液体混合控制系统设计

合集下载

多种液体混合装置控制系统的设计(1)

多种液体混合装置控制系统的设计(1)

学号0814108《电气控制与PLC》课程设计( 2008级本科)题目:液料自动混合装置控制系统设计系(部)院:物理与机电工程学院专业:电气工程及其自动化作者姓名:金武明指导教师:王宗刚职称:讲师完成日期: 2011 年 12 月 30 日一、设计目的及意义 (1)二、液料自动混合控制系统方案设计 (1)三、液料自动混合控制系统的硬件设计 (3)3.1总体结构 (3)3。

2元器件的选择 (5)3.3液位传感器的选择 (5)3.4 搅拌电机的选择 (5)3。

5电磁阀的选择 (6)3。

6 PLC的选择 (7)3。

7 PLC输入输出口分配 (8)3.8控制面板元件布置图 (9)3.9 PLC输入/输出接线设计 (10)四、软件系统 (11)4.1 程序流程图 (11)4.2 梯形图程序的总体结构图设计 (12)4。

3 语句表程序设计 (14)五、程序调试 (16)小结 (18)参考文献 (19)电气控制与PLC技术课程设计成绩评定表 (20)一、设计目的及意义在工艺加工最初,把多种原料在合适的时间和条件下进行加工得到产品,一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是现在随着时代的发展,这些方式已经不能满足工业生产的实际需要,实际生产中需要更精确、更便捷的控制装置。

随着科学技术的日新月异,自动化程度要求越来越高,原来的液体混合装置远远不能满足当前自动化的需要。

可编程控制器液体自动混合系统集成自动控制技术,计量技术,传感器技术等技术与一体的机电一体化装置。

充分吸收了分散式控制系统和集中控制系统的优点,采用标准化、模块化、系统化设计,配置灵活、组态方便。

通过该课程设计使我得到了工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力.二、液料自动混合控制系统方案设计目前常用的控制系统有以下几种:继电器控制系统、单片机控制、工业控制计算机和可编程控制器控制。

