圆锥曲线二轮复习全部题型总结

合集下载

高考数学二轮复习专题13 圆锥曲线压轴解答题常考套路归类(精讲精练)(解析版)

高考数学二轮复习专题13 圆锥曲线压轴解答题常考套路归类(精讲精练)(解析版)

专题13圆锥曲线压轴解答题常考套路归类【命题规律】解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大核心考点展开.【核心考点目录】核心考点一:轨迹方程核心考点二:向量搭桥进行翻译核心考点三:弦长、面积背景的条件翻译核心考点四:斜率之和差商积问题核心考点五:弦长、面积范围与最值问题核心考点六:定值问题核心考点七:定点问题核心考点八:三点共线问题核心考点九:中点弦与对称问题核心考点十:四点共圆问题核心考点十一:切线问题核心考点十二:定比点差法核心考点十三:齐次化核心考点十四:极点极线问题【真题回归】1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.【解析】(1)设,sin )H θθ是椭圆上任意一点,(0,1)P ,222221144144||12cos (1sin )1311sin 2sin 11sin 111111PH θθθθθ⎛⎫=+-=--=-+≤⎭+ ⎪⎝,当且仅当1sin 11θ=-时取等号,故PH的最大值是11.(2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,A x y x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-==66231555k ==⋅⨯+,当且仅当316k =时取等号,故CD 的最小值为5.2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为的直线与过Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b =,∴222244c a b a =+==,∴1a =,∴b =.∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3344,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM的斜率为直线QM∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-+=⎣⎦,解得P的横坐标:100x y x ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=-⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 的方程为24y x =;(2)[方法一]:【最优解】直线方程横截式设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 1242k k k k αβαβαβ--==≤+++,当且仅当12k k =即2k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.[方法二]:直线方程点斜式由题可知,直线MN 的斜率存在.设()()()()11223344,,,,,,,M x y N x y A x y B x y ,直线():1MN y k x =-由2(1)4y k x y x=-⎧⎨=⎩得:()2222240k x k x k -++=,121x x =,同理,124y y =-.直线MD :11(2)2y y x x =--,代入抛物线方程可得:134x x =,同理,244x x =.代入抛物线方程可得:138y y =-,所以322y y =,同理可得412y y =,由斜率公式可得:()()21432143212121.22114AB MN y y y y y y k k x x x x x x ---====--⎛⎫- ⎪⎝⎭(下同方法一)若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 1242k k k k αβαβαβ--==≤+++,当且仅当12k k =即2k =时,等号成立,所以当αβ-最大时,22AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.[方法三]:三点共线设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,设(),0P t ,若P 、M 、N 三点共线,由221212,,44y y t y t PM PN y ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以22122144y y t y t y ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,化简得124y y t =-,反之,若124y y t =-,可得MN 过定点(),0t因此,由M 、N 、F 三点共线,得124y y =-,由M 、D 、A 三点共线,得138y y =-,由N 、D 、B 三点共线,得248y y =-,则3412416y y y y ==-,AB 过定点(4,0)(下同方法一)若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ--==≤+++当且仅当12k k =即k =所以当αβ-最大时,2AB k =,所以直线:4AB x =+.【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线,MN AB 的斜率关系,由基本不等式即可求出直线AB 的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;法二:常规设直线方程点斜式,解题过程同解法一;法三:通过设点由三点共线寻找纵坐标关系,快速找到直线AB 过定点,省去联立过程,也不失为一种简化运算的好方法.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,)3M -,(1,)3N ,代入AB 方程223y x =-,可得(3,)3T -,由MT TH =得到(5,)3H --.求得HN方程:(22y x =-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,直线l 交C于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【解析】(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=.易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()222222Δ16422210120m k m k m k =-+->⇒-+>且22≠±k .所以由0AP AQ k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)[方法一]:【最优解】常规转化不妨设直线,PA AQ 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP AQ k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+-,解得tan 2α=(负值舍去)此时PA 与双曲线的渐近线平行,与双曲线左支无交点,舍去;当,A B 均在双曲线右支时,因为tan PAQ ∠=,所以()tan βα-=tan 2α=-,2tan 0αα-=,解得tan α=(负值舍去),于是,直线):21PA y x =-+,直线):21QA y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,)23241002x x ++-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d ==,故PAQ △的面积为1162339⨯⨯=.[方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan 2PAQ ∠=由2PAQ απ+∠=,得tan AP k α==1112y x --联立1112y x --,及221112x y -=得1103x -=,153y =,同理,2x =2y =12203x x +=,12689x x =而1||2|AP x =-,2||2|AQ x -,由tan PAQ ∠=sin PAQ ∠=,故1212116||||sin 2()4|.29PAQ S AP AQ PAQ x x x x =∠=-++=【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.【方法技巧与总结】1、直接推理计算,定值问题一般是先引入参数,最后通过计算消去参数,从而得到定值.2、先猜后证,从特殊入手,求出定点或定值,再证明定点或定值与参数无关.3、建立目标函数,使用函数的最值或取值范围求参数范围.4、建立目标函数,使用基本不等式求最值.5、根据题设不等关系构建不等式求参数取值范围.【核心考点】核心考点一:轨迹方程【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线为y =,(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程.【解析】(1)由渐近线为y =知,ba=(),0c 到直线y =2==,所以2c =,224a b +=②,联立①②,解得21a =,23b =,则双曲线方程为2213y x -=.(2)因为直线l 与双曲线交于异支两点,P Q ,所以直线l 的斜率必存在,且经过()01,点,可设直线:1l y kx =+,与双曲线联立得:()223240k x kx ---=,设()()()1122,,,,,M x y P x y Q x y ,则有122122Δ023403k x x k x x k ⎧⎪>⎪⎪+=⎨-⎪-⎪⋅=<⎪-⎩解得k <<由OM OP OQ =+uuu r uu u r uuu r 知,()1221212223623k x x x k y y y k x x k ⎧=+=⎪⎪-⎨⎪=+=++=⎪-⎩两式相除得3x k y =,即3x k y =代入263y k=-得22230y y x --=,又k <<2y,所以点M 的轨迹方程为()222302y y x y --=.例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x -=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.【解析】(1)由题得l 方程为:1y x =+,将其与2214yx -=联立有22114y x y x =+⎧⎪⎨-=⎪⎩,消去y 得:23250x x --=,解得=1x -或53x =.则令A ()1,0-,B 5833⎛⎫ ⎪⎝⎭,,则AB3=.(2)由题,直线l 存在,故设l 方程为:1y kx =+.将其与2214y x -=联立有:22114y kx y x =+⎧⎪⎨-=⎪⎩,消去y 得:()224250k x kx ---=因l 与双曲线有两个交点,则2240Δ80160k k ⎧-≠⎨=->⎩,得205k ≤<且24k ≠.设()()1122,,A x y B x y ,.又设M 坐标为()00x y ,,则12120022,x x y y x y ++==.因A ,B 在双曲线上,则有()221112012212120222144414y x x x x y y k y y x x y y x ⎧-=⎪+-⎪⇒=⇒=⎨+-⎪-=⎪⎩.又M ,()01P ,在直线l 上,则001y k x -=.故000014y x x y -=2200040x y y ⇒-+=由韦达定理有,12224k x x k +=-,12284y y k +=-.则M 坐标为22444,k k k ⎛⎫ --⎝⎭.又0244y k=-,205k ≤<且24k ≠,则01y ≥或04y <-.综上点M 的轨迹方程为:2240x y y -+=,其中()[)41y ⋃∞∈-∞-+,,.例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b+=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).【解析】(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形,所以点P 在以O 为圆心,||OP长为半径的圆上,且|||OP OA =,进而动点P 的轨迹方程为2222x y r +=(2)设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则03x ≠±,设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-22194x y +=,得2220000(49)18()9()360k x k y kx x y kx ++-+--=,因为直线与椭圆相切,所以Δ0=,得22222000018()4(49)9[()4]0k y kx k y kx --+⋅--=,化简,2222200009()(49)()(49)40k y kx k y kx k --+-++=,进而2200()(49)0y kx k --+=,所以222000(9)240--+-=x k x y k y 所以k 是方程222000(9)240--+-=x k x y k y 的一个根,同理1k-是方程222000(9)240--+-=x k x y k y 的另一个根,202041()9y k k x -∴⋅-=-,得220013x y +=,其中03x ≠±,②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直,可知:P 点坐标为:(3,2)±±,P 点坐标也满足220013x y +=,综上所述,点P 的轨迹方程为:220013x y +=.(3)动点Q 的轨迹方程是222200x y a b+=+以下是证明:设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则0x a ≠±,设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22221x y a b+=,得2222222220000()2()()0b a k x a k y kx x a y kx a b ++-+--=,因为直线与椭圆相切,所以Δ0=,得()222222220000222()4()[()]0a k y kx k y kx b a a b --+⋅--=,化简,222220002222202()()()()0a b a b a k y kx k y kx b k --+-++=,进而220220()()0y x b k a k --+=,所以222000022()20x k x y k y a b --+-=所以k 是方程22200022()20x k x y k y a b --+-=的一个根,同理1k-是方程222000022()20x k x y k y a b --+-=的另一个根,2020221()y k ax b k -∴⋅-=-,得222200x y a b +=,其中0x a ≠±,②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直,可知:P 点坐标为:(,)a b ±±,P 点坐标也满足222200x y a b +=+,综上所述,点P 的轨迹方程为:222200x y a b +=+.核心考点二:向量搭桥进行翻译【规律方法】把几何语言转化翻译为向量语言,然后用向量知识来解决.【典型例题】例4.(2023·广西南宁·南宁二中校考一模)已知椭圆2222:1(0)x y C a b a b+=>>,倾斜角为30︒的直线过椭圆的左焦点1F 和上顶点B ,且11ABF S =△A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点(0,)M m 的直线l 与椭圆C 交于不同的两点P ,Q ,且2PM MQ =,求实数m 的取值范围.【解析】(1)由题可知()22231122b c a c b a b c ⎧=⎪⎪⎪⎪+=+⎨⎪=+⎪⎪⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩故椭圆的方程为2214x y +=.(2)当直线l 的斜率不存在时,设()0,1P ,()0,1Q -,()0M m ,,由2PM MQ = ,()()0120,1m m -=--,,得13m =-,同理,当()0,1Q ,()0,1P -时,得13m =,所以13m =±,当直线l 的斜率存在时,即13m ≠±时,设直线PQ 的方程为y kx m =+,联立22,44,y kx m x y =+⎧⎨+=⎩消去y 得()222148440kxkmx m +++-=.因为直线l 与椭圆C 交于不同的两点P 、Q ,所以()()222Δ(8)414440km km=-+->,即22410k m -+>①.设()()1122,,,P x y Q x y ,则2121222844,1414km m x x x x k k -+=-=++②,则()()1122,,,PM x m y MQ x y m =--=- ,由2PM MQ =,得122x x -=③,③代入②得()22222(8)4421414km m k k --⨯=++,化简整理得2221364m k m -=-④,将④代入①得2221191m m m ->--,化简得2119m <<,解得113m -<<-或113m <<.综上,m 的取值范围为111,,133⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭U.例5.(2023·全国·高三专题练习)已知椭圆C :22221x y a b +=(0a b >>)的离心率2e =,点(),0A a 、()0,B b(1)求椭圆C 的标准方程;(2)若经过点(且斜率为k 的直线l 与椭圆C 有两个不同的交点P 和Q ,则是否存在常数k ,使得OP OQ + 与AB共线?如果存在,求k 的值;如果不存在,请说明理由.【解析】(1)因为点(),0A a 、()0,B b=2e =,所以有2c a =,而222a b c =+,因此组成方程组为:22222221a c a b a b c =⎧⎪==⇒⎨⎨=⎩⎪=+⎪⎩2212x y +=;(2)设l的方程为y kx =22221(12)202x y k x y kx ⎧+=⎪⇒+++=⎨⎪=⎩,于是有2221)4(12)202k k -+⋅>⇒>,此时设1222(,),(,)P x y Q x y ,于是有12x x +=,假设存在常数k ,使得OP OQ + 与AB共线,因为1212(,)OP OQ x x y y +=++,(,)(AB a b =-= ,12121212)()()y y x x kx kx x x +=-++=-+,1212()4()x x x x ⇒++=-+,因为12212x x k -+=+,22412122k k k --⋅+=-⇒=++,不满足212k >,因此不存在常数k ,使得OP OQ + 与AB共线.例6.(2023·全国·高三专题练习)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(),(A A A x y 第一象限),曲线Γ为1Γ、2Γ上取满足A x x >的部分.(1)若A x =b 的值;(2)当b =,2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且18PF =,求12F PF ∠;(3)过点20,22b D ⎛⎫+ ⎪⎝⎭斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ⋅ ,并求OM ON ⋅的取值范围.【解析】(1)由A x =A 为曲线1Γ与曲线2Γ的交点,联立222222144A A AA x y bx y b⎧-=⎪⎨⎪+=+⎩,解得A y =2b =;(2)由题意可得1F ,2F 为曲线1Γ的两个焦点,由双曲线的定义可得122PF PF a -=,又18PF =,24a =,所以2844PF =-=,因为b =3c =,所以126F F =,在12PF F △中,由余弦定理可得22212121212||||cos 2PF PF F F F PF PF PF +-∠=⋅6416361128416+-==⨯⨯,由120F PF π<∠<,可得1211arccos16F PF ∠=;(3)设直线24:22b b l y x +=-+,可得原点O 到直线l的距离d =所以直线l 是圆的切线,设切点为M ,所以2OM k b=,并设2:OM y x b =与圆2224x y b +=+联立,可得222244x x b b+=+,可得x b =,2y =,即(),2M b ,注意直线l 与双曲线的斜率为负的渐近线平行,所以只有当2A y >时,直线l 才能与曲线Γ有两个交点,由222222144A A AA x y b x y b⎧-=⎪⎨⎪+=+⎩,可得422A b y a b =+,所以有4244b b <+,解得22b >+22b <-舍去),因为OM 为ON 在OM 上的投影可得,24OM ON b ⋅=+,所以246OM ON b ⋅=+>+则()6OM ON ⋅∈++∞.例7.(2022·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,且128F F =,()4,6P 是C 上一点.