一元二次方程中考章节复习(知识点+典型题型分析总结
《一元二次方程》总复习、练习、中考真题【题型解析】
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
一元二次方程(知识点+考点+题型总结)(K12教育文档)
一元二次方程(知识点+考点+题型总结)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一元二次方程(知识点+考点+题型总结)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为一元二次方程(知识点+考点+题型总结)(word版可编辑修改)的全部内容。
一元二次方程专题复习考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2":①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 .针对练习:★1、方程782=x 的一次项系数是 ,常数项是 .★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 . ★★★4、若方程nx m +x n —2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B 。
一元二次方程篇(原卷版)--中考数学必考考点总结+题型专训
知识回顾微专题专题11一元二次方程考点一:一元二次方程之相关概念1.一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程。
2.一元二次方程的一般形式:一元二次方程的一般形式为:()002≠=++a c bx ax 。
其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 为常数项。
3.一元二次方程的解:使一元二次方程左右两边成立的未知数的值叫做一元二次方程的解,又叫做一元二次方程的根。
1.(2022•广东)若x =1是方程x 2﹣2x +a =0的根,则a =.2.(2022•连云港)若关于x 的一元二次方程mx 2+nx ﹣1=0(m ≠0)的一个根是x =1,则m +n 的值是.3.(2022•资阳)若a 是一元二次方程x 2+2x ﹣3=0的一个根,则2a 2+4a 的值是.4.(2022•遂宁)已知m 为方程x 2+3x ﹣2022=0的根,那么m 3+2m 2﹣2025m +2022的值为()A .﹣2022B .0C .2022D .40445.(2022•衢州)将一个容积为360cm 3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x (cm )满足的一元二次方程:(不必化简).知识回顾考点二:一元二次方程之解一元二次方程1.直接开方法解一元二次方程:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0)①p x =2时,方程的解为:p x p x -==21,。
②()p a x =+2时,方程的解为:a p x a p x --=-=21,。
③()p b ax =+2时,方程的解为:ab p x a b p x --=-=21,。
2.配方法解一元二次方程:运用公式:()2222b a b ab a ±=+±。
具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。
中考数学专题复习一元二次方程总结
一元二次方程复习总结★本章知识脉络★本章专题归纳专题一、一元二次方程的解的应用方程的解是使方程左右两边相等的未知数的值,利用这个关系可以解决一些问题.例1、已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.思维点击:待求式2222a b a b --可化简为2a b+,故只要求出,a b 的值或a b +的值即可,由已知条件无法确定,a b的值,但根据方程根的定义把1x =代入原方程可得40a b +=,则问题可解.解:因为1x =是一元二次方程2400ax bx +-=的一个解, 所以211400a b ⨯+⨯-=,可知40a b +=.所以()()()224020.22222a b a b a b a b a b a b +--+====--温馨提示:本题在解题过程中体验了整体求解的解题策略,即不求具体,a b 的值是多少,而直接根据方程根的定义确定a b +的值,从而求解.先将待求式进行化简便于找出解题思路,先化简再求值也是解这类题的常用方法.专题二、一元二次方程解法的选择解一元二次方程,常用的方法有四种:直接开平方法,因式分解法,配方法,求根公式法。
这四种方法各有长处,直接开平方法和因式分解法虽然简便易行,但是并非所有的一元二次方程都能用这两种方法来解;配方法适用于任何一个一元二次方程,但配方过程比较麻烦;公式法也适合于任何一元二次方程,是解一元二次方程的主要方法,且公式法比配方法简单得多,它直接用配方法导出的公式求解。
但公式法不如直接开平方法和因式分解法快捷。
因此,在解具体方程是,要根据方程的特征,因题而异,灵活选用适当的解法.例2、对于方程()()()()2222140;2230;3320;441290;x x x x x x x -=+=--=-+=()()()()()22225336;670;76;8241x x x x x x =-==+=把最适宜解法的序号填在下面的横线上。
一元二次方程知识点总结和例题——复习
一元二次方程知识点总结和例题——复习的根的判别式,通常用“∆”来表示,即ac b 42-=∆6.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
7.分式方程分母里含有未知数的方程叫做分式方程。
8.分式方程的一般解法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是: (1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
(参考教材:初中数学九年级人教版)知识点1.只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
例题:1、判别下列方程是不是一元二次方程,是的打“√”,不是的打“×”,并说明理由.(1)2x 2-x-3=0.(2)4y-y 2=0.(3) t 2=0.(4) x 3-x 2=1.(5) x 2-2y-1=0. (6)21x -3=0.(7)x x 32- =2. (8)(x+2)(x-2)=(x+1)2.(9)3x 2-x4+6=0.(10)3x 2=4x-3. 1、若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是 ( )(A )2 (B )-2 (C )0 (D )不等于22、已知关于x 的方程()()03122=+-++p x nx m ,当 时,方程为一次方程;当 时,两根中有一个为零a 。
3、已知关于x 的方程()2220m m xx m --+-=:(1) m 为何值时方程为一元一次方程; (2) m 为何值时方程为一元二次方程。
知识点二.一元二次方程的一般形式 一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c是常数项。
人教版九年级数学-一元二次方程全章知识点专题复习(含答案)
一元二次方程全章知识点专题复习【课标要点】1. 理解一元二次方程定义;2. 会解一元二次方程;3. 会根据根的判别式24b ac -判断一元二次方程的根的情况; 4. 会列一元二次方程解决实际问题.⎧⎪⎪⎪⎨⎪⎪⎪⎩解法根的判别式一元二次方程二次三项式的分解因式根与系数的关系实际应用问题第1讲 一元二次方程的概念【知识要点】1、一元二次方程的一般形式:200),,,ax bx c a a b c ++=≠(其中是常数. 2、在一般式中,当b =0时,则有220c 00ax c ax bx +=+=或当=时,则有,这两种情况都是一元二次方程.【典型例题】 例1判断下列关于x 的方程是不是一元二次方程.22222222213;(2)50;(3)235;(5)2(3)21;511(6)33;(7)2;(8)()10;(9)40:1(10)0.(0)x x x xy x x x x x x x x abx a b x x x x px qx m p =-=--==-=+++=-=+++=-+=+++=≠() 分析:一元二次方程,必须满足:(1)整式方程;(2)含有一个未知数,并且最高次数是2.解:方程(1)、(6)、(7)的左边是分式,不属于整式方程,方程(3)含有两个未知数,方程(4)的左边不是整式,方程(5)经整理候,得-6x =1,方程(8)中未确定ab≠0,因此,只有(2)、(9)、(10)是一元二次方程.例2方程25)(3)(3)50.m m m x m x ---+-+=((1) m 为何值时,此方程为一元二次方程? (2) m 为何值时,此方程为一元一次方程?分析:形如0nax bx c ++=的方程,当n =2且a≠0时为一元二次方程;当a =0时且b≠0时为一元二次方程.解:(1)当m -2=2时,m =4,这时5)(3)0.m m --≠(当m =4时,此方程为一元二次方程.(2)5)(3)0,20,2m 30m m m m --=->-≠当(为自然数,且-时,方程为一元一次方程.由5)(3)0m 5m 3m m m --=≠(得=或=,又因为3,∴当m =5时,此方程为一元一次方程.例3 为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用了新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2填,为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还应再增加多少米?(只需列出方程,并整理成一般一元二次方程形式.)分析:根据题意本题有两个关系式:一是计划每天加固的长度比原计划增加了20米,而是实际完成工程任务所需时间比原计划缩短2天,由时间关系列出方程.解:设现在计划每天加固河堤x 米,则原来计划每天加固河堤(x -20)米.根据题意德22402240220x x-=-,整理,得 22022400x x --=【知识运用】 一、选择题1.一元二次方程得一般形式是( )A.20x bx c ++= `B.20ax bx c ++=C. 20()ax bx c a o ++== D.以上都不对 2.下列方程为一元二次方程的有( )A.21102x x-+= B. 252ax bx c +=C.()219x -=D.x+y=03.关于x 的方程232232(m n m x mx m x nx px q +=+-+≠其中),经化简整理,化为200)ax bx c a ++=≠(的形式后,二次项系数、一次项系数及常数项分别是( )A.m -n ,p ,qB. m -n ,-p ,qC.m -n ,-p ,-qD.m -n ,p ,-q4.将一元二次方程21x 2x 302-+=-的二次项系数变为正整数,且使方程的根不变的是( )A. 2x 2x 30+=- B. 2x x 60+=-4C 2x x 60=-4-D 2x x 60-=+4二、填空题5.方程24x 0=是_____元______次方程,二次项系数是______,一次项系数是____,常数项是_______.6.当m__________时,方程2m-1)x 21)x 0m m -+=(-(不是关于x 的一元二次方程;当m___________时,上述方程才是关于x 的一元二次方程;7.若方程22x 3x 1k x +=+是一元二次方程,则k 的取值范围是_________; 三、解答题 8.若方程1(3)x230k k x --+-=是关于x 的一元二次方程,求k 的值.9.若关于x 的一元二次方程22(a-1)x +x+a 10-=的一个根是0,求a 的值.10.某大学改善校园环境,计划在一块长80米,宽60米的矩形场地中央建一矩形网球场,网球场占地面积为3500平方米,四周为宽度相等的步行道,求步行道的宽度,根据题意列出泛称,并将其化为一般形式.第2讲 配方法【知识要点】1、直接开平方法解一元二次方程:将方程化成()2b(0)x a b +=≥的形式,则x=0)a b -±≥.2、配方法解一元二次方程:利用公式222a 2()ab b a b ±+=±,把一元二次方程转化为2()(0)x a b b +=≥,再利用直接开平方法解方程.【典型例题】例1 用配方法解关于x 的一元二次方程: x 0px q ++=2分析:配方法解一元二次方程,关键要搞清配方的目的是什么,即配方要使方程能运用直接开平方法解决,该题是一种字母系数的一元二次方程,故可按上述步骤进行求解,先将其整理成一般形式,二次项系数化为1.因二次项系数为1,所以移项得2x x p q +=-,方程两边配方,然后利用完全平方公式,直接开平方法解出方程.解:22221212x ,x (),244qx ,244q p 400,4x (2)p 40x 23p 40px q p p px q p p p q x pq x q +=-++=-+--->>---<222222移项,得配方,得整理,得(+)=(1)当时,方程两边直接开平方,得当=时,==;()当时,原方程无实数解.例2 用配方法解方程(1)2x 6x 50+-=; (2)24x 7x 20-+=分析:方程经过移项,配方后变为形如2().ax b c +=的方程 解:(1)(2)移项,得24x 7x 2-=-化二次项系数为1,例3 试证:不论x 为何实数,多项式424224124x x x x ----的值总大于的值. 分析:比较两个代数式大小通常用做差的方法. 解:∴多项式424224124x x x x ----的值总大于的值. 【知识运用】 一、选择题1. 已知代数式2224x 228x 5x x +-+-的值为3,则代数式的值为( ) A.5B. -5C. 5或-5D.02.将二次三项式22x 4x 6-+进行配方,正确的结果是( )A.24-2(x-1) B.24+2(x-1)C.22-2(x-2)D. 22+2(x-2) 3.