液体自动混合控制课程设计

液体自动混合控制课程设计

液体自动混合控制课程设计一、课程目标知识目标:1. 学生能理解液体自动混合的基本概念,掌握相关的化学和物理知识,如密度的计算、物质的溶解等。

2. 学生能够描述并解释不同液体混合过程中的自动化控制原理,包括传感器和执行器的应用。

3. 学生能够运用数学知识,如比例和函数,分析混合过程中的变化规律。

技能目标:1. 学生能够设计简单的液体自动混合实验装置,运用控制变量法进行实验操作。

2. 学生通过实际操作,掌握数据收集、处理和 分析的基本技能,能绘制和解读图表。

3. 学生能够运用批判性思维和问题解决技巧,对自动混合过程中可能出现的问题进行诊断和改进。

情感态度价值观目标:1. 学生将对科学探究保持好奇心和热情,培养对实验和创新的积极态度。

2. 学生在团队协作中发展沟通和合作能力,尊重他人意见,培养集体荣誉感。

3. 学生通过探索实践活动,培养环保意识,理解科学技术与社会发展的紧密联系。

本课程设计针对高年级学生,考虑到他们已具有较好的基础知识,课程性质侧重于实践性和探究性。

教学要求以学生为主体,注重启发式教学,通过动手实践和问题解决,培养学生的高级思维能力。

课程目标的设定旨在通过具体可衡量的学习成果,使学生在知识掌握、技能应用和情感态度价值观方面得到全面发展。

二、教学内容本章节教学内容围绕以下三个方面进行组织:1. 理论知识:- 化学基础知识:密度、溶解度、反应速率等。

- 物理基础知识:流体力学、传感器原理、执行器工作原理等。

- 数学知识:比例计算、函数关系、数据分析等。

教学内容关联课本第三章“流体的性质与流动”和第六章“自动化控制基础”。

2. 实践操作:- 液体自动混合装置设计:学生分组设计并搭建实验装置。

- 实验操作:学生进行实验,观察并记录不同液体混合过程中的现象。

- 数据处理:学生运用统计学方法,对实验数据进行处理和分析。

实践内容与课本实验部分相结合,重点为实验八“液体自动混合控制”。

3. 教学大纲与进度安排:- 第一周:理论知识学习,包括化学、物理和数学基础知识。

两种液体混合装置PLC控制系统设计

两种液体混合装置PLC控制系统设计

摘要S7-200 是一种小型的可编程序控制器,实用于各行各业,各类场合中的检测.监测及控制的主动化.S7-200系列的壮大功效使其无论在自力运行中,或相连成收集皆能实现庞杂控制功效.是以S7-200系列具有极高的机能价钱比.本体系应用S7-200PLC实现了对液体混杂装配的主动控制请求.同时控制体系应用仿真装备不但能知足两种液体混杂的功效,并且可以扩大其功效知足多种液体混杂体系的功效.提出了一种基于PLC 的多种液体混杂控制体系设计思绪, 进步了液体混杂临盆线的主动化程度和临盆效力.文中具体介绍了体系的硬件设计.软件设计.个中硬件设计包液体混杂装配的电路框图.输入/输出的分派表及外部接线;软件设计包含体系控制的梯形图.指令表及工作进程.在本装配设计中,液面传感器和电阀门以及搅动电机采取响应的钮子开关和发光二极管来模仿,别的还借助外围元件来完成本装配.全部程序采取构造化的设计办法, 具有调试便利, 保护简略, 移植性好的长处.症结词:PLC ;液体混杂装配;程序目录1 液体混杂装配控制体系设计义务21.2设计内容及要实现的目标22 体系总体计划设计32.1体系硬件设置装备摆设及构成道理32.2体系接线图设计33 控制体系设计43.1估算43.5外部接线图设计73.6控制程序流程图设计83.7控制程序设计83.8创新设计内容104 体系调试及成果剖析114.1体系调试114.2成果剖析11总结12申谢13参考文献141液体混杂装配控制体系设计义务课程设计的目标在工艺加工最初,把多种原料再适合的时光和前提下进行须要的加工以得到产品一向都是在人监控或操纵下进行的,在后来多用继电器体系对次序或逻辑的操纵进程进行主动化操纵,但是如今跟着时期的成长,这些方法已经不克不及知足工业临盆的现实须要.现实临盆中须要更精确.更便捷的控制装配.跟着科学技巧的日新月异,主动化程度请求越来越高,本来的液体混杂远远不克不及知足当前主动化的须要.可编程控制器液体主动混杂体系集成主动控制技巧,计量技巧,传感器技巧等技巧与一体的机电一体化妆置.充分接收了疏散式控制体系和分散控制体系的长处,采取尺度化.模块化.体系化设计,设置装备摆设灵巧.组态便利.可编程控制器多种液体主动混杂控制体系的特色:1)体系主动工作;2)控制的单周期运行方法;3)由传感器送入设定的参数实现主动控制;4)启动后就能主动完成一个周期的工作,并轮回.本体系采取PLC是基于以下两个原因:1)PLC具有很高的靠得住性,平日的平均无故障时光都在30万小时以上;2)编程才能强,可以将隐约化.隐约决议计划息争隐约都便利地用软件来实现.根据多种液体主动混杂体系的请求与特色,我们采取的PLC具有小型化.高速度.高机能等特色,可编程控制器指令丰硕,可以接各类输出.输入扩充装备,有丰硕的特别扩大装备,个中的模仿输入装备和通信装备是体系所必须的,可以或许便利地联网通信.1.2 设计内容及要实现的目标应用西门子PLC的S7-200系列设计两种液体混杂装配控制体系.在试验之前将容器中的液体放空,按动启动按钮SB1后,电磁阀A通电打开,液体A流入容器.当液位高度达到中限位时,液位传感器I0.0接通,此时电磁阀A断电封闭,而电磁阀B通电打开,液体B流入容器.当液位达到上限位时,液位传感器I0.1接通,这时电磁阀B断电封闭,同时启动电念头M搅拌.60分钟后电念头M停滞搅拌,这时电磁阀C通电打开,放出混杂液去下道工序.当液位高度降低到下限位后,再延时5s电磁阀C断电封闭,并同时开端新的周期. 图1.1 两种液体混杂装配2体系总体计划设计根据设计请求,本体系为两种液体主动混杂,须要对各类液体的液面的高度监控,是以,须要应用到传感器进行液面高度的监控.各类液体入池的比例须要应用电磁阀控制,入池后的搅拌,则须要电机控制.对各个控件的控制,须要一个完全的控制流程,应用PLC技巧进行编程,可以实现对各个控件的控制.具体控制办法根据标题请求,按下启动按钮时,A种液体进入容器,当达到必定值时,停滞进入,B种液体开端进入,当达到必定值时,停滞进入.搅拌机进行搅拌,一分钟后搅拌平均,停滞搅拌,放出液体.液体放出达到必定值时停滞放出.液体的进入和放出,须要电磁阀的控制,液面的深度须要传感器的控制.2.1 体系硬件设置装备摆设及构成道理在炼油.化工.制药.饮料等行业中,多种液体混杂是必不成少的程序,并且也是其临盆进程中十分重要的构成部分.我预备设计一个可以将两种食用液体主动混杂成饮料的控制装配,两种饮料分离定名为液体A 和液体B.根本的设计硬件如下表所示:表2.1 设计硬件选择名称 型号 数目 微型盘算机 专用盘算机 1台 PLC 主机单元西门子S7-200系列 1台 两种液体主动混杂单元 配套 1台 通信电缆配套若干图液体混杂控制装配控制的模仿试验面板图如图2.1所示,此面板中,液面传感器用钮子开关来模仿,启动.停滞用动合按钮来实现,液体A 阀门.液体B 阀门.混杂液阀门的打开与封闭以及搅匀电机的运行与停转用发光二极管的点亮与熄灭来模仿.图2.1 液体混杂控制装配控制的模仿试验面板图 2.2 体系接线图设计表2.2 输入/输出接线列表3控制体系设计3.1 估算起首统计被控装备对输入.输出点的总需求量,把被控装备的旌旗灯号源一一列出,卖力剖析输入.输出点的旌旗灯号类型.在初始状况时,根据请求要实现液体的主动混杂导出控制,在开端操纵之前,各阀门必须为封闭状况,容器为空.此时液体控制电磁阀Y1=Y2=Y3=OFF 状况;传感器L1=L2=L3=OFF 状况;电念头M 为封闭状况.面板 SB1 SB2 H I L Y1 Y2 Y3 KM PLC在启动操纵中,当装配和液体的都预备好之后,按下启动按钮,开端下列操纵:1)Y1=ON,液体A流入容器;当液面到达L2时,Y1=OFF,Y2=ON;2)液体B流入,液面达到L1时,Y2=OFF,M=ON,电念头开端进行液体的充分混杂搅拌;3)当混杂液体搅拌平均后(设时光为60s),M=OFF,Y3=ON,开端放出混杂液体;4)当液体降低到L3时,L3从ON变成OFF,把时光控制为再过5s后容器放空,封闭Y3,Y3=OFF完成一个操纵周期;5)在只要没有按停滞按钮的状况下,则主动进入下一个轮回操纵周期.在停滞操纵中,当工作完成之后须要封闭体系,按一下停滞按钮,则在当前混杂操纵周期停滞后,才停滞操纵.从而使体系停滞在开端状况,以便下次启动体系时可以或许顺遂的开端体系的轮回.硬件电路设计选用型液位传感器个中.LSF系列液位开关可供给异常精确.靠得住的液位检测.其道理是根据光的反射折射道理,当没有液体时,光被前端的棱镜面或球面反射回来;有液体笼罩光电探头球面时,光被折射出去,这使得输出产生变更,响应的晶体管或继电器动作并输出一个开关量.应用此道理可制成单点或多点液位开关.LSF 光电液位开关具有较高的顺应情形的才能,在耐腐化方面有较好的抵抗才能.相干元件重要技巧参数及道理如下:(2)工作温度上限为125°C(3)触点寿命为100万次(4)触点容量为70w(5)开关电压为24V DC 3.2.2 搅拌电机的选择选用EJ15-3型电念头个中“E”暗示电念头,“J”暗示交换的,15为设计序号,3为最大工作电流相干元件重要技巧参数及道理如下:EJ15系列电念头是一般用处的全封闭自扇冷式鼠笼型三相异步电念头.(1)额定电压为220V,额定频率为50Hz,功率为 2.5KW,采取三角形接法.(2)电念头运行地点的海拔不超出1000m.工作温度-15~40°C /湿度≤90%.(3)EJ15系列电念头效力高.节能.堵转转矩高.噪音低.振动小.运行安然靠得住.其硬件接线如图3.1.图硬件接线电磁阀的选择(1)入罐液体选用VF4-25型电磁阀个中“V”暗示电磁阀,“F”暗示防腐化,4暗示设计序号,25暗示口径(mm)宽度.相干元件重要技巧参数及道理如下:1)材质:聚四氟乙烯.应用介质:硫酸.盐酸.有机溶剂.化学试剂等酸碱性的液体.2)介质温度≤150℃/情形温度-20~60°C.3)应用电压:AC:220 V50Hz/60Hz DC:24V.4)功率:AC:2.5KW.5)操纵方法:常闭:通电打开.断电封闭,动作响应敏捷,高频率.(2)出罐液体选用AVF-40型电磁阀个中“A”暗示可调撙节量,“V”暗示电磁阀,“F”暗示防腐化,40为口径(mm)相干元件重要技巧参数及道理如下:1)其最大特色就是能经由过程装备上的按键设置来控制流量,达到准时排空的后果.2)其阀体材料为:聚四氟乙烯,有比较强的抗腐化才能.3)应用电压:AC:220 V50Hz/60Hz DC:24V.4)功率:AC:5KW.3. 接触器选用CJ20-10/CJ20-16型接触器.个中“C”暗示接触器,“J”暗示交换,20为设计编号,10/16为主触头额定电流.相干元件重要技巧参数及道理如下:(1)操纵频率为1200/h(2)机电寿命为1000万次(3)主触头额定电流为10/16(A)(4)额定电压为380/220(A)PLC的型号.规格繁多,根据前面3.1的I/O估算,再查阅《西门子PLC编程手册》中的相干表格,肯定PLC选型.根据以上剖析,对PLC来说,须要供给5个输入点和4个输出点.除了以上的输入输出点不测,PLC与盘算机.打印机.CRT显示器等装备衔接,须要用专用接口,也应盘算在内.斟酌到在现实装配.调试和应用中,还有可能发明一些估算中未预感到的身分,要根据现实情形增长一些输入.输出旌旗灯号.是以,要按估量数再增长15%―20%的输入.输出点数,以备未来调剂.扩充应用.综上所述,I/O估算为:输入点点数为8,输出点点数为7.综上所述,点数在30以内,为便利扩大,选择S7-200系列CPU 224型.在懂得了体系工艺要乞降控制请求后,接着要做的就是将I/O通道分派给PLC的指定I/O端子,具体如表3.1所示.分类元件端子号感化输入SB1 起动按钮SB2 停滞按钮L1 液面高位传感器L2 液面中位传感器L3 液面低位传感器输出M 搅拌电念头Y1 液体A流入电磁阀Y2 液体B流入电磁阀Y3 放出混杂液体电磁阀3.5 外部接线图设计图3.2 PLC外部接线图图3.3 装配操纵面板如图 3.2所示,PLC外部接线图左边一排为输入,个中I0.3,I0.1,I0.3,I0.2,I0.4分离与SB1,SB2,L1,L2,L3相连;右边一排为输出,个中Q0.2,Q0.0,Q0.1,Q0.3分离与Y1,Y2,Y3,KM相连.如图3.3所示起停按钮P1,P2分离与主机的I0.3,I0.4相连,液面传感器P3,P4,P5分离与主机的输入点I0.1,I0.3,I0.2相接,液体A阀门,液体B阀门,混杂液体阀门和搅拌机P6,P7,P8,P9分离与主机的输出点Q0.0,Q0.1,Q0.3,Q0.2相连.3.6 控制程序流程图设计图3.4 控制程序流程图3.7 控制程序设计根据体系的请求及I/O通道分派,写出继电器梯形图,如图3.5所示.具体设计思绪如下:1)肇端操纵:在按启动按钮I0.3之后,使Q0.0得电,打开电磁阀A,从而使液体A 流入容器.2)当液位上升到中限位时:当液面上升到中限位时,I0.0由OFF变成ON,使Q0.0断电,封闭电磁阀A.同时使Q0.1得电,打开电磁阀B,从而使液体B流入容器.3)当液位上升到上限位时:当液面上升到上限位时, I0.1由OFF状况变成ON状况,使Q0.1断电,封闭电磁阀 B.同时使Q0.2得电,启动搅拌机M.此时启动准时器T37,60s后T37动作,使Q0.2掉电.4)搅拌平均后放出混杂液体:在Q0.2的降低沿通事后沿微分指令DIFD使Q0.3置位,打开电磁阀C,开端放出混杂液体.5)当液位降低到下限位时:当液位降低到下限位时,启动准时器T38,5s后使Q0.3掉电,封闭电磁阀C,此时液体已放空.6)主动轮回工作:在没有按停滞按钮I0.4的情形下,体系将在T38的记不时光到了时,使Q0.0置位,主动进入下一操纵周期.从而实现混杂液体PLC主动控制的轮回工作.7)停滞操纵:当按下停滞按钮时,停滞按钮I0.4为ON状况,不克不及使电磁阀A.B.C断开,体系履行完本周期的操纵后,将主动逗留在初始状况.应用S7-200西门子简略单纯编程器编入梯形图,如下所示.图3.5 梯形图3.8 创新设计内容此次设计进程中,我有一些本身的设法主意.1)搅拌桶内的液位传感器的靠得住性不强,可以试着改为敏锐性强.靠得住性高的检测仪器.防止因为输入液体时,飞溅的液体触碰着液位传感器而导致发出错误旌旗灯号.2)在电路中供给一个备用电源,如许做的目标就是包管掉落电之后也能使体系完成该周期的工作,从而包管体系在完成当前周期的操纵时,停滞在初始状况,使容器为空.以便在恢复电源后能顺遂的从第一步开端进行轮回.如许就防止了在混杂某些化学物资,比方具有腐化性的物资时.因为掉落电,长时光储消失容器中,从而造成对装配的腐化或破坏;也防止了引起情形污染的可能.同时期替了掉落电保持如许一个麻烦和斟酌不周的进程.4 体系调试及成果剖析4.1 体系调试应用调试程序进行体系静调.模仿两种液体混杂装配的操纵进程,对控制程序作一些修改,使之变成可持续运行的调试程序.具体作法如下:设PLC进入运行方法后:经由必定的预备时光,模仿按下启动按钮,Q0.0的指导灯亮;一段时光后,液面上升到L2地位,Q0.0的指导灯灭,Q0.1的指导灯亮;一段时光后,液面上升到L1地位,Q0.1的指导灯灭,Q0.2的指导灯亮;一段时光后,Q0.2的指导灯灭,Q0.3的指导灯亮;一段时光后,液面低于L3地位,Q0.1的指导灯灭,Q0.0的指导灯亮,当前操纵周期停滞,主动进入下一个操纵周期.在体系运行进程中,模仿按下停滞按钮,所有运行立刻停滞.调试停滞.4.2 成果剖析基于以上设计与调试,两种液体混杂装配的体系设计根本停滞.测试成果知足课题给定请求.总结此次课程设计是异常可贵的一次理论与实践相联合的机遇,经由过程此次此次对“液体主动混杂装配的PLC控制”的设计使我摆脱了单纯理论进修的状况,和眼高手低的缺点,经由过程本次PLC的课程设计,使我懂得到PLC的重要性.电气控制与可编程控制器是一门极其重要的课程,他分解了盘算机技巧和主动控制技巧和通信技巧.在当今由机械化向主动化,信息化飞速成长的社会,PLC技巧越来越受人们普遍应用,远景可不雅,是以学会和应用PLC,将对我们今后踏上工作岗亭有极其重要的帮忙,在此次设计中,我们碰到了很多艰苦,经由过程对自身的查找,我找出几点缺少之处:1,不太会应用查翻材料.碰到艰苦,起首不先检讨材料,过多依附同窗和先生的帮忙,相对不自力.2,进修卖力程度不敷,进修热忱不高,基本相对单薄,控制常识太少.3,设计时对时光合理安插上欠妥.但恰是此次设计,让我熟悉到本身的缺少,为今后今后的工作进修找到了偏向和进步的动力.经由过程此次PLC课程设计实践.我学会了PLC的根本编程办法,对PLC的工作道理和应用办法也有了更深入的懂得.在对理论的应用中,进步了我们的工程本质,在没有做实践设计以前,我们对常识的撑握都是理论上的,对一些细节不加看重,当我们把本身想出来的程序用到PLC中的时刻,问题消失了,不是不克不及运行,就是运行的成果和请求的成果不相相符.如许,我就只能一个一个问题的去解决,经由过程查阅材料或者是就教同窗,一次一次的调试程序,最后达到设计请求.使得我对PLC 的懂得得到增强,看到了实践与理论的差距.最后经由过程本次课程设计,使我懂得了PLC控制技巧在工业应用和工业临盆中的重要地位;经由过程本次课程设计,使我更深入的懂得了PLC的编程思惟,也能更好的将所学常识应用到实践中动.是以学好这门课程对今后的成长有举足轻重的地位.申谢短暂的一礼拜的设计就这么停滞了,虽说时光很短暂但学的到的器械很多.在此感激***先生的谆谆教诲和孜孜不倦的指点,先生渊博的学识.严谨的治学精力和一丝不苟的工作风格深深影响了我,使我毕生受益.同时,在行文进程中,也得到了很多同窗的珍贵建议,在此一并致以诚挚的谢意.最后,我向在百忙中抽出时光对本文进行评审并提出珍贵看法的列位先生暗示衷心肠感激!参考文献【1】戚长政《自念头与临盆线》科学出版社2004【2】蔡杏山《零起步轻松学西门子S7-200PLC技巧》人平易近邮电出版社2010【3】马桂喷鼻《电气控制与PLC应用》化学工业出版社2006【4】何友华《可编程序控制器及经常应用控制电器》冶金工业出版社2008【5】肖清《西门子PLC课程设计指点书》化学工业出版社2009。

