周期信号的傅里叶变换ppt课件
合集下载
周期信号的傅里叶变换
信号与系统
第17讲 周期信号的傅里叶变换
周期信号进行傅里叶变换的目的
将周期信号用傅里叶级数展开得到周期信号的离散 频谱,令周期信号的周期趋近无穷大引出非周期信 号,从傅里叶级数在周期趋于无穷大的极限导出傅 里叶变换,由周期信号的离散谱过渡到连续谱,引 出频谱密度函数的概念
周期信号进行傅里叶变换的目的
f ( t )
F n . e j n 1t
n
根据傅里叶变换的线性和频移特性
F T [ f (t)] 2 Fn ( n1 )
n
3.一般的周期信号的傅立叶变换
F ( j) 2 Fn( n1)
n
周期信号的频谱是离散的,而傅里叶变换反映 的是频谱密度的概念,因此周期信号的傅里叶 变换不同于其傅里叶系数,它不是有限值,而 是冲激函数,这表明在谐波频率点处,即无穷小 的频带范围内取得了无穷大的频谱值。
1.复指数信号的傅里叶变换
因为
1 2 ()
对于复指数
f (t) e j0t
由频移特性,可知
e j0t 2 ( 0)
2. 余弦和正弦信号信号的傅里叶变换
对于正弦和余弦信号,根据欧拉公式,并利用
e j0t 2 ( 0)
得到其频谱函数分别为
cos0t [ ( 0 ) ( 0 )]
sin0t j[ ( 0 ) ( 0 )]
3.一般的周期信号的傅立叶变换
F( j) 2 Fn ( n1)
n
周期信号的傅里叶变换是由无穷多个频域上的 冲激函数组成,这些冲激函数位于信号的各谐
波频率 n1处,其强度为相应傅里叶级数系数
Fn 的 2 倍。
4、周期单位冲激序列的傅里叶变换
T (t)
n
(t nT1)
第17讲 周期信号的傅里叶变换
周期信号进行傅里叶变换的目的
将周期信号用傅里叶级数展开得到周期信号的离散 频谱,令周期信号的周期趋近无穷大引出非周期信 号,从傅里叶级数在周期趋于无穷大的极限导出傅 里叶变换,由周期信号的离散谱过渡到连续谱,引 出频谱密度函数的概念
周期信号进行傅里叶变换的目的
f ( t )
F n . e j n 1t
n
根据傅里叶变换的线性和频移特性
F T [ f (t)] 2 Fn ( n1 )
n
3.一般的周期信号的傅立叶变换
F ( j) 2 Fn( n1)
n
周期信号的频谱是离散的,而傅里叶变换反映 的是频谱密度的概念,因此周期信号的傅里叶 变换不同于其傅里叶系数,它不是有限值,而 是冲激函数,这表明在谐波频率点处,即无穷小 的频带范围内取得了无穷大的频谱值。
1.复指数信号的傅里叶变换
因为
1 2 ()
对于复指数
f (t) e j0t
由频移特性,可知
e j0t 2 ( 0)
2. 余弦和正弦信号信号的傅里叶变换
对于正弦和余弦信号,根据欧拉公式,并利用
e j0t 2 ( 0)
得到其频谱函数分别为
cos0t [ ( 0 ) ( 0 )]
sin0t j[ ( 0 ) ( 0 )]
3.一般的周期信号的傅立叶变换
F( j) 2 Fn ( n1)
n
周期信号的傅里叶变换是由无穷多个频域上的 冲激函数组成,这些冲激函数位于信号的各谐
波频率 n1处,其强度为相应傅里叶级数系数
Fn 的 2 倍。
4、周期单位冲激序列的傅里叶变换
T (t)
n
(t nT1)
信号与系统第2章ppt课件
,这种频谱搬移技术在通信系统中
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
得到广泛的应用。调幅,调频都是
在该基础上进行的。
精选ppt
由此可见,将时间信号f(t)
乘以Cos(ω0t) 或Sin(ω0t)
,等效于将f(t)的频谱一分
为二,即幅度减小一半,沿
频率轴向左和向右各平移ω0.
第二章 傅立叶变换
例2 求如下矩形调幅信号的频谱函数
f(t) G (t)c o s 0 t
例7 如图a所示系统,已知乘法器的输入为
f (t) sin(2t) s(t)co3st)(
t
系统的频率响应为:
求输出y(t).
精选ppt
第二章 傅立叶变换
f (t) sin(2t) s(t)co3st)(
t
乘法器的输出信号为: x(t)f(t)s(t)
依频域卷积定理可知:X(j)21F(j)*S(j) 这里 f(t)F(j) s(t)S(j)
当 0 时 当 0 时
A () li m 0 A e () lim A e ( 0) lim 2 0 2 0
所以
A () li m 0A e()()
B()li m0Be()j
精选ppt
第二章 傅立叶变换
(6)符号函数 符号函数sgn(t)如图所示
由于sgn(t)不符合绝对可积条件, 故使用间接方法计算。
利用傅里叶反变换公式计算
第二章 傅立叶变换
例4 试求图示周期信号的频谱函数,图(b)中冲激函数的强度均为1.