方程2(1)9x +=的解是( ) A.2x =B. 4x =-C. 122,4x x ==-D. 122,4x x =-=221265,6959,314333x x x x x x x +=++=+=∴+=∴=-+=--2移项,得配方,得即(x +)2222127717x ()()48287177x x 864877x x 88x x x -+=-+-∴-∴--∴得即()=,===4242424222224242(241)(24)23(21)2(1)2x (1)20(241)(24)0x x x x x x x x x x x x x x -----=-+=-++=-+-+>----->对于任何实数,总有即4.已知11120,19,21202020a xb xc x =+=+=+,则代数式222a b c ab bc ac ++---的值是( ) A.4 B.3C. 2D. 1二、填空题5.224___9(___3)x -+=-6.将二次三项式2x 2x 2--进行配方,其结果等于__________.7.已知m 是方程2x x 20--=的一个根,则代数式2m m -的值等于______. 三、解答题8.用配方法解下列方程2(1)2360;x x --= 221(2)20;33y y --=2(3)0.40.81;x x -= 2(4)1)0;y y ++=9.用配方法证明21074x x -+-的值恒小于0.10.来自信息产业部的统计数字显示,2019年1月至4月份我国手机产量为4000万台,相当于2018年全年手机产量的80%,预计到2020年年底收机产量将达到9800万台,试求这两年手机产量平均每年的增长率.第3讲公式法【知识要点】1.公式法:一般地,对于一元二次方程221200),b 4ac 0x ax bx c a ++=≠≥,(当-时, 2.2b 4ac 0≥V 当=-,方程可用公式法求解;当2b 4ac 0<V 当=-时,方程无解.【典型例题】例1 用公式法解下列方程21x 100-+=() 2(2)221x x +=(3)(1)(1)x x +-=分析:首先把每个方程化成一般式,确定a 、b 、c 的值,在2b 4ac 0≥-的前提下,代入求根公式求出方程的根.解:2221222212(2)2210,2,2,1,424?2?(1122(3)10,1,2,1,44?1?(2(4)x x a b c b ac x x x a b c b ac x x +-====--=-±∴=⨯-+-∴===--===-=--=-±∴==⨯∴==Q 移项,得-1)=12>0,-2x=22原方程可化为(-1)=12>0,-(x=222221210,1,1,1,414?1?(x x a b c b ac x x +-====--=-∴=∴===Q 将原方程可化为-1)=5>0,x例2 阅读下面一段材料,并解答问题.22(1)1,4,10,4(411080,(212x x a b c b ac x ==-=-=-⨯⨯>--∴===⨯∴=Q 1=2-=22220(0)40,4200(0,,,)ax bx c a x b ac b ac b x aa ax bx c a abc ++=≠=-≥--∆=≠∆≥++=≠ 我们知道由一元二次方程运用配方法得其求根公式由平方根的意义知:当时即负数,没有平方根,故代数式就决定了方程根的情况,称它为一元二次方程根的判别式,用记号“”表示,故公式符合条件且0,方可用于求实数根.此外,若均为整数应当222121242,(1)10,:4,?,,?:,b ac b a k x x k x k x x x x k ∆=-∆--+++==∆≥注意当是完全平方时,方程根为有理根;当是完全平方且(是的整数倍时方程的根为整数根. 根据上面得出的结论,请你解答下列问题: 已知关于的方程试求 ⑴为何值时方程有两个实数根 ⑵若方程的两个实数根满足则为何值 分析根据上面材料分析当0时方程有实数根,从而确定k 的取值,对[]1222121121212121.:(1),1)4(1)043230.2(2)0,,0,2k-3=0,35k=,0,240,010,10,,x x k k k k x x x x x x x x x x x k k x =∆≥+-+≥-≥∴≥=≥=∆===><-=+=∴+==-∆≥Q 1于⑵中需分类讨论 解方程有实数根故0,即-( 化简得时方程有两个实数根由①当时此时即符合要求.②当x 时即与相矛盾故舍去k=-13综上可知:当k=时有22x = 例3 某工厂拟建一座平面图形为矩形且面积为200平方米 的三级污水处理池(平面图如右图),由于地形限制,三级水库处理 池的长、宽都不能超过16米,如果池的外围墙建造单价为每米 400元,中间两条间隔墙单价为每米300元,池底建造单价为每平 方米80元.(池墙的厚度忽略不计)(1) 当三级污水处理池的总造价为47200元时,求池长x;(2) 如果规定总造价越低就越合算那么根据题目提供的信息以47200元为总造价来修建三级污水处理池是否最合算?请说明理由.分析:可根据三级污水处理池的总造价为47200元列方程.ADBC隔墙隔墙x21212400400:(1)400(2)3002008047200,4007008002008047200,393500,14,25,,14,25,2516(,)10014,16.7x x xx xx x x x x x ⨯++⨯+⨯=⨯++⨯=-+=====><∴ 解由题意得即有 化简得 解得经检验都是原方程的根但米米不符合题意舍去 当池长为米时池宽为米米符合题意 当三级污水处理池的总造价为47200(2)1612.5164007008001620080463004720016<⨯⨯++⨯=<∴元时,池长为14米.当以47200元为总造价修建三级污水处理池时,不是最合算. 当池长为米时,池宽为米米,故池长为16米符合题意,这时总造价为当以47200元为总造价修建三级污水处理池时,不是最合算.【知识应用】 一、选择题22222401)53200,0,0,x x k k m x x m m m n x mx n n m n --=-++-+=++=≠+1.方程2有两个相等的实数根,则的值为( )A.-1 B.-2 C.1 D.22.若一元二次方程(的常数项为则为( )A.1 B.2 C.1或2 D.53.若是方程的根则的值为( )1A. B.1 C.222235020,______.6.610_______.7.x x x mx m x x x --=++=--=1- D.-124.不解方程,判断方程2的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定二、填空题5.已知的一个根则方程的另一个根是_____,的值是方程3的两根之和是方程22230530______.x x x --=++=与方程2的公共解是三、解答题,28.已知直角三角形的一条直角边比另一条直角边长2cm,且面积为24cm 求直角三角形的周长.21)(4)240,10,.k x k x k k k +++-+=+≠9.已知方程(有零根其中求的值2210.2)0,a a x ax b x a --++=要使(是关于的一元二次方程求的取值范围.第4讲 分解因式法【知识要点】112212121212a xb a x b b b a a x x a a ++≠=-=- 1. 分解因式法:把一个一元一次方:程整理为:()()=0的(0)的形式,方程的解为:;;. 2.注意(1)方程一边一定化为0;(2)常用的方法:①提公因式法;②运用公式法③十字相乘法.【典型例题】260;x x -=例1 用因式分解法解下列方程. (1):(1),,(2),(5)(5),,.x x --分析方程的右边是零左边可以用提公因式法分解方程不要去掉括号更不要两边同时除以或要先移项使方程右边为零212212:60,(6)0,060,0, 6.(2)3(5)2(5)0,(5)[3(5)2]0,(5)(133)0,501330,135,.3x x x x x x x x x x x x x x x x x x -=-=∴=-=∴==---=---=--=∴-=-=∴==解(1)即或原方程可变形为 即或 2(2)3(5)2(5)x x -=-例2 用公式法因式分解式解下列方程.2222(4)(43)(2)49(3)16(6)x x x x -=--=+ (1)3221222(1)(2)(1)(4)(43)0[(4)(43)][(4)(43)]0(77)(1)0,770101, 1.(2)7(3)][4(6)]0,7(3)4(6)][7(3)4(x x x x x x x x x x x x x x x x x x ---=∴-+----=∴---=∴-=--=∴==---+=-++--分析:方程先移项再利用因式分解法来解,方程移项后也能因式分解.解:移项,得333或 原方程化为[ [126)]0,(113)(345)0,3,15.11x x x x +=+-=∴=-=化简为,1).x x x x +-例3 为解决新疆农牧民出行难的问题今年是新疆投资公路建设力度最大、最多的一年,某公路修筑队接受了改建农村公路96千米的任务,为了尽量减少施工带来的交通不便,实际施工时每天比计划多修1千米,结果提前16天完成任务,问原计划每天修多少千米?分析:如果把修路队原来计划每天修(千米),则实际每天修路是(千米,工作任务可根据工作时间=列方程工作效率解:设原计划每天修路千米,由题意得962129616160(3)(2)03(),2:x x x x x x x =++-=∴+-=∴=-= 化简整理得舍去答原计划每天修2千米.【知识运用】1212121212121200550505244552A. B.4C.,4D.,4225(1)(2)034,A B x x x x x x x x x x x x x x x x x x x x x x x x -======-==--======+-===-一、选择题1.一元二次方(5)=0的两个根为( )A.,B.,C.,D.,2.方程()=5()的根为( )3.方程的根是,则这个方程为( ).-1,2 .12C D 34,A.(3)(4)0B.(3)(4)0C.(3)(4)0D.(3)(4)0x x x x x x x x x x ==--+=+-=++=--=1,-2 .0,-1,2 .0,1,-24.已知一元二次方程的两根分别为,则这个方程为( )22225123,_____.4_____,.5147.235(23)201(21);(2)(5)59.,3,x x x x x x x x x x y x x x +-+=-=+-++++=-=-=2二、填空题:5.若与的值相等则6.当时代数式的值为零用分解因式法解方程:2()的解是_____.三、解答题8.用适当的方法解方程.1(1)2有一个直角三角形它的边长恰是个连续整数这个三角形的三边长是多少?10.有一个两位数,它的十位数字和个位数字的和是5,把这个两位数的十位数字和个位数字互换后得到另一个两位数,两个两位数的积为736,求原来的两位数.第5讲 一元二次方程【知识要点】 1、黄金分割:如,图若点C 把线段分成两条线段AB 和BC ,且满足AC BCAB AC=则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2、列方程解应用题的基本步骤可归纳为:审(审题);设(设未知数);列(列方程)解(解方程);答(答案).3、列方程解应用题的关键是找出存在的相等关系 【典型例题】例1 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到五月份营业额的平均增长率.分析:本题属于平均增长率问题,由已知可设月平均增长率为x ,那么3月份的营业额为400(1+10%)(1+x ),5月份营业额为400(1+10%)(1+x )2.解:设平均月增长率为x ,由题意得400(1+10%)(1+x )2=633.6 整理得:(1+x )2=633.61 1.2440x ∴+=± 0.2x ∴= 所以平均月增长率为20%.例2 一块矩形耕地大小尺寸如图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600米2,那么水渠应挖多宽?分析:这类问题的 特点是挖蕖所占用土地面积只与挖蕖的条数、渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把沿东西和南北方向挖的渠道移动到一起,那ABC么剩余可耕的长方形土地的长为(162-2x )米,宽为(64-4x )米.解:设水渠应挖x 米宽,以题意,得(162-2x )(64-4x )=9600化简,297960x x -+=解得11x =,296x =(舍去)答:水渠应挖1米宽. 【知识运用】 一、选择题1. 某商店十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率是( ) A .20% B ..12% C .22% D.10%2. 从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A. 9cm 2B.68cm 2C. 8cm 2D. 64cm 23.有一个两位数,它的数字和等于14,交换数字位置后,得到新的两位数比原来的两位数大18,则原来的两位数是( )A .68 B.86 C.-68 D.-864.随着通讯市场竞争日益激烈,某通讯公司的收集市话收费标准按原标准每分钟降低了a 院后,再次下降25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( ) A. 5(1)4b -元 B. 5()4b a +元 C. 3()4b a +元 D 4()3b a +元. 二、填空题5.三个连续偶数,较小的两个数的平方和等于较大的数的平方,则这三个数为________. 6.一个两位数,它的数字之和为9,如果十位数字为a ,那么这个两位数是________;b 把这个两位数的个位数字与十位数字对调组成一个新数,则这个数与原数的差为________. 7.某种手表的成本在两年内以100元降低到81元,那么平均每年降低成本的百分率是_____. 三、解答题8.某工厂计划用两个月把产量提高21%,如果每月比上个月提高的百分数相同,求这个百分数.9.某人将2000元人民币按一年定期存入银行,到期后支出1000元用来购物,剩下的1000元及应得利息又全部按一年定期存入银行.若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率.10.某商店如果将进货价为8元的商品按每件10元出售,每天可销售200件.现采用提高售价、减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.问售价定为多少时,才能使所赚利润最大,并求出最大利润.第1讲一、1.C 2.C 3.D 4.D 二、5.一、二,4,0,0 6.m=1,m ≠1 7.222a ab b --三、8.根据题意的1230k k ⎧-=⎪⎨-≠⎪⎩①②由①得k -1=-2解得k=3或k=-1,由②得k ≠3,所以k=-19.