多种液体自动混合控制系统设计

多种液体自动混合控制系统设计

多种液体自动混合控制系统设计液体自动混合控制系统可以应用于许多领域,例如工业生产,医疗设备,生物科技等。

设计一个多种液体自动混合控制系统时,需要考虑以下几个方面:传感器选择,控制算法设计,执行器选择,系统稳定性和安全性。

首先,传感器选择是系统设计的关键。

液体自动混合控制系统需要能够测量液体的温度、流量、压力和浓度等关键参数。

因此,需要选择适当的传感器来实现这些测量,并将测量结果反馈给控制系统。

其次,控制算法设计是液体自动混合控制系统的核心。

根据具体的应用场景和需求,可以选择不同的控制算法,如PID控制算法,模糊控制算法或模型预测控制算法。

控制算法将根据传感器的反馈信号来调节液体的混合比例或浓度,以达到预期的混合效果。

第三,执行器选择是液体自动混合控制系统中不可忽视的一部分。

根据混合液体的性质和混合要求,可以选择不同类型的执行器,如阀门、泵或搅拌器。

执行器将根据控制算法的指令来调节混合液体的流量和速度,以实现到达目标浓度。

其次,系统稳定性和安全性是一个多种液体自动混合控制系统设计过程中需要非常注意的方面。

稳定性是指系统在长时间运行下的可靠性和一致性,控制算法需要设计得稳定并能够适应不同的工作条件。

安全性是指系统在运行过程中能够避免发生意外,从而保证操作人员和设备的安全。

因此,在系统设计过程中需要考虑到一些防护装置和报警系统。

最后,设计师应该在系统实施前进行充分的测试和验证。

通过测试和验证,可以确保设计满足需求,并且能够在不同情况下保持稳定工作。

总之,多种液体自动混合控制系统的设计需要综合考虑传感器选择、控制算法设计、执行器选择、系统稳定性和安全性等方面。

只有全面考虑这些因素,才能设计出一个稳定可靠、安全高效的液体自动混合控制系统。

液体混合装置控制系统plc课程设计

液体混合装置控制系统plc课程设计

液体混合装置控制系统plc课程设计液体混合装置控制系统PLC课程设计引言:液体混合装置是工业生产中常见的设备,通过控制系统的设计,可以实现液体的精确配比和混合。

本文将介绍液体混合装置控制系统PLC课程设计的相关内容。

液体混合装置控制系统的设计旨在实现液体的准确配比和混合,提高生产效率和产品质量。

一、设计目标液体混合装置控制系统的设计目标是实现液体的精确配比和混合,确保产品的质量稳定和生产效率的提高。

具体包括以下几个方面:1. 实现液体的精确配比,保证混合比例准确无误;2. 控制液体流量和压力,确保液体供应的稳定;3. 控制液体温度,适应不同的生产需求;4. 监测液体混合过程中的参数,实时调整控制策略,确保混合效果。

二、系统架构液体混合装置控制系统采用PLC作为控制核心,通过传感器和执行器与液体混合装置进行信息交互。

系统架构主要包括以下几个模块:1. 传感器模块:用于采集液体流量、压力和温度等信息,将采集到的数据传输给PLC;2. PLC控制模块:接收传感器模块传输的数据并进行处理,根据设定的控制策略生成控制信号;3. 执行器模块:根据PLC生成的控制信号,控制液体的供给和混合过程;4. 人机界面模块:提供对液体混合装置控制系统的监控和操作界面,方便操作员进行参数设定和实时监测。

三、系统设计1. 传感器选择:根据不同的控制需求选择合适的传感器,如流量传感器、压力传感器和温度传感器等,确保采集到的数据准确可靠。

2. PLC编程:根据设计目标和控制策略,编写PLC程序,实现液体的精确配比和混合控制。

程序应包括液体流量、压力和温度的控制算法,以及实时监测和报警机制。

3. 执行器控制:根据PLC生成的控制信号,控制液体的供给和混合过程。

可采用电磁阀、变频器等执行器设备,确保液体供给的准确性和稳定性。

4. 人机界面设计:设计人机界面,提供参数设定、实时监测和报警信息等功能。

界面应简洁明了,操作方便,能够满足操作员的需求。

液体混合PLC控制系统设计

液体混合PLC控制系统设计

液体混合PLC控制系统设计液体混合是一种广泛应用的工业制程。

为了实现可靠和高效的控制,现代工业中常常采用PLC(可编程逻辑控制器)控制系统。

本文将介绍PLC控制液体混合的系统设计。

一、系统功能需求液体混合的系统功能需求通常包括:液体流量计量、液体掺杂比例控制、液体混合搅拌等。

在系统设计过程中,应考虑该制程的特殊性需求,例如液体成分、流速以及搅拌程度等。

二、PLC选择PLC控制系统是液体混合制程中最常用的自动化控制器,因为它拥有很高的控制精度和可靠性。

在选择PLC时,应考虑其I/O点数、处理器性能、扩展性、通信口数量和支持的编程软件等因素。

三、系统功能模块1.流量计量模块。

通常采用电磁流量计或者重力流量计,用于测量液体的质量流量,与PLC通讯以获取液体流量数据。

2.比例控制模块。

通常采用调节阀或者脉宽调制控制方式,用于控制液体的掺杂比例,比例控制事件可根据PLC内存程序进行设定。

3.搅拌控制模块。

通常采用调速电机,用于控制搅拌桨的转速,PLC控制搅拌桨的转速等参数。

四、编程设计针对系统功能模块,需要进行编程设计。

PLC编程可以采用多种编程方式,如Ladder Diagram(LD)、Function Block Diagram(FBD)、Structured Text(ST)、Instruction List(IL)等。

其中Ladder Diagram是最常使用的一种方式,是一种类似于电路图的编程格式。

在设计过程中需要定时存储数据,数据库可以自行搭建或者直接采用PLC内部的存储器。

五、系统控制策略在液体混合制程中,系统的控制策略应尽量保证其稳定性和精准度。

系统控制策略通常包括以下几种方式:1.滞后控制。

在处理液体混合制程时,只有等到液体流动到特定位置时才开始进行搅拌操作,这使得混合不是非常均匀。

2.脉冲控制。

通过控制调节阀或者脉宽调制的方式,设置掺杂比例,可以较精确的控制液体混合。

3.前馈控制。

在搅拌过程中,通过加入一定的预测信息来实现搅拌效果的改善。

毕业设计 多种液体混合PLC控制系统设计报告

毕业设计 多种液体混合PLC控制系统设计报告

(一)课程设计的背景随着科学技术的猛速发展,自动控制技术在人类活动的各个领域中应用越来越广泛。

在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。

设计的多种液体混合装置利用可编程控制器可以实现在混合过程中进行精确控制,提高了液体混合比例的稳定性、运行稳定、自动化程度高,适合工业生产的需要。

(二)课程设计的目的及意义在工艺加工最初,把多种原料在合适的时间和条件下进行所需要的加工以得到产品一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是随着时代的发展,这些方式已经不能满足工业生产的实际需要。

实际生产中需要更精确、更便捷的控制装置。

随着科学技术的日新月异,自动化程度要求越来越高,原来的液体混合装置远远不能满足当前自动化的需要。

可编程控制器液体自动混合系统集成自动控制技术,计量技术,传感器技术与机电一体化装置。

充分吸收了分散式控制系统和集中控制系统的优点。

采用标准化、模块化、系统化设计,配置灵活、组态方便。

PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

他采用可以编制程序的储存器用来在其内部储存执行逻辑运算、顺序运算、计时、计数和算数运算等操作的指令,并能通过数字式或模拟式的输入和输出控制各种类型的机械或生产过程。

有以下主要特点:1)使用灵活,通用性强2)可靠性高,抗干扰能力强3)接口简单、维护方便4)体积小、功耗少、性价比高5)编程简单容易掌握6)设计施工调试周期短所以根据多种液体自动混合系统的要求与特点,我们采用PLC作为我们的控制系统。

可编程控制器指令丰富,可以接各种输出、输入扩充设备,有丰富的特殊扩展设备,其中的模拟输入设备和通信设备是系统所必需的,能够方便地联网通信。

本系统就是应用可编程序控制器PLC对多种液体自动混合实现控制。

(三)课程设计的内容实现基于S7-200多种液体混合控制系统设计。

液体混合控制系统的控制要求与设计方法

液体混合控制系统的控制要求与设计方法

本文对液体混合控制系统的研究方法、实验 结果和实际应用进行了详细阐述,为相关领 域的研究提供了有益的参考和借鉴。
实验结果表明,所设计的液体混合 控制系统具有良好的控制性能和稳 定性,能够满足实际生产的需求, 具有一定的实用价值。
未来研究方向
01
进一步优化液体混合控制系统的算法和软硬件设计,提高系统的响应 速度和精度。
感谢您的观看
根据软件需求和架构,进行软件 开发和测试,确保软件的正确性 和可靠性。
人机交互设计
人机界面设计
设计易于操作和理解的人机界面, 包括图形界面、文本界面等,提 高用户的使用体验。
操作流程设计
明确系统的操作流程,包括操作 步骤、操作顺序和操作条件等, 确保用户能够快速掌握操作方法。
交互反馈设计
设计系统对用户操作的反馈机制, 包括声音、灯光和震动等,提高 用户对系统状态的感知和理解。
04
液体混合控制系统性能 测试与评估
测试方案
确定测试目标
评估液体混合控制系统的性能,包括混 合精度、响应速度、稳定性等。
设计测试流程
制定详细的测试步骤,包括测试前的 准备、测试过程、测试后的数据处理
等。
选择测试方法
根据测试目标,选择合适的测试方法, 如流量测量、浓度检测、压力控制等。
确定测试参数
详细描述
混合速度控制的关键在于优化搅拌速度和流量等参数,以达到快速、均匀的混合效果。同时,需要避 免过度搅拌导致液体发热或产生泡沫等问题。此外,还需要考虑不同组分之间的化学反应和相容性, 以选择合适的混合方式和顺序。
03
液体混合控制系统设计 方法
硬件设计
硬件选型
根据系统需求,选择合适的传感器、执行器、控制器 等硬件设备,确保系统的稳定性和可靠性。

两种液体的混合装置PLC控制系统设计说明

两种液体的混合装置PLC控制系统设计说明

两种液体的混合装置PLC控制系统设计设有两种液体A和B在容器按照一定比例进行混合搅拌,装置结构如图10-1所示。

其中SL1、SL2、SL3为液面传感器,当液面淹没时分别输出信号。

YV1、YV2、YV3为电磁阀,M为搅拌用电动机。

图10-1 两种液体混合装置示意图1.控制要求(1)初始状态此时各阀门关闭,容器是空的。

YV1=YV2=YV3=OFFSL1=SL2=SL3=OFFM=OFF(2)启动操作合上起动开关,开始下列操作:①YVl=ON,液体A流入容器,当液面到达SL3时,YV1=OFF, YV2=ON;②液体B流入,液面达到SL1时,YV2=OFF,M=ON,开始搅拌(设时间为16 s)。

在搅拌期间,为了搅拌的均匀,缩短搅拌时间,要求:正、反转搅拌;③混合液体搅拌均匀后,M=OFF,YV3=ON,放出混合液体。

④当液体下降到SL2时,SL2从ON变为OFF,再过20 s后容器放空,关闭YV3。

(YV3=OFF)完成一个操作周期;⑤只要没断开开关,则自动进入下一操作周期。

(3)停止操作当断开起停开关,待当前混合操作周期结束后,才停止操作,使系统停止于初始状态。

(4)拖动情况搅拌机由一台三相异步电动机拖动,要求电动机可正、反转,直接起动,自由停机。

2.设计要求(1)完成控制要求中的控制过程。

(2)搅拌液体时,要求:正、反搅拌交替进行。

(3)在发生突发事件后(如突然停电)整个控制系统能继续突发事件前工作状态工作,也能通过手动使系统回到原始(循环工作前)状态。

(4)作出I/O分配表、PLC的I/O接线图。

设计流程图、梯形图、指令表、调试操作板布置图。

(5)编制设计使用说明书。

3.设计过程(1) I/O分配表(见表10 -1)在了解了系统工艺要求和控制要求后,首先要做I/O分配,把已知的输入信号和输出信号分配给PLC的指定I/O端子。

表10-1 I/O分配表(2) PLC的I/O接线图(见图10 -2)图10-2 PLC的I/O接线图(3)设计梯形图程序根据控制要求,选择用顺序控制设计两种液体混合装置的系统控制,其步骤如下:①A液体流入(对应的Y11=ON),当SL3液面中位传感器动作(X3=ON),使KV1停止工作( Y11=OFF)。

基于plc的混合液体温度控制系统的设计

基于plc的混合液体温度控制系统的设计

基于plc的混合液体温度控制系统的设计设计内容:本设计基于PLC控制技术,设计了一个混合液体温度控制系统,主要用于控制两种液体的混合温度,从而满足不同的工业生产需求。

该系统由温度传感器、PLC控制器、加热器、风扇、液体泵和液体混合室等组成,通过其自动化控制与智能反馈机制,实现对温度变化的自动调节,保证生产过程中液体处于设定的最优温度范围内,从而提高工业生产效率。

设计原理:该系统主要采用了基于PID控制方法来实现温度控制,PID控制方法是一种通过计算误差的比例、积分和微分来调节系统输出的控制方式。

在本系统中,温度传感器负责监测液体混合室中液体的温度,并通过传输器将监测到的数据传输给PLC控制器。

由PLC控制器根据误差比例、积分和微分计算出控制器的输出信号,进而控制加热器和风扇的动作,以调节液体的温度。

此外,液体泵负责将两种液体通过管线引至混合室,在混合室中完成实际的混合过程。

设计流程:1. 系统的硬件设计:选择合适的传感器、PLC控制器、加热器、风扇、液体泵和液体混合室,进行系统组装和连线,并进行相关性能测试。

2. 温度传感器的设置:对传感器进行校准和安装,设置合适的采样间隔,确保传输的数据准确可靠。

3. PLD控制器的编程:编写程序,实现温度数据的采集、误差计算和输出控制,以及相应的控制逻辑,再进行测试验证。

4. 对加热器、风扇和液体泵进行编程:编写相应的控制程序,根据温度数据的变化,自动调节加热器、风扇和液体泵的动作,以实现液体混合温度的控制。

5. 系统的测试:对整个系统进行系统测试,确定最优控制策略和调节参数,并在实际的工业生产过程中进行使用。

设计实现:本系统的设计实现有效地提高了工业生产的效率和质量,使得液体的混合过程更为高效和稳定。

该系统具有以下几点突出优势:1. 采用了基于PID控制方法,具有更高的控制精度和稳定性。

2. 对预先设定的最优温度值进行了自动调节,避免了对工业生产过程的影响。

两种液体混合控制设计梯形图程序

两种液体混合控制设计梯形图程序

两种液体混合控制设计梯形图程序本文简要介绍液体混合控制设计梯形图程序的目的和内容。

液体混合控制是一种常见的工业过程控制方法。

其基本原理包括液体流量控制和液位控制两个方面。

液体流量控制液体流量控制是控制两种液体的比例混合。

常见的液体流量控制方法是通过控制阀门的开启度来调节液体的流量。

这可以实现两种液体按照设定的比例进行混合。

梯形图程序是一种常用的控制方法。

它根据输入的设定值和实际测量值,计算出控制阀门的开启度,并将其输出给控制系统。

通过不断的调整阀门的开启度,可以实现液体流量的精确控制,从而实现液体的比例混合。

液位控制液位控制是控制液体的高度。

常见的液位控制方法是通过控制水泵的开启和关闭来维持液体的稳定液位。

同样地,梯形图程序也可以用于液位控制。

它根据液位的设定值和实际测量值,计算出水泵的开启和关闭信号,并将其输出给控制系统。

通过不断调整水泵的运行状态,可以使液位保持在设定值附近。

总结来说,液体混合控制的基本原理包括液体流量控制和液位控制两个方面。

梯形图程序是一种常用的控制方法,可以实现液体混合的精确控制。

本文将详细介绍设计液体混合控制梯形图程序的步骤,包括传感器的选择、控制元件的配置,以及程序的编写。

1.传感器的选择在设计液体混合控制梯形图程序之前,首先需要选择适合的传感器。

传感器的选择应基于所需测量的参数以及所需的精确度和灵敏度。

2.控制元件的配置选定传感器后,接下来需要配置控制元件。

控制元件可以包括阀门、泵或其他可控制液体流量的设备。

根据混合液体的比例要求,选择合适的控制元件,并将其连接到液体管道中。

3.程序的编写在传感器和控制元件配置完毕后,需要编写梯形图程序来控制液体混合过程。

梯形图程序是一种流程控制图形化编程语言,可用于描述和控制电气控制系统。

编写梯形图程序时,应根据具体需求设置参数和逻辑条件。

设置液体流量、混合比例以及控制元件的开关状态等参数,以实现液体混合控制的目标。

设计液体混合控制梯形图程序的关键步骤包括传感器的选择、控制元件的配置,以及程序的编写。

基于三菱FX2N的两种液体混合控制系统

基于三菱FX2N的两种液体混合控制系统

基于三菱FX2N的两种液体混合控制系统1. 引言液体混合控制系统在工业生产中起到了至关重要的作用。

它可以精确控制两种液体的混合比例,以满足生产过程中的要求。

本文将介绍基于三菱FX2N的两种液体混合控制系统的设计和实现。

2. 系统硬件设计2.1 三菱FX2N PLC概述三菱FX2N PLC是一种常用的工业自动化控制器,具有高性能和可靠性。

它采用了先进的控制算法和可编程逻辑控制器,可以实现各种复杂的控制任务。

2.2 传感器和执行器选择在液体混合控制系统中,需要使用传感器来检测液体的流量和浓度,以及使用执行器来实现液体的混合和分配。

常用的传感器包括流量传感器、浓度传感器等,常用的执行器有阀门、泵等。

根据具体的需求,选择合适的传感器和执行器。

2.3 电路设计液体混合控制系统的电路设计包括供电电路、信号采集电路和控制电路。

供电电路为系统提供稳定可靠的电源,信号采集电路负责采集传感器的信号,控制电路根据采集到的信号进行逻辑控制。

3. 系统软件设计液体混合控制系统的软件设计包括PLC程序编写和人机界面设计。

3.1 PLC程序编写PLC程序是液体混合控制系统实现逻辑控制的核心。

根据系统硬件设计和具体的控制需求,编写PLC程序来实现液体流量和浓度的监测、液体混合比例的计算和控制。

3.2 人机界面设计人机界面是用户与液体混合控制系统进行交互的窗口。

它可以提供实时监控、参数设置和报警信息等功能。

通过人机界面,用户可以方便地对系统进行操作和监控。

4. 系统实现与测试4.1 系统组装与连接根据系统硬件设计,进行系统的组装和连接。

确保各个传感器和执行器正确连接到PLC,并接通电源。

4.2 软件上传与调试将编写好的PLC程序上传到三菱FX2N PLC中,并进行软件调试。

确认软件的逻辑正确,并能够实现液体混合比例的准确控制。

4.3 系统测试与优化对液体混合控制系统进行功能测试和性能优化。

通过对系统的连续运行和不同工况下的测试,找出可能存在的问题,并进行适当的优化和改进。

用plc构成液体混合控制系统的设计

用plc构成液体混合控制系统的设计

用plc构成液体混合控制系统的设计用plc构成液体混合控制系统的设计摘要以两种液体的混合控制为例,将两种液体按一定比例混合,经过电动机搅拌混合均匀后才能将混合的液体输出容器。

并形成循环状态。

液体混合系统的控制设计考虑到其动作的连续性以及各个被控设备动作之间的相互关联性、针对不同的工作状态、进行相应的动作控制输出、从而实现液体混合系统从第一种液体加入到混合完成输出的这样一个周期控制工作的程序实现。

设计以液体混合控制系统为中心,从控制系统的硬件系统组成、软件选用到系统的设计过程(包括设计方案、设计流程、设计要求、梯形图设计、外部连接通信等),旨在对其中的设计及制作过程作简单的介绍和说明。

设计采用PLC去实现设计要求。

本次设计的主要研究范围及要求达到的技术参数有:(1)使液体混合能实现安全、高效;(2)满足液体混合的各项技术要求;(3)具体内容包括多种液体混合控制方案的设计等等。

本课题应解决的主要问题是如何使PLC实现多液体的混合控制功能、在相关的文献当中用PLC对液体混合控制的研究尚不多见,以致人们难以根据他的具体情况正确选用参数进行系统控制、也就难以满足提高质量和效率、降低成本的要求,本设计就是基于以上问题进行的一些探索。

关键词:多种液体、混合装置、自动控制目录 1 绪论………………………………………………………………………………………… 2 多种液体混合控制系统设计……………………………………………………… 2.1 方案设计……………………………………………………………………………… 2.2 方案的介绍…………………………………………………………………………… 3 硬件电路设计…………………………………………………………………………… 3.1 总体结构……………………………………………………………………………… 3.2 液位传感器的选择………………………………………………………………… 3.3 搅拌电机的选择…………………………………………………………………… 3.4 电磁阀的选择………………………………………………………………………… 3.5 PLC的选择…………………………………………………………………………… 3.6 PLC输入、输出口的分配………………………………………………………… 3.7 液体混合装置输入、输出接线…………………………………………………… 4 软件电路设计…………………………………………………………………………… 4.1 程序框图……………………………………………………………………………… 4.2 根据控制要求和I/O地址编址的控制梯形图………………………………… 4.3 语句表………………………………………………………………………………… 5 结束语……………………………………………………………………………………… 致谢…………………………………………………………………………………………… 参考文献…………………………………………………………………………………… 1 绪论为了提高产品质量、缩短生长周期、适应厂品迅速更新换代的要求、产品生产正在向缩短生产周期、降低成本、提高生产质量等方向发展在炼油、化工、制药等行业中,多种液体混合控制是必不可少的工序,而且也是其生产过程中十分重要的组成部分.但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作.另外生产要求该系统具有混合精确、控制可靠等特点,这也是人工操作和半自动化控制所难以实现的.所以为了帮助相关行业,中小型企业实现多种液体混合自动控制,从而达到液体混合的目的,液体混合自动配料势必就是摆在我们眼前的一大课题.借助实验室设备熟悉工业生产中PLC的应用,了解不同公司的可编程控制器的型号和原理、熟悉其编程方式、而多种液体混合装置的控制更常见于工业生产中、适合大中型饮料生产厂家,尤其见于化学化工业中,便以学以致用。

PLC控制液体混合的监控技术设计

PLC控制液体混合的监控技术设计

PLC控制液体混合的监控技术设计PLC(可编程逻辑控制器)是一种实时控制设备,广泛应用于工业自动化领域。

对于液体混合过程的监控技术设计,PLC可提供可靠的控制和监控功能。

本文将从以下几个方面探讨PLC控制液体混合的监控技术设计。

一、系统构建液体混合监控系统的构建应考虑到控制要求和数据采集需求。

系统由PLC、传感器、执行器、HMI(人机界面)以及通信组件等组成。

PLC通过与液体混合设备进行连接,控制混合过程的各个阶段,同时采集相关的数据,并通过HMI显示监控信息。

二、传感器选择液体混合过程中,选择合适的传感器对于实时监控非常重要。

温度传感器、流量传感器、压力传感器和液位传感器是常用的液体监测传感器。

温度传感器用于监测液体温度,流量传感器用于监测液体流速,压力传感器用于监测液体压力,液位传感器用于监测液体液位。

这些传感器能够提供准确的监测数据,用于PLC的控制和数据采集。

三、PLC程序设计PLC程序设计是实现液体混合过程控制的关键。

根据混合过程的需求,在PLC中编写相应的逻辑程序。

程序中应包括混合设备的启动、停止控制逻辑,以及各种液体参数(如温度、流量、压力和液位)的监测和控制逻辑。

此外,还应包括故障报警和安全保护功能的程序设计。

PLC的程序设计需要根据具体的混合工艺进行优化,以提高系统的稳定性和可靠性。

四、HMI设计HMI设计是液体混合监控系统中与操作人员进行交互的界面。

通过HMI,操作人员可以实时了解液体混合过程的状态和参数,监控系统的运行状态,并进行相应的操作。

HMI设计应简洁明了,界面友好,操作方便。

在HMI上显示液体混合过程中的关键参数和曲线图,可以帮助操作人员更好地了解和监控系统,及时发现和解决问题。

五、通信与数据采集液体混合监控系统通常需要与其他设备进行数据交换和信息共享。

PLC可以通过通信模块与上位机、数据库和其他设备进行连接,实现数据采集和共享。

通过与上位机的数据交互,可以实现远程监控和远程控制功能。

多种液体混合控制系统设计

多种液体混合控制系统设计

多种液体混合控制系统设计
液体混合控制系统可以应用于化工、制药、食品等领域,实现多种液体的混合控制。

下面介绍一种液体混合控制系统的设计。

系统组成:
液体混合控制系统由液体储罐、电动搅拌器、流量计、液位传感器、压力传感器、温度传感器、控制器等组成。

其中,液体储罐用于存放液体原料,电动搅拌器用于混合液体,流量计、液位传感器、压力传感器、温度传感器用于感知液体参数,控制器用于控制液体混合过程。

设计思路:
1. 液体储罐的设计:液体储罐应具备密封性、耐腐蚀性、耐压性等特点。

储罐顶部应设置进料口和出料口,同时应对储罐底部设置排液阀。

2. 电动搅拌器的设计:电动搅拌器应选用高效节能的电动机,并且应具备耐腐蚀性和耐磨损性。

搅拌器应采用切割式或框式搅拌方式,以确保混合效果。

3. 流量计的设计:流量计应根据液体的流量要求选用相应的流量计,同时应具备精度高、可靠性强等特点。

4. 液位传感器的设计:液位传感器应采用超声波传感器或者雷达传感器,以确保液体溢出或液位过低的情况不会发生。

5. 压力传感器的设计:压力传感器应选用可靠性高、精度高的传感器,以确保液体压力的精确监测。

6. 温度传感器的设计:温度传感器应选用高精度、响应速度快的传感器,以监测液体的温度变化。

7. 控制器的设计:控制器应考虑到混合液体的比例、搅拌时间、流量等参数进行控制,同时还应具备自动化控制的功能。

总结:
液体混合控制系统应根据液体的特性,选用合适的设备和传感器,并且结合控制器实现自动化控制,从而确保液体混合过程的精确控制。

基于plc的液体混合系统的控制毕业设计

基于plc的液体混合系统的控制毕业设计

基于plc的液体混合系统的控制毕业设计一、研究背景随着工业自动化的不断发展,PLC(可编程逻辑控制器)作为一种重要的控制器件,被广泛应用于各个领域。

其中,在液体混合系统中,PLC 也扮演着重要的角色。

液体混合系统是指将两种或多种不同的液体按照一定比例混合,以达到特定的化学反应或工艺要求。

因此,在液体混合系统中,PLC可以通过对各个部件进行精准控制,实现液体流量、温度等参数的精确调节和监控。

二、研究目标本毕业设计旨在基于PLC实现液体混合系统的控制,并能够实时监测和记录各项参数变化。

具体目标如下:1. 设计并构建一个完整的液体混合系统。

2. 选用适当的传感器和执行器,并设计相应的电路。

3. 编写PLC程序,实现对液体流量、温度等参数进行精确调节和监测。

4. 实时记录各项参数变化,并能够生成相应报表。

三、研究内容1. 液体混合系统硬件设计(1)液体混合系统的结构设计液体混合系统的结构设计需要考虑到液体的流动性和混合效果。

一般来说,液体混合系统包括进料系统、混合系统和出料系统三个部分。

其中,进料系统包括进料管道、泵、阀门等部件;混合系统包括搅拌器、加热器等部件;出料系统包括出料管道、阀门等部件。

(2)传感器和执行器的选用在液体混合系统中,需要选用适当的传感器和执行器来实现对各项参数进行监测和调节。

例如,可以选用流量传感器、温度传感器等来监测液体流量和温度;可以选用电磁阀、气动阀等执行器来控制进料管道和出料管道的开关。

(3)电路设计根据所选用的传感器和执行器,需要设计相应的电路。

例如,可以采用模拟量输入模块来接收流量传感器输出的模拟信号;可以采用数字量输出模块来控制电磁阀或气动阀。

2. PLC程序设计根据硬件设计完成后,需要编写PLC程序实现对液体混合系统进行控制。

PLC程序需要实现以下功能:(1)监测液体流量和温度,并实时调节。

(2)实现进料管道和出料管道的开关控制。

(3)实现搅拌器的开关控制。

(4)实时记录各项参数变化,并能够生成相应报表。

多种液体混合控制系统设计

多种液体混合控制系统设计

实用文档目录1 题目背景与意义 (1)1.1 课题背景 (1)1.2 课题意义 (1)2 设计题目介绍 (2)2.1 设计目的 (2)2.2 设计内容及要求 (2)3 系统设计方案 (3)3.1 PLC输入输出地址分配 (3)3.2 整体控制流程图 (3)4 系统硬件设计 (5)4.1 S7-300组态 (5)4.1.1 S7-300特点 (5)4.1.2 S7-300工作过程 (5)4.2 S7-300组成部件 (5)4.3 S7-300硬件组态步骤 (6)5 系统软件设计 (7)6 系统仿真调试 (7)6.1 WinCC组态 (8)6.2 触摸屏连接 (8)6.3 变量定义 (8)6.4 显示界面设置 (9)6.5 管理画面设置 (11)6.6 报警画面设置 (11)设置超限报警值为100,具体操作如图6-9。

(11)6.7 配方画面设置 (12)6.8 趋势图画面设置 (13)7 心得体会 (13)8 参考文献 (14)附录 (15)1 题目背景与意义1.1 课题背景在众多生产领域中,经常需要对贮槽、贮罐、水池等容器中的液位进行监控,以往常采用传统的继电器接触控制,这种控制方式自动化程度不高,使用的硬件设备多,不易连接,可靠性差。

目前已有许多企业采用先进控制器对传统控制器进行改造,大大提高了控制系统的可靠性和自控程度,为企业提供了更可靠的生产保障。

1.2 课题意义在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。

但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作。

另外,生产要求该系统要具有配料精确、控制可靠等特点,这也是人工操作和半自动化控制所难以实现的。

所以为了帮助相关行业,特别是其中的中小型企业实现多种液体自动混合的目的,液体自动混合配料的自动控制程序就显得尤为重要。

对于本课题来说,液体混合控制部分是一个较大规模工业控制系统的改造升级,控制装置需要根据企业和设备现况来构成并需尽量用以前系统中的元器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要“组态”的概念就是伴随着集散型控制系统(Distributed Control System简称DCS)的出现才开始被广大的生产过程自动化技术人员所熟知的。

在工业控制技术不断发展与应用的过程中,PC(包括工控机)相比以前的专用系统具有的优势日趋明显。

这些优势主要体现在:PC技术保持了较快的发展速度,各种相关技术已经成熟;由PC构建的工业控制系统具有相对较低的拥有成本;PC的软件资源与硬件资源丰富,软件之间的互操作性强;基于PC的控制系统易于学习与使用,可以容易地得到技术方面的支持。

在PC技术向工业控制领域的渗透中,组态软件占据着非常特殊而且重要的地位。

通用工业自动化组态软件的出现为解决上述实际工程问题提供了一种崭新的方法,因为它能够很好地解决传统工业控制软件存在的种种问题,使用户能根据自己的控制对象与控制目的的任意组态,完成最终的自动化控制工程。

组态软件就是有专业性的。

一种组态软件只能适合某种领域的应用。

组态的概念最早出现在工业计算机控制中,如:DCS(集散控制系统)组态、PLC(可编程控制器)梯形图组态;人机界面生成软件就叫工控组态软件。

在其她行业也有组态的概念,如AutoCAD,PhotoShop等。

不同之处在于,工业控制中形成的组态结果就是用在实时监控的,利用现场监控完成工业工程的调控。

关键词:工业组态;自动化;PLC控制;实时监控目录1 MCGS简介 (1)1、1 MCGS组态软件的系统构成 (1)1、1、1 MCGS组态软件的整体结构 (1)1、1、2 MCGS工程的五大部分 (1)1、2 MCGS组态软件的工作方式 (2)1、2、1 MCGS如何与设备进行通讯 (2)1、2、2 MCGS如何产生动画效果 (2)1、2、3 MCGS如何实施远程多机监控 (3)1、2、4 如何对工程运行流程实施有效控制 (3)1、3 MCGS嵌入版概述 (3)1、3、1 MCGS嵌入版组态软件的主要功能 (3)1、3、2 MCGS嵌入版组态软件的主要特点 (5)2 PLC简介 (6)2、1 PLC的介绍 (6)2、2 PLC的工作原理 (6)3 液体混合监控系统设计 (6)3、1 控制要求 (6)3、2 I/O分配表 (7)3、3 程序设计 (7)3、3液体混合装置人机界面设计 (9)3、3、1 建立工程 (9)3、3、2 定义数据对象 (10)3、3、3 界面设计 (11)3、3、4 设备连接 (11)3、3、5 设备调试 (12)4 plc程序模拟运行结果 (13)总结 (14)参考文献 (15)1 MCGS简介MCGS (Monitor and Control Generated System,通用监控系统)就是一套基于Microsoft的,用于快速构造与生成上位机监控系统的组态软件系统,可运行于Microsoft Windows 95/98/Me/NT/2000等操作系统。

MCGS为用户提供了解决实际工程问题的完整方案与开发平台,能够完成现场数据采集、实时与历史数据处理、报警与安全机制、流程控制、动画显示、趋势曲线与报表输出以及企业监控网络等功能。

它充分利用了Windows图形功能完备、界面一致性好、易学易用的特点,比以往使用专用机开发的工业控制系统更具有通用性,在自动化领域有着更广泛的应用。

1.1 MCGS组态软件的系统构成1.1.1MCGS组态软件的整体结构MCGS组态软件(以下简称MCGS)由“MCGS组态环境”与“MCGS运行环境”两个系统组成。

两部分互相独立,又紧密相关。

MCGS组态环境就是生成用户应用系统的工作环境,它由可执行程序McgsSet、exe 支持,其存放于MCGS目录的Program子目录中。

用户在MCGS组态环境中完成动画设计、设备连接、编写控制流程、编制工程打印报表等全部组态工作后,生成扩展名为、mcg的工程文件,又称为组态结果数据库,其与MCGS运行环境一起,构成了用户应用系统,统称为“工程” 。

1、1、2 MCGS工程的五大部分MCGS组态软件所建立的工程由主控窗口、设备窗口、用户窗口、实时数据库与运行策略五部分构成,每一部分分别进行组态操作,完成不同的工作,具有不同的特性。

1、主控窗口:就是工程的主窗口或主框架。

在主控窗口中可以放置一个设备窗口与多个用户窗口,负责调度与管理这些窗口的打开或关闭。

主要的组态操作包括:定义工程的名称,编制工程菜单,设计封面图形,确定自动启动的窗口,设定动画刷新周期,指定数据库存盘文件名称及存盘时间等。

2、设备窗口:就是连接与驱动外部设备的工作环境。

在本窗口内配置数据采集与控制输出设备,注册设备驱动程序,定义连接与驱动设备用的数据变量。

3、用户窗口:本窗口主要用于设置工程中人机交互的界面,诸如:生成各种动画显示画面报警输出、数据与曲线图表等。

4、实时数据库:就是工程各个部分的数据交换与处理中心,它将MCGS工程的各个部分连接成有机的整体。

在本窗口内定义不同类型与名称的变量,作为数据采集、处理、输出控制、动画连接及设备驱动的对象。

5、运行策略:本窗口主要完成工程运行流程的控制。

包括编写控制程序(if…then 脚本程序),选用各种功能构件,如:数据提取、历史曲线、定时器、配方操作、多媒体输出等。

1、2 MCGS组态软件的工作方式1、2、1 MCGS如何与设备进行通讯MCGS通过设备驱动程序与外部设备进行数据交换。

包括数据采集与发送设备指令。

设备驱动程序就是由VB程序设计语言编写的DLL(动态连接库)文件,设备驱动程序中包含符合各种设备通讯协议的处理程序,将设备运行状态的特征数据采集进来或发送出去。

MCGS负责在运行环境中调用相应的设备驱动程序,将数据传送到工程中各个部分,完成整个系统的通讯过程。

每个驱动程序独占一个线程,达到互不干扰的目的。

1、2、2 MCGS如何产生动画效果MCGS为每一种基本图形元素定义了不同的动画属性,如:一个长方形的动画属性有可见度,大小变化,水平移动等,每一种动画属性都会产生一定的动画效果。

所谓动画属性,实际上就是反映图形大小、颜色、位置、可见度、闪烁性等状态的特征参数。

然而,我们在组态环境中生成的画面都就是静止的,如何在工程运行中产生动画效果呢?方法就是:图形的每一种动画属性中都有一个“表达式”设定栏,在该栏中设定一个与图形状态相联系的数据变量,连接到实时数据库中,以此建立相应的对应关系,MCGS称之为动画连接。

当工业现场中测控对象的状态(如:储油罐的液面高度等)发生变化时,通过设备驱动程序将变化的数据采集到实时数据库的变量中,该变量就是与动画属性相关的变量,数值的变化,使图形的状态产生相应的变化(如大小变化)。

现场的数据就是连续被采集进来的,这样就会产生逼真的动画效果(如储油罐的液面的升高与降低)。

用户也可编写程序来控制动画界面,以达到满意的效果。

1、2、3 MCGS如何实施远程多机监控MCGS提供了一套完善的网络机制,可通过TCP/IP网、Modem网与串口网将多台计算机连接在一起,构成分布式网络测控系统,实现网络间的实时数据同步、历史数据同步与网络事件的快速传递。

同时,可利用MCGS提供的网络功能,在工作站上直接对服务器中的数据库进行读写操作。

分布式网络测控系统的每一台计算机都要安装一套MCGS工控组态软件。

MCGS把各种网络形式,以父设备构件与子设备构件的形式,供用户调用,并进行工作状态、端口号、工作站地址等属性参数的设置。

1、2、4 如何对工程运行流程实施有效控制MCGS开辟了专用的“运行策略”窗口,建立用户运行策略。

MCGS提供了丰富的功能构件,供用户选用,通过构件配置与属性设置两项组态操作,生成各种功能模块(称为“用户策略”),使系统能够按照设定的顺序与条件,操作实时数据库,实现对动画窗口的任意切换,控制系统的运行流程与设备的工作状态。

所有的操作均采用面向对象的直观方式,避免了烦琐的编程工作。

1、3 MCGS嵌入版概述1、3、1 MCGS嵌入版组态软件的主要功能简单灵活的可视化操作界面。

MCGS嵌入版采用全中文、可视化、面向窗口的开发界面,符合中国人的使用习惯与要求。

以窗口为单位,构造用户运行系统的图形界面,使得MCGS嵌入版的组态工作既简单直观,又灵活多变。

实时性强、有良好的并行处理性能。

MCGS嵌入版就是真正的32位系统,充分利用了32位WindowsCE操作平台的多任务、按优先级分时操作的功能,以线程为单位对在工程作业中实时性强的关键任务与实时性不强的非关键任务进行分时并行处理,使嵌入式PC机广泛应用于工程测控领域成为可能。

例如,MCGS嵌入版在处理数据采集、设备驱动与异常处理等关键任务时,可在主机运行周期时间内插空进行象打印数据一类的非关键性工作,实现并行处理。

丰富、生动的多媒体画面。

MCGS嵌入版以图像、图符、报表、曲线等多种形式,为操作员及时提供系统运行中的状态、品质及异常报警等相关信息;用大小变化、颜色改变、明暗闪烁、移动翻转等多种手段,增强画面的动态显示效果;对图元、图符对象定义相应的状态属性,实现动画效果。

MCGS嵌入版还为用户提供了丰富的动画构件,每个动画构件都对应一个特定的动画功能。

完善的安全机制。

MCGS嵌入版提供了良好的安全机制,可以为多个不同级别用户设定不同的操作权限。

此外,MCGS嵌入版还提供了工程密码功能,以保护组态开发者的成果。

强大的网络功能。

MCGS嵌入版具有强大的网络通讯功能,支持串口通讯、Modem串口通讯、以太网TCP/IP通讯,不仅可以方便快捷的实现远程数据传输,还可以与网络版相结合通过Web浏览功能,在整个企业范围内浏览监测到所有生产信息,实现设备管理与企业管理的集成。

多样化的报警功能。

MCGS嵌入版提供多种不同的报警方式,具有丰富的报警类型,方便用户进行报警设置,并且系统能够实时显示报警信息,对报警数据进行应答,为工业现场安全可靠地生产运行提供有力的保障。

实时数据库为用户分步组态提供极大方便。

MCGS嵌入版由主控窗口、设备窗口、用户窗口、实时数据库与运行策略五个部分构成,其中实时数据库就是一个数据处理中心,就是系统各个部分及其各种功能性构件的公用数据区,就是整个系统的核心。

各个部件独立地向实时数据库输入与输出数据,并完成自己的差错控制。

在生成用户应用系统时,每一部分均可分别进行组态配置,独立建造,互不相干。

支持多种硬件设备,实现“设备无关”。

MCGS嵌入版针对外部设备的特征,设立设备工具箱,定义多种设备构件,建立系统与外部设备的连接关系,赋予相关的属性,实现对外部设备的驱动与控制。

用户在设备工具箱中可方便选择各种设备构件。

不同的设备对应不同的构件,所有的设备构件均通过实时数据库建立联系,而建立时又就是相互独立的,即对某一构件的操作或改动,不影响其它构件与整个系统的结构,因此MCGS嵌入版就是一个“设备无关”的系统,用户不必担心因外部设备的局部改动,而影响整个系统。

相关文档
最新文档