(1)求C 的方程;(2)过点()1,1M 的直线与C 交于两点A ,B ,与直线:312l y x =-交于点N .设NA AM λ=,NB BM μ=,求证:λμ+为定值.【解析】(1)设C 的焦距为2c ,则1228F F c ==,即4c =,()14,0F -,()24,0F ;由双曲线的定义,得1224a PF PF =-==,即2a =,所以b ===C 的方程为221412x y -=.(2)设()11,A x y ,()22,B x y ,(),N m n ,显然直线AB 的斜率存在,可设直线AB 的方程为()11y k x -=-,代入22312x y -=,得()()2223212130k x k k x k k ---+--=.由过点()1,1M 的直线与C 交于两点A ,B ,得230k -≠,由韦达定理,得()122213k k x x k -+=-,21222133k k x x k --=-;①由(),N m n 在直线:312l y x =-上,得312n m =-,即1230m n -+=;②由(),N m n 在直线AB 上,得()11n k m -=-.③由NA AM λ=,得()()1111,1,1x m y n x y λ--=--,即()111x m x λ-=-解得111x m x λ-=-.同理,由NB BM μ= ,得221x mx μ-=-,结合①②③,得()()()()12121212121221111m x x x x m x m x m x x x x λμ++----+=+=----()()()()()()()22212122121312221626331111k k k k m m k m m k k x x x x ---+⋅-⨯---+--==----()()()()()()121221626231201111n m n m x x x x --+-+===----.故λμ+是定值.核心考点三:弦长、面积背景的条件翻译【规律方法】首先仍是将题目中的基本信息进行代数化,坐标化,遵循直线与圆锥曲线题目通解中的套路,即设点设线、直由联立、看判别式、韦达定理.将有关弦长、一般是应用弦长公式、点到直线的距离公式及面积公式(在圆中要用半径、半弦、弦心距组成的直角三角形求弦长)将有关弦长、面积的条件翻译为:(1)关于某个参数的函数,根据要求求出最值;(2)关于某个参数的方程,根据要求得出参数的值或两参数间的关系.【典型例题】例8.(2022春·内蒙古呼和浩特·高三呼市二中阶段练习)已知椭圆222:1(0)8x y C a a +=>的左、右焦点分别为1F ,2F ,P 为C 上一点,且当1PF x ⊥轴时,2103PF =.(1)求C 的方程;(2)设C 在点P 处的切线交x 轴于点Q ,证明:1221PF QF PF QF ⋅=⋅.【解析】(1)由题意知,28a >,得a >当1PF x ⊥轴时,设00(,)(0)P c y y ->,代入椭圆方程,得220218y c a +=,解得08y a =,即18PF a =,由椭圆的定义知,122PF PF a +=,又2103PF =,所以81023a a +=,由a >3a =,故椭圆C 的方程为22198x y +=;(2)当切线斜率不存在时,切线方程为3x =±,此时点P 与点Q 重合,等式成立;当切线斜率为0时,切线与x 轴不相交,不符合题意;当切线斜率存在时,设00(,)P x y ,由22198x y +=,得y =2)y x ''=-=所以切线的斜率为k =00)y x x y =-+,即2003x y +=+,整理得220000)x y y x =+-,即008972x x y y +=,所以切线方程为00198+=x x y y,令0y =,得09x x =,即09(,0)Q x ,由(1)知,12(1,0),(1,0)F F -,则12PF PF ==0012000099991,1x x QF QF x x x x +-=+==-=,又2200198x y +=,得2200889y x =-,所以01002009999x QF x x QF x x x ++==--,102099PF x PF x +=-,所以1122PF QF PF QF =,即1221PF QF PF QF ⋅=⋅,即证.例9.(2022春·江苏徐州·高三期末)已知椭圆C :()222210x y a b a b +=>>,直线l 过C 的焦点且垂直于x 轴,直线l 被C(1)求C 的方程;(2)若C 与y 轴的正半轴相交于点P ,点A 在x 轴的负半轴上,点B 在C 上,PA PB ⊥,60PAB ∠=︒,求PAB 的面积.【解析】(1)不妨设直线l 过C 的右焦点(),0c ,则直线l 的方程为x c =,由22221x cx ya b =⎧⎪⎨+=⎪⎩,22221c y a b +=解得2b y a =±,故22b a =①,由于椭圆的离心率ce a ==由①②解得2293,22a b ==,所以椭圆C 的方程为2219322x y +=.(2)由(1)得2P ⎛ ⎝⎭,设(),0,0A t t <,020PAk t -==-,由于PA PB ⊥,所以PB k ==所以直线PB的方程为32y x =+,由2219322x y y x ⎧+=⎪⎪⎨⎪⎪⎩,消去y 并整理得()221260t x tx ++=,解得2266,1212B B t t x y t t --=⨯++由于60PAB ∠=︒,所以PB PA=223PB PA =,222226312t t t ⎡⎤⎫⎫-⎛⎫⎢⎥+=+⎪⎪ ⎪⎪⎪+⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,解得212t =.所以22213222PA t =+=+=⎝⎭,而21122PAB S PA PB PA =⨯⨯=⨯⨯==例10.(2022春·浙江金华·高三期末)已知双曲线22:143x y C -=上一点()4,3P ,直线()0y x b b =-+<交C 于A ,B 点.(1)证明:直线PA 与直线PB 的斜率之和为定值;(2)若PAB 的外接圆经过原点O ,求PAB 的面积.【解析】(1)证明:设()11,A x y ,22(,)B x y ,联立22143x y y x b ⎧-=⎪⎨⎪=-+⎩得()228430x bx b -++=,则()()222641634810b b b ∆=-+=-,又0b <,所以1b <-,所以128x x b +=、()21243x x b =+,从而1212121233334444PA PB y y x b x b k k x x x x ---+--+-+=+=+----()()()1212122183(4)()4x x b x x b x x -+++---=-()()()()()212838183044b b b b x x +-++-==--为定值.(2)设AB 的中点为C ,PAB 外接圆的圆心为D ,由128x x b +=,则()121226y y x x b b+=-++=-所以()4,3C b b -,所以AB 的中垂线方程为34y b x b +=-,即7y x b =-,又34OP k =,OP 的中点为32,2⎛⎫ ⎪⎝⎭,所以OP 的中垂线方程为()34223y x -=--,即86250x y +-=,联立786250y x b x y =-⎧⎨+-=⎩解得2531425414x b y b ⎧=+⎪⎪⎨⎪=-+⎪⎩,即25253,41414D b b ⎛⎫+-+ ⎪⎝⎭,由22222AB DO DB DC ⎛⎫==+ ⎪⎝⎭,得()2222122525253421414142x x b b b -⎛⎫⎛⎫⎛⎫++-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()222221212641634252522142142b b x x x x b b -++-⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,整理得27252470b b --⨯=,解得7b =(舍去),247b =-,所以直线AB :247y x =--,过P 作x 轴的平行线交直线AB 于点E ,令3y =则457x =-,即45,37E ⎛⎫- ⎪⎝⎭,而()()121212|y y x b x b x x -=-----=-====所以1211454227PAB S PE x x ⎛⎫=⋅-=+⋅⎪⎝⎭.核心考点四:斜率之和差商积问题【规律方法】在面对有关等角、倍角、共线、垂直等几何特征时,可设法将条件翻译成关于斜率的关系式,然后将斜率公式代入其中,得出参数间的关系式,再根据要求做进一步的推导判断.【典型例题】例11.(2022·浙江·模拟预测)已知曲线C上的任意一点到点)F和直线5x =的距.(1)求曲线C 的方程;(2)记曲线的左顶点为A ,过()4,0B 的直线l 与曲线C 交于P ,Q 两点,P ,Q 均在y 轴右侧,直线AP ,AQ 与y 轴分别交于M ,N 两点.若直线MB ,NB 的斜率分别为1k ,2k ,判断12k k 是否为定值.若是,求出该定值;若不是,请说明理由.【解析】(1)设曲线C 上一点的坐标为(),x y=,化简得:2214x y -=;(2)依题意作上图,设PQ 方程为4x my =+,()()1122,,,P x y Q x y ,则m 必定是存在的,联立方程22144x y x my ⎧-=⎪⎨⎪=+⎩得2212304m y my ⎛⎫-++= ⎪⎝⎭,12122223,1144m y y y y m m +=-=--,()()221212121212228168,4161144m x x m y y x x m y y m y y m m ++=++=-=+++=--- AP 的方程为()110022y y x x --=++,令x =0,则M 点的坐标为1120,2y x ⎛⎫ ⎪+⎝⎭,同理,N 点的坐标为2220,2y x ⎛⎫⎪+⎝⎭,()()()12111212121212121222002211,,0404422424y y x x y y y y k k k k x x x x x x --++∴===⨯=⨯--+++++ 2222311341684144241144m m m m -=⨯=-+--⨯+--,是定值;综上,曲线C 的方程为2214x y -=,123144k k =-是定值.例12.(2022春·云南昆明·高三昆明市第三中学校考期末)如图,已知抛物线C :24y x =,过焦点F 斜率大于零的直线l 交抛物线于A 、B 两点,且与其准线交于点D.(1)若线段AB 的长为5,求直线l 的方程;(2)在C 上是否存在点M ,使得对任意直线l ,直线,,MA MD MB 的斜率始终成等差数列,若存在求点M 的坐标;若不存在,请说明理由.【解析】(1)抛物线24y x =的焦点为1,0F (),因为直线l 的斜率不为0,所以可设l 的方程为1x my =+,设()()1122,,A x y B x y ,,联立214x my y x=+⎧⎨=⎩消x ,得2440y my --=,方程2440y my --=的判别式216160m ∆=+>,12124,4y y m y y +==-,21212()242x x m y y m +=++=+,2221212(4)14416y y x x -=⋅==,∴212||2445AB x x m =++=+=,∴214m =,设直线l 的斜率为k ,则10k m =>,所以12m =,所以直线l 的方程为220x y --=;(2)设()2,2M a a ,1122121122424MA y a y a k x a y a y a --===-+-,,同理,242MBk y a =+,又联立11x my x =+⎧⎨=-⎩可得12x y m =-⎧⎪⎨=-⎪⎩,即点D 的坐标为21,m ⎛⎫-- ⎪⎝⎭,所以2221MDa m k a +=+,∵直线,,MA MD MB 的斜率始终成等差数列,所以21222442122a m a y a y a +⨯=++++恒成立;∴122212121412()4a y y a m a y y a y y a +++=++++,又∵12124,4y y m y y +==-,所以221121a a m m a a am ++=++-,()()()221121am m a a a am m +++=+-,()2110a m m ⎛⎫-+= ⎪⎝⎭,因为10m m+≠,所以1a =±,所以存在点1,2M ()或1,2M -(),使得对任意直线l ,直线,,MA MD MB 的斜率始终成等差数列.例13.(2022·安徽·校联考二模)已知椭圆2222:1(0)x y C a b a b+=>>经过点12⎫⎪⎭,其右焦点为)F.(1)求椭圆C 的标准方程;(2)椭圆C 的右顶点为A ,若点,P Q 在椭圆C 上,且满足直线AP 与AQ 的斜率之积为120,求APQ △面积的最大值.【解析】(1)依题可得22222311,4,c a b a b c ⎧=⎪⎪+=⎨⎪=+⎪⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以椭圆C 的方程为2214x y +=;(2)易知直线AP 与AQ 的斜率同号,所以直线PQ 不垂直于x 轴,故可设()()1122:,,,,PQ y kx m P x y Q x y =+,由221,4x y y kx m ⎧+=⎪⎨⎪=+⎩可得,()222148440k x mkx m +++-=,所以()222121222844,,Δ164101414mk m x x x x k m k k--+===+->++,即2241k m +>,而120AP AQ k k =,即121212220y y x x ⋅=--,化简可得()()()()12122022kx m kx m x x ++=--,()()221212121220202024k x x km x x m x x x x +++=-++,222222224484482020202414141414m mk m mk k km m k k k k ----⋅+⋅+=-⨯+++++化简得2260k mk m +-=,所以2m k =-或3m k =,所以直线():2PQ y k x =-或()3y k x =+,因为直线PQ 不经过点A ,所以直线PQ 经过定点()3,0-.所以直线PQ 的方程为()3y k x =+,易知0k ≠,设定点()1212153,0,22APQ ABP ABQ B S S S AB y y k x x -=-=-=-52=52==因为Δ0>,且3m k =,所以2150k ->,所以2105k <<,设29411,5t k ⎛⎫=+∈ ⎪⎝⎭,所以53APQS =≤ ,当且仅当97t =,即2114k =时取等号,即APQ △面积的最大值为53.例14.(2022春·云南·高三校联考阶段练习)已知椭圆C :()222210x y a b a b +=>>的离心率为2,1,2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①12k k 为定值;②点M 在定直线上.【解析】(1)由题意,椭圆的离心率为2,2H ⎛ ⎝⎭是椭圆C 上一点,所以22222222123121c e a a b c a b⎧==⎪⎪⎪=+⎨⎪⎪+=⎪⎩,解得2224,2,2a b c ===,所以椭圆的方程为22142x y +=;(2)①因为过点()1,0D 且斜率不为0,所以可设l 的方程为1x ty =+,代入椭圆方程22142x y +=得()222230t y ty ++-=,方程()222230t y ty ++-=的判别式()2241220t t ∆=++>,设()11,P x y ,()22,Q x y ,则12222t y y t +=-+,12232y y t =-+.两式相除得121223y y t y y +=,()121232ty y y y =+.因为,A B 分别为椭圆C 的左、右顶点,所以点A 的坐标为()2,0-,点B 的坐标为()2,0,所以1111123y y k x ty ==++,2222221y y k x ty ==-从而()()()()1211211212221122313123393323y y y y ty k y y y y k y ty y y y +--+====++++;②由①知1231k k =,设1k m =,则23k m =,所以直线AP 的方程为:2y mx m =+,直线BQ 的方程为36y mx m =-,联立236y mx m y mx m =+⎧⎨=-⎩可得46x y m =⎧⎨=⎩,所以直线AP 与直线BQ 的交点M 的坐标为()4,6m ,所以点M 在定直线4x =上.核心考点五:弦长、面积范围与最值问题【规律方法】弦长和面积的最值问题首先需要将弦长和面积表达出来,弦长可用弦长公式求出;面积的表达以直线与椭圆相交得到的OAB 为例,总结一下高考中常见的三角形面积公式.对于OAB ,有以下三种常见的表达式:①1||||2OAB S AB OH =⋅ (随时随地使用,但是相对比较繁琐,想想弦长公式和点到直线距离)②121||2OAB S OM y y =⋅- (横截距已知的条件下使用)③121||2OAB S ON x x =⋅- (纵截距已知的条件下使用)【典型例题】例15.(2021秋·上海普陀·高三曹杨二中阶段练习)已知椭圆22:184x y C +=,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与椭圆交于不同两点D ,C.(1)已知1l 经过椭圆的左焦点,求1l 的方程;(2)证明:直线AC 与直线BD 交于点(0,1)Q ;(3)求线段AC 长的取值范围.【解析】(1)22:184x y C +=的左焦点为(2,0)-,当1l 过左焦点时,1l 的方程为124x y +=-,即240x y -+=.(2)由题意知1l 斜率存在,设直线()()11122:4,,,,l y kx A x y B x y =+,则()()1122,,,D x y C x y --,联立221844x y y kx ⎧+=⎪⎨⎪=+⎩,消y 得()221216240k x kx +++=,需满足2225696(12)0k k ∆=-+>,即2230k ->,1212221624,1212k x x x x k k -∴+=⋅=++,又212111,BQ DQ y y k k x x --==-,212121211133BQ DQ y y kx kx k k x x x x --++∴-=-=+-,()21212248312222202412kx x k k k k k x x k -++=+=+=-=+,BQ DQ k k ∴=,故点B ,D ,Q 三点共线,即直线BD 经过点(0,1)Q ,同理可证AQ CQ k k =,即点A ,C ,Q 三点共线,即直线AC 经过点(0,1)Q ,故直线AC 与直线BD 交于点(0,1)Q ;(3)由(2)可知()()()()22222212121212AC x x y y x x k x x =++-=++-()()2221212124x x k x x x x ⎡⎤=+++-⋅⎣⎦()()22222222221616244121212k k k k k k ⎡⎤⋅⋅⎢⎥=+-⨯⎢⎥+++⎣⎦42242424106116161441441k k k k k k k ⎡⎤⋅+-=⨯=⨯+⎢⎥++++⎣⎦令261t k =-,则216t k +=,又由()22216424120k k ∆=-⨯⨯+>得232k >,所以8t >,22216991611611681611844166t t AC t t t t t t ⎛⎫ ⎪⎛⎫∴=+=+=+ ⎪ ⎪++⎝⎭++⎛⎫ ⎪+++⨯+ ⎪⎝⎭⎝⎭,设216168,()()1h t h t t t t'==-++,(8,)t ∈+∞时,()0h t '>恒成立,168t t ∴++在(8,)t ∈+∞上单调递增,16818t t∴++>,9101628t t ∴<<++,93111628t t∴<+<++,21624AC ∴<<,4AC ∴<<例16.(2022·四川达州·统考一模)平面直角坐标系xOy 中,已知椭圆22:14x C y +=,椭圆2:16x E +214y =.设点P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于A B ,两点,射线PO 交椭圆E 于点Q .(1)求OQ OP的值;(2)求ABQ 面积的最大值.【解析】(1)设()00OQP x y OPλ=,,,由题意知()00Q x y λλ--,.因为220014x y +=,又()()22001164x y λλ--+=,即22200()144λ+=x y ,所以2λ=,即2OQ OP=.(2)由(1)知,ABQ 的面积为3OAB S ,设()()1122A x y B x y ,,,.将y kx m =+代入椭圆E 的方程,可得()2221484160k x kmx m +++-=,由Δ0>,可得22416m k <+,①则有212122284161414km m x x x x k k -+=-=++,.所以12x x -=.因为直线y kx m =+与y 轴交点的坐标为()0m ,,所以OAB 的面积1212S m x x =-==.设2214m t k=+,将y kx m =+代入椭圆C 的方程,可得()222148440k x kmx m +++-=,由Δ0 ,可得2214m k + ,②由(1)(2)可知01t <,因此S ==,故S ,当且仅当1t =,即2214m k =+时取得最大值.所以ABQ 面积的最大值为.例17.(2022春·吉林通化·高三梅河口市第五中学校考期末)已知椭圆2222:1(0)x y C a b a b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,直线3460x y ++=与圆222()x y b a +-=相切.。

