七年级数学实数习题精选(含答案)
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级数学-实数常考题目训练 (含答案)
人教版七年级数学-实数常考题目训练姓名:学校:学号:一.选择题(共17小题)1.平方根等于它本身的数是()A.﹣1B.0C.1D.±12.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或4.的算术平方根是()A.±3B.3C.﹣3D.95.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个6.下列各式中正确的是()A.B.C.D.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣58.计算正确的是()A.=±2B.=3C.=﹣2D.±=±49.3是27的()A.算术平方根B.平方根C.立方根D.立方10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间13.实数的整数部分是()A.4B.5C.6D.714.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.19.若=3,求2x+5的平方根.20.9的算术平方根是;的立方根是;=.21.若的算术平方根是a,则a的相反数为.22.已知的小数部分是a,的整数部分是b,则a+b=.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.(3)4x2﹣9=0;(4)8(x+1)3=125.(5)(x﹣3)3+27=0.(6)(x﹣1)2=4;23.计算:+++.|﹣3|﹣++(﹣2)2.24.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.25.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.人教版七年级数学-实数常考题目训练参考答案与试题解析一.选择题(共17小题)1-5:BCDBC 6-10:BDDCA 11-17ACCCCBA1.平方根等于它本身的数是()A.﹣1B.0C.1D.±1【解答】解:平方根等于它本身的数是0.故选:B.2.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b【解答】解:∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项A不符合题意;∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项B不符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项C符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项D不符合题意.故选:C.3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或【解答】解:∵2a﹣1和﹣a+4是一个正数的平方根,∴①2a﹣1+4﹣a=0,解得a=﹣3,把a=﹣3代入4﹣a得7,∴这个正数的值是49;②2a﹣1=4﹣a,解得a=,把a=代入4﹣a得=,∴这个正数的值是;故选:D.4.的算术平方根是()A.±3B.3C.﹣3D.9【解答】解:∵=9,∴的算术平方根是:=3.故选:B.5.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个【解答】解:①=9,﹣3是的平方根,故①正确;②7是(﹣7)2的算术平方根,故②错误;③25的平方根是±5,故③正确;④﹣9没有平方根,故④错误;⑤0的算术平方根是0,故⑤错误;⑥=3,的平方根为,故⑥正确;⑦平方根等于本身的数有0,故⑦错误.故选:C.6.下列各式中正确的是()A.B.C.D.【解答】解:A.=5,故A不符合题意;B.=5,故B符合题意;C.被开方数小于0,无意义,故C不符合题意;D.被开方数小于0,无意义,故D不符合题意;故选:B.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣5【解答】解:∵+|b﹣4|=0,而,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,∴a﹣b=﹣1﹣4=﹣5.故选:D.8.计算正确的是()A.=±2B.=3C.=﹣2D.±=±4【解答】解:A.根据算术平方根的定义,=2,故A错误.B.根据立方根的定义,≠3,故B错误.C.根据二次根式的定义,无意义且≠﹣2,故C错误.D.根据平方根的定义,,故D正确.故选:D.9.3是27的()A.算术平方根B.平方根C.立方根D.立方【解答】解:∵33=27,∴3是27的立方根,故选:C.10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④【解答】解:①的立方根为,故错误;②﹣是17的平方根,正确;③﹣27有立方根,故错误;④比大且比小的实数有无数个,正确.综上可得①③正确.故选:A.11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个【解答】解:=4,=2,无理数有,﹣π,共有2个,故选:A.12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵25<26<36,∴5<<6,∴4<﹣1<5,∴估计﹣1的值在:4到5之间,故选:C.13.实数的整数部分是()A.4B.5C.6D.7【解答】解:∵16<17<25,∴4<<5,∴6<2+<7,∴2+的整数部分是6,故选:C.14.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b【解答】解:∵a<0,a<b,c<a,b>c,∴a﹣b<0,c﹣a<0,b﹣c>0,∴原式=﹣a+a﹣b+a﹣c+b﹣c=a﹣2c,故选:C.15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D【解答】解:∵<<,∴3<<4,∴在数轴对应的点可能是C点.故选:C.16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c【解答】解:由数轴得,c>0,a<b<0,因而a﹣b<0,c﹣a>0,b﹣c<0.∴原式=b﹣a﹣c+a+c﹣b=0.故选:B.17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个【解答】解:∵无限循环小数是有理数,∴①的说法错误;∵带根号且开不尽方的数才是无理数,∴②的说法错误;∵互为相反数的两个数相加等于0,∴两个互为相反数的无理数相加等于0,是有理数,∴③的说法错误;∵无理数与有理数的和一定是无理数,∴④的说法正确;∵是无理数,而分数是有理数,∴⑤的说法错误;∵0乘以任何数都等于0,∴一个无理数与0相乘等于0,∴⑥的说法错误.综上,说法正确的有:④.故选:A.二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.【解答】解:∵(±)2=6,∴这个数等于±,故答案为:±.19.若=3,求2x+5的平方根.【解答】解:∵=3,∴x+2=9,即x=7,∴2x+5=19,19的平方根是±,故答案为:±.20.9的算术平方根是3;的立方根是2;=﹣.【解答】解:9的算术平方根是3,∵=8,∴的立方根是2,=﹣,故答案为:3、2、.21.若的算术平方根是a,则a的相反数为﹣3.【解答】解:∵=9,9的算术平方根3,∴的算术平方根a=3,∴a的相反数为﹣3,故答案为:﹣3.22.已知的小数部分是a,的整数部分是b,则a+b=.【解答】解:∵4<5<9,∴2<<3,∴a=﹣2,∵4<8<9,∴2<<3,∴b=2,∴a+b=,故答案为:.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.【解答】解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.24.求出下列x的值:(1)4x2﹣9=0;(2)8(x+1)3=125.【解答】解:(1)4x2﹣9=0,4x2=9,x2=,x1=,x2=﹣;(2)8(x+1)3=125,(x+1)3=,x+1=,x=1.5.25.求下列各式中的x:(1)(x+2)2=25;(2)(x﹣3)3+27=0.【解答】解:(1)(x+2)2=25,x+2=±5,x1=﹣7,x2=3;(2)(x﹣3)3+27=0,x﹣3=﹣3,x=0.26.求下列各式中的x:(1)(x﹣1)2=4;(2)8(x+1)3=27.【解答】解:(1)(x﹣1)2=16x﹣1=4,x﹣1=﹣4,∴x=5或﹣3;(2)(x+1)3=()3,∴x+1=,∴x =.第11 页27.计算:+++.【解答】解:+++=﹣2+5+2﹣3=+2.28.计算|﹣3|﹣++(﹣2)2.【解答】解:原式=3﹣4﹣2+4=1.29.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.【解答】解:(1)∵正数的两个不同的平方根是3a﹣14和a﹣2,∴3a﹣14+a﹣2=0,解得a=4,∵b﹣15的立方根为﹣3,∴b﹣15=﹣27,解得b=﹣12∴a=4、b=﹣12;(2)a=4、b=﹣12代入4a+b得4×4+(﹣12)=4,∴4a+b的平方根是±2.30.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.【解答】解:因为2x+3的算术平方根是3,5x+y+2的立方根是2,所以,解得,所以x﹣y+4=16,所以x﹣y+4的平方根为±=±4.第12 页。
