解答:解:不妨设x1≤x2≤x3≤x4,,依题意得x1+x2+x3+x4=8,,即,所以(x4﹣2)2<4,则x4<4,结合x1+x2+x3+x4=8,及中位数是2,只能x1=x2=1,x3=x4=3,则这组数据为1,1,3,3.故答案为:1,1,3,3.点评:本题考查中位数,平均数,标准差,解题的关键是利用相关公式建立方程,作了正确判断.14.(5分)(2012•广东)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为(θ为参数,)和(t为参数),则曲线C1和C2的交点坐标为(2,1).考点:圆的参数方程;直线与圆相交的性质;直线的参数方程.专题:坐标系和参数方程.分析:先把曲线C1和C2的参数方程化为普通方程,然后联立直线与曲线方程可求交点坐标解答:解:曲线C1的普通方程为x2+y2=5(),曲线C2的普通方程为y=x﹣1 联立方程x=2或x=﹣1(舍去),则曲线C1和C2的交点坐标为(2,1).故答案为:(2,1)点评:本题主要考查了直线与曲线方程的交点坐标的求解,解题的关键是要把参数方程化为普通方程15.(2012•广东)如图所示,直线PB与圆O相切于点B,D是弦AC上的点,∠PBA=∠DBA.若AD=m,AC=n,则AB=.考点:弦切角;与圆有关的比例线段.专题:直线与圆.分析:利用题设条件,由弦切角定理得∠PBA=∠C=∠DBA,故△ABD∽△ACB,,由此能求出结果.解答:解:如图所示,直线PB与圆O相切于点B,D是弦AC上的点,∵∠PBA=∠DBA.若AD=m,AC=n,∴由弦切角定理得∠PBA=∠C=∠DBA,∴△ABD∽△ACB,∴,∴AB2=AC•AD=mn,即.故答案为:.点评:本题考查与圆有关的线段的应用,是基础题.解题时要认真审题,注意弦切角定理的合理运用.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2012•广东)已知函数,x∈R,且(1)求A的值;(2)设,,,求cos(α+β)的值.考点:两角和与差的余弦函数;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的求值.分析:(1)将代入函数解析式,利用特殊角三角函数值即可解得A的值;(2)先将,代入函数解析式,利用诱导公式即可得sinα、cosβ的值,再利用同角三角函数基本关系式,即可求得cosα、sinβ的值,最后利用两角和的余弦公式计算所求值即可解答:解:(1),解得A=2(2),即,即因为,所以,,所以.点评:本题主要考查了三角变换公式在化简求值中的应用,诱导公式、同角三角函数基本关系式的应用,特殊角三角函数值的运用,属基础题17.(13分)(2012•广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x:y 1:1 2:1 3:4 4:5考点:用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数.专题:概率与统计.分析:(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果即得;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[50,90)之外的人数.解答:解:(1)依题意得,10(2a+0.02+0.03+0.04)=1,解得a=0.005;(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分);(3)数学成绩在[50,60)的人数为:100×0.05=5,数学成绩在[60,70)的人数为:,数学成绩在[70,80)的人数为:,数学成绩在[80,90)的人数为:,所以数学成绩在[50,90)之外的人数为:100﹣5﹣20﹣40﹣25=10.点评:本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解.18.(13分)(2012•广东)如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,,FC=1,求三棱锥E﹣BCF的体积;(3)证明:EF⊥平面PAB.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:(1)因为AB⊥平面PAD,所以PH⊥AB,因为PH为△PAD中AD边上的高,所以PH⊥AD,由此能够证明PH⊥平面ABCD.(2)连接BH,取BH中点G,连接EG,因为E是PB的中点,所以EG∥PH,因为PH⊥平面ABCD,所以EG⊥平面ABCD,由此能够求出三棱锥E﹣BCF的体积.(3)取PA中点M,连接MD,ME,因为E是PB的中点,所以,因为ME,所以ME DF,故四边形MEDF是平行四边形.由此能够证明EF⊥平面PAB.解答:解:(1)证明:∵AB⊥平面PAD,∴PH⊥AB,∵PH为△PAD中AD边上的高,∴PH⊥AD,∵AB∩AD=A,∴PH⊥平面ABCD.(2)如图,连接BH,取BH中点G,连接EG,∵E是PB的中点,∴EG∥PH,∵PH⊥平面ABCD,∴EG⊥平面ABCD,则,∴=(3)证明:如图,取PA中点M,连接MD,ME,∵E是PB的中点,∴ME,∵,∴ME DF,∴四边形MEDF是平行四边形,∴EF∥MD,∵PD=AD,∴MD⊥PA,∵AB⊥平面PAD,∴MD⊥AB,∵PA∩AB=A,∴MD⊥平面PAB,∴EF⊥平面PAB.点评:本题考查直线与平面垂直的证明,求三棱锥的体积,解题时要认真审题,注意合理地化立体几何问题为平面几何问题.19.(14分)(2012•广东)设数列{a n}前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n ﹣n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.考点:数列递推式.专题:等差数列与等比数列.分析:(1)当n=1时,T1=2S1﹣1.由T1=S1=a1,所以a1=2a1﹣1,能求出a1.(2)当n≥2时,S n=T n﹣T n﹣1=2S n﹣n2﹣[2S n﹣1﹣(n﹣1)2]=2S n﹣2S n﹣1﹣2n+1,所以S n=2S n﹣1+2n﹣1,S n+1=2S n+2n+1,故a n+1=2a n+2,所以=2(n≥2),由此能求出数列{a n}的通项公式.解答:解:(1)当n=1时,T1=2S1﹣1因为T1=S1=a1,所以a1=2a1﹣1,求得a1=1(2)当n≥2时,所以S n=2S n﹣1+2n﹣1①所以S n+1=2S n+2n+1②②﹣①得a n+1=2a n+2所以a n+1+2=2(a n+2),即(n≥2)求得a1+2=3,a2+2=6,则所以{a n+2}是以3为首项,2为公比的等比数列所以所以,n∈N*.点评:本题考查数列的首项和数列的通项公式的求法,解题时要认真审题,注意迭代法的合理运用.20.(14分)(2012•广东)在平面直角坐标系xOy中,已知椭圆C1:(a>b>0)的左焦点为F1(﹣1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)因为椭圆C1的左焦点为F1(﹣1,0),所以c=1,点P(0,1)代入椭圆,得b=1,由此能求出椭圆C1的方程.(2)设直线l的方程为y=kx+m,由,得(1+2k2)x2+4kmx+2m2﹣2=0.因为直线l与椭圆C1相切,所以△=16k2m2﹣4(1+2k2)(2m2﹣2)=0.由此能求出直线l的方程.解答:解:(1)因为椭圆C1的左焦点为F1(﹣1,0),所以c=1,点P(0,1)代入椭圆,得,即b=1,所以a2=b2+c2=2所以椭圆C1的方程为.