(b)
[提示:(a)F()F[1]1F[cos(t)]
22
)
(b
Cn
1 T
T
2 T
fT(t)ejntdt
2
fT(t)(t)(tT2)
《傅里叶变换经典》PPT课件
F 1[AF BG ] AF 1[F ] BF 1[G ]
43
2. 位移性质:
若F [f t ] F ,t0 ,0 为实常数,则
F [f t t0 ] ejt0F , F 1[F 0 ] e j0t f t
或F [e j0t f t ] F 0
证明:F
[f
F f t eitdt(实自变量的复值函数)
称为f t 的Fourier变换,记为F [f t ]。
1 F eitd 称为F 的Fourier逆变换,
2 记为F 1[F ] .
26
若F f t F ,则F 1 F f t ; 若F 1 F f t ,则F f t F f t F :一一对应,称为一组Fourier变换对。 f t 称为原像函数,F 称为像函数。
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表
单位时间振动的次数, 单位时间通常取秒, 即每秒重复 多少次, 单位是赫兹(Herz, 或Hz).
2
最常用的一种周期函数是三角函数。人们发现, 所有 的工程中使用的周期函数都可以用一系列的三角函数的 线性组合来逼近.—— Fourier级数
1
2
1
2
1,
t
0
42
§3 Fourier变换与逆变换的性质
这一讲介绍傅氏变换的几个重要性质, 为了叙述方 便起见, 假定在这些性质中, 凡是需要求傅氏变换的函 数都满足傅氏积分定理中的条件, 在证明这些性质时, 不再重述这些条件.
1.线性性质:
F [af t bg t ] aF [f t ] bF [g t ]
19
1.2 Fourier积分公式与Fourier积分存在定理
43
2. 位移性质:
若F [f t ] F ,t0 ,0 为实常数,则
F [f t t0 ] ejt0F , F 1[F 0 ] e j0t f t
或F [e j0t f t ] F 0
证明:F
[f
F f t eitdt(实自变量的复值函数)
称为f t 的Fourier变换,记为F [f t ]。
1 F eitd 称为F 的Fourier逆变换,
2 记为F 1[F ] .
26
若F f t F ,则F 1 F f t ; 若F 1 F f t ,则F f t F f t F :一一对应,称为一组Fourier变换对。 f t 称为原像函数,F 称为像函数。
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表
单位时间振动的次数, 单位时间通常取秒, 即每秒重复 多少次, 单位是赫兹(Herz, 或Hz).
2
最常用的一种周期函数是三角函数。人们发现, 所有 的工程中使用的周期函数都可以用一系列的三角函数的 线性组合来逼近.—— Fourier级数
1
2
1
2
1,
t
0
42
§3 Fourier变换与逆变换的性质
这一讲介绍傅氏变换的几个重要性质, 为了叙述方 便起见, 假定在这些性质中, 凡是需要求傅氏变换的函 数都满足傅氏积分定理中的条件, 在证明这些性质时, 不再重述这些条件.
1.线性性质:
F [af t bg t ] aF [f t ] bF [g t ]
19
1.2 Fourier积分公式与Fourier积分存在定理
信号课件第三章傅里叶变换
• 从本章起,我们由时域分析进入频域分析,在频域分析中, 首先讨论周期信号的傅里叶级数,然后讨论非周期信号的 傅里叶变换。傅里叶变换是在傅里叶级数的基础上发展而 产生的,这方面的问题统称为傅里叶分析。
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
第4章_6周期信号的傅立叶变换
4.34
4.13bc 4.207
4.14e
4.23
4.41 4.45 4.48
上式表明,周期信号的傅里叶变换(或频谱密度函
数)由无穷多个冲激函数组成,这些冲激函数位于信
号的各谐波角频率 n(n 0,1,2, )处,其强度
为各虚指数分量相应幅度 Fn 的 2 倍。
例4.6-1 求周期性矩形脉冲信号 PT (t) 的频谱函数。
pT t
1
解:
Fn
Sa( n
2
)
(
n)
n
2 s in(n
2 n
)
(
n)
ℱ[pT(t)]
-Ω 0 Ω
图 4.6-2 周期矩形脉冲的傅立叶变换 T 4
例4.6-2 求周期性单位冲激函数序列 T (t)的频谱。
T (t) (t mT ) ( m为整数) n T(t )
周期冲激序列的傅立叶变换
可见:时域中周期为 T 的单位冲激序列,在频域中是
周期为 ,强度为
的冲激序列。其中
2
T
方法二
设周期信号 fT (t),从该信号中截取一个周期信号,
令其为 f0 (t) 。
fT (t) f0(t)T (t)
fT (t ) F0 ( j ) ( )
2
T
F0( jn) (
n
n)
Fn
1 T
F0 (
j ) n
可见,周期信号的傅里叶系数等于F0 ( j ) 在n处
的值乘上 1 。 T
傅里叶变换的许多性质也可适用于傅里叶级数,这提 供了求周期信号傅里叶系数的另一种方法。