2023高考数学二轮专题复习——圆锥曲线点差法求斜率

2023高考数学二轮专题复习——圆锥曲线点差法求斜率

F 1F 2PABOxy4P x 0,y 0 是椭圆E :x 24+y 2=1上的动点,设椭圆的左右焦点分别为F 1,F 2,若直线PF 1,PF 2与椭圆E 的另一个焦点分别为A ,B ,求△PAB 面积的最大值.定比点代法设A x 1,y 1 ,B x 2,y 2 ,P x 0,y 0 ,由对称性不妨设0<y 0≤1设PA =λAF 1 ,PB =μBF 2 ,则A x 0-3λ1+λ,y 01+λ将A 代入E 整理得:λ=23x 0+4 ,同理μ=23x 0-4 S △PAB =λλ+1⋅μμ+1⋅S △PF 1F2=3y 0x 02-64x 02-4912=3y 0y 02+13y 02+148设f y 0 =3y 0y 02+13 y 02+148,y 0∈0,1 下面证明f x ≤f 1 =64349,x ∈0,1只需证:f x =3x x 2+13 x 2+148=483x 3+163x48x 2+1≤64349,即证3x 3+x 48x 2+1≤449⟺x -1 147x 2-45x +4 ≤0,x ∈0,1 ,显然成立.故f x max =f 1 =64349.故△PAB 面积的最大值为64349.5椭圆x 25+y 2=1的左右焦点分别为F 1,F 2,P x 0,y 0 x >0,y >0 为椭圆上一点,直线PF 1,PF 2分别交椭圆于M ,N 两点,则当直线MN 的斜率为-19时,x 0y 0=.不联立 对偶式求斜率设M x 1,y 1 ,N x 2,y 2 ,MN 中点Q m ,n ,由点差法k OQ ⋅k MN =n m ⋅-19 =-15,所以n m =95x 0y 1-x 1y 0=-2y 1-y 0 ①x 0y 1+x 1y 0=-52y 1+y 0 ② ,x 0y 2-x 2y 0=2y 2-y 0③x 0y 2+x 2y 0=52y 2+y 0④①+③:x 0y 1+y 2 -y 0x 1+x 2 =2y 2-y 1 ⑤②+④:x 0y 1+y 2 +y 0x 1+x 2 =52y 2-y 1 ⑥⑥+⑤得:2x 0y 1+y 2 =92y 2-y 1⑥-⑤得:2y 0x 1+x 2 =12y 2-y 1两式相除:x 0y 0⋅y 1+y 2x 1+x 2=9,即x 0y 0⋅n m =9,所以x 0y 0=5.F 1F 2PMNOxyQF 1F 2PA BO xyQP x 0,y 0 为椭圆x 2a 2+y 2b2=1上一点,PF 1,PF 2交椭圆于A ,B 两点.结论1PF 1 F 1A +PF 2F 2B =2a 2+c 2 b 2=21+e 2 1-e 2.结论2k AB ⋅k OP =-1-e 221+e 2 .结论3Q 在以F 1,F 2为焦点的椭圆上,且k AB ⋅k PQ =-1-e 21+e 2 2.结论4△PAB 面积问题.证明:1y 0y 1=2cx 0+a 2+c 2-b 2,y 0y 2=-2cx 0+a 2+c 2-b 2,PF 1 F 1A +PF 2F 2B =-y 0y 1+y 0y 2=2a 2+c 2 b 2.2 设A x 1,y 1 ,B x 2,y 2x 0y 1-x 1y 0=-c y 1-y 0 x 0y 1+x 1y 0=-a 2c y 1+y 0可得x 1=-2a 2c -a 2+c 2 x 02cx 0+a 2+c 2y 1=-b 2y 02cx 0+a 2+c 2 ,同理x 2=2a 2c -a 2+c 2 x 0-2cx 0+a 2+c 2y 2=-b 2y 0-2cx 0+a 2+c 2于是k AB =y 2-y 1x 2-x 1=-b 2y 0-2cx 0+a 2+c 2--b 2y 02cx 0+a 2+c 22a 2c -a 2+c 2 x 0-2cx 0+a 2+c 2--2a 2c -a 2+c 2 x 02cx 0+a 2+c 2=-b 2y 0⋅4cx 02a 2c -a 2+c 2 x 0 2cx 0+a 2+c 2 --2a 2c -a 2+c 2 x 0 -2cx 0+a 2+c 2=-4b 2cx 0y 04c a 2+c 2 a 2-x 02 =-4b 2cx 0y 04c a 2+c 2a 2-a 21-y 02b 2=-b 4x 0a 2a 2+c 2 y 0=-1-e 2 21+e 2 ⋅x 0y 0.证法二:不联立设M x 1,y 1 ,N x 2,y 2 ,MN 中点Q m ,n ,由点差法k OQ ⋅k MN =n m ⋅-19 =-15,所以n m =95x 0y 1-x 1y 0=-c y 1-y 0 ①x 0y 1+x 1y 0=-a 2c y 1+y 0②,x 0y 2-x 2y 0=c y 2-y 0③x 0y 2+x 2y 0=a 2c y 2+y 0④①+③:x 0y 1+y 2 -y 0x 1+x 2 =c y 2-y 1 ⑤②+④:x 0y 1+y 2 +y 0x 1+x 2 =a 2cy 2-y 1 ⑥⑥+⑤得:2x 0y 1+y 2 =a 2c +c y 2-y 1 ,⑥-⑤得:2y 0x 1+x 2 =a 2c-cy 2-y 1两式相除:y 0x 0⋅x 1+x 2y 1+y 2=b 2a 2+c 2,又y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=-b 2a2,所以y 0x 0⋅y 1-y 2x 1-x 2=-b 4a 2a 2+c 2 ,即k AB ⋅k OP =-1-e 2 21+e 2.3AF 2:x =x 1-cy 1y +c BF 1:x =x 2+c y 2y -c,可得y Q =2c x 2+c y 2-x 1-c y 1=2c x 2+c y 2-x 1-c y 1=-b 23a 2+c 2y 0x Q =12x 1-c y 1+x 2+c y 2y Q =-a 2+3c 23a 2+c2x 0于是点Q 在椭圆x 2a 3+3ac 23a 2+c 2 2+y 2b 33a 2+c 22=1上.k PQ =y Q -y 0x Q -x 0=-b 23a 2+c 2y 0-y0-a 2+3c 23a 2+c2x 0-x 0=a 2a 2+c 2⋅y 0x 0=11+e 2⋅y 0x 0k AB ⋅k PQ =11+e 2⋅y 0x 0⋅-1-e 2 21+e 2 ⋅x 0y 0=-1-e 21+e 22.4 记S 1=S △PAB ,S 2=S △PF 1F 2S 1S 2=12PA ⋅PB ⋅∠Psin 12PF 1⋅PF 2⋅∠P sin =y 0-y 1y 0⋅y 0-y 2y 0=1-y 1y 0 1-y 2y 0,由S 2=12⋅2c ⋅y 0=cy 0从而S 1=1-y 1y 0 1-y 2y 0cy 0,把y 0y 1=2cx 0+a 2+c 2-b 2,y 0y 2=-2cx 0+a 2+c 2-b 2代入,即可求函数S 1=f y 0 的最值,经验证在y 0=±b 时取得面积最大值4a 4bca 2+c 22.。

高考二轮小专题圆锥曲线题型归纳

高考二轮小专题圆锥曲线题型归纳

高考二轮小专题 :圆锥曲线题型归纳基础知识:1.直线与圆的方程; 2.椭圆、双曲线、抛物线的定义与标准方程公式; 3.椭圆、双曲线、抛物线的几何性质等相关知识:a 、b 、c 、e 、p 、渐近线。

基本方法:1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等;2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题;3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。

要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根;4. 点差法:弦中点问题,端点坐标设而不求。

也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式;5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题;基本思想:1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关;4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。

这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。

一、求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题例. 【浙江理数】设1F 、2F 分别为双曲线22221,x y a b+=(a >0、b >0)的左、右焦点.若在双曲线右支上存在点,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A. B.C.D. 【答案】C例. 【辽宁文数】设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. B. C. D. 【答案】D例.(14分)已知椭圆22221x y a b+=(0)ab.过点(2,—1)且方向向量为11(,)22a =-的直线L 交椭圆与A 、B两点。

高三数学第二轮专题复习系列(8)-- 圆锥曲线

高三数学第二轮专题复习系列(8)-- 圆锥曲线

高三数学第二轮专题复习系列(8)-- 圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫 做方程的曲线.点与曲线的关系 若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0; 点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则 f 1(x 0,y 0)=0 点P 0(x 0,y 0)是C 1,C 2的交点⇔f 2(x 0,y 0) =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点. 2.圆 圆的定义 点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程 (1)标准方程圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为(-2D ,-2E ,半径是24F -E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F-E D 22+当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内, |MC |=r ⇔点M 在圆C 上, |MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +.(3)直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点 ②直线和圆的位置关系的判定 (i)判别式法(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线椭圆、双曲线和抛物线的基本知识见下表.椭 圆 双曲线 抛物线轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}. 点集{M | |MF |=点M 到直线l 的距离}. 圆 形标准方程 22a x +22b y =1(a >b >0)22a x -22by =1(a >0,b >0)y 2=2px(p >0)顶 点 A 1(-a,0),A 2(a,0); B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a) O(0,0)轴 对称轴x=0,y=0 长轴长:2a 短轴长:2b 对称轴x=0,y=0 实轴长:2a 虚轴长:2b 对称轴y=焦 点F 1(-c,0),F 2(c,0) 焦点在长轴上 F 1(-c,0),F 2(c,0) 焦点在实轴上 F(2P,0) 焦点对称轴上焦 距|F 1F 2|=2c ,c=b2-a2|F 1F 2|=2c, c=b2a2+准 线x=±ca 2准线垂直于长轴,且在x=±ca 2准线垂直于实轴,且在x=-2p 准线与焦点位于顶点两侧,且到顶点的距离曲 线 性 质椭圆外.两顶点的内侧.相等.离心率e=a c,0<e <1 e=ac,e >1 e=14.圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线.其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率. 当0<e <1时,轨迹为椭圆 当e=1时,轨迹为抛物线 当e >1时,轨迹为双曲线 5.坐标变换坐标变换 在解析几何中,把坐标系的变换(如改变坐标系原点的位置或坐标轴的方向)叫做 坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点 的坐标与曲线的方程.坐标轴的平移 坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫 做坐标轴的平移,简称移轴.坐标轴的平移公式 设平面内任意一点M ,它在原坐标系xOy 中的坐标是9x,y),在新坐标系x ′O ′y ′中的坐标是(x ′,y ′).设新坐标系的原点O ′在原坐标系xOy 中的坐标是(h,k),则x=x ′+h x ′=x-h (1) 或(2)y=y ′+k y ′=y-k 公式(1)或(2)叫做平移(或移轴)公式. 中心或顶点在(h,k)的圆锥曲线方程中心或顶点在(h,k)的圆锥曲线方程见下表.方 程焦 点 焦 线对称轴 椭圆22h)-(x a +22k)-(y b=1 (±c+h,k)x=±c a 2+hx=h y=k 22h)-(x b +22k)-(y a =1 (h,±c+k) y=±c a 2+kx=h y=k 双曲线22h)-(x a -22k)-(y b=1 (±c+h,k)=±c a 2+kx=h y=k 22k)-(y a -22h)-(x b=1 (h,±c+h)y=±ca 2+kx=h y=k 抛物线 (y-k)2=2p(x-h)(2p+h,k) x=-2p +h y=k (y-k)2=-2p(x-h)(-2p+h,k) x=2p +h y=k (x-h)2=2p(y-k)(h, 2p+k)y=-2p +kx=h(x-h)2=-2p(y-k)(h,-2p+k) y=2p +k x=h二、知识点、能力点提示(一)曲线和方程,由已知条件列出曲线的方程,曲线的交点说明 在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求 出的曲线方程才能准确无误.另外,要求会判断 曲线间有无交点,会求曲线的交点坐标.三、 考纲中对圆锥曲线的要求: 考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程; . 双曲线及其标准方程.双曲线的简单几何性质; . 抛物线及其标准方程.抛物线的简单几何性质; 考试要求:. (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程; . (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质; . (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质; . (4)了解圆锥曲线的初步应用。

高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题(含解析)

高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题(含解析)