(2)直线l的斜率显然存在,设直线l的方程为y=kx+m,由,消去y并整理得(1+2k2)x2+4kmx+2m2﹣2=0,因为直线l与椭圆C1相切,所以△=16k2m2﹣4(1+2k2)(2m2﹣2)=0整理得2k2﹣m2+1=0①由,消去y并整理得k2x2+(2km﹣4)x+m2=0因为直线l与抛物线C2相切,所以△=(2km﹣4)2﹣4k2m2=0整理得km=1②综合①②,解得或所以直线l的方程为或.点评:本题考查椭圆方程的求法,考查直线与圆锥曲线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(14分)(2012•广东)设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a >0},D=A∩B.(1)求集合D(用区间表示)(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.考点:利用导数研究函数的极值;交集及其运算;一元二次不等式的解法.专题:导数的综合应用;集合.分析:(1)根据题意先求不等式2x2﹣3(1+a)x+6a>0的解集,判别式△=9(1+a)2﹣48a=9a2﹣30a+9=3(3a﹣1)(a﹣3),通过讨论△>0,△=0,△<0分别进行求解.(2)对函数f(x)求导可得f′(x)=6x2﹣6(1+a)x+6a=6(x﹣a)(x﹣1),由f′(x)=0,可得x=a或x=1,结合(1)中的a的范围的讨论可分别求D,然后由导数的符号判定函数f(x)的单调性,进而可求极值解答:解:(1)令g(x)=2x2﹣3(1+a)x+6a,△=9(1+a)2﹣48a=9a2﹣30a+9=3(3a﹣1)(a﹣3).①当时,△≥0,方程g(x)=0的两个根分别为,所以g(x)>0的解集为因为x1,x2>0,所以D=A∩B=②当时,△<0,则g(x)>0恒成立,所以D=A∩B=(0,+∞)综上所述,当时,D=;当时,D=(0,+∞).(2)f′(x)=6x2﹣6(1+a)x+6a=6(x﹣a)(x﹣1),令f′(x)=0,得x=a或x=1,①当时,由(1)知D=(0,x1)∪(x2,+∞)因为g(a)=2a2﹣3(1+a)a+6a=a(3﹣a)>0,g(1)=2﹣3(1+a)+6a=3a﹣1≤0 所以0<a<x1<1≤x2,所以f′(x),f(x)随x的变化情况如下表:x (0,a) a (a,x1)(x2,+∞)f′(x)+ 0 ﹣+f(x)↗极大值↘↗所以f(x)的极大值点为x=a,没有极小值点.②当时,由(1)知D=(0,+∞)所以f′(x),f(x)随x的变化情况如下表:x (0,a) a (a,1) 1 (1,+∞)f′(x)+ 0 ﹣0 +f(x)↗极大值↘极小值↗所以f(x)的极大值点为x=a,极小值点为x=1综上所述,当时,f(x)有一个极大值点x=a,没有极小值点;当时,f(x)有一个极大值点x=a,一个极小值点x=1.点评:本题主要考查了一元二次不等式与二次不等式关系的相互转化,体现了分类讨论思想的应用,函数的导数与函数的单调性、函数的极值的关系的应用.。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB=a ,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=13.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为() A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x 轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1,所以21 2a=,213 122S=+=.显然只有B项符合.7.C由题意可采用分步乘法计数原理,甲的排法种数为14A,剩余5人进行全排列:55A,故总的情况有:14A·55A=480种.故选C 项.8.D连结AC交BD于点O,连结OE,∵AB=2,∴AC=又1CC=AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为C H的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.9.D∵a·b=0,∴a⊥b.又∵|a|=1,|b|=2,∴||5AB=.∴||5CD==.∴2||25AD ==. ∴4544445()5555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m=.∴m 又24c ==, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>1log 2=,121e2z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12, ∴2112KX =,∴X 2为HD 中点,2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x )8展开式的通项为T r +1=8C r x 8-r(12x)r =C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin xx=1π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222213cos 5a a a a a AEA ⎛⎫⎛⎫+++- ⎪ ⎪∠==. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,… a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故PC =3EC =,FC = 从而PC FC =,ACEC =, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (23,0,23),B 2b,0). 于是PC =(220,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB =b,0). 设m =(x ,y ,z )为平面P AB 的法向量, 则m ·AP =0,m ·AB =0,即2z =0-by =0, 令x =b ,则m =(b,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-). 因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b = 于是n =(1,-1),DP =(2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A , P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2) P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x1=-1x2=-1当x∈(-∞,-1时,f′(x)>0,f(x)是增函数;当x∈(-11时,f′(x)<0,f(x)是减函数;当x∈(-1∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x1-a)+23ax1=23(a-1)x1-3a.同理,f(x2)=23(a-1)x2-3a.因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |=,即2r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离d ==.。