4.13bc 4.207
4.14e
4.23
4.41 4.45 4.48
上式表明,周期信号的傅里叶变换(或频谱密度函
数)由无穷多个冲激函数组成,这些冲激函数位于信
号的各谐波角频率 n(n 0,1,2, )处,其强度
为各虚指数分量相应幅度 Fn 的 2 倍。
例4.6-1 求周期性矩形脉冲信号 PT (t) 的频谱函数。
pT t
1
解:
Fn
Sa( n
2
)
(
n)
n
2 s in(n
2 n
)
(
n)
ℱ[pT(t)]
-Ω 0 Ω
图 4.6-2 周期矩形脉冲的傅立叶变换 T 4
例4.6-2 求周期性单位冲激函数序列 T (t)的频谱。
T (t) (t mT ) ( m为整数) n T(t )
周期冲激序列的傅立叶变换
可见:时域中周期为 T 的单位冲激序列,在频域中是
周期为 ,强度为
的冲激序列。其中
2
T
方法二
设周期信号 fT (t),从该信号中截取一个周期信号,
令其为 f0 (t) 。
fT (t) f0(t)T (t)
fT (t ) F0 ( j ) ( )
2
T
F0( jn) (
n
n)
Fn
1 T
F0 (
j ) n
可见,周期信号的傅里叶系数等于F0 ( j ) 在n处
的值乘上 1 。 T
傅里叶变换的许多性质也可适用于傅里叶级数,这提 供了求周期信号傅里叶系数的另一种方法。
傅里叶变换(周期和非周期信号)
2
傅里叶变换关系对常简记为:
f (t ) F( )
例:求矩形脉冲f(t)的频谱。
A
f ( t ) AG ( t )
0
| t |
2
| t |
2
f (t)
A
O
2
2
t
F( )
f ( t )e jt dt
2
Ae jt dt
-
A
j
e
j
2
e
j
2
2
2 A sin ASa( )
2k
(k 1,2,3...)
每条谱线只出现在n1 处
(3)各谐波分量的振幅(绝对值)随着n的增大而逐渐减小:
图中 T1 4
Fn
F0
A
T
6
4
2
1 21
2
4
6
n1
3.频谱及其特点
周期矩形脉冲
周期信号频谱的特点: 离散性、谐波性、收敛性
图中 T1 4
有效频带
Fn
F0
A
T
6
4
2
1 21
1 12 4
Fn
c1
1
2 c2
2 c3
2
π
n
2
π
π
4
4
-0
0
0
-0 -0 0
0
-0 -0 -0 0 0 0 0
双边频(谱a) 幅(度D频o谱uble Side Band)
-
π 4
-
π 4
-
π 2
(b) 相位频谱
单边频谱(Single Side Band)
三角函数 形式的频 谱图
傅里叶变换关系对常简记为:
f (t ) F( )
例:求矩形脉冲f(t)的频谱。
A
f ( t ) AG ( t )
0
| t |
2
| t |
2
f (t)
A
O
2
2
t
F( )
f ( t )e jt dt
2
Ae jt dt
-
A
j
e
j
2
e
j
2
2
2 A sin ASa( )
2k
(k 1,2,3...)
每条谱线只出现在n1 处
(3)各谐波分量的振幅(绝对值)随着n的增大而逐渐减小:
图中 T1 4
Fn
F0
A
T
6
4
2
1 21
2
4
6
n1
3.频谱及其特点
周期矩形脉冲
周期信号频谱的特点: 离散性、谐波性、收敛性
图中 T1 4
有效频带
Fn
F0
A
T
6
4
2
1 21
1 12 4
Fn
c1
1
2 c2
2 c3
2
π
n
2
π
π
4
4
-0
0
0
-0 -0 0
0
-0 -0 -0 0 0 0 0
双边频(谱a) 幅(度D频o谱uble Side Band)
-
π 4
-
π 4
-
π 2
(b) 相位频谱
单边频谱(Single Side Band)
三角函数 形式的频 谱图
周期信号的傅里叶变换
n
F (n1)
Fn
1 T1
t0 T1 t0
f (t )e jn1t dt
其中n为所有的整数
函数f(t)的对称性与FS系数关系
(1)
f
(t )为偶函数
:
f
(t )
a0 2
an
n1
cos n1t
an
4 T1
T1 2
0
f (t) cos n1tdt
(2) f (t)为奇函数 : f (t) bn sin( n1t) n 1
2
一般周期信号的FT
FT[ f (t)] Fn FT[e jn1t ] n
2 Fn ( n1) n
Fn
1 T1
T1
2 T1
f (t)e jn1t dt
2
周期信号的FS与其单周期信号的FT之间的关系
Fn
1 T1
F0 ( )
n1
时域抽样信号的FT
Fs ( ) Pn F ( ns ) n
|a| a
时移 : f (t t0 ) F ( )e jt0 频移 : f (t)e j0t F ( 0 )
时域微分 : f (n) (t) ( j)n F () 频域微分 : ( jt)n f (t) F (n) ()
时域积分 : t f ( )d F () F (0) ()
j
是其本身,这意味着f (t)所有频率分量都
在低通滤波器的通带内.
f (t)是周期信号,其高次谐波可表示为
12n.因此有 | | 100 |12n | 100
| n | 8
即对于 | n | 8的n值, an将恒为0.
例题4 :已知f (t)为周期信号(如图),求F().