七年级初一数学 第六章 实数练习题及答案
七年级初一数学 第六章 实数练习题及答案一、选择题1.设记号*表示求a 、b 算术平均数的运算,即*2a b a b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+;③*()(*)(*)a b c a b a c +=+;④(*)(*2)a a b c b c c +=+. A .①②③B .①②④C .①③④D .②④ 2.2-是( )A .负有理数B .正有理数C .自然数D .无理数 3.在-2,117,0,23π,3.14159265,9有理数个数( ) A .3个 B .4个 C .5个 D .6个4.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣55.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④16的平方根是4±,其中正确的个数有( )A .0个B .1个C .2个D .3个 6.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .67.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .38.估计25+的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间9.有下列说法:(1164;(2)绝对值等于它本身的数是非负数;(3)某中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果a ≈5.34,那么5.335≤a <5.345,其中说法正确的有( )个A .2B .3C .4D .510.已知实数x ,y 满足关系式241x y -++|y 2﹣9|=0,则6x y +的值是( ) A .±3 B .3 C .﹣3或3 D .3或3二、填空题11.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).12.若()2320m n ++-=,则m n 的值为 ____.13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 14.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____. 16.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____. 18.已知2(21)10a b ++-=,则22004a b +=________.19.0.050.55507.071≈≈≈≈,按此规500_____________20.已知正实数x 的平方根是m 和m b +.(1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++22.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.23.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得读完以上材料,请你计算下列各题.(1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.24.探究:()()()211132432222122222222-=⨯-⨯=-==-==……(1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.25.观察下列各式,回答问题 21131222-=⨯, 21241333-=⨯ 21351444-=⨯ ….按上述规律填空:(1)211100-= × ,2112005-= × , (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 26.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】①中(*)2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b c a b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立.故选B. 2.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D 错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B 、C 错误;∴2-是负有理数,A 正确.故选:A .【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.3.C解析:C【分析】根据有理数包括整数和分数,无理数包括无限不循环小数、开方开不尽的数、含π的数,逐一判断,找出有理数即可得答案.【详解】-2、0是整数,是有理数,117、3.14159265是分数,是有理数, 23π是含π的数,是无理数,,是整数,是有理数,综上所述:有理数有-2,117,0,3.141592655个, 故选C.【点睛】 本题考查实数的分类,有理数包括整数和分数;无理数包括无限不循环小数、开方开不尽的数、含π的数.4.B解析:B【分析】根据a ★b=a 2-ab 可得(x+2)★(x -3)=(x+2)2-(x+2)(x -3),进而可得方程:(x+2)2-(x+2)(x -3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x -3)=5,x 2+4x+4-(x 2-x -6)=5,x 2+4x+4-x 2+x+6=5,5x=-5,解得:x=-1,故选:B .【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a ★b=a 2-ab 所表示的意义.5.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C .【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.6.C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….7.D解析:D【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 1-,解得.故选D.8.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5,故选:D .【点睛】键.9.B解析:B【分析】根据算术平方根的定义、绝对值的性质、数轴的意义实数的运算及近似数的表示方法逐一判断即可得答案.【详解】,4的算术平方根是22,故(1)错误,绝对值等于它本身的数是非负数;故(2)正确,某中学七年级共有12个班级,是对于班级数记数的结果,所以这里的12属于记数,故(3)错误,实数和数轴上的点一一对应;故(4)正确,0与无理数的乘积为0,0是有理数,故(5)错误,如果a ≈5.34,那么5.335≤a <5.345,故(6)正确,综上所述:正确的结论有(2)(4)(6),共3个,故选:B .【点睛】本题考查算术平方根的定义、实数的运算、绝对值的性质及近似数的表示方法,熟练掌握相关性质及运算法则是解题关键.10.D解析:D【分析】由非负数的性质可得y 2=9,4x-y 2+1=0,分别求出x 与y 的值,代入所求式子即可.【详解】2﹣9|=0,∴y 2=9,4x ﹣y 2+1=0,∴y =±3,x =2,∴y+6=9或y+6=3,3=故选:D .