六年级奥数-第八讲.行程问题(二).教师版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八讲 行程问题(二)

教学目标:

1、 能够利用以前学习的知识理清变速变道问题的关键点;

2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;

3、 变速变道问题的关键是如何处理“变”;

4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.

知识精讲:

比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:

1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就

等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙

,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙

,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之

比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙

,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲

,甲乙在同一段路程s 上的时间之比等于速度比的反比。 行程问题常用的解题方法有

⑴公式法

即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;

⑵图示法

在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;

⑶比例法

行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;

⑷分段法

在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;

⑸方程法

在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.

例题精讲:

模块一、时间相同速度比等于路程比

【例1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第

一次相遇的地点30千米,则A、 B 两地相距多少千米?

【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了3个全程,三

个全程中甲走了45

31

77

⨯=个全程,与第一次相遇地点的距离为

542

(1)

777

--=个全程.所以A、

B两地相距

2

30105

7

÷=(千米).

【例2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去

追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从

出发到把信调过来后返回B地至少要用多少时间。

【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:

因为丙的速度是甲、乙的3倍,分步讨论如下:

(1)若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信

5分钟

5分钟

当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追

及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信

在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),

此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟

所以共需要时间为5+5+15+15+25+25=90(分钟)

(2)同理先追及甲需要时间为120分钟

【例3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处相遇,且中点距C、D距离相等,问A、B两点相距多少米?

【分析】甲、乙两人速度比为80:604:3

=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了

相关文档
最新文档