傅里叶变换课件
快速傅里叶变换的算法原理
快速傅里叶变换(FFT)是一种高效的计算DFT的算法,其基本思想是将DFT运算分解为一系列简单 的复数乘法和加法运算。
FFT算法可以分为基于分治策略的递归算法和基于蝶形运算的迭代算法。其中,递归算法将DFT运算 分解为两个子序列的DFT运算,迭代算法则通过一系列蝶形运算逐步逼近DFT的结果。
,实现图像的压缩。
解压缩
通过插值或重构算法,可以恢复 压缩后的图像,使其具有原始的
质量和细节。
压缩与解压缩算法
常见的压缩与解压缩算法包括 JPEG、PNG等。这些算法在压 缩和解压缩过程中都利用了傅里
叶变换。
06
傅里叶变换在通信系统中的应用
调制与解调技术
调制技术
利用傅里叶变换对信号进行调制,将 低频信号转换为高频信号,以便在信 道中传输。
在频域中,可以使用各种滤波器 对图像进行滤波操作,以减少噪 声、平滑图像或突出特定频率的
细节。
边缘增强
通过在频域中增强高频成分,可以 突出图像的边缘信息,使图像更加 清晰。
对比度增强
通过调整频域中的频率系数,可以 改变图像的对比度,使图像更加鲜 明。
图像的压缩与解压缩
压缩
通过减少图像的频域表示中的频 率系数,可以减少图像的数据量
快速傅里叶变换的应用
• FFT在信号处理、图像处理、语音处理等领域有着广泛的应用。例如,在信号处理中,可以通过FFT将时域信号转换为频域 信号,从而对信号进行频谱分析、滤波等操作。在图像处理中,可以通过FFT将图像从空间域转换到频域,从而对图像进行 去噪、压缩等操作。在语音处理中,可以通过FFT对语音信号进行频谱分析,从而提取语音特征、进行语音合成等操作。
分析、系统优化等。
《傅里叶分析》课件
通信系统
傅里叶分析可以用 于调制解调过程中 的频谱分析,以及 信道估计和均衡等 关键问题的解决, 提高通信系统的性 能。
图像处理
傅里叶分析可以用 于图像的频域滤波、 去噪和增强等操作, 以及图像压缩和特 征提取等应用,提 高图像处理的效果 和质量。
其他领域的 应用
除了信号处理、通 信系统和图像处理 外,傅里叶分析还 在许多其他领域中 有着广泛的应用, 如物理学、经济学 等。
《傅里叶分析》PPT课件
傅里叶分析是一种广泛应用于信号处理、通信系统、图像处理等领域的数学 工具。本课件将介绍傅里叶分析的定义、傅里叶级数和傅里叶变换,以及其 在各个领域中的实际应用。
傅里叶级数
傅里叶级数是用正弦和余弦函数将周期函数分解为一系列振幅和相位不同的谐波信号的方法。它可以表 示周期函数在频域上的相关信息。
总结
傅里叶分析是一种重要的数学工具,它可以用于分析和处理各种信号,并在信号处理、通信系统、图像 处理等领域中发挥作用。
1 傅里叶分析的重要性和应用
2 学习和研究傅里叶分析的意义
傅里叶分析在现代科学和工程中具有重要 地位,它为我们理解和处理信号提供了有 力的工具和方法。
学习和研究傅里叶分析不仅能够提高我们 的数学能力,还能够拓宽我们的科学视野, 培养我们的创新思维。
3 傅里叶变换的性质与应用
傅里叶变换具有平移性、尺度性和对称性等重要性质,它在信号处理、通信系统等领域 中有着广泛的应用。
傅里叶分析的实际应用
傅里叶分析在许多领域中发挥着重要作用,包括信号处理、通信系统、图像处理以及其他领域的实际应 用。
信号处理
傅里叶分析可以用 于分析和处理各种 信号,包括音频信 号、视频信号等, 以提取有用的信息 或实现信号压缩等 功能。
课件(PPT版)7.1_傅立叶变换的概念
推导
fT
(t)
a0 2
n1
( an
ibn 2
einω0t
an
ibn 2
e inω0t
).