高考数学二轮复习专题突破—圆锥曲线中的定点、定值、探索性问题1.(2021·重庆八中月考)已知椭圆C :x 24+y 23=1的右焦点为F ,过点M (4,0)的直线l 交椭圆C 于A ,B 两点,连接AF ,BF 并延长分别与椭圆交于异于A ,B 的两点P ,Q. (1)求直线l 的斜率的取值范围; (2)若PF ⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,QF ⃗⃗⃗⃗⃗ =μFB ⃗⃗⃗⃗⃗ ,证明:λμ为定值.2.(2021·河北张家口三模)已知抛物线C :y 2=4px (p>0)的焦点为F ,且点M (1,2)到点F 的距离比到y 轴的距离大p. (1)求抛物线C 的方程;(2)若直线l :x-m (y+2)-5=0与抛物线C 交于A ,B 两点,问是否存在实数m ,使|MA|·|MB|=64√2?若存在,求出m 的值;若不存在,请说明理由.3.(2021·江苏南通适应性联考)已知双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的两个焦点为F 1,F 2,一条渐近线方程为y=bx (b ∈N *),且双曲线C 经过点D (√2,1). (1)求双曲线C 的方程;(2)设点P 在直线x=m (y ≠±m ,0<m<1,且m 是常数)上,过点P 作双曲线C 的两条切线PA ,PB ,切点为A ,B ,求证:直线AB 过某一个定点.4.(2021·山东济南二模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且经过点H (-2,1).(1)求椭圆C 的方程;(2)过点P (-3,0)的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G (-2,0),若PM⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.5.(2021·广东汕头三模)已知圆C :x 2+(y-2)2=1与定直线l :y=-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y=-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A ,B.①求证:直线AB 过定点; ②求证:∠PCA=∠PCB.6.(2021·北京东城一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),且焦距为2√3. (1)求椭圆C 的方程;(2)过点A (-4,0)的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立?若存在,求出λ的值;若不存在,说明理由.答案及解析1.(1)解 由题意知直线l 的斜率不为零,故设其方程为x=ty+4,与椭圆方程联立,消去x 得(3t 2+4)y 2+24ty+36=0,Δ=144(t 2-4)>0,解得t<-2或t>2.故直线l 的斜率k=1t 的取值范围为(-12,0)∪(0,12).(2)证明 F (1,0),设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),由(1)得y 1+y 2=-24t3t 2+4,y 1y 2=363t 2+4,所以ty 1y 2=-32(y 1+y 2).由PF⃗⃗⃗⃗⃗ =λFA ⃗⃗⃗⃗⃗ ,得{1−x 3=λ(x 1-1),-y 3=λy 1,即{-x 3=λx 1-λ-1,-y 3=λy 1. 又点P 在椭圆上,即有3x 32+4y 32=12,代入上式得3(λx 1-λ-1)2+4λ2y 12=12,即λ2(3x 12+4y 12)-6λ(λ+1)x 1+3(λ+1)2=12, 又3x 12+4y 12=12,所以12(λ+1)(λ-1)-6λ(λ+1)x 1+3(λ+1)2=0.易知λ+1≠0,故λ=35−2x 1,同理可得μ=35−2x 2.又(5-2x 1)(5-2x 2)=25-10(x 1+x 2)+4x 1x 2 =25-10[t (y 1+y 2)+8]+4(ty 1+4)(ty 2+4)=9+6t (y 1+y 2)+4t 2y 1y 2=9+6t (y 1+y 2)+4t ·(-32)(y 1+y 2)=9, 所以λμ=9(5-2x1)(5-2x 2)=1.2.解 (1)由点M 到点F 的距离比到y 轴的距离大p ,得点M 到点F 的距离与到直线x=-p 的距离相等.由抛物线的定义,可知点M 在抛物线C 上,所以4=4p ,解得p=1. 所以抛物线C 的方程为y 2=4x.(2)存在满足题意的m ,其值为1或-3. 理由如下:由{y 2=4x,x-m(y +2)−5=0,得y 2-4my-8m-20=0. 因为Δ=16m 2+4(8m+20)>0恒成立,所以直线l 与抛物线C 恒有两个交点. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4(2m+5).因为MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=(y 124-1)(y 224-1)+(y 1-2)(y 2-2)=y 12y 2216−(y 1+y 2)2-2y 1y 24+y 1y 2-2(y 1+y 2)+5=16(2m+5)216−(4m)2+8(2m+5)4-4(2m+5)-8m+5=0,所以MA ⊥MB ,即△MAB 为直角三角形.设d 为点M 到直线l 的距离,所以|MA|·|MB|=|AB|·d=√1+m 2·√(y 1+y 2)2-4y 1y 2·√1+m 2=4·|1+m|·√16m 2+16(2m +5)=16·|1+m|·√(m +1)2+4=64√2,所以(m+1)4+4(m+1)2-32=0, 解得(m+1)2=4或(m+1)2=-8(舍). 所以m=1或m=-3.所以当实数m=1或m=-3时,|MA|·|MB|=64√2.3.(1)解 由{ba =b,2a 2-1b 2=1,解得{a =1,b =1,故双曲线方程为x 2-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),直线PA 的斜率为k ,P (m ,y 0).则PA:y-y1=k(x-x1),联立方程组{y-y1=k(x-x1), x2-y2=1,消去y,可得x2-[kx+(-kx1+y1)]2=1,整理可得(1-k2)x2-2k(y1-kx1)x-(y1-kx1)2-1=0.因为PA与双曲线相切,所以Δ=4k2(y1-kx1)2+4(1-k2)·(y1-kx1)2+4(1-k2)=0,整理得4(y1-kx1)2+4(1-k2)=0.即k2x12-2kx1y1+y12+1-k2=0,即(x12-1)k2-2kx1y1+(y12+1)=0,因为x12−y12=1,所以x12-1=y12,y12+1=x12代入可得y12k2-2x1y1k+x12=0,即(y1k-x1)2=0,所以k=x1y1.故PA:y-y1=x1y1(x-x1),即y1y=x1x-1.同理,切线PB的方程为y2y=x2x-1.因为P(m,y0)在切线PA,PB上,所以有{y0y1=mx1-1, y0y2=mx2-1,A,B满足直线方程y0y=mx-1,而两点唯一确定一条直线,故AB:y0y=mx-1,所以当{x=1m,y=0时,无论y0为何值,等式均成立.故点(1m ,0)恒在直线AB上,故无论P在何处,AB恒过定点(1m,0).4.(1)解由题意知e=ca =√1−b2a2=√22,则a2=2b2.又椭圆C经过点H(2,1),所以4a2+1b2=1.联立解得a2=6,b2=3,所以椭圆C的方程为x 26+y23=1.(2)证明 设直线AB 的方程为x=my-3,A (x 1,y 1),B (x 2,y 2),由{x =my-3,x 26+y 23=1联立消去x ,得(m 2+2)y 2-6my+3=0,所以Δ=36m 2-12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2,由题意知,y 1,y 2均不为1.设M (x M ,0),N (x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M -x 1=(-y 1)(-2-x M ),化简得x M =x 1+2y 11−y 1.由H ,N ,B 三点共线,同理可得x N =x 2+2y 21−y 2.由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3. 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3. 所以1λ+1μ=1xM+3+1xN+3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x1-y 1+3+1−y 2x 2-y 2+3=1−y1(m-1)y1+1−y 2(m-1)y 2=1m-11−y 1y 1+1−y 2y 2=1m-1(y 1+y 2y1y 2-2)=1m-1(6mm 2+23m 2+2-2)=2,所以1λ+1μ为定值.5.(1)解 依题意知:M 到C (0,2)的距离等于M 到直线y=-2的距离,故动点M 的轨迹是以C 为焦点,直线y=-2为准线的抛物线.设抛物线方程为x 2=2py (p>0),则p2=2,则p=4,即抛物线的方程为x 2=8y ,故动圆圆心M 的轨迹E 的方程为x 2=8y. (2)证明 ①由x 2=8y 得y=18x 2,y'=14x.设A (x 1,18x 12),B (x 2,18x 22),P (t ,-2),其中x 1≠x 2, 则切线PA 的方程为y-18x 12=x 14(x-x 1),即y=14x 1x-18x 12.同理,切线PB 的方程为y=14x 2x-18x 22. 由{y =14x 1x-18x 12,y =14x 2x-18x 22,解得{x =x 1+x22,y =x 1x 28, 故{t =x 1+x 22,-2=x 1x 28,即{x 1+x 2=2t,x 1x 2=−16.故直线AB 的方程为y-18x 12=18x 22-18x 12x 2-x 1(x-x 1),化简得y=x 1+x 28x-x 1x 28,即y=t4x+2,故直线AB 过定点(0,2).②由①知:直线AB 的斜率为k AB =t4,(i)当直线PC 的斜率不存在时,直线AB 的方程为y=2,∴PC ⊥AB ,∴∠PCA=∠PCB ;(ii)当直线PC 的斜率存在时,P (t ,-2),C (0,2),直线PC 的斜率k PC =-2-2t-0=-4t,k AB ·k PC =t 4×-4t =-1,故PC ⊥AB ,∠PCA=∠PCB. 综上所述,∠PCA=∠PCB 得证.6.解 (1)因为椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点D (-2,0),所以a=2,又2c=2√3,即c=√3,所以b 2=a 2-c 2=4-3=1,所以椭圆C 的方程为x 24+y 2=1.(2)存在常数λ=2,满足题意. 理由如下:显然直线l 的斜率存在且不为0,设直线l :y=k (x+4),联立{y =k(x +4),x 24+y 2=1,消去y 并整理,得(1+4k 2)x 2+32k 2x+64k 2-4=0, Δ=(32k 2)2-4(1+4k 2)(64k 2-4)>0,得0<k 2<112.设P (x 1,y 1),Q (x 2,y 2),则T (x 2,-y 2),所以x 1+x 2=-32k 21+4k 2,x 1x 2=64k 2-41+4k 2,直线PT :y-y 1=y 1+y2x 1-x 2(x-x 1),令y=0,得x=x 1-y 1(x 1-x 2)y 1+y 2,所以H x 1-y 1(x 1-x 2)y 1+y 2,0,若存在常数λ,使得|AD|·|DH|=λ(|AD|-|DH|)成立, 所以1λ=|AD|-|DH||AD|·|DH|=1|DH|−1|AD|,又因为D (-2,0),A (-4,0),H (x 1-y 1(x 1-x 2)y 1+y 2,0),所以|AD|=2,|DH|=x 1-y 1(x 1-x 2)y 1+y 2+2 =x 1-k(x 1+4)(x 1-x 2)k(x 1+4)+k(x 2+4)+2=x 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 1(x 1+x 2)+8kx 1-k(x 1+4)(x 1-x 2)k(x 1+x 2)+8k+2=kx 12+kx 1x 2+8kx 1-kx 12+kx 1x 2-4kx 1+4kx 2k(x 1+x 2)+8k+2=4k(x 1+x 2)+2kx 1x 2k(x 1+x 2)+8k+2=4k·-32k 21+4k 2+2k·64k 2-41+4k 2k·-32k 21+4k 2+8k +2=-1+2=1,所以1λ=11−12,解得λ=2.所以存在常数λ=2,使得|AD|·|DH|=2(|AD|-|DH|)成立.。

高考二轮复习圆锥曲线专题(共88张PPT)

高考二轮复习圆锥曲线专题(共88张PPT)

xR=m+2
m2+3
3
.
所以||PPQR||=xxQR=22
11++mm3322-+11=1+2
2 1+m32-1.
基础知识
题型分类 第18页,共88页。 思想方法
练出高分
题型分类·深度剖析
此时 1+m32>1,且 1+m32≠2,
所以 1<1+ 2
1+2 m32-1<3,且
1+ 2
1+2 m32-1≠53,
【例 2】 已知椭圆 C 经过点 A1,32, 两个焦点为(-1,0)、(1,0). (1)求椭圆 C 的方程;
思维启迪
解析
探究提高
可设直线 AE 的斜率来计算直线 EF 的斜率,通过推理计算消参.
(2)E、F 是椭圆 C 上的两个动点,
如果直线 AE 的斜率与 AF 的斜率
互为相反数,证明直线 EF 的斜率
圆锥曲线中的探索性问题
难圆点锥正 曲本线P中1的(疑x函点1数清,思源想y1),P2(x2,y2),则所得弦长|P1P2|
圆锥曲线中的探索性问题
1+k |x -x | = 圆数直锥学线曲 和线圆R 中锥A(的曲文探线)索问性题问解题法的2一般1规律
2
圆锥曲线中的范围、最值问题
1 圆锥曲线中的范围、最值问题
p y0.
2.“点差法”的常见题型
求中点弦方程、求(过 定点、平行弦)弦中点 轨迹、垂直平分线问 题.必须提醒的是 “点差法”具有不等 价性,即要考虑判别 式 Δ>0 是否成立.
基础知识
题型分类 第6页,共88页。 思想方法
练出高分
基础知识·自主学习
基础自测
题号
1 2 3 4
答案

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

2020新高考数学二轮冲刺圆锥曲线全归纳(压轴题全解析)

2020新高考数学二轮冲刺圆锥曲线全归纳(压轴题全解析)
解析:因为点 B 与点 A1,1 关于原点 O 对称,所以点 B 的坐标为 1, 1 ,设点 P x, y ,由题意 得 y 1 y 1 1 ,化简得 x2 3y2 4 x 1 ,故动点 P 的轨迹方程为 x2 3y2 4 x 1
MA MB

AB

0
ቤተ መጻሕፍቲ ባይዱ
,即
( x,4

2
y)

( x,2)

0
,即
y

1
x2

2

4
【例 3】已知抛物线 C : y2 2x 的焦点为 F ,平行于 x 轴的两条直线 l1,l2 分别交 C 于 A,B 两点,
交 C 的准线于 P,Q 两点. (I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若 PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程.
5 轨迹 C 的方程.
解 析 设 M 的 坐 标 为 (x, y) , P 的 坐 标 为 (x0 , y0 ) , 因 为 M 为 PD 上 一 点 , 且
|MD|=
4 5
|PD|,所以
x
y

x0
4 5
y0

x0 y0

x 5 4
y
,又
P (x0 ,
y0 )
若 C 为双曲线,则直线 l 与双曲线的渐近线平行;若 C 为抛物线,则直线 l 与抛物线
A圆
B 椭圆
C 线段
D 一段抛物线
解析
设点
M
(x0
,
y0
),
P(x,

圆锥曲线中的定点、定值问题讲义-2023届高三数学二轮专题复习

圆锥曲线中的定点、定值问题讲义-2023届高三数学二轮专题复习

专题复习:圆锥曲线中的定点、定值问题一、方法指导圆锥曲线是高考数学中的重点和难点,其中定点问题更是难点中的难点。

通过对近几年高考数学试卷的分析,可以发现圆锥曲线定点问题一直是高频考点,且题目难度较大,对学生的数学思维和解题能力要求较高。

因此,在高三二轮复习中,学生需要加强对圆锥曲线定点问题的复习,掌握其解题方法和技巧。

二、知识梳理圆锥曲线的定义和性质直线与圆锥曲线的位置关系圆锥曲线的定点问题及其解法三、方法总结直接法:通过联立直线和圆锥曲线的方程,消元后得到一元二次方程,再利用根与系数的关系进行求解。

这种方法适用于直线过定点但不与x轴平行的情况。

参数法:引入参数来表示直线的斜率或截距,再通过参数的取值范围来确定定点。

这种方法适用于直线过定点且与x轴平行或重合的情况。

反证法:假设定点不是坐标原点,则过该定点的直线与圆锥曲线有两个交点。

根据韦达定理,这两个交点的横坐标之和等于两倍的定点横坐标,这与题意矛盾。

因此,定点必须是坐标原点。

这种方法适用于直线过定点且与x轴垂直的情况。

由特殊到一般法如果要解决的问题是一个定值(定点)问题,而题设条件又没有给出这个定值(定点),那么我们可以这样思考:由于这个定值(定点)对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定值(定点),明确了解决问题的目标,然后进行一般情况下的推理证明.3.利用推论解题推论1过圆锥曲线上的任意一点P(x0,y0)作互相垂直的直线交圆锥曲线于点A,B,则直线AB必过一定点(等轴双曲线除外).推论2过圆锥曲线的准线上任意一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB必过焦点.推论3过圆锥曲线外一点P作圆锥曲线上的两条切线,切点分别为点A,B,则直线AB已知且必过定点.推论4过圆锥曲线上的任意一点P(x0,y0)作斜率和为0的两条直线交圆锥曲线于A,B两点,则k AB为定值.推论5设点A,B是椭圆x 2a2+y2b2=1(a>b>0)上关于原点对称的两点,点P是该椭圆上不同于A,B两点的任意一点,直线PA,PB的斜率分别是k1,k2,则k1·k2=-b 2a2推论6过圆锥曲线的焦点F的直线(斜率存在)交圆锥曲线于P,Q两点,PQ的中垂线交x轴于点M,则MFPQ=e2,e为圆锥曲线的离心率.推论7过圆锥曲线的焦点F的直线交圆锥曲线于A,B两点,过点A,B分别作较近准线l 的垂线AA1,BB1,垂足分别为点A1,B1,设准线l与焦点所在轴交于点P,M为PF中点,则(1)AA1与BB1过点M;(2)A1F+B1F为定值.一、动直线过定点1、齐次式:例1、椭圆C :x 24+y 2=1,C (0,1),设直线l 不过点P ,且与C 交于A 、B 两点,若k PA +k PB =−1,证明:直线l 过定点.2、参数法:例2、(2021·湖北襄阳市高三期末)已知A ,B 分别为椭圆()222:11x C y a a+=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=. (1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.3、特殊到一般例2、(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.4、待定系数法例3、椭圆C :22143x y +=左右顶点分别为A 、B ,k ≠0的直线与C 交于M 、N 两点,K BM =2K AN ,证明:直线过定点,并求出该定点.解:A (−2,0) B (2,0)设直线:y =kx +b (k ≠0) M (x 1,y 1) N (x 2,y 2) 直线与曲线联立得:(3+4k 2)x 2+8kbx +4b 2−120 则x 1x 2=4b 2−123+4k 2x 1+x 2=−8kb3+4k 2K BM =2K AN 所以y 1x1−2= 2y 2x 2−2x 2y 1+2y 1=2x 1y 2−4y 2即k x 1x 2−(4k +b )x 2+2(b −k )x 1−6b =0代入得:−12b 2k −8k 2b −12k −18b −(6k +8k 3+9b +12k 2b )x 2=0待定系数有:{−12b 2k −8k 2b −12k −18b =06k +8k 3+9b +12k 2b =0得(2k −b )(2k +3b ) =0若b =2k ,则过定点(−2,0),不成立; 若−3b =2k ,则过定点(23,0),成立.5、y 1−y 2或x 1−x 2型例4、已知双曲线C :x 23−y 2=1,过(3,0)的直线l 交C 于P 、Q 两点,过P 作直线x =1的垂线,垂足为A ,证明:AQ 过定点解:当l 斜率不存在时P (3,√2) Q (3,−√2) 或P (3,−√2) Q (3,√2)过P 作x =1垂线:A (1,√2)或A(1,−√2)此时AQ :y =√2x −2√2或y = −√2x +2√2 过定点(2,0) 当l 斜率存在时 l :y =k (x −3) P (x 1,y 1) Q (x 2,y 2) 与双曲线联立得:(1−3k 2)x 2+18k 2x −27k 2−3=0 有x 1x 2=−27k 2−31−3k 2x 1+x 2=−18k 21−3k 2AQ :y =y 1+y 2x 2−1x −x 2(y 2−y 1)x 2−1+y 2令y =0 x =y 2−x 2y 1y 2−y 1= −kx 1x 2+4kx 2−3k2−x 1)=−x 1x 2+4x 2−3x 2−x 1= 27k 2=31−3k 2−3+4x 2−(x 1+x 2−2x 2)= 36k 21−3k 2+4x 218k 21−3k 2+2x 2=2过定点(2,0)二、动点在定直线上的问题例3、(2021·山东威海市高三期末)已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F 是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ ∆的面积为92.(1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.解:(1)由题意知12c a =,所以2a c =,又222a b c =+, 所以3b c =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c =所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为1x my =+,与椭圆22143x y +=联立,得()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y , 所以有12122269,3434m y y y y m m +=-=-++ ()* 直线AP 的方程为()112+2y y x x =+,直线BO 的方程为()2222y y x x =--, 联立两方程可得,所以()()121222+22y y x x x x +=-- ()()121212212121213232221my y x y my y y x x y x y my my y y ++++=⋅==---- 由()*式可得()121232y y y y m=+, 代入上式可得()()1212121221339222233322232y y y y x y y x y y y y +++==-+-=++, 解得4,x = 故点M 在定直线4x =上.三、其他曲线过定点例4、(2021·湖北武汉市高三月考)设P 是椭圆C :22221(0)x y a b a b+=>>上异于长轴顶点A 1,A 2的任意一点,过P 作C 的切线与分别过A 1,A 2的切线交于B 1,B 2两点,已知|A 1A 2|=4,椭圆C 的离心率为12. (1)求椭圆C 的方程;(2)以B 1B 2为直径的圆是否过x 轴上的定点?如果过定点,请予以证明,并求出定点;如果不过定点,说明理由.解:(1)由题可知122412A A a c e a ⎧==⎪⎨==⎪⎩,解得2,1a c ==,由222a b c =+得23b =, 椭圆C 的方程为22143x y +=.(2)设00(,)P x y ,由于P 是异于长轴顶点12,A A 的任意一点,故切线斜率存在.设过P 的椭圆的切线为y kx b =+,联立方程22143y kx bx y =+⎧⎪⎨+=⎪⎩,得222(34)84120k x kbx b +++-=,222(8)4(34)(412)0kb k b ∆=-+-=,得2234b k =+,由002200143y kx bx y =+⎧⎪⎨+=⎪⎩ 所以()220034y kx k -=+,则()22200004230x k y x k y --+-=,即222000016290y k y x k x ++=所以()200430y k x +=,则034x k y =-解得过P 点的切线方程为()000034x y y x x y -=--,即000334x x y y y =-+ 由于分别过12,A A 的切线分别为2,2x x =-=, 解得12,B B 的坐标为0012006363(2,),(2,)22x x B B y y +--.在x 轴上取点(),0M t ,则010632,2x MB t y ⎛⎫+=-- ⎪⎝⎭,020632,2x MB t y ⎛⎫-=-+ ⎪⎝⎭, 所以2220122369414x MB MB t t y -⋅=-+=-. 当1t =±时,120MB MB ⋅=.所以,以12B B 为直径的圆过x 轴上的定点为12(1,0),(1,0)F F -.二、例题讲解例1A ,B 是抛物线y 2=2px (p >0)上的两点,且OA ⊥OB (O 为坐标原点),求证: (1)A ,B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一定点.例2如图,直线y =12x 与抛物线y =18x 2-4交于A ,B 两点,线段AB 的垂直平分线与直线y =-5交于Q 点. (1)求点Q 的坐标;(2)当P 为抛物线上位于线段AB 下方(含A ,B )的动点时,求△OPQ 面积的最大值.例3如图,设P (x 1,y 1),Q (x 2,y 2)是抛物线y 2=2px (p >0)上的相异两点,Q ,P 到y 轴的距离的积为4,且OP →·OQ →=0. (1)求该抛物线的标准方程;(2)过Q 的直线与抛物线的另一交点为R ,与x 轴的交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.三、课时练习1.已知λ∈R ,则不论λ取何值,曲线C :λx 2-x -λy +1=0恒过定点( ) A .(0,1) B .(-1,1) C .(1,0) D .(1,1)2.若AB 是过椭圆x 2a 2+y 2b2=1(a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与两坐标轴均不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =( )A .-c 2a 2B .-b 2a 2C .-c 2b 2D .-a 2b23.直线y =kx -1与椭圆x 24+y 2a=1相切,则k ,a 的取值范围分别是( )A .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,12B .a ∈(0,1],k ∈⎝ ⎛⎭⎪⎫-12,12 C .a ∈(0,1),k ∈⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .a ∈(0,1],k ∈⎝ ⎛⎦⎥⎤-12,12 4.已知点P 是抛物线y 2=4x 上的点,设点P 到抛物线的准线的距离为d 1,到圆(x +3)2+(y-3)2=1上一动点Q 的距离为d 2,则d 1+d 2的最小值是( ) A .3 B .4 C .5 D .32+15.抛物线y 2=12x 与直线3x -y +5=0的最近距离为______.6.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是____.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,左顶点为A ,若|F 1F 2|=2,椭圆的离心率为e =12.(1)求椭圆的标准方程;(2)若P 是椭圆上的任意一点,求PF 1→·PA →的取值范围;(3)直线l :y =kx +m 与椭圆相交于不同的两点M ,N (均不是长轴的顶点),AH ⊥MN ,垂足为H ,且AH →2=MH →·HN →,求证:直线l 恒过定点.。

专题11:圆锥曲线(七大题型)-2024年新高考新题型试卷结构冲刺讲义

专题11:圆锥曲线(七大题型)-2024年新高考新题型试卷结构冲刺讲义

2024届新高考二轮复习第十一讲:圆锥曲线1.(2)椭圆x 22y a a+=>21(1)的离心率为 1,则a =2()A.B.C.D. 2x y 22222. (8)设双曲线C a b :1(0,0)-=>>的左、右焦点分别为F F a b,12,过坐标原点的直线与C 交于,A B两点, 11222,4F B F A F A F B a =×=uuur uuur 2,则C 的离心率为()A.B. 2C.D.23. 已知抛物线:4C y x =,两点,过F 与l 垂直的直线交C 于的焦点为F ,过F 的直线l 交C 于A B ,D E ,在x 轴上方,两点,其中B D M N ,分别为,AB DE 的中点.(1)证明:直线MN 过定点;(2)设G 为直线AE 与直线BD 的交点,求V GMN 面积的最小值.题型一:椭圆的方程【典例例题】x 例1.(2024春·新高考)(多选)已知椭圆C :42+=y 21的左、右焦点分别为F1,F 2,P 是C 上一点,则(1.(2024春·河南省)若椭圆C 1和C 2的方程分别为x y 22a b +=>>ab 221(0)x y 2222+=和a b l (a b >>>l 0,0222212:1,:(01)4343x y x y 且l ¹1)则称C 1和C 2为相似椭圆.己知椭圆C Cl l +=+=<< ,过C 2上任意一点P 作直线交C 1于M ,N 两点,且uuuu r uuu rPM PN +=0,则△MON 的面积最大时,l 的值为()A.13B.12C.34D.·湖南长沙)题型二:椭圆的离心率【典例例题】1.(2024春·广东省东莞)已知椭圆C :x y 2222+=1(a b >>0)的左、右焦点分别为F 1,F 2a b,左、F MF 212p右顶点分别为A 1,A 2,点M 在C 上,且Ð=7 A MA 1212p,则椭圆C ,Ð=的离心率为()A.2B.4-C.12·湖北武汉)已知椭圆3.(2024春·广东汕头市)已知椭圆x 22y a 21(1),V ABC 是以点B (0,1)a+=>为直角顶点的等腰直角三角形,直角边,BA BC ,.若这样的V ABC 与椭圆分别交于另外两点A C 有且仅有一个,则该椭圆的离心率的取值范围是______.4.(2024春·河北)如图,已知椭圆C 1和双曲线C 2具有相同的焦点1F c (,0),A 、B 、C 、D (-,0),2F c 是它222+=上,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q 们的公共点,且都在圆x y c ,记直线AC 、AQ 的斜率分别为k 1、k 2,若椭圆C 1×,则k k 12的值为()A. 2 B.23C.4 D. 34题型三:双曲线的方程【典例例题】A .4πB .5πC .9πD .13π【变式训练】题型四:双曲线的离心率【典例例题】x y 22:1(0,0)22C a b a b -=>> 的一条弦AB 所在直线的倾斜角为75o,点B2.(2024春·新高考)如图,已知双曲线关于原点O 的对称点为B 1,若ÐBAB 1=30o,双曲线C 的离心率为e ,则e 2=()A .3B .2+3.(2024·新疆乌鲁木齐)设双曲线满足12AF AF ^,直线AF 2交双曲线于另一点题型五:抛物线【典例例题】题型六:直线与圆锥曲线的位置关系【典例例题】22x 22y 例1.(2024春·广东省深圳外国语学校、执信中学)已知椭圆C :a =1(a >b >0)b+的左、右焦点分别为F 1、F 2,离心率为12,(0,是椭圆上的点.(1)求椭圆C 的标准方程;(2)设A 为C 的左顶点,过F 2的直线交椭圆C 于P 、Q 两点,直线AP 、AQ 分别交直线x =4于M 、N 两点,B 是线段MN 的中点,在x 轴上求出一定点D ,使得BD PD ^.【变式训练】·广州市华南师大附中第一次调研)已知椭圆22x 22y 2.(2024春·广东惠州)已知椭圆C :a =1(a >b >0)b +,且椭圆上的点到焦点的最长距离为1(1)求椭圆C 的方程:2=2相交于(2)直线l (不过原点O )与抛物线x y M N ,两点,以MN 为直径的圆经过原点O ,且此直,两点,求V OAB 面积的最大值及此时直线l 的方程线l 也与椭圆C 相交于A B .)3.(2024春·广东广州市)在平面直角坐标系xOy 中,点F ((,)是平面内的动点.若以,点P x y PF 22+=内切,记点P 的轨迹为曲线E 为直径的圆与圆O x y :4.(1)求E 的方程;(2)设点A (0,1),M t (,0),()(4,02N t t ),直线AM ,AN 分别与曲线E 交于点S ,T (S ,T -¹异于A ),AH ST ^,垂足为H ,求OH 的最小值.的焦点为F ,圆M :x y 22++=(4)1.点T (2,1)2=4.(2024春·河北廊坊)已知抛物线C :x py 2是抛物线C 上一点,(1)求抛物线C 的标准方程;(2)若点P 在圆M 上,PA ,PB 是C 的两条切线,A ,B 是切点,求V PAB 面积的最大值.题型七:圆锥曲线新颖题型【典例例题】【变式训练】(1)求曲线C 1和C 2所在的椭圆和双曲线的标准方程;(2)过点F 2作一条与x 轴不垂直的直线,与BE 的中点.问:22CD HF BE GF ××一、单项选择x y 1.(2024春·江西省)椭圆25922+=1x y )22(k +=<19 与椭圆259--k k 的()A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等A .椭圆C 的中心不在直线C .直线O O 12与椭圆D .椭圆C 的离心率为6.(2024春·广东广州)双曲线具有如下性质:双曲线在任意一点处的切线平分该点与两焦点连线的夹角三、简答题(0)与x 轴交于A 、B 两点,与y 轴交于2229.(2024春·广东惠州市)如图,已知半圆C 1:x y b y +=£E点,半椭圆C 2:2222y x +=1(y a b >>>0,0)的上焦点为F ,并且△ABF a b的等边三角形,将由C 1、C 2构成的曲线,记为“Γ”.(1)求实数a 、b的值;(2)直线l :y =与曲线Γ交于M 、N 两点,在曲线Γ上再取两点S 、T (S 、T 分别在直线l 两侧),使得这四个点形成的四边形MSNT 的面积最大,求此最大面积;(0,)(t ÎR ),P 是曲线Γ(3)设点K t 上任意一点,求 PK 的最小值.22++-=2150的圆心为A ,直线l 过点B (1,0)且与x 10. (2024春·广东省潮州市)设圆x y x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.11.(2024春·广东省深圳市龙岗区)已知双曲线x y 2222a b 的左、右焦点分别为F 1,F 2-=>>a b 1(0,0),离心32^时,△BF F 12,过点F 1的直线l 与双曲线的左、右两支分别交于点A ,B .当2BF l 的面积为率为5.(1)求双曲线的标准方程;(2)若直线l 与y 轴交于点M ,且=MA AF l uuu r uuur 1,MB BF uuur uuur =m 1,求证:l m +为定值.。

高三二轮复习:圆锥曲线(教师)

高三二轮复习:圆锥曲线(教师)