【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n =(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.或【解析】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}==2x+1 解析:12或13【解析】 【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1, ∵M{3,2x +1,4x -1}=min{2,-x +3,5x}, ∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立, ∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1,∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…,∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:221 3n n -+. 15.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8, 故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a-【解析】由数轴得,a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 17.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34∴-3<1--2∴1⎡=⎣-3故答案为-3.【点睛】18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】 本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】7.071≈≈≈≈,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的估值扩大1022.36≈.故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.20.-4【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键.三、解答题21.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭ 111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.22.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.23.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1) =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.24.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键.25.(1)99101100100⨯,2004200620052005⨯;(2)10032005. 【分析】 (1)观察已知等式可知等式右边为两个分数的积,其分母相等且与等式左边分母的底数相等,分子一个比分母小1,一个比分母大1,由此填空(2)根据(1)发现的规律将每个括号部分分解为两个分数的积再寻找约分规律.【详解】解:(1)211100-=99101100100⨯,2112005-=2004200620052005⨯. (2)2112⎛⎫-⨯ ⎪⎝⎭ 211 (3)⎛⎫-⨯ ⎪⎝⎭ 2112004⎛⎫-⨯ ⎪⎝⎭ 2112005⎛⎫- ⎪⎝⎭ =1322⨯ ×2433⨯ ×…×2003200520042004⨯×2004200620052005⨯ =12×20062005. =10032005.. 【点睛】本题考查的是有理数的运算能力,关键是根据已知等式由特殊到一般得出分数的拆分规律和约分规律.26.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB 的长度,然后结合数轴的知识即可求解; (2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB 2=12+12=2,∴OB ,∴OA =(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.。
七年级数学 计算专题4--实数(含答案)
计算专题4——实数1.计算(1)2|6|(1)2--+ (2|1(3)22(1)0x -=求x 的值2.计算(12 (2)1-;3.计算:4101221()()20163π---++-.402018π)(1)--+-5.(12-(2)求()21=4-x 中x 的值.6.计算:()214--7.计算:(1 (22.8.计算:(1)(-2)2-5)2×(;(2)|1|;9(1|3|--102(317)0x y -+=的值.11.计算:(-1)2020+(-12)2-)0-1|.12.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭ (2313.计算:()1015 3.12π-⎛⎫-+--+ ⎪⎝⎭14.计算:|﹣12|﹣2﹣1﹣(π﹣4)0.15.计算:(1)﹣12﹣(﹣2) (2)2|16.计算(1 (2212⎛⎫- ⎪⎝⎭17.计算:(1)- (218.(142 (2219.计算:12033⎛⎫÷- ⎪⎝⎭20.计算:11()22--21.计算:31(2)()2--22()20201-23.计算(1 (2|5|+-24.已知:2m +2的平方根是±4,3m +n +1的算术平方根是5,求m +3n 的算术平方根.25.已知某正数的两个平方根为3a +和215a -,求这个数是多少?26.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.41 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a,b求a b-的值.27.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2的平方根,提示:2=17.28﹣1(1;(21=;(3+.29.阅读下面的文字,解答问题.的小数部分我们不可能全部地写出来,于是小明用1的小数部分,你同意小明的表示方法吗?的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1a,小数部分为b,求2a b+-的值.(2)已知:10x y =+,其中x 是整数,且01y <<,求x y -的值.30.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①31000100==,又1000593191000000<<,10100∴<<,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又39729=,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写....结果:=________.=________.参考答案1.(1)1125;(2)172;(3)3x =-或1x =-2.(1)7;(233.20004.1.5.(1)4-(2)3x =或1x =-6.07.(1)1-;(2)58.(1)-2;(2)43-9510.611.12.(1)-34;(2)313.6.14.﹣1.15.(1)2;(2)516.(1)7;(2)-117.(1)-1;(2)0.18.(1) (2)-219.2.20.21.-3322.1923.(1)-2.1;(2)4-+24.425.49本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
七年级数学 实数 练习题及答案
26
(2)
n-
n n2 1
n
n n2 1
(n 为大于 0 的自然数).
小结: 此类规律型问题的特点是给定一列数或等式或图形,要求适当地计算,必要的观察,猜想,归纳,验 证,利用从特殊到一般的数学思想,分析特点,探索规律,总结结论.
举一反三:
1. 某正数的平方根为 a 和 2a 9 ,则这个数为(). 33
表示的数为( ).
A. -2- 3 B. -1- 3
C. -2+ 3
D. 1+ 3
解析:∵AB= 3 +1, ∴C 点表示的数为-1-( 3 +1)=-2- 3 . 选 A
5/6
3. (1)1 的平方根是
;立方根为
;算术平方根为
.
(2)平方根是它本身的数是
.
(3)立方根是其本身的数是
.
(4)算术平方根是其本身的数是
例 3 求下列各式中的 x:(1)x2-144=0;(2)25x2-16=0;(3)(x-3)2=25.
解析: 先通过移项、系数化为 1,将原式变形为 x2=a(a≥0)的形式,再根据平方根的定义求出未知数 x 的 值.
答案: 解:(1)x2-144=0
x2=144 x=±12;(下) (2)25x2-16=0 x2= 16
A. 1 B. 2 C. 4
D. 9
解析:由平方根定义知 a 与 2a 9 互为相反数, 33
所以 a + 2a 9 =0, 33
解得 a=3, 所以这个数的平方根为±1, 所以这个数为 1.选 A.
2. 如图 3-3,数轴上 A,B 两点表示的数分别为-1 和 3 ,点 B 关于点 A 的对称点为点 C,则点 C 所
人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)
一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
盘锦市七年级数学下册第六章【实数】经典习题(含答案解析)
一、选择题1.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .12.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( ) A .﹣40B .﹣32C .18D .103.下列各组数中,互为相反数的是( ) A .2-与2B .2-与12-C .()23-与23-D .38-与38-4.64的算术平方根是( ) A .8B .±8C .22D .22±5.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×20146.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+7.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .108.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-9. 5.713457.134,则571.34的平方根约为( ) A .239.03B .±75.587C .23.903D .±23.903 10.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π11.在1.414,213,5π,2-中,无理数的个数是( ) A .1B .2C .3D .4二、填空题12.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭(2)2291|11232⎛⎫-+--⨯- ⎪⎝⎭13.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0. 14.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭;(2)()()232524-⨯--÷;(3)()225--. 15.求下列各式中x 的值 (1)()328x -= (2)21(3)753x -=16.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.17.(2218.已知5的整数部分为a ,5-b ,则2ab b +=_________. 19.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数. 20.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=21.9的平方根是_____,-27的立方根是______,()216的算术平方根是_________.三、解答题22.(1)求x 的值:2490x -=; (2)计算:()2325227+--23.求下列各式中x 的值. (1)2(1)2x +=;(2)329203x +=. 24.若()22210b a b -+++-=,求()2020a b +的值.25.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.一、选择题1.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1332.下列命题中,①81的平方根是9;±2;③−0.003没有立方根;④−64的立方根为±4; ) A .1B .2C .3D .43.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是44.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 5.下列实数中,是无理数的为( )A .3.14B .13C D 6.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,A .1个B .2个C .3个D .4个7.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+8.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间9.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;④49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .110.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( )A .-27B .-47C .-58D .-6811.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的; (5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个二、填空题12.求出x 的值:()23227x +=13.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是_____.若点B 表示 3.14-,则点B 在点A 的______边(填“左”或“右”).14.﹣8的立方根与16的平方根之和是_____.15.若[x ]表示实数x 的整数部分,例如:[3.5]=3,则[17]=___.16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当x=2时,()()1*-3*=x x x ______17.已知3331.51 1.147,15.1 2.472,0.1510.5325===,则31510的值是______________________.18.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.19.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 20.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______21.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.三、解答题22.计算:(1)﹣12327-﹣(﹣2)9(2331)+32| 23.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.24.计算: (1. (2)()23540.255(4)8⨯--⨯⨯-.25.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x x x x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解.(3)解方程:2(x 2)100-=(4)计算:20172(1)|7|(----一、选择题1.在实数:20192020,π2π,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52- ) A .4B .5C .6D .72.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .63.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2 D .8的平方根是44.下列说法正确的是( )A .2B .(﹣4)2的算术平方根是4C .近似数35万精确到个位D 55.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .46. ) A .287.2B .28.72C .13.33D .133.37.下列各式中,正确的是( )A B .C 3=-D 4=-8.下列计算正确的是( )A 1=-B 3=-C 2=±D 12=-9.已知无理数m 5π-的整数部分相同,则m 为( )A BC 1D .π-10.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A .5的整数部分与小数部分的差是45- B .3m = C .5的小数部分是0.236 D .9m n +=11.估计511-的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题12.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------13.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.14.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立? (2332x -35x +12x -的值.15.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证. 16.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-;(3)2(2)|1|-+;(4)311()()(2)424-⨯-÷-.17.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值. 18.(1)计算:|3|-.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.19.﹣8_____. 20.(1)求x 的值:2490x -=;(221.若一个正数的平方根是21a -和5a -,则这个正数是______.三、解答题22.计算:(12)-+(223.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg 2)2+lg 2•1g 5+1g 5﹣201824.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭25.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯。
(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)
一、选择题1.a,小数部分为b,则a-b的值为()A.6-B6C.8D8A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】<<,91516<<,<<34∴==,a b3,3)∴-=-=,336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.2.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.3.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等C解析:C【分析】根据实数的定义和运算法则、绝对值的意义进行分析.【详解】A 、两个无理数的和可能是有理数,例如:2+(-2),故错误;B 、实数与数轴上的点一一对应,故错误;C 、垂线段最短,正确;D 、如果两个实数的绝对值相等,那么这两个实数相等或互为相反数;故选:C.【点睛】本题考查实数的定义和运算法则、绝对值的意义等,熟练掌握基础知识是关键. 4.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S B 解析:B【分析】5【详解】∵253<<,∴5Q .故选:B .【点睛】5 5.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.6.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯, ∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.7.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵93=,382=,∴在所列的8个数中,无理数有3,3π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键. 9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C 2=± D .()515-=- B 解析:B【分析】 根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 二、填空题11.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.12.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值.(1);(2);(3)【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程再进一步解方程即可【详解】解:(1)∵;;;;;∴;(2)由解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 13.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 14.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当a b ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.(1)6;(2)①;②不一定理由见解析【分析】(1)根据新定义可得然后按有理数的运算法则计算即可;(2)①首先根据数轴可得 然后根据新定义可得去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可;(2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=,解得:12a =, 故答案为:12. 【点睛】 本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.比较3、4 _______________.(用“<”连接)3<<4;【分析】先估算出的范围即可求出答案【详解】∵∴故答案为:【点睛】本题考查了估算无理数的大小能估算出的大小是解此题的关键解析:34;【分析】【详解】 ∵3=4= ∴34<<.故答案为:34<<.【点睛】17.下列实数0, 23,,π,0.1010010001其中无理数共有___个.2【分析】根据无理数的定义解答即可【详解】解:实数中无理数有实数π共2个故答案为:2【点睛】本题考查了无理数的定义其中初中范围内学习的无理数有:π2π等;开方开不尽的数;以解析:2【分析】根据无理数的定义解答即可.【详解】解:实数0,23,π,0.1010010001π共2个, 故答案为:2.【点睛】 本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab 的值解析:9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.19.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.【分析】根据题意可以写出这列数的前几项从而可以发现数字的变化规律从而可以求得所求式子的值【详解】∵∴……∴每三个数一个循环∵∴则+--3-3-++3=-3-++3故答案为:【点晴】本题考查数字的变化 解析:1312. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, …… ∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-, ∴+a b 的立方根-1.故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.24.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 25.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =,23x =; (2)解:313x -=±,34x =或32x =-, 43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.26.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. 解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可; (2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可; ②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 27.计算:(1238127(5)--(2)03(0)8|32|π--+(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】 (1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键. 28.求满足下列条件的x 的值:(1)3(3)27x +=-; (2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
七年级数学(下)第六章《实数——实数》练习题含答案
七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。
人教版七年级数学下册第六章《实数》同步练习(含答案)
)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )
《常考题》初中七年级数学下册第六单元《实数》习题(含答案解析)
一、选择题1.,则x+y 的值为( )A .-3B .3C .-1D .1D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵ ∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.-18的平方的立方根是( ) A .4B .14C .18D .164B 解析:B【分析】先根据题意列出代数式,然后再进行计算即可.【详解】14==.故答案为B.【点睛】本题考查了平方和立方根,弄清题意、根据题意列出代数式是解答本题的关键.4.下列说法中,正确的是()A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.无理数都是无限不循环小数D.无理数加上无理数一定还是无理数C解析:C【分析】根据实数的概念和分类即可判断.【详解】A、无理数包括正无理数和负无理数,则此项错误;B、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C、无理数都是无限不循环小数,则此项正确;D(0=,则此项错误;故选:C.【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键.5.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.6.如图,数轴上表示实数5的点可能是()A.点P B.点Q C.点R D.点S B解析:B【分析】5【详解】∵253<<,∴5Q.故选:B.【点睛】57.下列说法正确的是()A.22B.(﹣4)2的算术平方根是4C.近似数35万精确到个位D215B解析:B【分析】根据平方根的定义,算术平方根的定义,近似数的定义及无理数的估算方法分别计算可判定求解.【详解】解:A.2的平方根是2,故错误;B.(﹣4)2的算术平方根是4,故正确;C.近似数35万精确到万位,故错误;D.∵421<5,∴214,故错误.故选:B.【点睛】本题考查了平方根,算术平方根,近似数,无理数,掌握相关概念及性质是解题的关键.8.定义运算:132x y xy y=-※,若211a=-※,则a的值为()A.12-B.12C.2-D.2C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键. 9.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B 【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.10.511的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B 解析:B【分析】5151的取值即可得到答案.【详解】由题意得7518<<,65117∴<-<, 511∴-介于6~7之间.故选B .【点睛】 此题考查了估算无理数的大小,解题关键在于确定51的大小.二、填空题11.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------(1);(2);(3);(4)0【分析】(1)因为56=7×8所以根据题中规律;(2)根据题意把每个单位分数变成两个单位分数的差再对其进行加减运算;(3)根据上面规律可以写出拆分一个单位分数的规律:解析:(1)1117878=-⨯;(2)514;(3)()()11111=m m m m -++;(4)0 【分析】(1)因为56=7×8,所以根据题中规律1115678=-; (2)根据题意把每个单位分数变成两个单位分数的差,再对其进行加减运算; (3)根据上面规律可以写出拆分一个单位分数的规律:()11111m m m m =-++; (4)根据(3)中的规律把每个分数单位拆分成两个分数单位的差再计算即可得到解答 .【详解】解:(1)1111567878==-⨯ (2)11111612203040++++ 11111111112334455667++++=----- 1127514==- (3)()()11111=m m m m -++ (4)()()()()()()121231312x x x x x x -+------ =()()()()()()111111323121x x x x x x --++-------=0【点睛】本题考查与实数运算相关的规律题,通过观察与归纳总结出运算规律是解题关键. 12.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.13.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭(1);(2)-7+【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方再计算乘法运算进而算加减运算即可求出值【详解】(1)原式=6-3×=6-=;(2)原式=-1+-1-×=解析:(1)32;(2). 【分析】(1)直接利用有理数混合运算法则计算得出答案;(2)原式先计算乘方,再计算乘法运算,进而算加减运算即可求出值.【详解】(1)原式=6-3×32=6-92=32;(2)原式=-1-23×152. 【点睛】本题主要考查了有理数和实数的混合运算,正确掌握运算法则是解题关键.14.求下列各式中x 的值.(1)4(x ﹣3)2=9;(2)(x +10)3+125=0.(1)x =或;(2)x =﹣15【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可【详解】解:(1)4(x ﹣3)2=9(x ﹣3)2=x ﹣3=x ﹣3=或x ﹣3=解得:x =或;(2)(x+10解析:(1)x =92或32;(2)x =﹣15 【分析】(1)利用平方根解方程即可;(2)利用立方根解方程即可.【详解】解:(1)4(x ﹣3)2=9,(x ﹣3)2=94,x﹣3=32±,x﹣3=32或x﹣3=32-,解得:x=92或32;(2)(x+10)3+125=0,(x+10)3=﹣125,x+10=3125-,x+10=﹣5,解得x=﹣15.【点睛】本题主要考查利用平方根解方程、利用立方根解方程,熟练掌握解方程的方法和步骤是解答的关键,注意平方根有两个.15.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a根据正方形面积公式结合平方根的运算求出a值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正解析:(12,22)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,-+<-.∴比较大小:350.5【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.16.计算:(1)20193-(1)816|22|(2)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x(1)(2)【分析】(1)先根据正整数指数幂立方根平方根去绝对值化简各项再进行加减运算即可;(2)先去括号根据完全平方公式和平方差公式计算后合并同类项再计算除法即可求解【详解】(1)原式=(2)原式解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.17.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______(1)20200;(2)14;(3)130********…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可【详解】解:=-2(1)整数:20200(2)分数:14(3)无理数解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.18.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】19.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______. 或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键 解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 20.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.(1)求x 的值:2490x -=;(2 解析:(1)32x =或32x =-;(2)4 【分析】(1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x =32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.(12; (2)求 (x -1)2-36=0中x 的值. 解析:(1)12;(2)x 的值为7或﹣5 【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答; (2)利用平方根解方程的方法求解即可.【详解】解:(12 =4﹣12﹣3 =1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.24.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.解析:(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a 的值是多少;然后根据3a +b ﹣1的立方根为2,可得:3a +b ﹣1=8,据此求出b 的值是多少即可.(2)把(1)中求出的a 与b 的值代入2a +4b ,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a +b ﹣1的立方根为2,∴3a +b ﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键.25.先化简,再求值:()222233a ab a ab ⎛⎫---⎪⎝⎭,其中|2|a + 解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.26.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.解析:(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值;(2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值.故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.27)1152-⎛⎫-+︒ ⎪⎝⎭解析:3 2【分析】根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式3342142122=-+-=-+-=.【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键.28.对于有理数,a b,我们规定*a b b ab=-(1)求(2)*1-的值.(2)若有理数x满足(2)*36x-=,求x的值.解析:(1)3;(2)1x=.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题.。
(word版)七年级数学实数习题(含答案),文档
实数单元练习题1填空题:〔此题共10小题,每题2分,共20分〕1、62的算术平方根是__________。
2、34=_____________。
3、2的平方根是__________。
4、实数a,b,c在数轴上的对应b c点如下图0a化简a a b c2b c=________________。
5、假设m、n互为相反数,那么m5n=_________。
6、假设m1(n2)2=0,那么m=________,n=_________。
7、假设a2a,那么a______0。
8、21的相反数是_________。
9、38=,38=_________。
________10、绝对值小于π的整数有。
选择题:〔此题共10小题,每题3分,共30分〕11、代数式x21,x,y,(m1)2,3x3中一定是正数的有〔〕。
A、1个B、2个C、3个D、4个12、假设3x7有意义,那么x的取值范围是〔〕。
A、x>7B、x≥7C、x>7D、x≥7333313、假设x,y都是实数,且2x112xy4,那么xy的值〔〕。
A、0B、1C、2D、不能确定214、以下说法中,错误的选项是〔〕。
A、4的算术平方根是 2 B 、81的平方根是±3C、8的立方根是±2D、立方根等于-1的实数是-1115、64的立方根是〔〕。
A、±4B、4C、-4D、1616、(a3)2b40,那么3a的值是〔〕。
bA、1B、-1C、33D、3444417、计算32716438的值是〔〕。
A、1B、±1C、2D、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是〔〕。
A、-1B、1C、0D、±119、以下命题中,正确的选项是〔〕。
A、无理数包括正无理数、0和负无理数B、无理数不是实数C、无理数是带根号的数D、无理数是无限不循环小数20、以下命题中,正确的选项是〔〕。
A、两个无理数的和是无理数B、两个无理数的积是实数C、无理数是开方开不尽的数D、两个有理数的商有可能是无理数解答题:〔此题共6小题,每题5分,共30分〕21、求27的平方根和算术平方根。
七年级数学下册 专题 实数的运算计算题(共45小题)(解析版)
七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。
精选人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)
人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于人教版七年级数学下册第六章 实数 能力检测卷一.选择题(共10小题) 1.16的平方根是( ) A .4B .-4C .16或-16D .4或-42.下列各等式中计算正确的是( )A ±4B C =-3 D = 323.若方程2(4)x -=19的两根为a 和b ,且a>b,则下列结论中正确的是( ) A .a 是19的算术平方根 B .b 是19的平方根 C .a-4是19的算术平方根D .b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平) A .0个B .1个C .2个D .3个5.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是( ) A .-2B .2C .3D .47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10B .10,11C .11,12D .12,138 ) A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是( ) A.33 B .-33 C. 3 D.132.下列实数中无理数是( )A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20B.x20=2C.x±20=20D.x3=±206.下列选项中正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a 23 <b ,且a 、b 是两个连续的整数,则|a+b|= . 5.若的值在两个整数a 与a +1之间,则a= .6.如图,正方形ABCD 被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm 2和2cm 2,那么两个长方形的面积和为 cm 2. 7.请写出一个大于8而小于10的无理数: .8.数轴上有A 、B 、C 三个点,B 点表示的数是1,C 点表示的数是,且AB=BC ,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2).4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:。
人教版七年级下册数学第六章实数-测试题含答案
人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。
12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。
人教版初中七年级数学下册第六单元《实数》习题(含答案解析)
一、选择题1.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上 2.若15的整数部分为a ,小数部分为b ,则a-b 的值为()A .615-B .156-C .815-D .158- 3.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 4.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-133 5.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个 6.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S 7.下列实数中,是无理数的为( )A .3.14B .13C 5D 98.下列实数:32233.14640.010*******-;;;; (相邻两个1之依次多一个0);52-,其中无理数有( )A .2个B .3个C .4个D .5个 9.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 10.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015 B .2014 C .20152014 D .2015×2014 11.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .1012.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68 13.设,A B 均为实数,且33,3A m B m =-=-,A B 的大小关系是( ) A .A B > B .A B =C .A B <D .A B ≥ 1464 )A .8B .8-C .22D .22± 15.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a >>- D .1a a a->> 二、填空题16.计算:(1)132322⎛⎫⨯-⨯-⎪⎝⎭ (2)2291|121232⎛⎫-+-⨯- ⎪⎝⎭ 17.计算题.(1)12(7)6(22)-+----(2)2312272⨯ (3316(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭18.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 19.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.20.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当x=2时,()()1*-3*=x x x ______21.已知57+的整数部分为a ,57-的小数部分为b ,则2ab b +=_________. 22.求下列各式中的x :(1)29(1)25x -=(2)3548x += 23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +数,求23c d -的平方根.24.2 1.414≈,于是我们说:2的整数部分为1,小数部分则可记为21”.则:(121的整数部分是__________,小数部分可以表示为__________;(232的小数部分是a ,73-b ,那么a b +=__________; (311x 11的小数部分为y ,求1(11)x y --的平方根. 25.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).26.比较大小:3--2.(填“>”“=”或“<”)三、解答题27.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 28.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根. 29.求下列各式中的x 的值(1)21(1)82x +=;(2)3(21)270x -+= 30.计算题. (1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭。
七年级数学上册《第三章-实数》练习题及答案-浙教版
七年级数学上册《第三章 实数》练习题及答案-浙教版一 、选择题1.下列各数:1.414,2,-13,0,其中是无理数的是( ) A.1.414 B. 2 C.-13D.0 2.下列各数中,无理数的个数有( )A.1个B.2个C.3个D.4个3.计算1916+42536的值为( ) A.2512 B.3512 C.4712 D.57124.当14 a 的值为最小时,a 的取值为( )A.-1B.0C.﹣14D.1 5.下列说法正确的是( )A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是36.若a=10,则实数a 在数轴上对应的点的大致位置是( )A.点EB.点FC.点GD.点H7.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .- 2B .2- 2C .1- 2D .1+ 28.实数-7,-2,-3的大小关系是( )A.-7<-3<-2B.-3<-2<-7C.-2<-7<-3D.-3<-7<-2二 、填空题9.写出一个3到4之间的无理数 .10.化简:|3﹣2|= .11.实数a,b在数轴上的位置如图所示,则a2﹣|a﹣b|=______.12.比较大小:5﹣3 0.(填“>”、“﹦”或“<”号)13.点A在数轴上和原点相距7个单位,点B在数轴上和原点相距3个单位,且点B在点A的左边,则A,B两点之间的距离为 .14.如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-2|的值是____________.三、解答题15.在数轴上画出表示下列各数的点,并用”<”连接.16.已知表示实数a,b的两点在数轴上的位置如图所示,化简:|a-b|+(a+b)2.17.一个长方体木箱,它的底面是正方形,木箱高1.25m,体积是11.25m3,求这个木箱底面的边长.18.如图,某玩具厂要制作一批体积为100 0cm3的长方体包装盒,其高为10cm. 按设计需要,底面应做成正方形. 求底面边长应是多少?19.例:试比较4与17的大小.解:∵42=16,(17)2=17又∵16<17∴4<17.请你参照上面的例子比较下列各数的大小.(1)8与65;(2)1.8与3;(3)-5与-24.20.阅读理解∵4<5<9,即2<5<3.∴1<5﹣1<2∴5﹣1的整数部分为1.∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.参考答案一、选择题1.【答案】B2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】C7.【答案】B8.【答案】D二、填空题9.【答案】π.10.【答案】2﹣ 3.11.【答案】﹣b12.【答案】<.13.【答案】3±7.14.【答案】22-2三、解答题15.【答案】解:数轴略-2<-3<0<0.5<2< 516.【答案】解:由图知b<a<0,∴a-b>0,a+b<0.故|a-b|=a-b,(a+b)2=-(a+b)=-a-b∴原式=a-b-a-b=-2b.17.【答案】解:11.25÷1.25=3m.18.【答案】解:由题意可知:底面面积为:1000÷10=100 cm2所以底面边长:10 cm19.【答案】解:(1)8<65 (2)1.8> 3 (3)-5<-2420.【答案】解:∵<<∴4<17<5∴1<17﹣3<2∴a=1,b=17﹣4∴(﹣a)3+(b+4)2=(﹣1)3+(17﹣4+4)2=﹣1+17=16∴(﹣a)3+(b+4)2的平方根是:±4.。
初一数学 实数经典例题及习题含答案
类型一.有关概念的识别1.下面几个数:0. 23 ,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π ,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1 的立方根是±1C、=±1D、是5 的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9 的平方根是±3,∴A 正确.∵1 的立方根是1,=1,是5 的平方根,∴B、C、D 都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A 表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|= ,∴A 表示数为,故选C.【变式3】【答案】∵π = 3.1415…,∴9<3π <10因此3π -9>0,3π -10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25 的算术平方根是;平方根是.2)-27 立方根是. 3),,.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4 或x=-2(3)x=-4类型三.数形结合3. 点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A,B 两点的距离为解析:在数轴上找到A、B 两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B 关于点A 的对称点为C,则点C 表示的数是().A.-1 B.1- C.2- D.-2【答案】选C[变式2] 已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用-4.化简下列各式: (1) | -1.4 | (2) |π -3.142| (3) |-|(4) |x-|x-3|| (x ≤3)(5) |x 2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数单元练习题1
填空题:(本题共10小题,每小题2分,共20分)
1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________。
4、实数a ,b ,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0。
8、12-的相反数是_________。
9、 38-=________,38-=_________。
10、绝对值小于π的整数有__________________________。
选择题:(本题共10小题,每小题3分,共30分)
11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个
B 、2个
C 、3个
D 、4个
12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-
B 、x ≥ 3
7- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0
B 、
2
1 C 、
2 D 、不能确定 14、下列说法中,错误的是( )。
A 、4的算术平方根是2 B 、81的平方根是±
3 0c b a
C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。
A 、±4
B 、4
C 、-4
D 、16
16、已知04)3(2=-+-b a ,则b
a 3的值是( )。
A 、 41 B 、- 41 C 、433 D 、4
3 17、计算33841627-+-+的值是( )。
A 、1
B 、±1
C 、2
D 、7
18、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
A 、-1
B 、1
C 、0
D 、±1
19、下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数
B 、无理数不是实数
C 、无理数是带根号的数
D 、无理数是无限不循环小数
20、下列命题中,正确的是( )。
A 、两个无理数的和是无理数
B 、两个无理数的积是实数
C 、无理数是开方开不尽的数
D 、两个有理数的商有可能是无理数 解答题:(本题共6小题,每小题5分,共30分)
21、求972的平方根和算术平方根。
22、计算252826-+的值。
23、解方程x 3-8=0。
24、若0)13(12=-++-y x x ,求25y x +的值。
实数单元练习题2 一、填空题
1、2(9)-的算术平方根是 。
2、已知一块长方形的地长与宽的比为3:2,面积为3174平方米,则这块地的长为 米
3、已知231(1)0,a b a b +-==则 。
4、已知22114
,)1x y x x y x +--=+3则2= 。
5、由下列等式:
3333332
233
44
22,33,4,7726266363===……
所揭示的规律,可得出一般的结论是 。
二、选择题:
1、3(6)-( )
A 、-6
B 、6
C 、±6
D 6
2、下列命题:①(-3)2的平方根是-3 ;②-8的立方根是-2;
③93;④平方根与立方根相等的数只有0;
其中正确的命题的个数有( )
A 、1个
B 、2个
C 、3个
D 、4个
3、若35,b a b +的小数部分是a ,3-5的小数部分是则的值为(
)
A 、0
B 、1
C 、-1
D 、2
5、使等式2()x x -=成立的x 的值( )
A 、是正数
B 、是负数
C 、是0
D 、不能确定
7、下面5个数:1
3.1416,,3.14,1πππ-,其中是有理数的有( )
A 、0个
B 、1个
C 、2个
D 、3个
25、计算)51
5(5- 26、若13223+-+-=x x y ,求3x +y 的值。
四、综合应用:(本题共10小题,每小题2分,共20分) 27、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式a c b -的值。
28、已知
052522=-++-x x x y ,求7(x +y )-20的立方根。
实数单元测试题
1、6
2、1
3、±2
4、0
5、5
6、1,2
7、≤
8、21-
9、-2,-2 10、±3,,2,±1,0 11----20、ADCCB CDCDB 21、35
,35±
22、29 23、2 24、3
25、4 26、3、27、-2 28、-5。