令
c0
a0 2
,
cn
an
ibn 2
,
cn
an
ibn 2
,
fT (t)
cneinω0t ,
n
则有 (B)
其中,
cn
1 T
T/2 T/2
fT (t ) einω0td t ,
fT (t)
t
fT (t)
t
T/2
T/2
t
二、非周期函数的傅立叶变换
1. 简单分析 (2) 当 T 时,频率特性发生了什么变化? 分析 Fourier 级数表明周期函数仅包含离散的频率成份,
其频谱是以 ω0 2π T 为间隔离散取值的。 当 T 越来越大时,取值间隔越来越小; 当 T 趋于无穷时,取值间隔趋向于零, 即频谱将连续取值。
变上限积分形式的函数:F(x)
x
f (t)dt
a
变换器的固定件——a f (t)dt
含参变量的积分:
F(x)
b f (tx)dt或
b
f (t - 2x)dt
a
a
而F(x) b f (t)extdt, a
对任意给定的f (t)积出的关于x的函数相应确定
即 b estdt就是一台将f (t)加工成F(s)的变换器。 a F() f (t)eitdt 傅里叶变换,且 1 eitd 称为傅氏逆变换器,并有 2 1 F ()eitd f (t) 2
信号与系统课件(郑君里版)第3章
1,带宽与脉宽成反比。
3.系统的通频带>信号的带宽,才能不失真
语音信号 频率大约为 300~3400Hz,
音乐信号
50~15,000Hz,
扩音器与扬声器 有效带宽约为 15~20,000Hz。
29
第三章 傅里叶变换
§3.4 傅里叶变换
•傅里叶变换 •傅里叶变换的表示 •傅里叶变换的物理意义 •傅里叶变换存在的条件
26
第三章 傅里叶变换
4.总结
T1
谱
线
幅度
间隔
1
2π T1
当T1
,时,1
0,E
T1
为无限小,
f t 由周期信号 非周期信号。
矩形脉冲的频谱说明了周期信号频谱的特点: 离散性、谐波性、收敛性。
27
第三章 傅里叶变换
二.频带宽度 1.问题提出
E F (n1 )
18
第三章 傅里叶变换
五.周期信号的功率
P 1 T
T 0
f
2(t)d t
a02
1 2
n1
an2
bn2
a02
1 2
cn2
n1
Fn
n
2
这是帕塞瓦尔定理在傅里叶级数情况下的具体体现;
表明:
周期信号平均功率=直流、基波及各次谐波分量
有效值的平方和;
周期信号频谱具有离散性、谐波性、收敛性 。
12
第三章 傅里叶变换
频谱图
幅度频谱
cn
c1
cn ~
或
c0
c3
傅里叶变换(周期和非周期信号)
例1的频谱图
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
T
2 T
f (t )e jn0tdt
2
证明
- n
傅里叶复系数
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
A
T1
2 A sin n1
n1 n
2
cos n1t
A
T1
2A sin
1
2
cos1t
A
sin
1
cos 21t
2A sin
3
31
2
cos 31t
......
2. 指数形式的傅里叶级数
周期矩形脉冲
f (t) Fne jn1t n
Fn
1 T1 A T1
T1
2 T1
f (t )e jn1tdt
2. T不变,τ减小,则频谱的幅度也将减小,谱线密度 保持不变,但包络过零点的间隔将增大。
A
F0 T
Back
非周期信号的傅立里叶变换
两个重要公式:
f ( t ) F( ) : F( ) f ( t )e jtdt
F( ) f (t ):
F -1F( ) f ( t ) 1 F( )e jtd
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:
(1)在任意周期内存在有限个第一类间断点; (2)在任意周期内存在有限个的极值点; (3)在任意周期上是绝对可积的,即
第三章周期信号的傅里叶级数表示
ak
T e j(kn)0t dt
0
k
a 0 an1 0 an 0 an1 0 a 0 Tan
an
1 T
T x(t)e jn0t dt 1
0
T
x(t)e jn0t dt
T
11
如何理解傅里叶级数?
综合公式:
x(t) ak e jk0 t ak e jk (2 /T )t ,
0
xˆ4
a4e j 40t
a4e j 40t
0
x(t) ake jk0 t
k
k
即:x(t) a0 xˆ1(t) xˆ3(t) xˆ5(t)
xˆ1 xˆ3 xˆ5 xˆ9 xˆ19
a0 xˆ1 xˆ3 a0 xˆ1 xˆ3 xˆ5 a0 xˆ1 xˆ7 a0 xˆ1 xˆ19 a0 xˆ1 xˆ99 x(t)
x(t) ake jk0 t
k
x(t)
ake jk0t m -k
a e jm0t m
k
m
k m
a e jk0t k
k
因为x(t)是实数,即: x(t) x(t) 故有
ak e jk0t
a e jk0t k
k
k
所以 ak a*k 或者 ak* ak | ak || ak || ak |
c
os(20t
4
)
的幅度谱和相位谱
解:利用欧拉公式:
cos x e jx e jx , sin x e jx e jx
2
2j
x(t)
1 1
1 2j
e
j0t
1
1 2j
e
j0t
1 e j( 2
《傅里叶变换》课件
特点
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、