高三数学二轮复习——圆锥曲线的综合一、直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.二、有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.三、圆锥曲线中的最值(1)椭圆中的最值F1、F2为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]. ②|PF 1|∈[a -c ,a +c ]. ③|PF 1|·|PF 2|∈[b 2,a 2]. ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1、F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有 ①|OP |≥a . ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有: ①|PF |≥p2.②A (m ,n )为一定点,则|PA |+|PF |有最小值. 小题一览例1、(2013·课标全国Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1D.x 218+y 29=1 答案 D 解析 设A (x 1,y 1)、B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a 2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b 2a 2+b 2=2;又因为a 2-b 2=9,解得b 2=9,a 2=18. 例2、 (2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33B .-33C .±33D .-3答案 B解析 ∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,S △AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0. 由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33).例3、 (2013·大纲全国)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]答案 B解析 利用直线PA 2斜率的取值范围确定点P 变化范围的边界点,再利用斜率公式计算直线PA 1斜率的边界值. 由题意可得A 1(-2,0),A 2(2,0), 当PA 2的斜率为-2时,直线PA 2的方程式为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫2619,2419,此时直线PA 1的斜率k =38. 同理,当直线PA 2的斜率为-1时,直线PA 2方程为y =-(x -2), 代入椭圆方程, 消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P ⎝ ⎛⎭⎪⎫27,127,此时直线PA 1的斜率k =34.数形结合可知,直线PA 1斜率的取值范围是⎣⎢⎡⎦⎥⎤38,34.例4、 (2012·四川)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,当△FAB的周长最大时,△FAB 的面积是________.答案 3解析 直线x =m 过右焦点(1,0)时,△FAB 的周长最大,由椭圆定义知,其周长为4a =8,此时,|AB |=2×b 2a =2×32=3,∴S △FAB =12×2×3=3.例5、(2012·北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为______.答案3解析 ∵y 2=4x 的焦点F (1,0), 又直线l 过焦点F 且倾斜角为60°, 故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0.∴x =13或x =3. 又点A 在x 轴上方,∴x A =3.∴y A =2 3.∴S △OAF =12×1×23= 3.综合题演练:题型一 圆锥曲线中的范围、最值问题例6、已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为3.(1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,b ),求b 的取值范围. 审题破题 (2)直接利用判别式和根与系数的关系确定k 的范围;(3)寻找b 和k 的关系,利用(2)中k 的范围求解.解 (1)设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),由已知,得a =3,c =2,b 2=c 2-a 2=1,故双曲线方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意,知⎩⎪⎪⎨⎪⎪⎧1-3k 2≠0,Δ=361-k 2>0,x A +x B=62k1-3k2<0,x A x B=-91-3k 2>0,解得33<k <1.所以当33<k <1时,直线l 与双曲线的左支有两个交点.(3)由(2),得x A +x B =62k1-3k 2,所以y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2,所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎪⎫32k 1-3k 2,21-3k 2.设l 0的方程为y =-1k x +b ,将P 点的坐标代入l 0的方程,得b =421-3k 2,∵33<k <1,∴-2<1-3k 2<0,∴b <-22.∴b 的取值范围是(-∞,-22).反思归纳 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.变式训练(2013·广东)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值. 解 (1)依题意知|c +2|2=322,c >0,解得c =1.所以抛物线C 的方程为x 2=4y . (2)由y =14x 2得y ′=12x , 设A (x 1,y 1),B (x 2,y 2),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0, 又点P (x 0,y 0)在切线PA 和PB 上,所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0 的两组解, 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义知|AF |=y 1+1,|BF |=y 2+1, 所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0, ∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∴|AF |·|BF |=y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1=y 20+(y 0+2)2-2y 0+1=2y 20+2y 0+5 =2⎝⎛⎭⎪⎫y 0+122+92,∴当y 0=-12时,|AF |·|BF |取得最小值,且最小值为92.题型二 圆锥曲线中的定点、定值问题例7、(2012·福建)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上. (1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q , 证明以PQ 为直径的圆恒过y 轴上某定点.审题破题 (1)先求出B 点坐标,代入抛物线方程,可得p 的值;(2)假设在y 轴上存在定点M ,使得以线段PQ 为直径的圆经过点M ,转化为MP →·MQ →=0,从而判断点M 是否存在.(1)解 依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得p =2.故抛物线E 的方程为x 2=4y .(2)证明 方法一 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为 y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1得⎩⎪⎨⎪⎧x =x 2-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 设M (0,y 1),令MP →·MQ →=0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP →=(x 0,y 0-y 1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP →·MQ →=0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*) 由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立, 所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1). 方法二 由(1)知y =14x 2,y ′=12x . 设P (x 0,y 0),则x 0≠0,y 0=14x 20, 且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 2,y =-1得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1. 取x 0=2,此时P (2,1),Q (0,-1), 以PQ 为直径的圆为(x -1)2+y 2=2, 交y 轴于点M 1(0,1)、M 2(0,-1);取x 0=1,此时P ⎝ ⎛⎭⎪⎫1,14,Q ⎝ ⎛⎭⎪⎫-32,-1,以PQ 为直径的圆为⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y +382=12564,交y 轴于点M 3(0,1)、M 4⎝⎛⎭⎪⎫0,-74.故若满足条件的点M 存在,只能是M (0,1).以下证明点M (0,1)就是所要求的点.因为MP →=(x 0,y 0-1),MQ →=⎝ ⎛⎭⎪⎫x 20-42x 0,-2, 所以MP →·MQ →=x 20-42-2y 0+2=2y 0-2-2y 0+2=0.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).反思归纳 定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 变式训练 已知直线l :y =x +6,圆O :x 2+y 2=5,椭圆E :y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,直线l 被圆O 截得的弦长与椭圆的短轴长相等.(1)求椭圆E 的方程;(2)过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.(1)解 设椭圆的半焦距为c , 圆心O 到直线l 的距离d =61+1=3,∴b =5-3=2.由题意得⎩⎪⎨⎪⎧ca =33a 2=b 2+c2b =2,∴a 2=3,b 2=2.∴椭圆E 的方程为y 23+x 22=1.(2)证明 设点P (x 0,y 0),过点P 的椭圆E 的切线l 0的方程为y -y 0=k (x -x 0),联立直线l 0与椭圆E 的方程得⎩⎪⎨⎪⎧y =k x -x 0+y 0y 23+x22=1,消去y 得(3+2k 2)x 2+4k (y 0-kx 0)x +2(kx 0-y 0)2-6=0, ∴Δ=[4k (y 0-kx 0)]2-4(3+2k 2)[2(kx 0-y 0)2-6]=0, 整理得,(2-x 20)k 2+2kx 0y 0-(y 20-3)=0,设满足题意的椭圆E 的两条切线的斜率分别为k 1,k 2, 则k 1·k 2=-y 20-32-x 20,∵点P 在圆O 上,∴x 20+y 20=5,∴k 1·k 2=-5-x 20-32-x 20=-1.∴两条切线的斜率之积为常数-1. 题型三 圆锥曲线中的存在性问题例8、如图,椭圆的中心为原点O ,离心率e =22,且a 2c=22.(1)求该椭圆的标准方程;(2)设动点P 满足OP →=OM →+2ON →,其中M 、N 是椭圆上的点,直线OM 与ON 的斜率之积为-12.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值?若存在,求F 1,F 2的坐标;若不存在,说明理由.审题破题 (1)列方程组求出a 、c 即可;(2)由k OM ·k ON =-12先确定点M 、N 坐标满足条件,再根据OP →=OM →+2ON →寻找点P 满足条件:点P 在F 1、F 2为焦点的椭圆上. 解 (1)由e =c a=22,a 2c=22,解得a =2,c =2,b 2=a 2-c 2=2,故椭圆的标准方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由OP →=OM →+2ON →,得(x ,y )=(x 1,y 1)+2(x 2,y 2)=(x 1+2x 2,y 1+2y 2), 即x =x 1+2x 2,y =y 1+2y 2.因为点M 、N 在椭圆x 2+2y 2=4上,所以x 21+2y 21=4,x 22+2y 22=4, 故x 2+2y 2=(x 21+4x 22+4x 1x 2)+2(y 21+4y 22+4y 1y 2) =(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM ,ON 的斜率, 由题设条件知k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20. 所以P 点是椭圆x 2252+y 2102=1上的点,设该椭圆的左、右焦点为F 1、F 2,则由椭圆的定义|PF 1|+|PF 2|为定值,又因c =252-102=10,因此两焦点的坐标为F 1(-10,0),F 2(10,0).反思归纳 探究是否存在的问题,一般均是先假设存在,然后寻找理由去确定结论,如果真的存在,则能得出相应结论,如果不存在,则会由条件得出相互矛盾的结论. 变式训练 已知点P 是圆O :x 2+y 2=9上的任意一点,过P 作PD 垂直x 轴于D ,动点Q满足DQ →=23DP →.(1)求动点Q 的轨迹方程;(2)已知点E (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使OE →=12(OM→+ON →)(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由. 解 (1)设P (x 0,y 0),Q (x ,y ),依题意,点D 的坐标为D (x 0,0), 所以DQ →=(x -x 0,y ),DP →=(0,y 0), 又DQ →=23DP →,故⎩⎪⎨⎪⎧x -x 0=0,y =23y 0,即⎩⎪⎨⎪⎧x 0=x ,y 0=32y ,因为P 在圆O 上,故有x 20+y 20=9, 所以x 2+⎝ ⎛⎭⎪⎫3y 22=9,即x 29+y 24=1,所以点Q 的轨迹方程为x 29+y 24=1. (2)假设椭圆x 29+y 24=1上存在不重合的两点M (x 1,y 1),N (x 2,y 2)满足OE →=12(OM →+ON →),则E (1,1)是线段MN 的中点,且有⎩⎪⎨⎪⎧ x 1+x 22=1,y 1+y22=1,即⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2.又M (x 1,y 1),N (x 2,y 2)在椭圆x 29+y 24=1上,所以⎩⎪⎨⎪⎧x 219+y 214=1,x 229+y224=1,两式相减,得x 1-x 2x 1+x 29+y 1-y 2y 1+y 24=0,所以k MN =y 1-y 2x 1-x 2=-49,故直线MN 的方程为4x +9y -13=0.所以椭圆上存在点M ,N 满足OE →=12(OM →+ON →),此时直线MN 的方程为4x +9y -13=0.例9、抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. 规范解答解 (1)根据题意可设直线l 的方程为y =kx -2,抛物线的方程为x 2=-2py (p >0).由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.[2分] 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.故直线l 的方程为y =2x -2,抛物线的方程为x 2=-2y .[6分](2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2, y 0=-12x 20=-2,即P (-2,-2).此时点P 到直线l 的距离d =|2·-2--2-2|22+-12=45=455.[9分]由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |=1+k 2·x 1+x 22-4x 1x 2=1+22·-42-4·-4=410. 于是,△ABP 面积的最大值为12×410×455=82.[12分]评分细则 (1)由OA →+OB →=(-4,-12)得到关于p ,k 的方程组得2分;解出p 、k 的值给1分;(2)确定△ABP 面积最大的条件给1分;(3)得到方程x 2+4x -4=0给1分. 阅卷老师提醒 最值问题解法有几何法和代数法两种,本题中的曲线上一点到直线的距离的最值可以转化为两条平行线的距离;代数法求最值的基本思路是转化为函数的最值. 课后练习:1. 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p 等于( )A .1B .2C .3D .4 答案 B解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →,∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∠ABP =60°,∴∠BAP =30°. ∴||BP =12||AB =||BM . ∴M 为焦点,即p 2=1,∴p =2.2. 已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ) A .-2B .-8116C .1D .0 答案 A解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y ) (x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即PA 1→·PF 2→取最小值,最小值为-2.3. 设AB 是过椭圆x 2a 2+y 2b 2(a >b >0)中心的弦,椭圆的左焦点为F 1(-c,0),则△F 1AB 的面积最大为 ( ) A .bcB .abC .acD .b 2答案 A解析 如图,由椭圆对称性知O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半.又OF 1=c ,△F 1OB 边OF 1上的高为y B ,而y B 的最大值为b .所以△F 1OB 的面积最大值为12cb .所以△F 1AB 的面积最大值为bc .4. 已知点A (-1,0),B (1,0)及抛物线y 2=2x ,若抛物线上点P 满足|PA |=m |PB |,则m 的最大值为( ) A .3B .2C.3D.2答案 C解析 据已知设P (x ,y ), 则有m =|PA ||PB |=x +12+y 2x -12+y 2=x +12+2x x -12+2x=x 2+4x +1x 2+1=1+4xx 2+1=1+4x +1x,据基本不等式有m = 1+4x +1x≤ 1+42x ×1x=3,即m 的最大值为 3.故选C.5. 直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16B .116C .4D .14答案 B解析 由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y得x 2-3x -4=0,∴x A =-1,x D =4,直线3x -4y +4=0恰过抛物线的焦点F (0,1),∴|AF |=y A +1=54,|DF |=y D +1=5,∴|AB ||CD |=|AF |-1|DF |-1=116.故选B. 6. 过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是A .(14,94)B .(23,1)C .(12,23)D .(0,12)答案 C解析 点B 的横坐标是c ,故B 的坐标(c ,±b 2a),已知k ∈(13,12),∴B (c ,b 2a).又A (-a,0),则斜率k =b 2a c +a =b 2ac +a 2=a 2-c 2ac +a 2=1-e 2e +1.由13<k <12,解得12<e <23. 7. 已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值( )A .等于1B .最小值是1C .等于4D .最大值是4 答案 A解析 设直线l :x =ty +1,代入抛物线方程, 得y 2-4ty -4=0. 设A (x 1,y 1),D (x 2,y 2),根据抛物线定义|AF |=x 1+1,|DF |=x 2+1, 故|AB |=x 1,|CD |=x 2, 所以|AB |·|CD |=x 1x 2=y 214·y 224=y 1y 2216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.8. 设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点,若在直线x =a 2c上存在P 使线段PF 1的中垂线过点F 2,则此椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎥⎤0,22B.⎝ ⎛⎦⎥⎥⎤0,33C.⎣⎢⎢⎡⎭⎪⎪⎫22,1D.⎣⎢⎢⎡⎭⎪⎪⎫33,1解析 设P ⎝ ⎛⎭⎪⎫a 2c ,y ,F 1P 的中点Q 的坐标为⎝ ⎛⎭⎪⎫b 22c ,y 2,当kQF 2存在时,则kF 1P =cya 2+c 2,kQF 2=cyb 2-2c 2,由kF 1P ·kQF 2=-1,得y 2=a 2+c 2·2c 2-b 2c 2,y 2≥0,但注意到b 2-2c 2≠0,即2c 2-b 2>0, 即3c 2-a 2>0,即e 2>13,故33<e <1.当kQF 2不存在时,b 2-2c 2=0,y =0, 此时F 2为中点,即a 2c-c =2c ,得e =33,综上,得33≤e <1,即所求的椭圆离心率的范围是⎣⎢⎢⎡⎭⎪⎪⎫33,1.9. 已知椭圆的焦点是F 1(-22,0)和F 2(22,0),长轴长是6,直线y =x +2与此椭圆交于A 、B 两点,则线段AB 的中点坐标是________.答案 ⎝ ⎛⎭⎪⎫-95,15解析 由已知得椭圆方程是x 29+y 2=1,直线与椭圆相交有⎩⎪⎨⎪⎧x 2+9y 2=9,y =x +2,则10x 2+36x +27=0,AB 中点(x 0,y 0)有x 0=12(x A +x B )=-95,y 0=x 0+2=15,所以,AB 中点坐标是⎝ ⎛⎭⎪⎫-95,15.10.点P 在抛物线x 2=4y 的图象上,F 为其焦点,点A (-1,3),若使|PF |+|PA |最小,则相应P 的坐标为________.答案 ⎝⎛⎭⎪⎫-1,14解析 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点⎝ ⎛⎭⎪⎫-1,14即为所求点P 的坐标,此时|PF |+|PA |最小.11. 斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,则|AB |=_______.答案 163解析 如图,过A 作AA1⊥l ′,l ′为抛物线的准线.过B 作BB 1⊥l ′, 抛物线y 2=4x 的焦点为F (1,0),过焦点F 作FM ⊥A 1A 交 A 1A 于M 点,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.12.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.答案 32 解析 (1)当直线的斜率不存在时,直线方程为x =4,代入y 2=4x ,得交点为(4,4),(4,-4),∴y 21+y 22=16+16=32.(2)当直线的斜率存在时,设直线方程为y =k (x -4),与y 2=4x 联立,消去x 得ky 2-4y -16k =0,由题意知k ≠0,则y 1+y 2=4k ,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32.综合(1)(2)知(y 21+y 22)min =32.13.(2013·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值. 解 (1)设F (-c,0),由c a=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c , 代入椭圆方程有-c 2a 2+y 2b 2=1,解得y =±6b3, 于是26b 3=433,解得b =2,又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k x +1,x 23+y22=1消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2 =6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程.(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. 解 (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =x -02+y -22=x 2+y -22=3b 2-3y 2+y -22=-2y +12+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3. ∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1, d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2.∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0.∴S △OAB =1m 2+n 2⎝ ⎛⎭⎪⎫1-1m 2+n 2≤⎝ ⎛⎭⎪⎫1m 2+n2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为 ⎝ ⎛⎭⎪⎪⎫62,22,⎝ ⎛⎭⎪⎪⎫62,-22,⎝ ⎛⎭⎪⎪⎫-62,22或⎝ ⎛⎭⎪⎪⎫-62,-22,此时△OAB 的面积为12.。

高考数学二轮复习考点知识与题型专题讲解41---圆锥曲线的方程与性质

高考数学二轮复习考点知识与题型专题讲解41---圆锥曲线的方程与性质

高考数学二轮复习考点知识与题型专题讲解第41讲圆锥曲线的方程与性质[考情分析]高考对这部分知识的考查侧重三个方面:一是求圆锥曲线的标准方程;二是求椭圆的离心率、双曲线的离心率以及渐近线问题;三是抛物线的性质及应用问题.考点一圆锥曲线的定义与标准方程核心提炼1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”“定型”:确定曲线焦点所在的坐标轴的位置;“计算”:利用待定系数法求出方程中的a2,b2,p 的值.例1(1)(2022·衡水中学模拟)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP且线段AP的长为2+2,则该椭圆方程为()A.x 24+y 22=1B.x 28+y 23=1 C.x 25+y 24=1 D.x 28+y 24=1 答案 D解析 设椭圆的半焦距为c ,因为点P 在以线段F 1A 为直径的圆上,所以AP ⊥PF 1.又因为F 2B ∥AP ,所以F 2B ⊥BF 1.又因为|F 2B |=|BF 1|,所以△F 1F 2B 是等腰直角三角形,于是△F 1AP 也是等腰直角三角形,因为|AP |=2+2,所以|F 1A |=2(2+2),得a +c =2(2+2),又b =c ,所以a =2c ,解得a =22,c =2,得b 2=a 2-c 2=4,所以椭圆方程为x 28+y 24=1. (2)(2022·荆州模拟)已知双曲线C :x 216-y 29=1的左、右焦点分别是F 1,F 2,点P 是C 右支上的一点(不是顶点),过F 2作∠F 1PF 2的角平分线的垂线,垂足是M ,O 是原点,则|MO |=________. 答案 4解析 延长F 2M 交PF 1于点Q ,由于PM 是∠F 1PF 2的角平分线,F 2M ⊥PM ,所以△QPF 2是等腰三角形,所以|PQ |=|PF 2|,且M 是QF 2的中点.根据双曲线的定义可知|PF 1|-|PF 2|=2a ,即|QF 1|=2a ,由于O 是F 1F 2的中点,所以MO 是△QF 1F 2的中位线,所以|MO |=12|QF 1|=a =4. 易错提醒 求圆锥曲线的标准方程时的常见错误双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;圆锥曲线方程确定时还要注意焦点位置.跟踪演练1 (1)已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的方程为( ) A.x 24-y 22=1 B.x 24-y 28=1或y 24-x 28=1 C.x 24-y 28=1 D.x 24-y 22=1或y 24-x 28=1 答案 D解析 设双曲线方程为x 22m -y 2m=1(m ≠0), ∵2a =4,∴a 2=4,当m >0时,2m =4,m =2;当m <0时,-m =4,m =-4.故所求双曲线的方程为x 24-y 22=1或y 24-x 28=1. (2)已知A ,B 是抛物线y 2=8x 上两点,当线段AB 的中点到y 轴的距离为3时,|AB |的最大值为( )A .5B .5 2C .10D .10 2答案 C解析 设抛物线y 2=8x 的焦点为F ,准线为l ,线段AB 的中点为M .如图,分别过点A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,连接AF ,BF .因为线段AB 的中点到y 轴的距离为3,抛物线y 2=8x 的准线l :x =-2,所以|MN |=5.因为|AB |≤|AF |+|BF |=|AC |+|BD |=2|MN |=10,当且仅当A ,B ,F 三点共线时取等号,所以|AB |max =10.考点二 椭圆、双曲线的几何性质 核心提炼1.求离心率通常有两种方法(1)求出a ,c ,代入公式e =c a. (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线bx ±ay =0的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 椭圆、双曲线的几何性质例2(2022·河南五市联考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心的圆恰好与双曲线C 的两条渐近线相切,且该圆恰好经过线段OF 2的中点,则双曲线C 的渐近线方程为( )A .y =±3xB .y =±33x C .y =±233x D .y =±2x答案 B解析 由题意知,渐近线方程为y =±b ax , 焦点F 2(c ,0),c 2=a 2+b 2,因为以F 2为圆心的圆恰好与双曲线C 的两渐近线相切,则圆的半径r 等于圆心到切线的距离,即r =⎪⎪⎪⎪±b a ·c 1+⎝⎛⎭⎫±b a 2=b , 又该圆过线段OF 2的中点,故c 2=r =b , 所以b a =b 2a 2=b 2c 2-b2=33. 所以渐近线方程为y =±33x . 考向2 离心率问题例3(多选)(2022·全国乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( ) A.52B.32 C.132 D.172 答案 AC解析 不妨设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0). 当两个交点M ,N 在双曲线两支上时,如图1所示,图1设过F 1的直线与圆D 相切于点P ,连接OP ,由题意知|OP |=a ,又|OF 1|=c ,所以|F 1P |=b .过点F 2作F 2Q ⊥F 1N ,交F 1N 于点Q .由中位线的性质,可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 故|NF 2|=52a ,|QN |=32a , 所以|NF 1|=|F 1Q |+|QN |=2b +32a . 由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以2b +32a -52a =2a ,所以2b =3a . 两边平方得4b 2=9a 2,即4(c 2-a 2)=9a 2,整理得4c 2=13a 2,所以c 2a 2=134, 故c a =132,即e =132. 当两个交点M ,N 都在双曲线上的左支上时,如图2所示,图2同理可得|F 2Q |=2|OP |=2a ,|PQ |=b .因为cos ∠F 1NF 2=35, 所以sin ∠F 1NF 2=45, 可得|NF 2|=52a ,|NQ |=32a , 所以|NF 1|=|NQ |-|QF 1|=32a -2b , 所以|NF 2|=|NF 1|+2a =72a -2b , 又|NF 2|=52a ,所以72a -2b =52a , 即a =2b ,故e =1+⎝⎛⎭⎫b a 2=52.故选AC.规律方法 (1)在“焦点三角形”中,常利用正弦定理、余弦定理,结合椭圆(或双曲线)的定义,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(2)求双曲线渐近线方程的关键在于求b a 或a b的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.跟踪演练2 (1)(2022·全国甲卷)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为( ) A.32 B.22 C.12 D.13答案 A解析 设P (m ,n )(n ≠0),则Q (-m ,n ),易知A (-a ,0),所以k AP ·k AQ =n m +a ·n -m +a =n 2a 2-m 2=14.(*) 因为点P 在椭圆C 上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14, 所以e =c a =1-b 2a 2=32.故选A. (2)(多选)(2022·衡水中学模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线的右支交于A ,B 两点,若|AF 1|=|BF 2|=2|AF 2|,则( )A .∠AF 1B =∠F 1ABB .双曲线的离心率e =333C .双曲线的渐近线方程为y =±63x D .原点O 在以F 2为圆心,|AF 2|为半径的圆上答案 AB解析 设|AF 1|=|BF 2|=2|AF 2|=2m ,则|AB |=|AF 2|+|BF 2|=3m ,由双曲线的定义知,|AF 1|-|AF 2|=2m -m =2a ,即m =2a ,|BF 1|-|BF 2|=2a ,即|BF 1|-2m =2a ,∴|BF 1|=3m =|AB |,∠AF 1B =∠F 1AB ,故选项A 正确;由余弦定理知,在△ABF 1中,cos ∠AF 1B =|AF 1|2+|BF 1|2-|AB |22|AF 1|·|BF 1|=4m 2+9m 2-9m 22·2m ·3m =13, 在△AF 1F 2中,cos ∠F 1AB =|AF 1|2+|AF 2|2-|F 1F 2|22·|AF 1|·|AF 2|=4m 2+m 2-4c 22·2m ·m =cos ∠AF 1B =13, 化简整理得12c 2=11m 2=44a 2,∴离心率e =c a =4412=333,故选项B 正确; 双曲线的渐近线方程为y =±b ax =±c 2-a 2a 2x =±e 2-1x =±263x , 故选项C 错误;若原点O 在以F 2为圆心,|AF 2|为半径的圆上,则c =m =2a ,与c a =333相矛盾,故选项D 错误. 考点三 抛物线的几何性质核心提炼抛物线的焦点弦的几个常见结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2. (2)|AB |=x 1+x 2+p .(3)当AB ⊥x 轴时,弦AB 的长最短为2p .例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( )A.18 B .2 C.14D .4 答案 B解析 设点M 到抛物线的准线的距离为|MM ′|,抛物线的准线与x 轴的交点记为点B.由抛物线的定义知,|MM ′|=|FM |.因为|FM ||MN |=55, 所以|MM ′||MN |=55, 即cos ∠NMM ′=|MM ′||MN |=55, 所以cos ∠OF A =cos ∠NMM ′=55, 而cos ∠OF A =|OF ||AF |=p 2⎝⎛⎭⎫p 22+22=55,解得p =2. (2)(多选)(2022·新高考全国Ⅱ)已知O 为坐标原点,过抛物线C :y 2=2px (p >0)焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点M (p ,0).若|AF |=|AM |,则( )A .直线AB 的斜率为2 6B .|OB |=|OF |C .|AB |>4|OF |D .∠OAM +∠OBM <180°答案 ACD解析 对于A ,由题意,得F ⎝⎛⎭⎫p 2,0. 因为|AF |=|AM |,且M (p ,0), 所以x A =x F +x M 2=34p ,将其代入抛物线方程y 2=2px ,得y A =62p , 所以A ⎝⎛⎭⎫34p ,62p ,所以直线AB 的斜率k AB =k AF =62p -034p -p 2=26,故A 正确;对于B ,由选项A 的分析,知直线AB 的方程为y =26⎝⎛⎭⎫x -p2,代入y 2=2px ,得12x 2-13px +3p 2=0,解得x =34p 或x =13p ,所以x B =13p ,所以y B =-63p ,所以|OB |=x 2B +y 2B =73p ≠|OF |,故B不正确;对于C ,由抛物线的定义及选项A ,B 的分析, 得|AB |=x A +x B +p =1312p +p =2512p >2p ,即|AB |>4|OF |,故C 正确; 对于D ,易知|OA |=334p ,|AM |=54p , |OB |=73p ,|BM |=103p , 则cos ∠OAM =|OA |2+|AM |2-|OM |22|OA |·|AM |=3316p 2+2516p 2-p 22×334p ·54p=21533>0,cos ∠OBM =|OB |2+|BM |2-|OM |22|OB |·|BM |=79p 2+109p 2-p 22×73p ·103p=470>0,所以∠OAM <90°,∠OBM <90°,所以∠OAM +∠OBM <180°,故D 正确.综上所述,选ACD.规律方法 利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p 的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.跟踪演练3 (1)(2021·新高考全国Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________. 答案 x =-32解析 方法一 (解直角三角形法)由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF , 所以|OF ||PF |=|PF ||FQ |,即p 2p =p 6,解得p =3,所以C 的准线方程为x =-32.方法二 (应用射影定理法)由题易得|OF |=p 2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32.(2)(2022·济宁模拟)过抛物线y 2=4x 的焦点F 的直线与该抛物线及其准线都相交,交点从左到右依次为A ,B ,C .若AB →=2BF →,则线段BC 的中点到准线的距离为( ) A .3 B .4 C .5 D .6 答案 B解析 由抛物线的方程可得焦点F (1,0),渐近线的方程为x =-1,由AB →=2BF →,可得|AB ||BF |=2,由于抛物线的对称性,不妨假设直线和抛物线位置关系如图所示,作BE 垂直准线于点E , 准线交x 轴于点N ,则|BF |=|BE | ,故|AB ||BF |=|AB ||BE |=2,故∠ABE =π4 , 而BE ∥x 轴,故∠AFN =π4,所以直线AB 的倾斜角为π4,所以直线AB 的方程为y =x -1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,整理可得x 2-6x +1=0,则x 1+x 2=6,所以BC 的中点的横坐标为3, 则线段BC 的中点到准线的距离为3-(-1)=4.专题强化练一、单项选择题1.(2022·中山模拟)抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则抛物线C 的方程为( ) A .y 2=4x B .y 2=8x C .y 2=12x D .y 2=16x 答案 B解析 因抛物线C :y 2=2px 上一点(1,y 0)到其焦点的距离为3,则p >0,抛物线准线方程为x =-p2,由抛物线定义得1-⎝⎛⎭⎫-p2=3,解得p =4, 所以抛物线C 的方程为y 2=8x .2.已知双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),则其渐近线方程为( )A .y =±24x B .y =±22xC .y =±2xD .y =±12x答案 A解析 因为双曲线x 2m -y 2=1(m >0)的一个焦点为F (3,0),所以由m +1=32,得m =8, 所以双曲线方程为x 28-y 2=1,所以双曲线的渐近线方程为y =±24x .3.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |等于( ) A .2 B .2 2 C .3 D .3 2 答案 B解析 方法一由题意可知F (1,0),抛物线的准线方程为x =-1.设A ⎝⎛⎭⎫y 24,y 0, 则由抛物线的定义可知|AF |=y 204+1.因为|BF |=3-1=2,所以由|AF |=|BF |,可得y 204+1=2,解得y 0=±2,所以A (1,2)或A (1,-2).不妨取A (1,2),则|AB |=(1-3)2+(2-0)2=8=22,故选B. 方法二 由题意可知F (1,0),故|BF |=2, 所以|AF |=2.因为抛物线的通径长为2p =4, 所以AF 的长为通径长的一半, 所以AF ⊥x 轴,所以|AB |=22+22=8=2 2.故选B.4.(2022·潍坊模拟)如图,某建筑物白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座建筑以轻盈、极简和雕塑般的气质,该建筑物外形弧线的一段可以近似看成焦点在y 轴上的双曲线y 2a 2-x 2b 2=1(a >0,b >0)上支的一部分.已知该双曲线的上焦点F 到下顶点的距离为36,F 到渐近线的距离为12,则该双曲线的离心率为( )A.53B.54C.43D.45 答案 B解析 点F (0,c )到渐近线y =±ab x ,即ax ±by =0的距离d =|±bc |a 2+b 2=b =12, 又由题意知⎩⎪⎨⎪⎧a +c =36,a 2+122=c 2, 解得⎩⎪⎨⎪⎧a =16,c =20,所以e =c a =2016=54.5.(2022·福州质检)已知点F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 2的直线交椭圆于A ,B 两点,且满足AF 1⊥AB ,|AF 1||AB |=43,则该椭圆的离心率是( )A.23B.53C.33D.63 答案 B解析 如图所示,设|AF 1|=4x ,则|AB |=3x ,因为AF 1⊥AB ,则|BF 1|=|AB |2+|AF 1|2=5x , 由椭圆的定义可得|AF 1|+|AB |+|BF 1|=(|AF 1|+|AF 2|)+(|BF 2|+|BF 1|)=4a =12x ,则x =a 3,所以|AF 1|=4x =4a 3, 则|AF 2|=2a -4a 3=2a3,由勾股定理可得|AF 1|2+|AF 2|2=|F 1F 2|2, 则⎝⎛⎭⎫4a 32+⎝⎛⎭⎫2a 32=4c 2,则c =53a , 因此该椭圆的离心率为e =c a =53.6.如图,圆O 与离心率为32的椭圆T :x 2a 2+y 2b 2=1(a >b >0)相切于点M (0,1),过点M 引两条互相垂直的直线l 1,l 2,两直线与两曲线分别交于点A ,C 与点B ,D (均不重合).若P 为椭圆上任意一点,记点P 到两直线的距离分别为d 1,d 2,则d 21+d 22的最大值是( )A .4B .5 C.163 D.253答案 C解析 易知椭圆C 的方程为x 24+y 2=1,圆O 的方程为x 2+y 2=1, 设P (x 0,y 0), 因为l 1⊥l 2,则d 21+d 22=|PM |2=x 20+(y 0-1)2,因为x 204+y 20=1,所以d 21+d 22=4-4y 20+(y 0-1)2=-3⎝⎛⎭⎫y 0+132+163, 因为-1≤y 0≤1,所以当y 0=-13,即点P ⎝⎛⎭⎫±423,-13时,d 21+d 22取得最大值163. 二、多项选择题7.(2022·临沂模拟)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F (0,2),椭圆的短轴与半圆的直径重合,下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A .椭圆的长轴长为4 2B .|AB |的取值范围是[4,2+22]C .△ABF 面积的最小值是4D .△AFG 的周长为4+4 2 答案 ABD解析 由题意知,椭圆中的几何量b =c =2, 得a =22,则2a =42,A 正确; |AB |=|OB |+|OA |=2+|OA |, 由椭圆性质可知2≤|OA |≤22, 所以4≤|AB |≤2+22,B 正确; 记∠AOF =θ, 则S △ABF =S △AOF +S △OBF=12|OA |·|OF |sin θ+12|OB |·|OF |sin(π-θ) =|OA |sin θ+2sin θ =(|OA |+2)sin θ, 取θ=π6,则S △ABF =1+12|OA |≤1+12×22<4,C 错误;由椭圆定义知|AF |+|AG |=2a =42, 所以△AFG 的周长L =|FG |+42=4+42, D 正确.8.(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A .||P A 1|-|P A 2||=2aB .若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5 C .若双曲线C 为等轴双曲线,则直线P A 1的斜率与直线P A 2的斜率之积为1D .若双曲线C 为等轴双曲线,且∠A 1P A 2=3∠P A 1A 2,则∠P A 1A 2=π10答案 BCD解析 对于A ,在△P A 1A 2中,根据三角形两边之差小于第三边, 可知||P A 1|-|P A 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0,设F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎨⎧n m -c ×ba =-1,b ×m +c 2-a ×n2=0,得⎩⎨⎧m =a 2-b 2c,n =2abc ,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎫a 2-b 2c ,2ab c , 由题意知该点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2 代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2,∴e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=5,得e =5,故B 正确;对于C ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2, 则x 20-a 2=y 20,故12·PA PA k k =y 0x 0+a ·y 0x 0-a=y 20x 20-a2=1,故C 正确; 对于D ,双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0), 且∠A 1P A 2=3∠P A 1A 2, 设∠P A 1A 2=θ,∠A 1P A 2=3θ, 则∠P A 2x =4θ,根据C 的结论12·PA PA k k =1, 即有tan θ·tan 4θ=1, ∴sin θcos θ·sin 4θcos 4θ=1, ∴cos 5θ=0, ∵θ+3θ∈(0,π), ∴θ∈⎝⎛⎭⎫0,π4, ∴5θ=π2,∴∠P A 1A 2=θ=π10.三、填空题9.写出一个满足以下三个条件的椭圆的方程:______________.①中心为坐标原点;②焦点在坐标轴上;③离心率为13.答案x 29+y 28=1(答案不唯一)解析 只要椭圆方程形如x 29m +y 28m =1(m >0)或y 29m +x 28m=1(m >0)即可.10.(2022·淄博模拟)已知P 1,P 2,…,P 8是抛物线x 2=4y 上不同的点,且F (0,1).若FP 1--→+FP 2--→+…+FP 8--→=0,则|FP 1--→|+|FP 2--→|+…+|FP 8--→|=________.答案 16解析 设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),…,P 8(x 8,y 8),P 1,P 2,P 3,…,P 8是抛物线x 2=4y 上不同的点,点F (0,1),准线为y =-1,则FP i --→=(x i ,y i -1)(i =1,2,…,8),所以FP 1--→+FP 2--→+…+FP 8--→=(x 1+x 2+…+x 8,(y 1-1)+(y 2-1)+…+(y 8-1))=0,所以(y 1-1)+(y 2-1)+…+(y 8-1)=0,即y 1+y 2+y 3+…+y 8=8,∴|FP --→1|+|FP 2--→|+…+|FP 8--→|=(y 1+1)+(y 2+1)+…+(y 8+1)=y 1+y 2+…+y 8+8=16.11.(2022·济南模拟)已知椭圆C 1:x 236+y 2b 2=1(b >0)的焦点分别为F 1,F 2,且F 2是抛物线C 2:y 2=2px (p >0)的焦点,若P 是C 1与C 2的交点,且|PF 1|=7,则cos ∠PF 1F 2的值为________.答案57解析 依题意,由椭圆定义得|PF 1|+|PF 2|=12,而|PF 1|=7,则|PF 2|=5,因为点F 2是抛物线C 2:y 2=2px (p >0)的焦点,则该抛物线的准线l 过点F 1,如图,过点P 作PQ ⊥l 于点Q ,由抛物线定义知|PQ |=|PF 2|=5,而F 1F 2∥PQ ,则∠PF 1F 2=∠F 1PQ ,所以cos ∠PF 1F 2=cos ∠F 1PQ =|PQ ||PF 1|=57. 12.(2022·福州质检)已知O 为坐标原点,F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,A 为C 的右顶点,过F 作C 的渐近线的垂线,垂足为M ,且与y 轴交于点P .若直线AM 经过OP 的中点,则C 的离心率是________.答案 2解析 由题意可知,F (-c ,0),A (a ,0),渐近线不妨设为y =-b ax , 则k FM =a b, 直线FM 的方程为y =a b(x +c ), 令x =0,可得y =ac b, 则P ⎝⎛⎭⎫0,ac b , 则OP 的中点坐标为⎝⎛⎭⎫0,ac 2b , 联立⎩⎨⎧ y =-b a x ,y =a b (x +c ),解得M ⎝⎛⎭⎫-a 2c ,ab c , 因为直线AM 经过OP 的中点,所以ac 2b -00-a =ab c -0-a 2c-a ,则2b 2=ac +c 2,2(c 2-a 2)=ac +c 2, 即c 2-ac -2a 2=0,则e 2-e -2=0,解得e =-1 (舍)或e =2.四、解答题13.(2022·衡水中学模拟)双曲线x 2-y 2b 2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程; (2)设b =3,若l 的斜率存在,且(F 1A --→+F 1B --→)·AB →=0,求l 的斜率.解 (1)设A (x A ,y A ).由题意知,F 2(c ,0),c =1+b 2,y 2A =b 2(c 2-1)=b 4,因为△F 1AB 是等边三角形, 所以2c =3|y A |,即4(1+b 2)=3b 4,解得b 2=2⎝⎛⎭⎫b 2=-23舍去. 故双曲线的渐近线方程为y =±2x .(2)由已知,F 1(-2,0),F 2(2,0). 设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2).显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0. 因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0. 设AB 的中点为M (x M ,y M ). 由(F 1A --→+F 1B --→)·AB →=0,即F 1M →·AB →=0, 知F 1M ⊥AB ,故1· 1.F M k k =-而x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,1F M k =3k 2k 2-3, 所以3k 2k 2-3·k =-1,得k 2=35, 故l 的斜率为±155.。

高考数学二轮复习-圆锥曲线精品总结复习

高考数学二轮复习-圆锥曲线精品总结复习
双曲线和它的共轭双曲线的离心率分别为 ,则 应满足的关系是
如果 分别是双曲线 的左、右焦点, 是双曲线左支上过点 的弦,
且 ,则 的周长是
( 潍坊一模)双曲线 的左支上的 点到右焦点的距离为 ,则点 的坐标为
设 、 分别为双曲线 的左、右焦点, 为左准线, 为双曲线
左支上一点, 点到 的距离为 ,已知 , , 成等差数列,求 的值


椭圆
定义
平面内到两个定点 的距离之和等于定长( )的点的轨迹
平面内到定点 与到定直线 的距离之比等于常数 ( )的点的轨迹
方程
标准方程
椭圆 : ( );
椭圆 :
( );
参数方程
几何性质
焦点坐标


顶点
, ; , ;
, ;
, ;
范围
≤ , ≤ ;
≤ , ≤ ;
准线
: , :
: , :
焦半径


对称性
到定点 与到定直线 的距离之比等于常数 ( )的点的轨迹
标准方程
( )
( )
简图
几何性质
焦点坐标


顶点


范围
≥ ,
≥ ,
准线
渐近线方程
焦半径

在左支上用“ ”,
在右支上用“ ”

在下支上用“ ”,
在上支上用“ ”
对称性
关于 轴均对称,关于原点中心对称;
离心率
的关系
焦点三角形 的面积:
与 共渐近线的双曲线方程 - ( ).
(2)是否存在直线 ,使N(1, )为 被双曲线所截弦的中点?若存在,求出直线 的方程;若不存在,请说明理由。

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。

最新届高考数学二轮复习系列二轮复习-圆锥曲线

最新届高考数学二轮复习系列二轮复习-圆锥曲线
在椭圆上,且位于x轴上方,PAPF.
(1)求P点的坐标;
(2)设M是椭圆长轴AB上 的一点,M到直线AP的距离 等于 M B ,求椭圆上的点到 A 点M的距离d的最小值.
y
3
P
2
1
oM F
-1
-2
-3
Bx
变式新题型2:
如图,B(-c,0),C(c,0),AHBC,垂
足为H,且
BH3HC

(I)若 A BA C0, 求以B、C为焦点并且经过点A 的椭圆的离心率;
y
(Ⅰ)设x为点P的横坐标,
证明 |
F1P|
a
c a
x

F1
(Ⅱ)求点T的轨迹C的方程.
Q P
T
o
F2
x
变式新题型2:
已知抛物线C: y2=2px(p>0)的焦点为F,直线
l 过定点A(4,0)且与抛物线交于P,Q两点.
(1)若以弦PQ为直径的圆恒过原点O,求p的 值; (2)在(1)的条件下,
若 FPFQFR,求动点R的轨迹方程.
届高考数学二轮复习系列二 轮复习-圆锥曲线
24《圆锥曲线》
变式新题型2:
设x、y R ,i,j为直角坐标平面内x轴、y轴正方
向上的单位向量,若向量a=xi+(y+ 3 )j,b=xi+(y– 3 )j,且|a|+|b|=4.
(1)求点P(x,y)的轨迹C的方程;
(2)若A、B为轨迹C上的两点,满足AM =MB ,
(λ,μR) ,证明λ2+μ2 为定值.
变式新题型3:
抛物线的顶点在原点,焦点在x轴上,准线l与x 轴相交于点A(–1,0),过点A的直线与抛物线 相交于P、Q两点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线1、几何定义:用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线(conic sections)。

通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。

具体而言: 1) 当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。

2) 当平面与圆锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

3) 当平面只与圆锥面一侧相交,且不过圆锥顶点,结果为椭圆。

4) 当平面只与圆锥面一侧相交,且不过圆锥顶点,并与圆锥面的对称轴垂直,结果为圆。

5) 当平面只与圆锥面一侧相交,且过圆锥顶点,结果退化为一个点。

6) 当平面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线的一支(另一支为此圆锥面的对顶圆锥面与平面的交线)。

7) 当平面与圆锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

思考:【做】例1、(14年3月13校联考14题)设B 、C 是定点,且均不在平面α上,动点A 在平面α上,且1sin 2ABC ∠=,则点A 的轨迹为( ) (A )圆或椭圆 (B )抛物线或双曲线 (C )椭圆或双曲线 (D )以上均有可能4、书本上基本的定义 在平面内1)圆:到定点的距离等于定长;2)椭圆:到两定点的距离之和为常数(大于两定点的距离);3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离); 4)抛物线:到定点与定直线距离相等.(定点不在定直线上).1、求曲线方程的一般步骤:建系、设点、列式、化简、确定点的范围.2、求动点轨迹方程的几种方法(1)直接法:(2)定义法:(3)代入法:(4) 参数法:(5)点差法: 典型例题 一:直接法此类问题重在寻找数量关系。

例1: 一条线段AB 的长等于a 2,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点M 的轨迹方程?二:定义法例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

2:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。

注意参数的取值范围。

例1.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

四:代入法例1.点B 是椭圆12222=+by a x 上的动点,)0,2(a A 为定点,求线段AB 的中点M 的轨迹方程.五、点差法例1直线():50l ax y a --+=(a 是参数)与抛物线()21y x =+的相交弦是AB ,求弦AB 的中点轨迹方程.三、方程识别1、 平面直角坐标方程2、参数方程(1)圆 {cos sin x a r y b r θθ=+=+ (2)椭圆{cos sin x a y b θθ== (3)双曲线{sec tan x a y b θθ== (4)抛物线{222x pt y pt==例1、当m,n 满足什么条件时,方程122=+nym x 分别表示圆、椭圆、双曲线?【做】例2、(20XX 年上海徐汇区一模18)【理】对于直角坐标平面xOy 内的点(,)A x y (不是原点),A 的“对偶点”B 是指:满足1OA OB =且在射线OA 上的那个点. 若,,,P Q R S 是在同一直线上的四个不同的点(都不是原点),则它们的“对偶点”'''',,,P Q R S ( ) A .一定共线; B .一定共圆;C .要么共线,要么共圆;D .既不共线,也不共圆.四、圆锥曲线的概念与几何性质注:与22221x y a b -=共渐近线的双曲线方程22a x -22y bλ=(0λ≠);经典例题例1.椭圆5522=+ky x 的一个焦点是(0,2),那么k= 。

变式:1.与椭圆14922=+y x 共焦点,且过点(3,-2)的椭圆标准方程是 。

2.双曲线14922=-x y 的渐近线为 ; 两渐近线夹角为 。

3.过点(-6,3)且和双曲线x 2-2y 2=2有相同的渐近线的双曲线方程为4.若双曲线8822=-ky kx 的一个焦点是(0,3),则k 的值是 。

例2.给出问题:F 1、F 2是双曲线201622y x -=1的焦点,点P 在双曲线上.若点P 到焦点F 1的 距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由 ||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内. .1、位置关系①几何方法 ②代数方法 ③利用x y 、进行范围锁定 2、 最值问题①一定一动(动点在圆锥曲线上):利用两点间的距离公式.(圆可用加减半径求解)②两定一动(其中一定为焦点、动点在圆锥曲线上):利用焦点转化(抛物线利用焦点与准线转换) 经典例题例1. 某海域内有一孤岛. 岛四周的海平面(视为平面)上有一浅水区(含边界),其边界 是长轴长为a 2、短轴长为b 2的椭圆. 已知岛上甲、乙导航灯的海拔高度分别为、1h 2h ,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上. 现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为21θθ、,那么 船只已进入该浅水区的判别条件是例2.已知M 是椭圆14922=+y x 上的动点,N 是圆1)1(22=+-y x 的动点,求|MN|的最小值例3.(1)P 是椭圆22+143x y =上一点,1F 是椭圆右焦点,)1,1(A ,求PA PF +1的范围.(2) P 是双曲线1222=-y x 上一点,1F 是双曲线右焦点,)1,2(A ,求PA PF +1的最小值.(3)P 是椭圆22+143x y =上一点,1F 是椭圆右焦点,)3,3(A ,求1PF PA -的最小值方法一 是方程的观点,即把曲线方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.方程解的个数为交点个数。

方法二是几何的观点(以双曲线为例) 直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.经典例题例1.已知直线y=kx-1与双曲线122=-y x ,试列出实数k 需满足的不等式组,使直线与双曲线交同支于两点 。

例2.过点P(3,4)与双曲线1169:22=-y x c 只有一个交点的直线的条数为 ( ) A .4 B. 3 C.2 D. 1例3.若对任意k ∈R ,直线b x k y +-=)2(与双曲线122=-y x 总有公共点,则b 范围 。

变式:1.过原点与双曲线 13422-=-y x 交于两点的直线斜率的取值范围是 2.若方程x+k-21x -=0只有一个解,则实数k 的取值范围是 _ 。

4.曲线)0(0622>=-+y x y x 与直线)2(+=x k y 有公共点的充要条件是( ) A .⎪⎭⎫⎢⎣⎡-∈0,43k ; B .⎥⎦⎤ ⎝⎛∈34,0k ; C .⎥⎦⎤ ⎝⎛∈43,0k ; D .⎥⎦⎤⎢⎣⎡-∈43,43k .5.已知两点M (—5,0)和N (5,0),若直线上存在点P 使|PM|—|PN|=6,则称该直线为“B 型直线”。

给出下列直线:①1+=x y ;②2=y ;③x y 34=;④.12+=x y 其中为“B 型直线”的是 (填上所有正确的序号)6.已知双曲线方程为2222=-y x 与点P(1,2),(1)求过点P (1,2)的直线l 的斜率k 的取值范围,使直线与双曲线有一个交点,两个交点,没有交点。

1、到定直线的距离最值:方法一:作定直线的平行线与圆锥曲线相切,两平行线之间的距离为最值。

方法二:直接利用参数方程,用点到直线的距离公式来进行解决。

2、弦长问题若直线b kx y +=与二次曲线的交点为A(1,1,y x )和B (2,2,y x ) 方法一:联立直线与二次曲线方程求出两交点⇒两点间距离方法二:利用弦长公式:||1||212x x k AB -+==212212x x 4)x x (k 1+•+||21211y y k -+==212212y y 4)y y (k 11+•+方法三:(半弦长)2=(半径)2-(圆心到直线距离)2(—只适用于圆) 注意:椭圆、双曲线、抛物线的焦点弦 3、面积(1)、普通三角形:(注意)d AB S ⨯⨯=21注意:有时需要将三角形拆成两个三角形. (2)、焦点三角形:椭圆:2tan 2θb S = ,双曲线:122cot2PF F S b θ=⋅△经典例题例1.椭圆191622=+y x 上的点到直线l:09=-+y x 的距离的最小值为___________.变式:1、设点P 在曲线22+=x y 上,点Q 在曲线2-=x y 上,则PQ 的最小值等于 .例2. 经过双曲线1222=-y x 的右焦点2F 作直线l 交双曲线与A 、B 两点,若|AB|=4, 则这样的直线存在的条数为 ( )(A )4; (B )3; (C )2;(D )1变式:1.一直线l 过椭圆12422=+y x 的左焦点,被椭圆截得的弦长为2,则直线l 的方程为 ;A ;B ;CD .常涉及距离和斜率以及截距,另外方程解的问题也会涉及,通常结合圆锥曲线的图像,但要注意变量的范围。

典型例题例1. 如果实数y x ,满足方程3)2(22=+-y x ,那么xy的最大值为 ( ) (A)21 (B)33(C)23 (D) 3变式:1若方程x+k-21x -=0只有一个解,则实数k 的取值范围是 _ _。

2.若关于x 的方程)2(12+=-x k x 有两个不等的实数根,则实数k 的取值范围是_____.1、角:借助向量,转化为坐标运算。

2、垂直问题:(1)斜率乘积为-1 (2)向量数量积为0.3、与向量有关问题:转化为坐标运算典型例题例1.设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF •2PF 的最大值和最小值;(Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.变式:1. 直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B. (1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【做】2.倾角为3π的直线l 过抛物线x y 42=的焦点F 与抛物线交于A 、B 两点,点C 是抛物线 准线上的动点.(1)△ABC 能否为正三角形?(2)若△ABC 是钝角三角形,求点C 纵坐标的取值范围.弦中点问题:1、韦达定理;2、点差法.对称问题:垂直、平分。

相关文档
最新文档