2012年广东高考数学文科试卷带详解

2012年广东高考数学文科试卷带详解

2012年普通高等学校招生全国统一考试(广东卷)数学(文科)参考公式:1、球的体积公式34π3V R =,其中,R 为球的半径; 2、锥体体积公式13V sh =,其中s 为底面积,h 为高;3、一组数据1234n x x x x x ,,,,,的标准差;s =,其中x 是这组数据的平均数. 一、选择题:本大题10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求的.1.设i 是虚数单位.则复数34ii+= ( ) A .43i -- B .43i -+ C .43i + D .43i -【测量目标】复数代数形式的四则运算.【考查方式】给出复数,根据2i 1-=对其进行化简. 【参考答案】D 【试题解析】34i (34i)(i)43i i i (i)++⨯-==-⨯-. 2.设集合{123456}U =,,,,,,{135}M =,,.则U M =ð ( ) A .{246},, B .{135},, C .{124},, D . U 【测量目标】集合的基本运算.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】A【试题解析】U 中除M 以外的元素所构成的集合.3.向量(12)AB = ,,向量(34)BC =,,则AC = ( ) A .(46),B .(46)--,C .(22)--,D .(22), 【测量目标】平面向量的坐标运算.【考查方式】给出两向量坐标,根据向量加法公式进行计算. 【参考答案】A【试题解析】(12)(34)(46)AC AB BC =+=+=,,,.4.下列函数是偶函数的是 ( )A .sin y x =B .3y x = C .e xy = D .y = 【测量目标】函数奇偶性的判断.【考查方式】根据12,x x x x ==-时12,y y 之间的关系进行判断.若12y y =,则为偶函数;若12y y =-,则为奇函数;否则既不是奇函数,也不是偶函数. 【参考答案】D【试题解析】选项A 、B 为奇函数,选项C 既不是奇函数,也不是偶函数.5.已知变量不等式组的解法.满足约束条件1110x y x y x +⎧⎪-⎨⎪+⎩,,,………则2z x y =+的最小值为 ( )A .3B .1C .5-D .6- 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出一组不等式,利用图象法求出z 的最小值. 【参考答案】C【试题解析】在平面直角坐标系中画出不等式范围图象,再画出直线22x zy -=+,求出z 2x y =+的最小值5-. (步骤1)不等式组表示的平面区域为如图所示的阴影部分,2z x y =+,可化为直线1122y x z =-+, (步骤2) 第5题图则当该直线过点(1,2)A --时,z 取得最小值, (步骤3)min 12(2)5z =-+⨯-=-. (步骤4)6.在ABC △中,若60A ∠=,45B ∠=,BC =则AC = ( )A..【测量目标】正弦定理.【考查方式】给出两角一边,利用正弦定理求出另一边. 【参考答案】B【试题解析】根据正弦定理:sin sin BC ACA B=,得sin sin 45sin sin 60BC B AC A ⋅===第7题 7.某几何体的三视图如图所示,它的体积为 ( ) A .72π B .48π C .30π D .24π 【测量目标】由三视图求几何体的体积.【考查方式】给出几何体的三视图,求其体积. 【参考答案】C【试题解析】该几何体是圆锥和半球体的组合体,则它的体积23114π34π330π323V V V =+=⋅⋅+⋅⋅=圆锥半球体.8. 在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A B ,两点,则弦A B 的长等于 ( )A ...1【测量目标】直线与圆的位置关系.【考查方式】给出直线与圆的方程,求弦长AB . 【参考答案】B【试题解析】∵圆心(00),到直线3450x y +-=的距离为1d ==,∴AB ===9.执行如图所示程序框图,若输入n 的值为6,则输出s 的值为 第9题图 ( )A .105B .16C .15D .1 【测量目标】流程图.【考查方式】给出程序框图,输入值,求输出值. 【参考答案】C【试题解析】13515s =⨯⨯=. 10.对任意两个非零平面向量α和β,定义∙=∙αβαβββ.若两个非零平面向量a ,b 满足a 与b 的夹角ππ(,)42θ∈,且 a b 和 b a 都在集合{|}2n n ∈Z 中,则 a b = ( )A .52 B .32 C .1 D .12【测量目标】平面向量的数量积运算.【考查方式】给出两平面向量之间的关系,求值. 【参考答案】D 【试题解析】2cos cos θθ⋅∙==∙a b a a b a b =b b b b, 2cos cos θθ⋅∙==∙b a b b a b a =a a a a, a b 和 b a 都在集合2n n ⎧⎫∈⎨⎬⎭⎩Z 中,即2cos θa b 和2cos θb a 是整数, 取π3θ=,则a b 和b a 是整数,则1==a b b a,则= a b 12. 二、填空题:本大题共5小题,考生答4小题,每小题5分,满分20分.11.函数y x=的定义域为 . 【测量目标】函数的定义域.【考查方式】由分母定义和根式定义求出其定义域. 【参考答案】[1,0)(0,)-+∞【试题解析】10100x x x x +⎧⇒-≠⎨≠⎩且……,即函数y x=的定义域为[)()1,00,-+∞ . 12.等比数列{}n a 满足2412a a =,则2135a a a = . 【测量目标】等比数列.【考查方式】由等比数列的性质求解. 【参考答案】14【试题解析】224312a a a ==,则24135314a a a a ==. 13.由正整数组成的一组数据1234x x x x ,,,,其平均数和中位数都是2,且标准差为1,则这组数据为 .(从小到大排列)【测量目标】用样本数字特征估计总体数字特征. 【考查方式】给出样本数字特征,进而求解总体数字. 【参考答案】1,1,3,3 【试题解析】不妨设1234x x x x 剟?,*1234,,,x x x x ∈N ,依题意得12348x x x x +++=,1s =, 即22221234(2)(2)(2)(2)4x x x x -+-+-+-=,∴43x …,则只能121x x ==,343x x ==,则这组数据为1,1,3,3. (二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧⎪⎨⎪⎩,,(θ为参数,π02θ剟)和=1=2x y ⎧⎪⎪⎨⎪-⎪⎩,,(t为参数).则曲线1c 和2c 交点坐标为 . 【测量目标】参数方程与普通方程的互化.【考查方式】将曲线的参数方程转化为普通方程,求其交点坐标. 【参考答案】(2,1)【试题解析】由x y θθ⎧⎪⇒⎨⎪⎩曲线1C 的方程为225x y +=(0x剟),由=12=x y ⎧-⎪⎪⇒⎨⎪⎪⎩曲线2C的方程为1y x =-,2251x y y x ⎧+=⇒⎨=-⎩2x =或1x =-(舍去), 则曲线1C 和2C 的交点坐标为(2,1).15.(几何证明选讲选做题)如图所示,直线PB 与圆O 相切于B ,D 是弦AC 上的点,PBA DBA ∠=∠,若AD m =,AC n =,则=AB . 【测量目标】圆的切线的判定与性质定理.【考查方式】由线、圆相切关系,求圆内切三角形的边长AB .【试题解析】∵直线PB 与圆O 相切于B ,∴PBA ACB ∠=∠,(步骤1) 第15题图 ∵PBA DBA ∠=∠,∴ACB DBA ∠=∠, (步骤2) ∵BAD CAB ∠=∠,∴ABD △∽ACB △, (步骤3) ∴AD AB AB AC=,∴2AB AD AC mn =⋅=, (步骤4)∴AB =.(步骤5)三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分) 已知函数π()cos()46xf x A =+,x ∈R,且π()3f = (1)求A 的值;(2)设α,π[0]2β∈,,4π30(4)317f α+=-,2π8(4)35f β-=,求cos()αβ+的值. 【测量目标】三角函数、三角恒等变换. 【考查方式】由函数解析式,直接求解.【试题解析】(1)∵ππππ()cos()cos 312642f A A A =+===2A =.(步骤1) (2)由(1)知π()2cos()46x f x =+∵4ππ30(4)2cos()2sin 3217f ααα+=+=-=-,∴15sin 17α=,(步骤2) ∵2π8(4)2cos 35f ββ-==,∴4cos 5β=,(步骤3) ∵ π[0]2αβ,∈,,∴8cos 17α==,3sin 5β==,(步骤4)∴cos()cos cos sin sin αβαβαβ+=-841531317517585=⨯-⨯=-.(步骤5)17.(本题满分13分)某校100名学生期中考试语文成绩频率分布直方图,如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.第17题图 【测量目标】频率分布直方图.【考查方式】由频率分布直方图,求未知数a 的值,样本数据的平均数及某一样本数据. 【试题解析】(1)由频率分布直方图中各个矩形的面积之和等于1, ∴(0.020.030.04)101a a ++++⨯=,∴0.005a =.(步骤1) (2)∵在区间[50,60),[60,70),[70,80),[80,90),[90,100] 的概率分别为0.05,0.4,0.3,0.2,0.05. ∴这100名学生语文成绩的平均分为550.05650.4750.3850.2950.0573⨯+⨯+⨯+⨯+⨯=.(步骤2)(3)∵语文成绩在这些分数段的人数人别为5,40,30,20,5,∴数学成绩在前四段分数段的人数人别为5,20,40,25,(步骤3) ∴数学成绩在[50,90)之外的人数为10人.(步骤4)18.(本题满分13分) 如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,AB ∥CD ,PD AD =,E 是PB 中点,F 是DC上的点,且12DF AB =,PH 为PAD △中AD 边上的高. (1)证明:PH ⊥平面ABCD ;(2)若1PH =,AD 1FC =,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB .【测量目标】点、线、面之间的位置关系,三棱锥的体积.【考查方式】给出线面垂直,线线平行,线线相等,线线成比例等关系,线段长度,求证线面垂直,三棱锥的体积.【试题解析】(1)证明:∵AB ⊥平面PAD ,PH ⊂平面PAD , 第18题图第18题图 19.(本题满分14分)设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n n T S n n =-∈*N ,. (1)求1a 的值;(2)求数列{}n a 的通项公式.【测量目标】数列的通项公式与前n 项和.【考查方式】由前n 项和的等式关系,直接求解. 【试题解析】(1)当1n =时,21121T S =-,∵111a S T ==,∴21121a a =-,∴11a =, (步骤1) (2)当2n …时,2211(22(1)]n n n n n S T T S n S n --=-=---)-[12()21n n S S n -=--+221n a n =-+, (步骤2)∵当n ≤2时,11(22122(1)1]n n n n n a S S a n a n --=-=-+--+)-[ (步骤3)∴122n n a a -=+, (步骤4) ∴122(2)n n a a -+=+, (步骤5)∴数列{2}n a +是以123a +=为首项,2为公比的等比数列, (步骤6) ∴1232n n a -+=⋅,∴1322n n a -=⋅-, (步骤7) ∵1111322a -==⋅-,∴1322n n a -=⋅-,n ∈*N . (步骤8)20.(本题满分14分)在平面直角坐标系xOy 中,已知椭圆22122:1(0)x y C a b a b+=>>的左焦点为1(10)F -,,且点(01)P ,在1C 上.(1)求椭圆1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.【测量目标】椭圆的标准方程,直线与椭圆、抛物线的位置关系.【考查方式】由椭圆的焦点坐标及点P 直接解得椭圆标准方程,直线方程分别与椭圆方程、抛物线方程联立,求解.【试题解析】(1)∵椭圆1C 的左焦点1(10)F -,,∴1c =, (步骤1) ∵点(01)P ,在1C 上,∴2222011a b+=,∴1b =, (步骤2) ∴2222a b c =+=, (步骤3)∴椭圆1C 的方程为2212x y +=. (步骤4)(2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,2212x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4220k x kmx m +++-=, (步骤5) ∵直线l 与椭圆1C 相切,∴2222164(12)(22)0k m k m ∆=-+-=, (步骤6) 整理得22210k m -+= ①24y xy kx m⎧=⎨=+⎩,消去y 并整理得222(24)0k x km x m +-+=, (步骤7) ∵直线l 与抛物线2C 相切,∴222(24)40km k m ∆=--= (步骤8) 整理得1km = ②综合①②,解得2k m ⎧=⎪⎨⎪=⎩或2k m ⎧=-⎪⎨⎪=⎩ (步骤9) ∴直线l的方程为y x =或y x =(步骤10)21.(本题满分14分)设01a <<,集合{}0A x x =∈>R ,2{23(1)60}B x x a x a =∈-++>R ,D A B = .(1)求集合D (用区间表示);(2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.【测量目标】集合的基本运算,函数的极值点.【考查方式】给出两集合,利用图象法求其交集,并求在此区间内某已知函数的极值点. 【试题解析】(1)方程223(1)60x a x a -++=, ∵229(1)489309a a a a ∆=+-=-+23(3103)3(31)(3)a a a a =-+=--,又01a << , ∴当103a <…时,0∆…, (步骤1)∴223(1)60x a x a -++=有两个根1x =,2x =, (步骤2)∴3(1)3(1)(,()44a a B ++=-∞+∞ (步骤3)∴3(1)(0,4a D A B +==3(1)()4a ++∞ ,(步骤4) ∴当113a <<时,0∆<, (步骤5) ∴223(1)60x a x a -++>一定成立, (步骤6)∴ (,)B =-∞+∞, (步骤7)∴ (0,)D A B ==+∞ . (步骤8)∴当103a <…时,D=)+∞ ;(步骤9) 当113a <<时,(0,)D =+∞. (步骤10) (2)2()66(1)66()(1)f x x a x a x a x '=-++=--, 令()0f x '=,得x a =或1x =, (步骤11)① 当103a <…时,由(1)知D =12(0,)(,)x x +∞ (步骤12) ∵3222()23(1)6(3)0f a a a a a a a =-++=->,(1)23(1)6310f a a a =-++=-…∴1201a x x <<<…, (步骤13) ∴(),()f x f x '随x 的变化情况如下表:(步骤14)∴()f x 的极大值点为x a =,没有极小值点; (步骤15)② 当113a <<时,由(1)知D =(0,)+∞∴(),()f x f x '随x 的变化情况如下表:(步骤16) ∴()f x 的极大值点为x a =,极小值点为1x =; (步骤17) 综上所述,当103a <…时,()f x 有一个极大值点x a =,没有极小值点;当113a <<时,()f x 有一个极大值点x a =,一个极小值点1x =. (步骤18)。

2012年高考新课标全国卷文科数学试题(附答案)(最新整理)

2012年高考新课标全国卷文科数学试题(附答案)(最新整理)

2012 年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合 A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B(D )A ∩B=∅-3 + i (2)复数 z =的共轭复数是2 + i(A ) 2 + i(B ) 2 - i(C ) -1+ i(D ) -1- i(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的1散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线 y =数据的样本相关系数为 x +1 上,则这组样本21 (A )−1(B )0(C )2(D )1x 2 y 2(4)设 F 1 , F 2 是椭圆 E : a 2 + b2 =1( a > b >0)的3a左、 右焦点, P 为直线 x = 上一点,△ F 2 PF 12是底角为300 的等腰三角形,则 E 的离心率为 1 2 3 4 (A )(B )(C )D .2345(5) 已知正三角形 ABC 的顶点 A (1,1),B (1,3),顶点 C 在第一象限,若点(x ,y )在△ABC 内部,则 z = -x + y 的取值范围是 (A )(1- 3,2)(B )(0,2)(C )( 3-1,2)(D )(0,1+ 3)(6) 如果执行右边的程序框图,输入正整数 N ( N ≥2)和实数 a 1, a 2 ,…, a N ,输出 A ,B ,则 (A ) A + B 为 a 1 , a 2 ,…, a N 的和 A + B (B )为 a , a ,…, a 的算术平均数 21 2 N(C ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最大数和最小数3 2 10 n n + n1(D ) A 和 B 分别为 a 1 , a 2 ,…, a N 中的最小数和最大数(7) 如图,网格上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 (8)平面截球 O 的球面所得圆的半径为 1,球心 O 到平面的距离为2,则此球的体积为(A ) 6π (B )4 3π (C )4 6π(D )6 3π(9)已知>0, 0 << ,直线 x =和 x =5是函数 f (x ) = sin(x +) 图像的两条44相邻的对称轴,则=π (A )4 π (B )3 π (C )2 3π (D ) 4(10)等轴双曲线C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 2 = 16x 的准线交于 A 、B 两点, | AB | = 4 ,则C 的实轴长为(A ) (B ) 2 (11)当 0< x ≤1时, 4x< log 2 a2 (C )4 (D )8x ,则 a 的取值范围是2(A )(0, 2 ) (B )( 2,1) (C )(1, 2)(D )( 2,2)(12)数列{ a }满足 a + (-1)na = 2n -1,则{ a }的前 60 项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共 4 小题,每小题 5 分。

2012年高考新课标全国卷文科数学试题(附答案)

2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x |x 2−x −2〈0},B={x |−1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B)0 (C )错误! (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D 。

45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A)(1-错误!,2) (B )(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A)A +B 为1a ,2a ,…,N a 的和(B)2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D)A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B)4错误!π (C )4错误!π (D)6错误!π(9)已知ω〉0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C)错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0〈x ≤错误!时,4log x a x <,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B)3660 (C)1845 (D)1830二.填空题:本大题共4小题,每小题5分。

2012年全国统一高考数学试卷及解析(文科)(新课标)

2012年全国统一高考数学试卷及解析(文科)(新课标)

2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2) B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=()A. B. C. D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A. B.C.4 D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,) B.(,1) C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x (3lnx +1)在点(1,1)处的切线方程为 .14.(5分)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= .15.(5分)已知向量夹角为45°,且,则= .16.(5分)设函数f (x )=的最大值为M ,最小值为m ,则M +m= .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA . (1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A ∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C 只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE 交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选B.2.(5分)(2012•新课标)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.所以复数的共轭复数为:﹣1﹣i.故选D.3.(5分)(2012•新课标)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1 B.0 C.D.1【分析】所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,故这组样本数据完全正相关,故其相关系数为1.【解答】解:由题设知,所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,∴这组样本数据完全正相关,故其相关系数为1,故选D.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.5.(5分)(2012•新课标)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2) B.(0,2)C.(﹣1,2)D.(0,1+)【分析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】解:设C(a,b),(a>0,b>0)由A(1,1),B(1,3),及△ABC为正三角形可得,AB=AC=BC=2即(a﹣1)2+(b﹣1)2=(a﹣1)2+(b﹣3)2=4∴b=2,a=1+即C(1+,2)则此时直线AB的方程x=1,AC的方程为y﹣1=(x﹣1),直线BC的方程为y﹣3=﹣(x﹣1)当直线x﹣y+z=0经过点A(1,1)时,z=0,经过点B(1,3)z=2,经过点C(1+,2)时,z=1﹣∴故选A6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N (N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.8.(5分)(2012•新课标)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球的体积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O 到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选B.9.(5分)(2012•新课标)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A. B. C. D.【分析】通过函数的对称轴求出函数的周期,利用对称轴以及φ的范围,确定φ的值即可.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T==2π.所以ω=1,并且sin(+φ)与sin(+φ)分别是最大值与最小值,0<φ<π,所以φ=.故选A.10.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x 轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C 的实轴长为()A. B.C.4 D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.11.(5分)(2012•新课标)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,) B.(,1) C.(1,)D.(,2)【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B12.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690 B.3660 C.1845 D.1830【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和.【解答】解:由于数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a11+a9=2,a12+a10=40,a15+a13=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830,故选D.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)曲线y=x(3lnx+1)在点(1,1)处的切线方程为y=4x﹣3.【分析】先求导函数,求出切线的斜率,再求切线的方程.【解答】解:求导函数,可得y′=3lnx+4,当x=1时,y′=4,∴曲线y=x(3lnx+1)在点(1,1)处的切线方程为y﹣1=4(x﹣1),即y=4x﹣3.故答案为:y=4x﹣3.14.(5分)(2012•新课标)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=﹣2.【分析】由题意可得,q≠1,由S3+3S2=0,代入等比数列的求和公式可求q【解答】解:由题意可得,q≠1∵S3+3S2=0∴∴q3+3q2﹣4=0∴(q﹣1)(q+2)2=0∵q≠1∴q=﹣2故答案为:﹣215.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:316.(5分)(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=2.【分析】函数可化为f(x)==,令,则为奇函数,从而函数的最大值与最小值的和为0,由此可得函数f(x)=的最大值与最小值的和.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A ﹣)=1,所以A=;(2)S△ABC =bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【分析】(Ⅰ)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(Ⅱ)(i)这100天的日利润的平均数,利用100天的销售量除以100即可得到结论;(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故可求当天的利润不少于75元的概率.【解答】解:(Ⅰ)当日需求量n≥17时,利润y=85;当日需求量n <17时,利润y=10n﹣85;(4分)∴利润y关于当天需求量n的函数解析式(n∈N*)(6分)(Ⅱ)(i)这100天的日利润的平均数为元;(9分)(ii)当天的利润不少于75元,当且仅当日需求量不少于16枝,故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.(12分)19.(12分)(2012•新课标)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.【分析】(Ⅰ)由题意易证DC1⊥平面BDC,再由面面垂直的判定定理即可证得平面BDC1⊥平面BDC;(Ⅱ)设棱锥B﹣DACC1的体积为V1,AC=1,易求V1=××1×1=,三棱柱ABC﹣A1B1C1的体积V=1,于是可得(V﹣V1):V1=1:1,从而可得答案.【解答】证明:(1)由题意知BC⊥CC1,BC⊥AC,CC1∩AC=C,∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,∴DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,∴DC1⊥平面BDC,又DC1⊂平面BDC1,∴平面BDC1⊥平面BDC;(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=××1×1=,又三棱柱ABC﹣A1B1C1的体积V=1,∴(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C 只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A=,知到准线l的距离,由△ABD的面积S=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p 点A到准线l的距离,∵△ABD的面积S △ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.21.(12分)(2012•新课标)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f´(x)+x+1>0在x >0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f´(x)+x+1=(x﹣k)(e x﹣1)+x+1 故当x>0时,(x﹣k)f´(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A 的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D 的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。

2012年全国高考(新课标-)文科数学试卷及参考答案-2

2012年全国高考(新课标-)文科数学试卷及参考答案-2

2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)第Ⅰ卷一、选择题1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12(D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角E 的离心率为( )(A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的7.如图,网格纸上小正方形的边长为1,粗线画出的何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x 条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )811.当0<x ≤12时,4x<log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) (A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷二.填空题13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =____三、解答题17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c 18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

A.y=x2-1(x≥0)
B.y=x2-1(x≥1)
C.y=x2+1(x≥0)
D.y=x2+1(x≥1)
3.若函数 f (x)
sin x 3
(φ∈[0,2π])是偶函数,则 φ=(
)
A. π 2
B.
2π 3
C.
3π 2
D.
5π 3
4.已知 α 为第二象限角,sin
3 5
,则
sin2α=(
)
A. 24 25
22.已知抛物线 C:y=(x+1) 与圆 M:(x-1) +(y- 1 ) =r (r>0)有一个
2
2
22 2
公共点 A,且在 A 处两曲线的切线为同一直线 l.
(1)求 r;
(2)设 m,n 是异于 l 且与 C 及 M 都相切的两条直线,m,n 的交点为 D,求
D 到 l 的距离.
4
2012年普通高等学校招生全国统一考试(2 全国卷)
|PF1|=2|PF2|,则 cos∠F1PF2=(
A. 1 4
B.
3 5
)
C.
3 4
D.
4 5
1
11.已知 x=ln π,y=log52, z=e 2 ,则( )
A.x<y<z
B.z<x<y
C.z<y<x
D.y<z<x
12.正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上,AE=
BF=
1 3
.动点
P

E
出发沿直线向
F
运动,每当碰到正方形的边时反弹,反弹
时反射角等于入射角.当点 P 第一次碰到 E 时,P 与正方形的边碰撞的次数为

2012广东文科高考数学数学真题附答案(纯word版)

2012广东文科高考数学数学真题附答案(纯word版)

2012年广东文科数学参考答案本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,则复数34i i+= A .43i -- B .43i -+ C .43i + D .43i -2.设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U3.若向量(1,2),(3,4)AB BC ==,则AC =A . (4,6)B . (4,6)--C . (2,2)--D . (2,2)4.下列函数为偶函数的是A .sin y x =B .3y x =C .xy e = D.y = 5.已知变量,x y 满足约束条件11,10x y x y x +≤⎧⎪-≤⎨⎪+≥⎩则2z x y =+的最小值为A .3B .1C .5-D 6-6.在ABC ∆中,若°60A ∠=,°45B ∠=,BC =ACA .B .C .D .7.某几何体的三视图如图1所示,它的体积为A . 72πB . 48πC . 30πD . 24π8.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于A .B .C .D . 19.执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为A . 105B . 16C . 15D . 110.对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥>,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ和βα都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b = A . 52 B . 32 C . 1 D . 12选择题参考答案:1-5:BAADC 6-10:BCBCD第10解析:由定义知:因为),(2,4ππθ∈,取3πθ=,n 取1,即可得答案 21 二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分.(一)必做题(11~13题)11.函数xx y 1+=的定义域为________________________. 12.若等比数列}{n a 满足2142=a a ,则=5231a a a _______________. 13.由整数组成的一组数据,,,,4321x x x x 其平均数和中位数都是2,且标准差等于1,则这组数据位_______________________.(从小到大排列)(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系中xoy 中,曲线1C 和曲线2C 的参数方程分别为⎪⎩⎪⎨⎧==θθsin 5cos 5y x (θ为参数,20πθ≤≤)和⎪⎪⎩⎪⎪⎨⎧-=-=22221t y t x (t 为参数),则曲线1C 和曲线2C 的交点坐标为 .15.(几何证明选讲选做题)如图3,直线PB 与圆O 相切与点B ,D 是弦AC 上的点,DBA PBA ∠=∠,若,A D m A C n ==,则AB = .填空题答案:12:),0()0,1[+∞⋃- (注意,写成集合形式也给分 }0{}01|{+∞≤<⋃≤<-x x x 13:41 14: 1 1 3 315: 参数方程极坐标:)1,2)(2,1(-- 几何证明选做题:mn 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数),64cos()(π+=x A x f R x ∈,且2)3(=πf . (1) 求A 的值;(2) 设],2,0[,πβα∈1730)344(-=+παf ,58)324(=-πβf ,求)cos(βα+的值. 解:分分分4232224cos 1)6341cos()3( =⇒=∙==+⨯=A A A A f ππππ(2):分分分分,由于分分分分1285135317155417811sin sin cos cos )cos(1053)54(1cos 1sin 9178)1715(1sin 1cos ],2,0[854cos 58cos 2]6)324(41cos[2)324(71715sin 61730sin 25)2cos(2]6)344(41cos[2)344(2222 -=⨯-⨯=-=+=-=-==-=-=∈=⇒==+-=-=⇒-=-=+=++=+βαβαβαββααπβαββππβπβααπαππαπαf f 17.(本小题满分13分)某学校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)60,50,[)70,60,[)80,70,[)90,80,[]100,90.(1) 求图中a 的值(2) 根据频率分布直方图,估计这100名学生语文成绩的平均分;(3) 若这100名学生语文成绩某些分数段的人数()x 与数学成绩相应分数段的人数()y之比如下表所示,求数学成绩在[)90,50之外的人数.解(1):分分3005.021)02.003.004.0(10 ==++++⨯a a a(2):50-60段语文成绩的人数为: 人5100%100005.010=⨯⨯⨯ 3.5分60-70段语文成绩的人数为: 人40100%10004.010=⨯⨯⨯4分70-80段语文成绩的人数为:人30100%10003.010=⨯⨯⨯80-90段语文成绩的人数为:分人520100%10002.010 =⨯⨯⨯90-100段语文成绩的人数为:5.55100%100005.010 人=⨯⨯⨯(3):依题意:50-60段数学成绩的人数=50-60段语文成绩的人数为=5人………………………………9分60-70段数学成绩的的人数为= 50-60段语文成绩的人数的一半=人204021=⨯……10分 70-80段数学成绩的的人数为=人403034=⨯ ………………………………………11分 80-90段数学成绩的的人数为= 人252045=⨯………………………………………12分 90-100段数学成绩的的人数为=人102540205100=----……………………13分18.(本小题满分13分)如图5所示,在四棱锥P-ABCD 中,AB ⊥平面PAD,AB CD,PD=AD,E 是PB 的中点,F 是DC 上的点且DF=21AB,PH 为∆PAD 中AD 边上的高. (1) 证明:PH ⊥平面ABCD ;(2) 若PH=1,AD=2,FC=1,求三棱锥E-BCF 的体积;(3) 证明:EF ⊥平面PAB .解:(1):A B C DPH PADPAD AB PAD 平面所以平面,面又中的高为⊥=⋂⊥∴⊂⊥⊥∴∆AAD AB ABPH PH AD PH PH…………………………………………………………………………4分(2):过B 点做BG G CD BG ,垂足为⊥;连接HB,取HB 中点M ,连接EM ,则EM 是BPH ∆的中位线即EM 为三棱锥B CF -E 底面上的高BG FC ∙=∆21S BCF =222121=⨯⨯………………………………………………………………………6分………………………………………………………………………………………………………………………8分 (3):取AB 中点N ,PA 中点Q ,连接EN ,FN ,EQ ,DQ …………………………………………………………………………………………………………………13分 19.(本小题满分14分)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈.(1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)① ②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分)2(221+=+-n n a a ……………………………………………12分的数列公比为是以首项为2,32}2{1=++a a n …………13分2231-⨯=∴-n n a ………………………………………………14分20. (本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22122:1(0)x y C a b a b+=>>的左焦点为1(1,0)F -,且点(0,1)P 在1C 上. (1) 求椭圆1C 的方程;12221223131=⨯⨯=∙∙=-EM S V BCF BCF E22n S T n n -= 211)1(2--=--n S T n n(2) 设直线l 与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.解:(1):依题意:c=1,…………………………………………………………………………1分则:122+=b a ,…………………………………………………………………………2分 设椭圆方程为:112222=++b y b x ………………………………………………………………3分将)1,0(P 点坐标代入,解得:12=b …………………………………………………………4分所以 211122=+=+=b a 故椭圆方程为:1222=+y x …………………………………………………………………………5分 (2)设所求切线的方程为:m kx y +=……………………………………………6分消除y)22)(12(4)4(2221-+-=∆m k km ………7分化简得:1222=-k m ①………………………………………………………8分同理:联立直线方程和抛物线的方程得:消除y 得:04)42(2222=--=∆m k km ……………………………………………………………………9分化简得:1=km ② …………………………………………………………………………10分将②代入①解得:01224=-+k k 解得:22,221(,2122-==-==k k k k 或者舍去),故 21,21-=-===m k m k 时,当时,当………………………………………………………12分 故切线方程为:222222--=+=x y x y 或者…………………………………………………14分 21. (本小题满分14分)设01a <<,集合{}0A x R x =∈>,{}223(1)60A x R x a x a =∈-++>,D A B =. (1) 求集合D (用区间表示);(2) 求函数32()23(1)6f x x a x ax =-++在D 内的极值点.解:(1)集合B 解集:令06)1(322=++-a x a x(1):当0<∆时,即:时131<<a ,B 的解集为:}|{R x x ∈此时)0|{>∈==⋂=x R x A B A D(2)当)3(,310舍去时,解得===∆a a 此时,集合B 的二次不等式为:02422>+-x x ,0)1(2>-x ,此时,B 的解集为:}1,{≠∈x R x 且故:),1()1,0(+∞⋃=⋂=B A D(3)当时,0>∆即舍去)3(310><<a a 此时方程的两个根分别为: 很明显,0,31012>><<x x a 时 故此时的综上所述: 当=<<D ,310时a ),4)3)(31(3)13()4)3)(31(3)13,0(+∞--++⋃---+a a a a a a (( 当31=a 时,),1()1,0(+∞⋃=⋂=B A D 当时131<<a ,)0|{>∈=x R x D (2)极值点,即导函数的值为0的点。

2012年广东高考文科数学试题及答案全解全析

2012年广东高考文科数学试题及答案全解全析

学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 5 页 共 14 页
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 9 页 共 14 页
学考在线()
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 7 页 共 14 页
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 8 页 共 14 页
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 1 页 共 14 页
学考下载!
高考资料@学考在线 第 6 页 共 14 页
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 4 页 共 14 页
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 2 页 共 14 页
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 10 页 共 14 页
学考在线()
身边的学习考试的资料、试题下载!
高考资料@学考在线 第 3 页 共 14 页

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2 B .2π3 C .3π2 D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB =a,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=1 3 .动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

22.已知抛物线 C:y=(x+1) 与圆 M:(x-1) +(y- 1 ) =r (r>0)有一个
2
2
22 2
公共点 A,且在 A 处两曲线的切线为同一直线 l.
(1)求 r;
(2)设 m,n 是异于 l 且与 C 及 M 都相切的两条直线,m,n 的交点为 D,求
D 到 l 的距离.
4
2012年普通高等学校招生全国统一考试(2 全国卷)
∴ sin 3
1.∴ 3

π 2
(k∈Z).
∴φ=3kπ+
3π 2
(k∈Z).
又∵φ∈[0,2π],∴当 k=0 时, 3π .故选 C 项.
2
4.A ∵sin
3 5
,且
α
为第二象限角,
∴ cos - 1 sin2

4 5
.
∴ sin2 2sin cos 2 3 4 24 .故选 A 项.
5 5 25
C. x2 y2 1 84
D. x2 y2 1 12 4
6.已知数列{an}的前 n 项和为 Sn,a1=1,Sn=2an+1,则 Sn=( )
A.2n-1
B. ( 3 )n 1 2
2
C.
(
3
n
)
1
D.
1
n1
2
7. 6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则
不同的演讲次序共有( )
所以底面 ABCD 为正方形,AD=2, PD PA2 AD2 2 2 .
设 D 到平面 PBC 的距离为 d. 因为 AD∥BC,且 AD 平面 PBC,BC 平面 PBC,故 AD∥平 面 PBC,A,D 两点到平面 PBC 的距离相等,即 d=AG= 2 . 设 PD 与平面 PBC 所成的角为 α,则sin d 1 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:B
2012年普通高等学校招生全国统一试卷(广东卷)
数学(文科)
本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位
号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形
码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内
相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂
改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、
错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:球的体积公式343
V R π=,其中R 为球的半径. 锥体体积公式13
V Sh =,其中S为锥体的底面积,h为锥体的高. 一组数据12,,,n x x x 的标准差()++-n s x x =, 其中x 表示这组数据的平均数.
一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项
是符合题目要求的.
1.设i 是虚数单位,则复数3+4i i
= A.43i -- B .43i -+ C.43i + ﻩ D.43i -
2.设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U C M =
A.{2,4,6}
B.{1,3,5}
C.{1,2,4}
D.U
3.若向量()1,2AB =,向量()3,4BC =,则AC =
A.(4,6) B .(4,6)-- C .(2,2)-- D .(2,2)
4.下列函数为偶函数的是
A.sin y x =
B.3y x = C .x
y e = D .2+1y x =5.已知变量,x y 满足约束条件11+10x y x y x +≤⎧⎪-≤⎨⎪≥⎩
,则2z x y =+的最小值为
A .3
B .1
C .5- D.6-
6.在ABC ∆中,若60A ∠=︒,45B ∠=︒,32BC =,则AC =
A.3 B.3 3ﻩ 37.某几何体的三视图如图1所示,它的体积为
A.72π B.48π C .30π D .24π
8.在平面直角坐标系xOy 中,直线3450x y +-=与圆22
4x y +=相交于A 、B 两点,则弦 AB 的长等于
A .33 B.23 3 D.1
9.执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为
A .105 B.16 C.15
D .1
10.对任意两个非零的平面向量α和β,定义αβαβββ⋅=⋅.若两个非零的平面向量,a b 满足 图2 图1。

相关文档
最新文档