小波变换具有多尺度分析的特点,能够同时获得 信号在时间和频率域的信息,并且在时频域具有 很好的局部化能力。
应用
在信号处理、图像处理、语音识别等领域广泛应 用。
周期性和共轭对称性
总结词
周期性和共轭对称性是傅里叶变换的重要性质。
详细描述
由于傅里叶变换将时间域的函数映射到频率域,因此频谱具有周期性,即F(ω) = F(ω+2πn),其中n为整数。此 外,频谱还具有共轭对称性,即F*(ω) = F(-ω),这意味着频谱在频率轴上关于原点对称。这些性质在信号处理 、图像处理等领域有着广泛的应用。
线性性质
如果a和b是常数,f(t)和g(t)是可傅里叶变换的函数,那么 a*f(t)+b*g(t)也是可傅里叶变换的,并且其频域表示为 a*F(ω)+b*G(ω)。
时移性质
如果f(t)是可傅里叶变换的,那么f(t+a)也是可傅里叶变换 的,并且其频域表示为F(ω)e^(iωa)。
频移性质
如果f(t)是可傅里叶变换的,那么f(t)e^(iω0t)也是可傅里叶 变换的,并且其频域表示为F(ω-ω0)。
04
傅里叶逆变换
傅里叶逆变换的定义
01
傅里叶逆变换是将频域函数转 换为时域函数的过程。
02
它与傅里叶变换是可逆的,即 给定一个频域函数,通过傅里 叶逆变换可以恢复原始的时域 函数。
03
傅里叶逆变换的公式为:f(t) = ∫F(ω)e^(iωt)dω,其中f(t)是 时域函数,F(ω)是频域函数。
傅里叶逆变换的性质
在图像处理中的应用
图像频域滤波
通过傅里叶变换将图像从空间域 转换到频域,可以在频域中对图 像进行滤波处理,如去除噪声、
周期信号的傅里叶变换
x( t )
1 Xn T
n T1 2 T 1 1 2 jn 1 t X e n
x( t )e jn 1t dt
4
单周期信号的傅里叶变换
X d ( ) xd ( t )e j tdt Nhomakorabeadt
1 Xn T1
T1 2 T 1 2
x( t )e jn 1t dt
x(t)
xs(t) x( t ) T xs(t)
0
t
0
T
2T
3T
t
11
调制信号x(t)
抽样
xs(t)
数字信号 量化编码 载波信号
这是由于傅里叶变换反映的是频谱密度概念,周期 信号在各谐振点上,具有有限幅度,说明在这些谐振频 点上其频谐密度趋于无限大,所以变成冲激函数。 这也说明了傅里叶级数可看作傅里叶变换的一种特 例。 三、周期信号与单周期信号频谱间的关系 周期信号x(t)在时域上可以看作是它的单周期信号 xd(t)的周期延拓。已知周期信号的傅里叶级数为:
X ( )
n
0
T1
t
jn1t e
X
n
2 ( n 1 )
n 1 E 1 Sa ( n 1 ) 2 n
9
x0(t) E
E
X0() 2/
0
t E/T1 x(t) E Xn
2/
2.3.4 周期信号的傅里叶变换
前面在推导傅里叶变换时,是将非周期信号看成是 周期信号T 无穷大的周期信号的极限,从而导出了频谱 密度函数的概念。 本节将这概念推广去求周期信号的频谱密度函数 ,即 求周期信号的傅里叶变换,从而得出傅里叶级数是傅里叶 变换的特例的结论。 周期信号是不满足绝对可积条件的,同样它也仅仅在 频谱中引入冲激函数后,傅里叶变换才存在。 因为周期信号可以展成傅里叶级数,即展成一系列不 同频率的复指数分量或正弦、余弦分量的叠加。下面先 求复指数、正弦、余弦分量的傅里叶变换,在此基础上再 求任意周期信号的傅里叶变换。
1 Xn T
n T1 2 T 1 1 2 jn 1 t X e n
x( t )e jn 1t dt
4
单周期信号的傅里叶变换
X d ( ) xd ( t )e j tdt Nhomakorabeadt
1 Xn T1
T1 2 T 1 2
x( t )e jn 1t dt
x(t)
xs(t) x( t ) T xs(t)
0
t
0
T
2T
3T
t
11
调制信号x(t)
抽样
xs(t)
数字信号 量化编码 载波信号
这是由于傅里叶变换反映的是频谱密度概念,周期 信号在各谐振点上,具有有限幅度,说明在这些谐振频 点上其频谐密度趋于无限大,所以变成冲激函数。 这也说明了傅里叶级数可看作傅里叶变换的一种特 例。 三、周期信号与单周期信号频谱间的关系 周期信号x(t)在时域上可以看作是它的单周期信号 xd(t)的周期延拓。已知周期信号的傅里叶级数为:
X ( )
n
0
T1
t
jn1t e
X
n
2 ( n 1 )
n 1 E 1 Sa ( n 1 ) 2 n
9
x0(t) E
E
X0() 2/
0
t E/T1 x(t) E Xn
2/
2.3.4 周期信号的傅里叶变换
前面在推导傅里叶变换时,是将非周期信号看成是 周期信号T 无穷大的周期信号的极限,从而导出了频谱 密度函数的概念。 本节将这概念推广去求周期信号的频谱密度函数 ,即 求周期信号的傅里叶变换,从而得出傅里叶级数是傅里叶 变换的特例的结论。 周期信号是不满足绝对可积条件的,同样它也仅仅在 频谱中引入冲激函数后,傅里叶变换才存在。 因为周期信号可以展成傅里叶级数,即展成一系列不 同频率的复指数分量或正弦、余弦分量的叠加。下面先 求复指数、正弦、余弦分量的傅里叶变换,在此基础上再 求任意周期信号的傅里叶变换。
《傅里叶变换详解》课件
单击添加标题
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量
原理:利用信号的稀疏性,通过测量矩阵将高维信号投影到低维空间,再 利用优化算法重构出原始信号。