由于方程的解使方程的左右两边相等,故将方程的解代入原方程后得到关于a 得方程,求出a 得值,但是需要满足原一元二次方程的二次项系数不为零,故只取a=-1. 10.设步行道的宽度为x 米,根据题意得(80-2x ).(60-2x)=3500整理,得方程的一般形式为703250x -+=2x 第2讲一、1.A 2.B 3.C 4.B二、5.12x,2x ;6.2(1)3x --;7.22m m -=三、8.121233(1)(2)2,31342x y y y y ±±==-==-=--2()x=29.2711110)002040x --<原式配方得-( 2210740,10740x x x x +-=+-即-故-的值恒小于 10.设这两年手机产量平均每年的增长率为x ,根据题意得2124000212(1)980040%,8055x x x +====-解得%(舍去) 第3讲一、1.B 2..B 3.D 4.A 二、5.24-- 6.2 7.x=-1三、8.设直角三角形的较短的直角边长为xcm ,则较长的直角边长为(x+2)cm.根据题意得:2001)0(4)02402x x k k k k =∴=+⨯++⨯-+=∴=Q 方程有零根即将代入方程得,(2121(2)24248026,8()2810x x x x x x x +=∴+-===-∴+=∴∴解得不符合题意舍去较长直角边为直角三角形的周长为6+8+10=24(cm )9. 10.要使方程是x 的一元二次方程,则由一元二次方程的定义.有220,2,1a a a a x --≠∴≠≠-且时该方程时关于的一元二次方程第4讲一、1.C 2.A 3.C 4.C 二、5.- 1或4 6.x =-27.260,y y x +-==三、8.(1)y=12±(2)121x x 5==- 9. 3,4,5 10. 32,23第5讲一、1.C 2.A 3.B 4.D 二、5. 7,6,8 6.9a+9,81-18a 7.10%三、8.设每月提高的百分率为x,原产量为a ,以题意得a(1+x)2=a(1+21%)220(1) 1.210.110% 2.1(10a x x ≠∴+====-∴Q 1解得x 舍去)为%9.设此种存款的年利率为x ,由题意得: 【2000(1+x )-1000】(1+x)=1320 所以年利率为10%10.设此种商品的售价为x 元,商品所赚利润s 最大.2210.(20010)2040020(10)20000.5102000.x s x x x s x x s -=-⨯=-+∴=--+∴=当时,取最大值。
完整版)一元二次方程(知识点考点题型总结)
完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。
一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是():A。
2x^2+11x-2=0B。
ax^2+bx+c=DC。
2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。
针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。
3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。
m=n=2B。
m=2.n=1C。
n=2.m=1D。
m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。
根的概念可用于求代数式的值。
典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。
例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。
九年级上册数学第21章《一元二次方程》知识点梳理完整版
【学习目标】1.了解一元二次方程及有关概念;九年级数学上册第21 章《一元二次方程》知识点梳理2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:1 2 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为 0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为 2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为 0.要点二、一元二次方程的解法1. 基本思想一元二次方程 −降−次−→ 一元一次方程 2. 基本解法 直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1. 一元二次方程根的判别式一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 中, b 2 - 4ac 叫做一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的根的判别式, 通常用“ ∆ ”来表示,即∆ = b 2 - 4ac(1) 当△>0 时,一元二次方程有 2 个不相等的实数根;(2) 当△=0 时,一元二次方程有 2 个相等的实数根;(3) 当△<0 时,一元二次方程没有实数根.2. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b, x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.要点诠释:1. 一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1) 不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a﹣1)x2+x+a2﹣1=0 的一个根是0,则a 的值为()A.1 B.﹣1 C.1 或﹣1D.【思路点拨】根据方程的解的定义,把 x=0 代入方程,即可得到关于 a 的方程,再根据一元二次方程的定义即可求解.【答案】B;【解析】解:根据题意得:a2﹣1=0 且a﹣1≠0,解得:a=﹣1.故选 B.【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【变式】关于 x 的方程(a2−2a −8) x2+ (a + 2) x −1 = 0 ,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2- =0; (2) (x+a)2= ;(3) 2x2-4x-1=0;(4) (1- )x2=(1+ )x.【答案与解析】(1)原方程可化为 0.5x2=∴x2=用直接开平方法,得方程的根为∴x1= ,x2=- .(2)原方程可化为 x2+2ax+a2=4x2+2ax+∴x2= a2用直接开平方法,得原方程的根为∴x1= a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1= ,x2= .(4)将方程整理,得(1- )x2-(1+ )x=0用因式分解法,得x[(1- )x-(1+ )]=0∴x1=0,x2=-3-2 .【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴(3x-2)(3x-2-1)=0.∴3x-2=0 或 3x-3=0,∴x=2,x= 1.1 3 2(2)原方程可化为:2(t-1)2+(t-1)=0.∴(t-1)[2(t-1)+1]=0.∴(t-1)(2t-1)=0,∴t-1=0 或2t-1=0.∴t= 1,t=1 .1 2 2类型三、一元二次方程根的判别式的应用1 23.(2015•荆门)若关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,则 a 的取值范围是() A .a≥1B . a >1C . a≤1D . a <1【答案】A ;【解析】∵关于 x 的一元二次方程 x 2﹣4x+5﹣a=0 有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a≥1.故选 A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出 a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知 x 1、x 2 是关于 x 的方程 x 2- 2x + t + 2 = 0 的两个不相等的实数根, (1)求 t 的取值范围; (2)设 s = x 2+ x 2 ,求 s 关于 t 的函数关系式.【答案与解析】(1) 因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即 t <-1. (2)由一元二次方程根与系数的关系知: x 1 + x 2 = 2 , x 1x 2 = t + 2 , 从而 s = x 2 + x 2 = (x + x )2 - 2x x = 22 - 2(t + 2) = -2t ,即 s = -2t (t < -1) .1 2 1 2 1 2【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于 x 的一元二次方程 x 2 = 2(1- m )x - m 2 的两实数根为 x , x .1 2(1) 求 m 的取值范围;(2) 设 y = x 1 + x 2 ,当 y 取得最小值时,求相应 m 的值,并求出最小值.【答案】(1)将原方程整理为 x 2 + 2(m -1)x + m 2 = 0 .∵ 原方程有两个实数根.∴ △= [2(m -1)]2 - 4m 2 = -8m + 4 ≥ 0 ,∴ m ≤ 1. 2(2) y = x + x = -2m + 2 ,且 m ≤ 1 . 1 2 2因为 y 随 m 的增大而减小,故当m 1时,取得最小值 1.2类型五、一元二次方程的应用5.如图所示,在长为 10cm,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的 80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为 xcm,由题意得 4x2=10×8×(1-80%).解得 x1=2,x2=-2.经检验,x1=2 符合题意,x2=-2 不符合题意舍去.∴x=2.答:截去的小正方形的边长为 2cm.【总结升华】设小正方形的边长为 x cm,因为图中阴影部分面积是原矩形面积的 80%,所以 4 个小正方形面积是原矩形面积的 20%.举一反三:【变式】(2015 春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙 MN 最长可利用 25m),现在欲砌 50m 长的墙,砌成一个面积 300m2的矩形花园,则 BC 的长为多少 m?【答案】解:设 AB=x 米,则 BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去), 50﹣2x=50﹣30=20.答:BC 的长为 20m.6.某旅行社有 100 张床位,每床每晚收费 10 元,空床可全部租出;若每床每晚提高 2 元,则减少 10 张床位租出;若每床每晚收费再提高 2 元,则再减少 10 张床位租出.以每次提高 2 元的这种方法变化下去,为了每晚获得 1120 元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高 x 个2 元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得 x2-5x+6=0.解得,x1=2,x2=3.∴ 当 x=2 时,2x=4;当 x=3 时,2x=6.答:每床每晚提高 4 元或6 元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高 x 个2 元,则床费为(10+2x)元,由于每晚每床提高 2 元,出租出去的床位减少 10 张,则出租出去的总床位为(100-10x)张,据此可列方程.一元二次方程及其解法(一)直接开平方法【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于 x 的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1 是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1 是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为 0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于 x 的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则 x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于 x 的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:(1) ;(2) .【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是 2.的方程都不是一元二次方程,缺一不可.举一反三:关联的位置名称(播放点名称):一元二次方程的概念-例 1】【变式】判断下列各式哪些是一元二次方程.①x2 +x +1 ;②9x2 - 6x = 0 ;③1y2= 0 ;④5x2-1+ 4 = 0 ;2 2x⑤x2+xy - 3y2= 0 ;⑥3y2= 2 ;⑦(x +1)(x -1) =x2.【答案】②③⑥.【解析】①x2 +x +1不是方程;④5x2-12x+4 = 0 不是整式方程;⑤ x2+xy - 3y2= 0 含有 2 个未知数,不是一元方程;⑦(x + 1)(x -1) =x2化简后没有二次项,不是 2 次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x2-4x+2=0; (2) .【答案与解析】(1)两边都乘-1,就得到方程3x2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2.(2)两边同乘-12,得到整数系数方程6x2-20x+9=0.各项的系数分别是:.【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中 c=-2 不能写为 c=2,(2)题中不能写为.举一反三:关联的位置名称(播放点名称):一元二次方程的形式-例 3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项:(1)3x2 = 5x - 2 ;(2)a(x +1)(x -1) = 2 -x .【答案】(1)3x2 - 5x+2=0 ,二次项系数是 3、一次项系数是-5、常数项是 2.(2)a(x +1)(x -1) = 2 -x 化为ax2 +x -a - 2 = 0, 二次项系数是 a、一次项系数是 1、常数项是-a-2.⎩ ⎩类型三、一元二次方程的解(根)3. 如果关于 x 的一元二次方程 x 2+px+q =0 的两根分别为 x 1=2,x 2=1,那么 p ,q 的值分别是( ) A .-3,2 B .3,-2 C .2,-3 D .2,3【答案】A ;【解析】∵ x =2 是方程 x 2+px+q =0 的根,∴ 22+2p+q =0,即 2p+q =-4 ①同理,12+p+q =0,即 p+q =-1 ②⎧2 p + q = -4, ⎧ p = -3,联立①,②得⎨ p + q = -1, 解之得: ⎨q = 2.【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用 2,1 代替方程中未知数 x 的值,得到两个关于 p 、q 的方程,解方程组可求 p 、q 的值.类型四、用直接开平方法解一元二次方程4. (2016 春•仙游县月考)求下列 x 的值 (1)x 2﹣25=0 (2)(x+5)2=16.【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决.【答案与解析】解:(1)∵x 2﹣25=0, ∴x 2=25, ∴x=±5.(2)∵(x+5)2=16, ∴x+5=±4,∴x=﹣1 或﹣9.【总结升华】应当注意,形如 =k 或(nx+m )2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式 1】用直接开平方法求下列各方程的根:(1)x 2=361;(2)2y 2-72=0;(3)5a 2-1=0;(4)-8m 2+36=0.【答案】(1)∵ x2=361,∴ x=19 或 x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6 或y=-6.(3)∵5a2-1=0,5a2=1,a2= ,∴a=或 a=- .(4)∵-8m2+36=0,-8m2=-36,m2= ,∴m=或m=- .【变式 2】解下列方程:(1) (2015 •东西湖区校级模拟)(2x+3)2-25=0;(2)(2014 秋•滨州校级期末)(1﹣2x)2=x2﹣6x+9. 【答案】解:(1)∵ (2x+3)2=25,∴ 2x+3=5 或 2x+3=-5.∴x1=1,x2=-4.(2)∵(1﹣2x)2=x2﹣6x+9,∴(1﹣2x)2=(x﹣3)2,∴1﹣2x=±(x﹣3),∴1﹣2x=x﹣3 或1﹣2x=﹣(x﹣3),4∴x1=,x2=﹣2.3一元二次方程的解法(二)配方法【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为 1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式a2± 2ab +b2= (a ±b)2.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为 0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (2016•淄博)解方程:x2+4x﹣1=0.【思路点拨】首先进行移项,得到 x2+4x=1,方程左右两边同时加上 4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【答案与解析】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+ ,x2=﹣2﹣.【总结升华】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为 1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为 1,一次项的系数是 2 的倍数.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0;(2)x2+6x+8=0.【答案】(1)方程变形为 x2-4x=2.两边都加 4,得 x2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6.解这个方程,得x-2= 或 x-2=- .于是,原方程的根为x=2+ 或x=2- .(2)将常数项移到方程右边 x2+6x=-8.两边都加“一次项系数一半的平方”=32,得x2+6x+32=-8+32,∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2 或 x=-4.类型二、配方法在代数中的应用2.若代数式M = 10a2 +b2 - 7a + 8 ,N =a2 +b2 + 5a +1 ,则M -N 的值()A.一定是负数B.一定是正数C.一定不是负数D.一定不是正数【答案】B;【解析】(作差法)M -N = 10a2+b2- 7a + 8 - (a2+b2+ 5a +1)=10a2 +b2 - 7a + 8 -a2 -b2 - 5a -1= 9a2 -12a + 7 = 9a2 -12a + 4 + 3 = (3a - 2)2+ 3 > 0 .故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5 的值一定小于 0.【答案与解析】解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8×()2=﹣8(x﹣)2﹣,∵(x﹣)2≥0,∴﹣8(x﹣)2≤0,∴﹣8(x ﹣)2﹣ <0, 即﹣8x 2+12﹣5 的值一定小于 0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【变式】求代数式 x 2+8x+17 的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0 时,代数式 x 2+8x+17 的最小值是 1.4.已知 a2- 3a + b 2 - b + 37= 0 ,求 a - 4 2 16的值.【思路点拨】解此题关键是把 37拆成 9+ 1,可配成两个完全平方式.16 4 16【答案与解析】将原式进行配方,得⎛ a 2- 3a + 9 ⎫ + ⎛ b 2 - b +1 ⎫ = 0 ,4 ⎪ 2 16 ⎪ ⎝ ⎭ ⎝ ⎭⎛ 3 ⎫2 ⎛ 1 ⎫2即 a - 2 ⎪ + b - 4 ⎪ = 0 , ⎝ ⎭ ⎝ ⎭∴ a - 3 = 0 且b - 1= 0 ,24∴ a = 3,b = 1. 2∴ a - 4 4= 3 - 2= 3 - 2 = - 1 . 2 2【总结升华】本题可将原式用配方法转化成平方和等于 0 的形式,进而求出 a .b 的值.b b1 4【学习目标】一元二次方程的解法(三)--公式法,因式分解法1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定 a、b、c 的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程ax2+bx +c = 0 (a ≠ 0) ,用配方法将其变形为:(x + b)22a=b2- 4ac4a2.①当∆=b2-4ac > 0 时,右端是正数.因此,方程有两个不相等的实根:x1,2 =2a .②当∆=b2 - 4ac = 0 时,右端是零.因此,方程有两个相等的实根:x =-b1,2 2a .③ 当∆=b2 - 4ac < 0 时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为 0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是 0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为 0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1) x2+3x+1=0; (2) 2x2 = 4x -1 ;(3) 2x2+3x-1=0.【答案与解析】(1) a=1,b=3,c=1∴x==.∴x1= ,x2= .(2)原方程化为一般形式,得2x2 - 4x +1 = 0 .-b ±∵a = 2 ,b =-4 ,c =1 ,∴b2- 4ac = (-4)2- 4 ⨯ 2 ⨯1 = 8 > 0 .∴ x =4 ± 2 2= 1±2,即x =1+2,x= 1-2.2 ⨯ 2 2 1 2 2 2(3) ∵a=2,b=3,c=﹣1∴b2﹣4ac=17>0∴x=∴x1= ,x2= .【总结升华】用公式法解一元二次方程的关键是对 a、b、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定 a,b,c 的值并计算b2 - 4ac 的值;(3)若b2 - 4ac 是非负数,用公式法求解.举一反三:【变式】用公式法解方程:(2014•武汉模拟)x2﹣3x﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2= .2.用公式法解下列方程:(1) (2014•武汉模拟)2x2+x=2; (2) (2014 秋•开县期末)3x2﹣6x﹣2=0 ;(3)(2015•黄陂区校级模拟)x2﹣3x﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】解:(1)∵2x2+x﹣2=0,∴a=2,b=1,c=﹣2,∴x== = ,-1± 3 -1- 3 -1+ 3 ∴x 1=,x 2=.(2) ∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1= ,x 2= (3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x== ,解得 x 1=,x 2= .【总结升华】首先把每个方程化成一般形式,确定出 a 、b 、c 的值,在b 2- 4ac ≥ 0 的前提下,代入求根公式可求出方程的根.举一反三:【变式】用公式法解下列方程: 2x 2+ 2x = 1;【答案】解:移项,得2x 2 + 2x -1 = 0 .∵ a = 2 ,b = 2 ,c = -1 , b 2 - 4ac = 22 - 4 ⨯ 2 ⨯(-1) = 12 > 0 ,∴ x =-2 ± 12 = , 2 ⨯ 2 2∴ x 1 =2 , x 2 = 2 .类型二、因式分解法解一元二次方程3.(2016•沈阳)一元二次方程 x 2﹣4x=12 的根是() A .x 1=2,x 2=﹣6 B .x 1=﹣2,x 2=6 C .x 1=﹣2,x 2=﹣6D .x 1=2,x 2=6【思路点拨】方程整理后,利用因式分解法求出解即可.【答案】B【解析】解:方程整理得:x 2﹣4x ﹣12=0, 分解因式得:(x+2)(x ﹣6)=0,解得:x1=﹣2,x2=6,故选 B【总结升华】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2) (3x -1)(x -1) = (4x +1)(x -1) .【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即(2x + 3)2= 0 ,∴x =x =-3 .1 2 2(2) 移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以x1=1 ,x2=-2 .【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉 x=1 这个根.举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3 x(2 x+1) =4 x+2【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0X1=-6,x2=-5.(2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=0x =-1, x =2.1 2 2 35.探究下表中的奥秘,并完成填空:一元二次方程两个根二次三项式因式分解x2﹣2x+1=0x1=1,x2=1 x2﹣2x+1=(x﹣1)(x﹣1)x2﹣3x+2=0x1=1,x2=2 x2﹣3x+2=(x﹣1)(x﹣2)x1= ,x 2=﹣13x2+x﹣2=3(x﹣)(x+1)2x2+5x+2=2(x+)(x+2)x1=﹣,x2=﹣2将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论.【答案与解析】填空:﹣,﹣3;4x2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax2+bx+c=0 的两个根为 x1、x2,则ax2+bx+c=a(x﹣x1)(x﹣x2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程根的判别式及根与系数的关系【学习目标】1.会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2.掌握一元二次方程的根与系数的关系以及在各类问题中的运用.【要点梳理】知识点一、一元二次方程根的判别式1.一元二次方程根的判别式一元二次方程ax 2+bx +c = 0(a ≠ 0) 中,b 2- 4ac 叫做一元二次方程ax 2+bx +c = 0(a ≠ 0) 的根的判别式,通常用“ ∆”来表示,即∆=b 2- 4ac(1)当△>0时,一元二次方程有 2 个不相等的实数根;(2)当△=0时,一元二次方程有 2 个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定a,b.c的值;③计1 2 算b 2 - 4ac 的值;④根据b 2 - 4ac 的符号判定方程根的情况.2. 一元二次方程根的判别式的逆用在方程 ax 2 + bx + c = 0(a ≠ 0) 中,(1) 方程有两个不相等的实数根⇒b 2 - 4ac ﹥0; (2) 方程有两个相等的实数根⇒b 2 - 4ac =0; (3) 方程没有实数根⇒b 2 - 4ac ﹤0.要点诠释:(1) 逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为 0 这一条件;(2) 若一元二次方程有两个实数根则 b 2 - 4ac ≥0.知识点二、一元二次方程的根与系数的关系1. 一元二次方程的根与系数的关系如果一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的两个实数根是 x ,x ,那么 x + x = - b , x x = c . 1 2 a 1 2 a注意它的使用条件为 a≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于 x 1、x 2 的对称式的值.此时,常常涉及代数式的一些重要变形;如:① x 2 + x 2 = (x + x )2 - 2x x ; 1 2 1 2 1 2② 1 +1 x 1 x 2= x 1 + x 2 ; x 1 • x 2 ③ x x 2 + x 2 x = x x (x + x ) ; 1 2 1 2 1 2 1 2。
(完整word版)一元二次方程知识点以及考点分析
一元二次方程一、本章知识构造框图实质问题设未知数,列方程数学识题ax 2bx c 0(a 0)解方降程次开平方法配方法公式法分解因式法数学识题的解实质问题的答案bb 2 4ac检验x2a二、详细内容(一)、一元二次方程的观点1.理解并掌握一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式;2.正确辨别一元二次方程中的各项及各项的系数( 1)让学生明确只有当二次项系数 a 0 时,整式方程ax2bx c0 才是一元二次方程。
(2)各项确实定 (包含各项的系数及各项的未知数).(3)娴熟整理方程的过程3.一元二次方程的解的定义与查验一元二次方程的解4.列出实质问题的一元二次方程(二)、一元二次方程的解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,进而把一元二次方程转变为一元一次方程求解;2.依据方程系数的特色,娴熟地采用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;3.领会不一样解法的互相的联系;4.值得注意的几个问题:(1) 开平方法:对于形如x 2n或 (ax b) 2 ( 0)的一元二次方程,即一元二次方程的一边是含有未n a知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如 x2 n 的方程的解法:当 n 0 时, x n ;当 n 0 时,x1x20 ;当 n0 时,方程无实数根。
( 2)配方法:经过配方的方法把一元二次方程转变为( x m) 2n 的方程,再运用开平方法求解。
配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左侧,常数项移到方程的右侧;②“系数化1”:依据等式的性质把二次项的系数化为1;③配方:将方程两边分别加前一次项系数一半的平方,把方程变形为( x m)2 n 的形式;④求解:若 n 0 时,方程的解为x m n ,若n 0时,方程无实数解。
( 3)公式法:一元二次方程ax2 bx c 0( a 0) 的根 x b b 2 4ac2a当 b2 4ac 0 时,方程有两个实数根,且这两个实数根不相等;当b2 4ac 0 时,方程有两个实数根,且这两个实数根相等,写为x1 x2 b ;2a当b2 4ac 0 时,方程无实数根 .公式法的一般步骤:①把一元二次方程化为一般式;②确立a, b, c 的值;③代入 b2 4ac上当算其值,判断方程能否有实数根;④若b24ac0 代入求根公式求值,不然,原方程无实数根。
北师大版九年级上册数学第二章一元二次方程-知识点总结含中考真题试题解析
北师大版九年级上册数学第二章一元二次方程☞解读考点知识点名师点晴一元二次方程的概念 1.一元二次方程的概念会识别一元二次方程。
2.一元二次方程的解会识别一个数是不是一元二次方程的解。
解法步骤能灵活选择适当的方法解一元二次方程。
根的判别式b2-4ac 是一元二次方程ax2+bx +c =0(a ≠0)的判别式会判断一元二次方程根的情况。
根与系数的关系x1+x2=b a -,x1x2=ca会灵活运用根与系数的关系解决问题。
一元二次方程的应用由实际问题抽象出一元二次方程要列方程,首先要根据题意找出存在的等量关系.最后要检验结果是不是合理.☞2年中考【2015年题组】1.(2015来宾)已知实数1x ,2x 满足127x x +=,1212x x =,则以1x ,2x 为根的一元二次方程是()A .27120x x -+=B .27120x x ++=C .27120x x +-=D .27120x x --=【答案】A .【解析】试题分析:以1x ,2x 为根的一元二次方程27120x x -+=,故选A .考点:根与系数的关系.2.(2015河池)下列方程有两个相等的实数根的是()A .2+10x x +=B .24210x x ++=C .212360x x ++=D .220x x +-=【答案】C.考点:根的判别式.3.(2015贵港)若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为()A .﹣1B .0C .1D .2【答案】B .【解析】试题分析:∵关于x 的一元二次方程2(1)220a x x --+=有实数根,∴△=2(2)8(1)a ---=1280a -≥且10a -≠,∴32a ≤且1a ≠,∴整数a 的最大值为0.故选B .考点:1.根的判别式;2.一元二次方程的定义.4.(2015钦州)用配方法解方程21090x x ++=,配方后可得()A .2(5)16x +=B .2(5)1x +=C .2(10)91x +=D .2(10)109x +=【答案】A .【解析】试题分析:方程21090x x ++=,整理得:2109x x +=-,配方得:2102516x x ++=,即2(5)16x +=,故选A .考点:解一元二次方程-配方法.5.(2015成都)关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是()A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠【答案】D .【解析】试题分析:∵是一元二次方程,∴0k ≠,∵有两个不想等的实数根,则0∆>,则有224(1)0k ∆=-⨯->,∴1k >-,∴1k >-且0k ≠,故选D .考点:根的判别式.6.(2015攀枝花)关于x 的一元二次方程2(2)(21)20m x m x m -+++-=有两个不相等的正实数根,则m 的取值范围是()A .34m >B .34m >且2m ≠C .122m -<<D .324m <<【答案】D.考点:1.根的判别式;2.一元二次方程的定义.7.(2015雅安)已知等腰三角形的腰和底的长分别是一元二次方程2430x x -+=的根,则该三角形的周长可以是()A .5B .7C .5或7D .10【答案】B .【解析】试题分析:解方程2430x x -+=,(x ﹣1)(x ﹣3)=0,解得13x =,21x =;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选B .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.8.(2015巴中)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是()A .2560(1)315x +=B .2560(1)315x -=C .2560(12)315x -=D .2560(1)315x -=【答案】B.考点:1.由实际问题抽象出一元二次方程;2.增长率问题.9.(2015达州)方程21(2)04m x --+=有两个实数根,则m 的取值范围()A .52m >B .52m ≤且2m ≠C .3m ≥D .3m ≤且2m ≠【答案】B .【解析】试题分析:根据题意得:220301(4(2)04m m m ⎧⎪-≠⎪-≥⎨⎪⎪∆=--⨯≥⎩,解得52m ≤且2m ≠.故选B .考点:1.根的判别式;2.一元二次方程的定义.10.(2015泸州)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是()A.B.C.D .【答案】B .【解析】试题分析:∵2210x x kb -++=有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb <0,A .k >0,b >0,即kb >0,故A 不正确;B .k >0,b <0,即kb <0,故B 正确;C .k <0,b <0,即kb >0,故C 不正确;D .k >0,b=0,即kb=0,故D 不正确;故选B .考点:1.根的判别式;2.一次函数的图象.11.(2015南充)关于x 的一元二次方程0222=++n mx x 有两个整数根且乘积为正,关于y 的一元二次方程0222=++m ny y 同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②2)1()1(22≥-+-n m ;③1221≤-≤-n m .其中正确结论的个数是()A .0个B .1个C .2个D .3个【答案】C .考点:1.根与系数的关系;2.根的判别式;3.综合题.12.(2015佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A .7mB .8mC .9mD .10m 【答案】A .【解析】试题分析:设原正方形的边长为xm ,依题意有:(x ﹣3)(x ﹣2)=20,解得:x=7或x=﹣2(不合题意,舍去),即:原正方形的边长7m .故选A .考点:1.一元二次方程的应用;2.几何图形问题.13.(2015怀化)设1x ,2x 是方程2530x x +-=的两个根,则2221x x +的值是()A .19B .25C .31D .30【答案】C .考点:根与系数的关系.14.(2015安顺)若一元二次方程220x x m --=无实数根,则一次函数(1)1y m x m =++-的图象不经过第()象限.A .四B .三C .二D .一【答案】D .【解析】试题分析:∵一元二次方程220x x m --=无实数根,∴△<0,∴△=4﹣4(﹣m )=4+4m <0,∴m <﹣1,∴m+1<1﹣1,即m+1<0,m ﹣1<﹣1﹣1,即m ﹣1<﹣2,∴一次函数(1)1y m x m =++-的图象不经过第一象限,故选D .考点:1.根的判别式;2.一次函数图象与系数的关系.15.(2015山西省)我们解一元二次方程2360x x -=时,可以运用因式分解法,将此方程化为3(2)0x x -=,从而得到两个一元一次方程:30x =或20x -=,进而得道原方程的解为10x =,22x =.这种解法体现的数学思想是()A .转化思想B .函数思想C .数形结合思想D .公理化思想【答案】A .【解析】试题分析:我们解一元二次方程2360x x -=时,可以运用因式分解法,将此方程化为3(2)0x x -=,从而得到两个一元一次方程:30x =或20x -=,进而得道原方程的解为10x =,22x =.这种解法体现的数学思想是转化思想,故选A .考点:解一元二次方程-因式分解法.16.(2015枣庄)已知关于x 的一元二次方程20x mx n ++=的两个实数根分别为12x =-,24x =,则m+n 的值是()A .﹣10B .10C .﹣6D .2【答案】A.考点:根与系数的关系.17.(2015淄博)若a 满足不等式组211122a a-≤⎧⎪⎨->⎪⎩,则关于x 的方程21(2)(21)02a x a x a ---++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能【答案】C .【解析】试题分析:解不等式组211122a a -≤⎧⎪⎨->⎪⎩,得a <﹣3,∵△=21(21)4(2)()2a a a ---+=2a+2,∵a <﹣3,∴△=2a+2<0,∴方程21(2)(21)02a x a x a ---++=没有实数根,故选C .考点:1.根的判别式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题.18.(2015烟台)如果201(1)x x x --=+,那么x 的值为()A .2或﹣1B .0或1C .2D .﹣1【答案】C .【解析】试题分析:∵201(1)x x x --=+,∴211x x --=,即(x ﹣2)(x+1)=0,解得:12x =,21x =-,当x=﹣1时,x+1=0,故x≠﹣1,故选C .考点:1.解一元二次方程-因式分解法;2.零指数幂.19.(2015烟台)等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为()A .9B .10C .9或10D .8或10【答案】B .考点:1.根的判别式;2.一元二次方程的解;3.等腰直角三角形;4.分类讨论.20.(2015大庆)方程)5(2)5(32-=-x x 的根是.【答案】15x =,2173x =.【解析】试题分析:方程变形得:23(5)2(5)0x x ---=,分解因式得:(5)[3(5)2]x x ---,可得50x -=或3170x -=,解得:15x =,2173x =.故答案为:15x =,2173x =.考点:解一元二次方程-因式分解法.21.(2015甘孜州)若矩形ABCD 的两邻边长分别为一元二次方程27120x x -+=的两个实数根,则矩形ABCD 的对角线长为.【答案】5.【解析】试题分析:方程27120x x -+=,即(3)(4)0x x --=,解得:13x =,24x =,则矩形ABCD 2234+=5.故答案为:5.考点:1.矩形的性质;2.解一元二次方程-因式分解法;3.勾股定理.22.(2015达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为.【答案】(40﹣x )(20+2x )=1200.考点:1.由实际问题抽象出一元二次方程;2.销售问题.23.(2015广元)从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数2(5)y m x=-和关于x 的一元二次方程2(1)10m x mx +++=中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是________.【答案】2-.【解析】试题分析:∵所得函数的图象经过第一、三象限,∴250m ->,∴25m <,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入2(1)10m x mx +++=中得,210x +=,△=﹣4<0,无实数根;将1m =-代入2(1)10m x mx +++=中得,10x -+=,1x =,有实数根,但不是一元二次方程;将2m =-代入2(1)10m x mx +++=中得,2210x x +-=,△=4+4=8>0,有实数根.故m=2-.故答案为:2-.考点:1.根的判别式;2.一次函数图象与系数的关系;3.综合题.24.(2015凉山州)已知实数m ,n 满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n +=.【答案】225-.【解析】试题分析:∵m n ≠时,则m ,n 是方程23650x x --=的两个不相等的根,∴2m n +=,53mn =-.∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为:225-.考点:1.根与系数的关系;2.条件求值;3.压轴题.25.(2015泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为.【答案】27.考点:根与系数的关系.26.(2015绵阳)关于m 的一元二次方程2220n m --=的一个根为2,则22n n -+=.【答案】26.【解析】试题分析:把m=2代入2220n m --=得022742=--n n ,整理得:n n 7212=+,所以721=+n n ,所以原式=21()2n n +-=22-=26.故答案为:26.考点:一元二次方程的解.27.(2015内江)已知关于x 的方程260x x k -+=的两根分别是1x ,2x ,且满足12113x x +=,则k 的值是.【答案】2.【解析】试题分析:∵关于x 的方程260x x k -+=的两根分别是1x ,2x ,∴126x x +=,12x x k =,1212121163x x x x x x k ++===,解得:k=2,故答案为:2.考点:根与系数的关系.28.(2015咸宁)将263x x ++配方成2()x m n ++的形式,则m=.【答案】3.考点:配方法的应用.29.(2015荆州)若m ,n 是方程210x x +-=的两个实数根,则22m m n ++的值为.【答案】0.【解析】试题分析:∵m ,n 是方程210x x +-=的两个实数根,∴1m n +=-,21m m +=,则原式=2()()m m m n +++=1﹣1=0,故答案为:0.考点:1.根与系数的关系;2.一元二次方程的解.30.(2015曲靖)一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=.(只需填一个).【答案】故答案为:1,2,3,4,5,6中的任何一个数.【解析】试题分析:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <,∵125x x +=,120x x c =>,c 是整数,∴c=1,2,3,4,5,6.故答案为:1,2,3,4,5,6中的任何一个数.考点:1.根的判别式;2.根与系数的关系;3.开放型.31.(2015呼和浩特)若实数a 、b 满足(44)(442)80a b a b ++--=,则a b +=__________.【答案】12-或1.【解析】试题分析:设a b +=x ,则由原方程,得:4(42)80x x --=,整理,得:(21)(1)0x x +-=,解得112x =-,21x =.则a b +的值是12-或1.故答案为:12-或1.考点:换元法解一元二次方程.32.(2015吉林省)若关于x 的一元二次方程20x x m -+=有两个不相等的实数根,则m 的值可能是(写出一个即可).【答案】答案不唯一,只要14m <即可,如:0.考点:1.根的判别式;2.开放型.33.(2015毕节)关于x 的方程2430x x -+=与121x x a =-+有一个解相同,则a=.【答案】1.【解析】试题分析:由关于x 的方程2430x x -+=,得:(x ﹣1)(x ﹣3)=0,∴x ﹣1=0,或x ﹣3=0,解得x=1或x=3;当x=1时,分式方程121x x a =-+无意义;当x=3时,12313a =-+,解得a=1,经检验a=1是原方程的解.故答案为:1.考点:1.分式方程的解;2.解一元二次方程-因式分解法;3.分类讨论.34.(2015毕节)一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L ,则每次倒出的液体是L .【答案】20.【解析】试题分析:设每次倒出液体xL ,由题意得:40401040xx x ---⋅=,解得:x=60(舍去)或x=20.故答案为:20.考点:一元二次方程的应用.35.(2015日照)如果m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,那么代数式2222015n mn m -++=.【答案】2026.考点:根与系数的关系.36.(2015成都)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若点()p q ,在反比例函数2y x =的图像上,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,且相异两点(1)M t s +,,N(4)t s -,都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54.【答案】②③.【解析】试题分析:研究一元二次方程20ax bx c ++=是倍根方程的一般性结论,设其中一根为t ,则另一个根为2t ,因此222()(2)32ax bx c a x t x t ax atx t a ++=--=-+,所以有2902b ac -=;我们记292K b ac=-,即0K =时,方程20ax bx c ++=为倍根方程;下面我们根据此结论来解决问题:对于①,29102K b ac =-=,因此本选项错误;对于②,2(2)20mx n m x n +--=,而29K (2)(2)02n m m n =---=,∴22450m mn n ++=,因此本选项正确;对于③,显然2pq =,而29K 302pq =-=,因此本选项正确;对于④,由(1)M t s +,,N(4)t s -,知145222b t t a ++--==,∴5b a =-,由倍根方程的结论知2902b ac -=,从而有509c a =,所以方程变为:250509ax ax a -+=,∴2945500x x -+=,∴1103x =,253x =,因此本选项错误.故答案为:②③.考点:1.新定义;2.根与系数的关系;3.压轴题;4.阅读型.37.(2015黄石)解方程组:224 4 2 2 x y y ⎧+=⎪+=①②.【答案】111xy=⎧⎨=⎩,2212xy⎧=⎪⎨=-⎪⎩.考点:高次方程.38.(2015自贡)利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.【答案】当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.【解析】试题分析:设垂直于墙的一边为x米,则邻边长为(58﹣2x),利用矩形的面积公式列出方程并解答.试题解析:设垂直于墙的一边为x米,得:x(58﹣2x)=200,解得:125x=,24x=,∴另一边为8米或50米.答:当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.考点:1.一元二次方程的应用;2.几何图形问题.39.(2015巴中)如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.【答案】2m.考点:1.一元二次方程的应用;2.几何图形问题.40.(2015广元)李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm.你认为他的说法正确吗?请说明理由.【答案】(1)12cm和28cm;(2)正确.考点:1.一元二次方程的应用;2.几何图形问题.41.(2015崇左)为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【答案】(1)50%;(2)18.【解析】试题分析:(1)设每年市政府投资的增长率为x.根据2015年投资6.75亿元人民币建设廉租房,列方程求解;(2)先求出单位面积所需钱数,再用累计投资÷单位面积所需钱数可得结果.试题解析:(1)设投资平均增长率为x,根据题意得:23(1) 6.75x+=,解得10.5x=,22.5x=-(不符合题意舍去)答:政府投资平均增长率为50%;(2)212(10.5)18+=(万平方米)答:2015年建设了18万平方米廉租房.考点:1.一元二次方程的应用;2.增长率问题.42.(2015崇左)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB、AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?【答案】(1)证明见试题解析;(2)48;(3)2400.考点:1.一元二次方程的应用;2.几何图形问题;3.最值问题;4.压轴题.43.(2015淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】(1)100+200x;(2)1.考点:1.一元二次方程的应用;2.销售问题;3.综合题.44.(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111 (1)()(1)()23423452345234---⨯+++-----⨯++.令111234t++=,则原式=11 (1)()(1)55 t t t t -+---=22 114 555t t t t t +---+=1 5问题:(1)计算1111111111111111111 (1...)(...)(1...)(...)2342014234520152345201420152342014 -----⨯+++++--------⨯++++;(2)解方程22(51)(57)7 x x x x++++=.【答案】(1)12015;(2)10x=,25x=-.考点:1.换元法解一元二次方程;2.有理数的混合运算;3.换元法;4.阅读型;5.综合题.45.(2015十堰)已知关于x 的一元二次方程()222320x m x m -+++=.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为1x ,2x ,且满足22121231x x x x +=+,求实数m 的值.【答案】(1)112m ≥-;(2)2.【解析】试题分析:(1)若方程有实数根,则△≥0,解不等式即可;(2)由根与系数的关系得到1223x x m +=+,2122x x m =+,由21220x x m =+>和22121231x x x x +=+,得到22121231x x x x +=+,即21212()313x x x x +=+,代入即可得到结果.试题解析:(1)∵关于x 的一元二次方程()222320x m x m -+++=有实数根,∴△≥0,即22(23)4(2)0m m +-+≥,∴112m ≥-;(2)根据题意得1223x x m +=+,2122x x m =+,∵21220x x m =+>,∴1212x x x x =,∵22121231x x x x +=+,∴22121231x x x x +=+,∴21212()313x x x x +=+,即22(23)313(2)m m +=++,解得m=2,m=﹣14(舍去),∴m=2.考点:1.根的判别式;2.根与系数的关系;3.综合题.46.(2015潜江)已知关于x 的一元二次方程042=+-m x x .(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为1x ,2x ,且满足22521=+x x ,求实数m 的值.【答案】(1)m≤4;(2)m=﹣12.考点:1.根的判别式;2.根与系数的关系.47.(2015鄂州)关于x 的一元二次方程22(21)10x k x k ++++=有两个不等实根1x ,2x .(1)求实数k 的取值范围.(2)若方程两实根1x ,2x 满足1212x x x x +=,求k 的值.【答案】(1)k >34;(2)k=2.【解析】试题分析:(1)由方程有两个不相等的实数根可得△=430k ->,求出k 的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2211k k +=+,结合k 的取值范围解方程即可.试题解析:(1)∵原方程有两个不相等的实数根,∴△=22(21)4(1)k k +-+=2244144k k k ++--=430k ->,解得:k >34;(2)∵k >34,∴12(21)0x x k +=-+<,又∵21210x x k =+>,∴10x <,20x <,∵1212x x x x +=,∴1212x x x x --=,∴2211k k +=+,∴10k =,22k =,又∵k >34,∴k=2.考点:1.根的判别式;2.根与系数的关系;3.综合题.【2014年题组】1.(2014年甘肃兰州中考)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac 满足的条件是()A.b2﹣4ac=0B.b2﹣4ac >0C.b2﹣4ac <0D.b2﹣4ac≥0【答案】B .【解析】试题分析:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac >0.故选B .考点:一元二次方程根的判别式.2.(2014年广西贵港中考)若关于x 的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,则b+c 的值是()A .﹣10B .10C .﹣6D .﹣1【答案】A.考点:1.一元二次方程根与系数的关系;2.求代数式的值.3.(2014年内蒙古呼伦贝尔中考)一元二次方程x2﹣x ﹣2=0的解是()A.x1=2,x2=1 B.x1=﹣2,x2=1 C.x1=2,x2=﹣1 D.x1=﹣2,x2=﹣1【答案】C .【解析】试题分析:(x ﹣2)(x+1)=0,x ﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选C .考点:因式分解法解一元二次方程.4.(2014年山东聊城中考)用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.22.2b b 4ac x 2a 4a -⎛⎫+=⎪⎝⎭ B.22.2b 4ac b x 2a 4a -⎛⎫+=⎪⎝⎭ C.22.2b b 4ac x 2a 4a -⎛⎫-=⎪⎝⎭ D.22.2b 4ac b x 2a 4a -⎛⎫-=⎪⎝⎭【答案】A .【解析】试题分析:先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可:移项,得ax2+bx=﹣c ,两边同除以a ,得2b c x x a a +=-,两边同加上一次项一半的平方,得222b bc b x x a 2a a 2a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,∴22.2b b 4ac x 2a 4a -⎛⎫+=⎪⎝⎭.故选A .考点:配方法解一元二次方程.5.(2014年甘肃白银、定西、平凉、酒泉、临夏中考)一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=.【答案】1.考点:一元二次方程和解的定义.6.(2014年广西桂林中考)已知关于x 的一元二次方程()22x 2k 1x k 20+++-=的两根x1和x2,且()()112x 2x x 0--=,则k 的值是.【答案】2-或94-.【解析】试题分析:∵()()112x 2x x 0--=,∴1x 2=或12x x =.∵关于x 的一元二次方程()22x 2k 1x k 20+++-=的两根x1和x2,∴若1x 2=,则()22222k 1k 20k 2+++-=⇒=-;若12x x =,则方程()22x 2k 1x k 20+++-=有两相等的实数根,∴()()2292k 141k 20k 4∆=+-⋅⋅-=⇒=-.∴k 2=-或9k 4=-.考点:1.解方程;2.一元二次方程的根和根的判别式;3.分类思想的应用.7.(2014年湖南永州中考)方程x2﹣2x=0的解为.【答案】x1=0或x2=2.【解析】试题分析:把方程的左边分解因式得x (x ﹣2)=0,得到x=0或x ﹣2=0,从而求出方程的解:x1=0或x2=2.考点:因式分解法解一元二次方程.8.(2014年江西省中考)若,a b 是方程2x 2x 30--=的两个实数根,则22a +b =.【答案】10.【解析】试题分析:∵,a b 是方程2x 2x 30--=的两根,∴2,3a +b =a b =- .∴()222222610a +b =a +b -a b =+=.考点:1.一元二次方程根与系数的关系;2.代数式求值;3.完全平方公式;4.整体思想的应用.9.(2014年江苏泰州中考)解方程:2x2﹣4x ﹣1=0.【答案】12x x == .考点:公式法解一元二次方程.10.(2014年四川巴中中考)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【答案】当该商品每个单价为60元时,进货100个.【解析】试题分析:方程的应用解题关键是设出未知数,找出等量关系,列出方程求解.本题利用销售利润=售价-进价,根据题中条件可以列出利润与x 的关系式,求出即可.解:设每个商品的定价是x 元,由题意,得(x ﹣40)[180﹣10(x ﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.x1=50时,进货180﹣10(x ﹣52)=200个,不符合题意舍去.答:当该商品每个单价为60元时,进货100个.考点:一元二次方程的应用(销售问题).☞考点归纳归纳1:一元二次的有关概念基础知识归纳:1.一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一般形式:ax2+bx+c=0(其中a 、b 、c 为常数,a ≠0),其中ax2、bx 、c 分别叫做二次项、一次项和常数项,a 、b 分别称为二次项系数和一次项系数.3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.基本方法归纳:一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.注意问题归纳:在一元二次方程的一般形式中要注意a ≠0.因为当a=0时,不含有二次项,即不是一元二次方程.【例1】若x=﹣2是关于x 的一元二次方程225x ax a 02-+=的一个根,则a 的值为()A.1或4B.﹣1或﹣4C.﹣1或4D.1或﹣4【答案】B .考点:一元二次方程的解和解一元二次方程.归纳2:一元一次方程的解法基础知识归纳:一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
一元二次方程中考章节复习(知识点+典型题型分析总结
一元二次方程知识点一、一元二次方程定义:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
标准形式:ax²+bx+c=0(a≠0)一元二次方程必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程),这点请注意!②只含有一个未知数;③未知数项的最高次数是2。
二、一元二次方程根的定义使方程两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根三、一元二次方程的解法:直接开方法、配方法、公式法、因式分解法(十字交叉法)直接开平方法形如或()的一元二次方程可采用直接开平方法解一元二次方程。
如果方程化成的形式,那么可得。
如果方程能化成的形式,那么,进而得出方程的根。
注意:①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
[4]配方法步骤将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。
用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
配方法的理论依据是完全平方公式配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
求根公式法步骤用求根公式解一元二次方程的方法叫做求根公式法。
用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式,确定a,b,c的值(注意符号);②求出判别式的值,判断根的情况;③在(注:此处△读“德尔塔”)的前提下,把a、b、c的值代入公式进行计算,求出方程的根。
(完整版)一元二次方程知识点和易错点总结
一元二次方程知识点总结知识结构梳理(1)含有 个未知数。
(2)未知数的最高次数是 1、概念 (3)是 方程。
(4)一元二次方程的一般形式是 。
(1) 法,适用于能化为)((0)2≥=+n n m x 的一元二次方程 (2) 法,即把方程变形为ab=0的形式,2、解法 (a ,b 为两个因式), 则a=0或(3) 法(4) 法,其中求根公式是 根的判别式当 时,方程有两个不相等的实数根。
(5) 当 时,方程有两个相等的实数根。
当 时,方程有没有的实数根。
可用于解某些求值 (1) 一元二次方程的应用 (2)(3)可用于解决实际问题的步骤 (4) (5)(6)知识点归类知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:1、一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是一元二次方程2、同时还要注意在判断时,需将方程化成一般形式。
例 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
例1 已知关于x 的方程()()021122=-+--+x m x m m 是一元二次方程时,则=m知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
初三数学九上一元二次方程所有知识点总结和常考题型练习题
一元二次方程知识点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2、一元二次方程的一般形式:,它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根.2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程的求根公式:公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和,二根之积。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用三、一元二次方程根的判别式根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即I.当△〉0时,一元二次方程有2个不相等的实数根;II.当△=0时,一元二次方程有2个相同的实数根;III。
当△〈0时,一元二次方程没有实数根四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
人教版第二十一章一元二次方程知识点汇总归类总结题型汇总
第二十一章 一元二次方程(知识点汇总+归类总结+题型汇总):一、一元二次方程的概念1.只含有______个未知数,并且未知数的最高次数是__________,这样的整式方程叫做一元二次方程.2.一元二次方程的一般形式是________________.二、一元二次方程的解法1.解一元二次方程的基本思想是 ,主要方法有:直接开平方法、__________、公式法、__________.2.配方法:通过配方把一元二次方程ax 2+bx +c =0(a ≠0,b 2-4ac ≥0)变形为⎝⎛⎭⎪⎫x +b 2a 2=__________的形式,再利用直接开平方法求解.3.公式法:一元二次方程ax 2+bx +c =0(a ≠0)当b 2-4ac ≥0时,x =____________.4.用因式分解法解方程的原理是:若a ·b =0,则a =0或__________.三、一元二次方程根的判别式1.一元二次方程根的判别式是__________. 2.(1)b 2-4ac >0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个__________实数根;(2)b 2-4ac =0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个__________实数根;(3)b 2-4ac <0⇔一元二次方程ax 2+bx +c =0(a ≠0)__________实数根.四*、一元二次方程根与系数的关系1.在使用一元二次方程的根与系数的关系时,要先将一元二次方程化为一般形式.2.若一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根是x 1,x 2,则x 1+x 2=__________,x 1x 2=__________.注意:(1)222121212()2x x x x x x +=+-⋅(2)22121212()()4x x x x x x -=+-⋅; 12x x -= 五、实际问题与一元二次方程列一元二次方程解应用题的一般步骤:(1)审题;(2)设未知数;(3)找__________;(4)列方程;(5)__________;(6)检验;(7)写出答案.一元二次方程的定义:1.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x 2=0B .ax 2+bx +c =0C .(x -1)(x +2)=1D .3x 2-2xy -5y 2=0 2.下列方程中,无论取何值,总是关于x 的一元二次方程的是( )A.02=++c bx axB.x x ax -=+221C.0)1()1(222=--+x a x aD.0312=-+=a x x 3.关于x 的一元二次方程(a 2—1)x 2+x —2=0是一元二次方程,则a 满足( )A. a ≠1B. a ≠—1C. a ≠±1D.为任意实数4.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
第二十一章一元二次方程知识点及中考考点
第一章 一元二次方程复习提纲及典型例题新课标要求1.理解并掌握一元二次方程的意义,正确识别一元二次方程中的各项及各项的系数;2.一元二次方程的解的定义与检验一元二次方程的解;3.明确解一元二次方程的基本思想是以降次为目的,会用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;4.了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的字母系数的取值范围;5.会列一元二次方程解决生活中的实际问题,与二次函数综合考查最优问题。
命题趋势:本节的主要考查一元二次方程的根,解一元二次方程,根的判别式,以及一元二次方程在实际生活中的应用。
在中考中,往往会在填空题中考查一元二次方程的根,根的判别式,在解答题中考查一元二次方程的解法,尤其是在倒数第二题中考查一元二次方程在实际生活中的应用,和二次函数相结合的综合应用。
考点整合1、一元二次方程概念:只含有 ,未知数,并且 ,这样的 就是一元二次方程。
2、一般表达式: 其中2ax 是二次项, 叫二次项系数; 是一次项, 叫一次项系数, 是常数项。
二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。
3、使 值,就是方程的解。
4、一元二次方程的解法:(1) 法,适用于能化为)((2)0x a b b +=≥ 的一元二次方程。
(2 法,即把一元二次方程变形为(x+a )(x+b )=0的形式,则(x+a )=0或(3) 法,即把一元二次方程配成)((2)0x a b b +=≥形式,再用直接开方法,(4) 法,其中求根公式是 ( ≥0)5、根的判别式、根与系数的关系:当 时,方程有两个不相等的实数根。
当 时,方程有两个相等的实数根。
当 时,方程有没有的实数根。
如果一元二次方程20(0)ax bx c a ++=≠有两根12,x x 则有6、列一元二次方程解实际应用题步骤考点精析考点一、一元二次方程的解例1:(2011黑龙江哈尔滨3分)若x =2是关于x 的一元二次方程x 2-m x +8=0的一个解.则m 的值是.(A) 6 (B) 5 (C) 2 (D)-6举一反三1. (2011广西贵港3分)若关于x 的一元二次方程x 2-mx -2=0的一个根为-1,则另一个根为A .1B .-1C .2D .-22.(2012年河北一模)关于x 的一元二次方程(a -1) x 2+x+a 2-1=0的一个根是0,则a 的值为( )A. 1B. -1C. 1或-1D. 03. (2011广西百色3分)关于x 的方程2220x mx m +-=的一个根为1,则m 的值为A.1B. 12.C.1或12.D.1或-12. 4. (2012年浙江一模)已知关于x 的方程2220x x k -+=的一个根是1,则k = .考点二、一元二次方程的解法例题1,:(1)(2012湖北荆州)用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16(2)(2012山东省滨州中考)方程x (x ﹣2)=x 的根是 .(3)(2011江苏省无锡市)解方程:x²-4x+2=0举一反三1:(2012贵州铜仁,17,4分,一元二次方程0322=--x x 的解为____________;2:(2012贵州黔西南州,4,4分)三角形的两边分别为2和6,第三边是方程x 2―10x +21=0的解,则第三边的长为( ).A .7B .3C .7或3D .无法确定3:解方程:(1)(2011广东清远6分)解方程:x 2-x -1=0.(2)(2011湖北武汉6分)解方程:x 2+3x +1=0.考点三:根的判别式,根与系数的关系例题:(2012湖北襄阳)如果关于x 的一元二次方程kx 2+1=0有两个不相等的实数根,那么k 的取值范围是A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0举一反三1. (2011广西钦州)下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .210x +=B .2210x x -+=C .210x x ++=D .2210x x +-=2. (2012北京昌平初三一模)若关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a <2且a ≠0 B.a >2 C.a <2且a ≠1 D.a <-2考点四:一元二次方程的应用例题:(2012南京市)某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当月仅售出1辆汽车,则该汽车的进价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为 万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)举一反三1. (2012广东湛江)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .5500(1+x )2=4000B .5500(1﹣x )2=4000C .4000(1﹣x )2=5500D .4000(1+x )2=55002. (2012山东省青岛市,12,3)如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列方程为 .3. (2012•湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在已备足可以砌50m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300m 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程知识点一、一元二次方程定义:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。
标准形式²0(a≠0)一元二次方程必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程),这点请注意!②只含有一个未知数;③未知数项的最高次数是2。
二、一元二次方程根的定义使方程两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根三、一元二次方程的解法:直接开方法、配方法、公式法、因式分解法(十字交叉法)直接开平方法形如或( )的一元二次方程可采用直接开平方法解一元二次方程。
如果方程化成的形式,那么可得。
如果方程能化成的形式,那么,进而得出方程的根。
注意:①等号左边是一个数的平方的形式而等号右边是一个常数。
②降次的实质是由一个一元二次方程转化为两个一元一次方程。
③方法是根据平方根的意义开平方。
[4]配方法步骤将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。
用配方法解一元二次方程的步骤:①把原方程化为一般形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
配方法的理论依据是完全平方公式配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
求根公式法步骤用求根公式解一元二次方程的方法叫做求根公式法。
用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式,确定a,b,c的值(注意符号);②求出判别式的值,判断根的情况;③在(注:此处△读“德尔塔”)的前提下,把a、b、c的值代入公式进行计算,求出方程的根。
因式分解法因式分解法即利用因式分解求出方程的解的方法。
因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想)。
因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边转化为两个一元一次方程的乘积;③令每个因式分别为零④括号中x,它们的解就都是原方程的解。
四、一元一次方程跟的判别式及韦达定理判别式利用一元二次方程根的判别式()可以判断方程的根的情况。
一元二次方程的根与根的判别式有如下关系:①当时,方程有两个不相等的实数根;②当时,方程有两个相等的实数根;③当时,方程无实数根,但有2个共轭复根。
上述结论反过来也成立。
韦达定理设一元二次方程中,两根x₁、x₂有如下关系:数学推导由一元二次方程求根公式知五、用一元二次方程解应用题的一般步骤:①、弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;②、找出能够表示应用题全部含义的等量关系;③、根据相等关系列出需要的代数式(简称关系式),从而列出一元二次方程;④、解这个一元二次方程,求出未知数的值;⑤、在检查求得的答数是否符合应用题的实际意义后,写出答案一元一次方程题型复习一:知识点回顾1、一元二次方程必须满足哪三个条件:①、②、③、2、解一元二次方程常用的四种方法:3、一元二次方程的根的判别式是什么?它与根的情况之间的关系:当时,方程有两个不相等的实数根当时,方程有两个相等的实数根当时,方程有无实数根二、一元二次方程定义考核类型1判断一个方程是不是一元二次方程1.下列方程中,关于x的一元二次方程是( )A. B. C.D.2.关于x2=-2的说法,正确的是A.由于x2≥0,故x2不可能等于-2,因此这不是一个方程2=-2是一个方程,但它没有一次项,因此不是一元二次方程2=-2是一个一元二次方程2=-2是一个一元二次方程,但不能解3.下列方程中,一元二次方程是()A. 221x x +B.bx ax +2 C.()()121=+-x x D.052322=--y xy x 4.当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程。
类型2化简方程为一般形式并写出一元二次方程中的二次项系数、一次项系数及常数项1.把一元二次方程化为一般形式是,其中二次项为: ,一次项系数为:,常数项为:.2.将方程-5x2+1=6x 化为一般形式为.其二次项是,一次项系数为,常数项为.3.若≠0,则a 1x2b 10的常数项是.4.将方程22x =3(x -6)化为一般形式后,二次项系数、一次项系数和常数项分别为( )A .2、3、-6B .2、-3、18C .2、-3、6D .2、3、6 类型3根据定义求解一元二次方程中未知字母的值1.若关于x 的方程a(x -1)2=2x2-2是一元二次方程,则a 的值是( )A.2B.-2C.0D.不等于22.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件?3.如果方程2+5=(2)(x -1)是关于x 的一元二次方程,则.4.若关于x 的方程(k -1)x2-45=0是一元二次方程,则是的取值范围是.三、一元二次方程根的定义的应用1.一元二次方程3x2=2x 的根是 ( )A .x1=0,x2=32 B .x1=0,x2=23- C .0D .x1=0,x2=232.关于x 的一元二次方程(m -1)x22+2m -3=0有一个根是0,则m 的值为( )A .3或-1B .-3或 1C .1D .-33.已知m 是方程x21=0的一个根,则代数式m2的值等于( )A. -1B.0C.1D.24.若1是方程20的解,则1 -0 0 -b -05. 若a 是方程x2-1=0的一个根。
则代数式3a2+3a -5的值为.6.若的值为则的解为方程10522++=-+a a ,x x a ( )A.12B.6C.9D.167.如果关于x 的一元二次方程x20的两根分别为x1=2,x2=1,那么32q 的值是.8. 已知-1是关于x 的方程2x2-2=0的一个根,则.9.若一元二次方程x2-(2)20的两个实数根分别是3、b ,则.四、根的判别式的应用1.若关于x 的方程2x2--2=0有两个相等的实数根,则a 的值为( )A .-4B .4C .4或-4D .22.关于x 的一元二次方程x2-(m -2)=0的根的情况是 ( )A .有两个不相等的实数根 B.有两个相等的实数根 C .没有实数根 D .无法确定3.方程()()1132=-+x x 的解的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根4.已知关于x 的一元二次方程x2--1=0有两个相等的实数根,求m 的值5.若方程032=+-m x x 有两个相等的实数根,则m = ,两个根分别为 。
6.关于x 一元二次方程2x(4)2+6=0没有实数根,则k 的最小整数值是。
7.已知一元二次方程2+(21)2=0有两个不相等的实数根,求k 的取值范围五、韦达定理的应用1.如果21x x 、是方程06322=--x x 的两个根,那么21x x += ,21x x ⋅= 。
2.如果一元二次方程()012=+++m x m x 的两个根是互为相反数,那么有( )m 0 m -1 m 1 D.以上结论都不对3.不解方程,01322=-+x x 的两个根的符号为( )A.同号B.异号C.两根都为正D.不能确定4.已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( )A.0=nB.同号mnC.的整数倍是m nD.异号mn5.已知α2+α-1=0,β2+β-1=0,且α≠β,则αβ+α+β的值为( ).A .2B .-2C .-1D .06.已知α,β,满足α+β=5且αβ=6,以α,β为两根的一元二次方程是( ).A .x2+56=0B .x2-56=0;C .x2-56=0D .x2+56=07.已知x1,x2是关于x 的方程(1)x22-1=0•的两个实数根,且x12=13,则x1·•x2.8.已知关于x 的一元二次方程8x2+(1)7=0有两个负数根,那么实数m 的取值范围是.9.已知关于x 的方程x221=0的两个实数根的平方和为7,那么m 的值是10.已知x 1 x 2是方程0122=--x x 的两根,则x 11+x 21等于 。
11.已知方程()042222=++-+k x k x 有两个实数根,且这两个实数根的平方和比两根的积大21,求k 的值。
六、一元二次方程的求解配方法:1.用配方法解关于x 的方程x20时,此方程可变形为( )A. B. C.D.2.用配方法解方程0642=--x x ,则___6___42+=+-x x ,所以_______,21==x x 。
3.用配方法解下列方程(1)2x2+3x -2=0 (2)41x2-2=0 (3)x2+5x -1=0 (4)2x2-4x -1=04公式法:用公式法解下列各方程(1)5x2+2x -1=0 (2)6y2+136=0 (3)x2+69=7 (4)2x2+714分解因式法1.如果()4122++-x m x 是一个完全平方公式,则=m 。
2.解因式分解法解一元二次方程(1)x 26=0 (2)(2)2=24 (3)42=4x (4)(21)2=(3)综合练习1.用适当的方法解下列方程:(1)(2)( 3)(4)x2+42 (5)4x2+3x-1=0(6)x2-3x-2=0 (7)x2+2x-143=0 (8)(1)(8)=-12 (9)2.已知方程x26=0的一个根是2,求它的另一个根及k的值.3.已知关于x的方程x2-2(1)2=0.(1)当m取什么值时,原方程没有实数根.(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.m0.求证:无论m取何实数值,4.已知关于x的一元二次方程x2-(2)24这个方程总有两相异实根.5.已知关于x的方程x2-2(1)2-23=0的两个不相等实数根中有一个根为0.是否存在实数k,使关于x的方程x2-()2+52=0,•②的两个实数根x1,x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由.。