单击添加标题
应用:在图像处理、通信、雷达、医学成像等领域有广泛应用,能够实现 高分辨率和高帧率成像,降低数据采集成本和存储空间。
单击添加标题
展望:随着压缩感知技术的不断发展,未来有望在人工智能、物联网、无 人驾驶等领域发挥重要作用,为信号处理领域带来更多创新和突破。
应用:傅里叶逆变换在信号处理、图像处理等领域有着广泛的应用
逆变换的应用场景
信号处理:用于信号的滤波、去噪、压缩等 图像处理:用于图像的增强、去噪、边缘检测等 音频处理:用于音频的滤波、去噪、压缩等 通信系统:用于信号的调制、解调、编码、解码等
06
傅里叶变换的计算机实现
离散傅里叶变换(DFT)
傅里叶变换的分类
连续傅里叶变换:适用于连续信号,将信号分解为不同频率的正弦波
离散傅里叶变换:适用于离散信号,将信号分解为不同频率的正弦波
快速傅里叶变换:适用于快速计算傅里叶变换,通过FFT算法实现 短时傅里叶变换:适用于分析非平稳信号,将信号分解为不同频率的正弦 波,同时考虑时间因素
03
傅里叶变换的性质
04
傅里叶变换的应用
在信号处理中的应用
滤波器设计:设计滤波器以 消除或增强特定频率的信号
信号分解:将信号分解为不 同频率的谐波
信号压缩:通过傅里叶变换 进行信号压缩,减少数据量
信号分析:分析信号的频率 成分,了解信号的特性和变
化规律
在图像处理中的应用
傅里叶变换可以用于图像的平滑处理,去除噪声 傅里叶变换可以用于图像的锐化处理,增强图像的细节 傅里叶变换可以用于图像的频域滤波,去除图像中的特定频率成分 傅里叶变换可以用于图像的压缩和编码,减少图像的数据量
第三章傅里叶变换90页PPT
• 例题:已知信号f(t)=cos100t,求其频谱Fn。
Fn
0.5
解:
f(t)1(ej10t0ej10t0)
所以
2 F1
F1
1 2
,
其F余 n0, n1
-w1
w1
nw1
• 例题:已知信号f(t)的频谱Fn如图所示,求信号f(t)。
解: F 0 2 ,F 1 F 1 2 ,F 2 F 2 1
三角形式的傅里叶级数也可表示成:
f(t)c0 cncos(n1tn)
其中 c n 2 a n 2 b n 2
n1n a rc ta n ( a b n n)
(2)
c 0 a 0
an为 n 1 的偶函数, b n 为 n 1 的奇函数
cn为 n 1 的偶函数, n为 n 1 的奇函数
例题 求题图所示的周期矩形信号的三角形式傅里叶级数。
其中
aan0 n 1T21T11tt00tt0T 01Tf1(tf)c(t)odnst1tdt•角级f(函数t)分数。解线为性不组同合频的率无三穷
推导
2
bn
T1
t0T1 t0
f(t)s
in1tdt
基波,二次谐波….n次谐波
傅里叶级数表明信号中各次谐波的分布。
f(t)a0 (anco ns1tbnsinn 1t) n1
(2)谐波性 -------- 谱线出现在基波频率 1 的整数倍上。
(1)
n 1
f(t)c0 cncon s1(tn)
(2)
n1
f (t)
Fnejn1t
n
f(t) →Fn建立一一对应关系。
(3)
不同时域信号对应的Fn不同,因此可以通过研究Fn来研究 信号的特性。Fn是频率的函数,它反映了组成信号的各次谐波的幅 度和相位变化规律称为频谱函数。可直观地看出各频率分量的相对 大小和相位情况,这样的图就称为信号的幅度频谱和相位频谱。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)连续信号被抽样后,是否保留了原信号的所 有信息?即在什么条件下,可以从抽样的信号 无失真的还原原始信号?
*时域抽样
fs (t) f (t) p(t)
1
Pn Ts
Ts
2 Ts
p(t)e jnst dt
2
P() 2 Pn ( ns )
n
Fs ()
1
2
F()* P()
Fs () PnF ( ns ) n
f (t) Fne jn1t n
3
FT[ f (t)] Fn FT[e jn1t ] n
2 Fn ( n1) n
小 1.由结一F:n些冲T1激1 组T2T121成f (离t)散e频jn谱1t d.t
2.位于信号的谐频处.
3.大小不是有限值,而是无穷小频带内 有无穷大的频谱值.
4
周期信号的傅立叶变换存在条件
f (t) Fne jn1t n
Fn
1 T1
T1
2 T1
f (t)e jn1t dt
2
令f0 (t) f (t) GT1 (t)
T1
F0 ()
2 T1
f (t)e jt dt
2
则Fn与F0 ()之间关系为:
Fn
1 T1
F0 ()
n1
1 [
T1
T1
2 T1
2
f (t)e jt dt]
F(ω) 抽样前
Fs(ω)
抽样后
1/Ts
- ωm ωm
ω
- ωs
ωs ω
*频域抽样
f (t) F () F1() F () ()
其中 () ( n1) n 1 f1(t) 1 n f (t nT1) 16
f1(t)
1
1
n
f
(t
nT1)
上式表明: 若f(t)的频谱F(ω)被间隔为ω1的
矩形脉冲抽样-自然抽样
Pn
1 Ts
Ts
2 Ts
2
p(t)e jnst dt
E
Ts
Sa ns
2
Fs ()
E
Ts
n
Sa
ns
2
F (
ns )
12
上式表明:
信号在时域被抽样后,它的频谱Fs(ω)是连 续信号的频谱F(ω)以抽样频率ωs为间隔周 期地重复而得到的.在重复过程中,幅度被抽 样脉冲p(t)的傅立叶系数所加权,加权系数 取决于抽样脉冲序列的形状.
(2) f (t)为奇函数 : f (t) bn sin( n1t) n 1
n1
7
周单位序列的傅里叶变换:
T1 (t) (t nT1) 1 ( n1)
n
n
p147 例3 10
3.10 抽样信号的傅里 叶变换
时域抽样 频域抽样
9
连续 信号
f(t)
抽样
抽样
信号 fs(t)
数字 量化编码 信号
抽样脉冲p(t)
问题:
1)抽样后离散信号的频谱是什么样的?它与未 被抽样的连续信号的频谱有什么关系?
27
傅里叶级数(FS)
三角形式 :
f
(t )
a0 2
(an
n 1
cos n1t
bn
sin
n1t )
余弦分量幅度 : an
2 T1
t0 T1 t0
f (t) cos n1tdt(n 0,1,...)
正弦分量幅度 : bn
2 T1
t0 T1 t0
f (t) sin n1tdt(n 1,2,...)
指数形式 : f (t)
F (n1 )e jn1t
n
F (n1)
Fn
1 T1
t0 T1 t0
f (t )e jn1t dt
其中n为所有的整数
28
函数f(t)的对称性与FS系数关系
(1)
f
(t )为偶函数
:
f
(t )
a0 2
an
n1
cos n1t
an
4 T1
T1 2
0
f (t) cos n1tdt
抽样前 F(ω) 1
抽样后 Fs(ω) E ωs
-ωm ωm
ω
ωm
ωs
ω
冲激抽样-理想抽样
1
Pn Ts
Ts
2 Ts
2
p(t)e jnst dt
1
Ts
Fs ()
1 Ts
F (
n
ns )
14
上式表明:
Fs ()
1 Ts
F (
n
ns )
由于冲激序列的傅里叶系数Pn为 常数,所以F(ω)是以ωs为周期等 幅地重复,如下图所示:
f(t) Ts F(ω) 以ωs为周期重复 F(ω) ωs f(t) 以Ts为周期重复
22
✓若f(t)被等间隔T取样,将等效于F(ω)以 ωs=2/T为周期重复;
✓而F(ω)被等间隔ωs取样,则等效于f(t)以T 为周期重复.
➢因此,在时域中进行抽样的过程,必然导致 频域中的周期函数;在频域中进行抽样的过 程,必然导致时域中的周期函数。
19
fs(t)
Ts h(t)
Ts f(t)
Ts
Fs(ω)
t
H(ω) ωm ωs 1
卷积
F(ω)
ωc
相 乘
ωm
频域抽样定理
一个时限信号f(t),如果集中于 |t|≤tm,则其频谱F(ω)可以唯一由其 均匀频率间隔fs (fs≤1/(2tm))上的 抽样值F(nωs)确定.
21
时域抽样与频域抽样的对称性
3.9 周期信号的傅里叶 变换
正弦/余弦信号的傅里叶变换 一般周期信号的傅里叶变换
1
正弦/余弦信号的傅里叶变换
1 2() cos(1t) [ ( 1) ( 1)]
sin( 1t) j[ ( 1) ( 1)]
2
一般周期信号的傅里叶变换
令周期信号周期为T1,
角频率为1.其傅里叶级数为
冲激序列在频域中抽样,则在时域 中等效于f(t)以抽样间隔为周期而 平移。从而也就说明了“周期信号 的频谱是离散的”这一规律。
17
3.11 抽样定理
时域抽样定理 频域抽样定理
18
时域抽样定理
一个带限信号f(t),如果频谱|ω|≤ωm,则信 号f(t)可以唯一地由其均匀时间间隔 Ts≤1/(2fm)上的抽样值f(nTs)确定. 且抽样频率fs≥2fm(ωs≥2ωm). 而fs=2fm称为奈奎斯特(Nyquist)频率; Ts=1/(2fm)称为奈奎斯特间隔.
作业: 3-41
改 f2 (t) Sa(1000 t)
下次课包括4.1-4.5节的内容, 请预先做好听课准备。
25
第三章总结 及习题课
26
知识点回顾:
周期信号傅里叶级数分析 非周期信号的傅里叶变换
周期信号的傅里叶变换
典型周期信号的FS
典型非周期信号的FT 傅里叶变换基本性质 抽样信号的FT 抽样定理
1.周期信号不满足绝对可积条件. 2.引入冲激信号后,冲激的积分是有意义
的. 3.在以上意义下,周期信号的傅立叶变换
是存在的. 4.周期信号的频谱是离散的,其频谱密度,
即傅立叶变换是一系列冲激.
5
周期信号f (t)的FS与取其一个周期f (t) GT1 (t) 形成的非周期信号的FT之间的关系: