5.2不等式的基本性质
不等式的性质教案
不等式的性质教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,举例说明。
解释不等式中的大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(两边加或减去同一个数,不等号方向不变)。
性质2:如果a > b且c > 0,ac > bc(两边乘以正数,不等号方向不变)。
性质3:如果a > b且c < 0,ac < bc(两边乘以负数,不等号方向改变)。
性质4:如果a > b且c > d,a + c > b + d(两边加或减去不同的数,不等号方向不变)。
第二章:不等式的运算规则2.1 加减法规则介绍不等式加减法的基本规则,举例说明。
强调在运算过程中保持不等号方向不变。
2.2 乘除法规则介绍不等式乘除法的基本规则,举例说明。
强调在运算过程中注意乘除数的正负性对不等号方向的影响。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如a > b,解得x > b/a。
举例说明解简单不等式的步骤。
3.2 一元一次不等式的解法介绍解一元一次不等式的方法,如ax > b,解得x > b/a。
强调解一元一次不等式时要注意系数的正负性对解集的影响。
第四章:不等式的应用4.1 实际问题中的应用举例说明不等式在实际问题中的应用,如速度、距离、温度等问题。
引导学生将实际问题转化为不等式问题,并解决。
4.2 线性不等式组的应用介绍线性不等式组的概念,举例说明。
讲解如何解线性不等式组,并应用到实际问题中。
第五章:不等式的进一步性质5.1 不等式的反转性质介绍不等式的反转性质,如如果a > b,b < a。
举例说明并证明不等式的反转性质。
5.2 不等式的传递性质介绍不等式的传递性质,如如果a > b且b > c,a > c。
5.2不等式的基本性质
5.2不等式的基本性质教学目的:1.使学生理解不等式的概念,初步掌握不等式的三条基本性质;2.培养学生对比以及观察、分析问题的能力,并初步领会对比的思想方法.教学重点:不等式的三条基本性质.教学难点:不等式的基本性质3.教学过程:引言:运用对比的方法,引导学生猜想出不等式的三条基本性质,并通过实例加以验证首先,让学生用“>”或“<”号填空:(1)7+3______4+3; (2)7+(-3)______ 4+(-3);(3)7×3 ______ 4×3; (4)7×(-3)______ 4×(-3).然后,启发学生由上面第(1)、(2)小题猜想出与等式的基本性质类似的不等式的性质.并请学生叙述不等式的基本性质1.此时,教师应抓住学生叙述中的问题予以纠正.即不能笼统地说“仍是不等式”,要改为书中所说的“不等号的方向不变”.对比等式中关于两边都乘以或除以同一个数的性质,让学生思考不等式类似的性质.引导学生观察上述第(3)、(4)小题,并将题中的3换成5,-3换成-5,按题中的要求再做一遍,并猜想出结论.然后让学生试着叙述所得到的不等式的基本性质2,3.(在观察上述练习题时,引导学生注意不等号的方向,并用彩色粉笔标出来,并问原因是什么?当学生在叙述不等式的基本性质感到困难时,教师应作适当的引导,启发.并依次板书这几条基本性质)不等式基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变.此时,教师要特别强调不等式基本性质3,并举例:若a <b ,c <0,则ac >bc(或c a >c b) 然后,让学生用不等式-2<4两边都分别加上5,-6,两边都分别乘以3, -3来验证上述不等式的三条基本性质.问题:(1)在不等式 -2<6两边都乘以m 后,结论将会怎样?(当字母m 的取值不明确时,需对m 分情况讨论)(2)比较等式性质与不等式的基本性质的异同.(问这两个问题的目的在于,强化学生对不等式基本性质的理解,特别是对不等式基本性质3的理解)五、应用举例,变式练习例1 根据不等式基本性质,把下列等式化成x >a 或x <a 的形式:(1)x-2<3; (2)6x <5x-1;解:(1)由不等式的基本性质1可知,不等式的两边都加上2,不等号的方向不变,所以x-2+2<3+2,x <5.(2)、(3)、(4)题略.(解题时,要求学生要联想解一元一次方程的思想方法,并将原题与x >a 或x <a 对照着用哪条基本性质能达到题目要求.同时强调推理的根据,尤其要注意不等式基本性质3和基本性质2的区别,解题书写要规范)例2 设a >b ,用“<”或“>”号填空:(3)-4a ______ -4b ; (4)ma ______mb .(m ≠0)解:(1)因为a >b ,两边都减去3,所以由不等式基本性质1,得a-3>b-3.(2),(3)题略.(4)因为a>b,两边都乘以m.当m>0时,由不等式基本性质2,得ma>mb,当m<0时,由不等式基本性质3,得ma<mb.(解题时,要让学生明白推理要有根据,并要求以后做类似的习题时,都要写出根据,逐步培养学生逻辑思维的能力)练习(投影)1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:(1)x+1>2; (2)4x<3x-5;(5)3x<x+4; (6)x<3x+4.2.设a<b,用“>”或“<”号填空:(1)a+5______ b+5; (2)2a ______ 2b;3. 7页 1.2.3六、小结七、作业1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:(5)4x<2x+6.2.设 a>b,用“>”或“<”号填空:(1)a+3 ______ b+3; (2)5a ______ 5b;(5)ma______ mb(m≠0).3.8页3题,4题4.9页B组,C组做书上。
不等式的基本性质教学设计教案
不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。
不等式的性质知识点及题型归纳总结
不等式的性质知识点及题型归纳总结知识点精讲一、不等式的基本性质不等式的性质是证明和解不等式的主要依据.运用时,对每一条性质要弄清条件和结论,注意条件加强和放宽厚条件和结论之间的变化;不仅要记住不等式运算法则的结论形式,还要掌握法则成立的条件,避免由于忽略某些限制条件而造成解题失误.1. 两个不等式的同向合成,一律为“”(充分不必要条件)(1)(传递性,注意找中间量)(2)(同向可加性)(3)(同正可乘性,注意条件为正)注:如,其逆命题不成立,如但是.2. 一个不等式的等价变形,一律为“”(充要条件),这是不等式解法的理论依据(1).(2)(对称性)(3)(乘正保号性)(4)(5)(不等量加等量)(6)(乘方保号性,注意条件为正)(7)(开方保号性,注意条件为正)(8)(同号可倒性);.最为重要的3条不等式性质为:①;②;③,在不等式问题中都有重要的应用,但应注意他们的适用条件,可以用口诀“同.向同正可乘.......”来记忆......;同号取倒需反向题型归纳及思路提示题型1 不等式的性质思路提示应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.例7.1 对于实数,有以下命题:①若,则;②若,则;③若则;④若,则;⑤若,则. 其中真命题的个数是()A. 2个B. 3个C. 4个D. 5个分析:判断命题的真假,要紧扣不等式的性质,应注意条件与结论之间的联系.解析:①中值的正负或是否为零未知,因而判断不等关系缺乏依据,故该命题是假命题;②中,由可知,则,故该命题是真命题;③中,不等式两边同乘,可得,若同乘,可得,易知成立,故该命题为真命题;④中,由可知,故有,又因,由“同向同正可乘”性可知成立. 故该命题为真命题;⑤中,由已知,因为,故,又,所以,故该命题为真命题. 综上所述,②③④⑤都是真命题,故选C.评注:准确记忆各性质成立的条件,是正确应用的前提. 在不等式的判断中,特殊值法是非常有效的方法,如变式3.变式1设,若,则下列不等式中正确的是()A. B. C. D.变式2设是非零实数,若,则下列不等式中成立的是()A. B. C. D.变式3 若,则下列结论中正确的是()A. 和均不成立B. 和均不成立C. 不等式和均不成立D. 不等式和均不成立变式4若,且,则下列代数式中值最大的是A. B. C. D.题型2 比较数(式)的大小与比较法证明不等式思路提示比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小. 作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若,则;;;若,则;;;例7.2若且,试比较与的大小.解析:解法一:,因为且,所以,所以.解法二:,因为且,所以,又,所以.变式1若,试比较与的大小变式2设且,试比较与的大小例7.3 在锐角中,若函数在上单调递减,则下列命题中正确的是()A. B.C. D.解析:因为在锐角中有,由在上为单调递增函数,所以,且,又函数在上单调递减,所以,故选D.变式1 已知函数是上的偶函数,且在区间上是增函数,令,则()A. B. C. D.变式2已知函数,那么的值()A. 一定大于0B. 一定小于0C. 等于0D. 确定题型3 已知不等式的关系,求目标式的取值范围思路提示在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.例7.4已知,且,则的取值范围是.解析:解法一:令得,,解得.即. 由得,所以. 故的取值范围是.解法二:本题还可以利用“线性规划”的方法求解.如图7-1所示,当直线过点时,取最大值,点的坐标为,所以;当直线过点时,取最小值,当的坐标为,所以,又本题不取边界,因此的取值范围是.评注:不能求出独立的范围内,简单利用不等式性质求解,可结合后面线性规划理解并求解.变式1已知且,,求的范围.变式2设为实数,满足,则的最大值是.最有效训练题1. 如果满足,且,那么下列选项中不一定成立的是()A. B. C. D.2. 设,则下列不等式中成立的是()A. B. C. D.3. 已知,并且,那么一定成立的是()A. B. C. D.4. 若为实数,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则5. 若,则的值是()A. 大于0B. 等于0C. 小于0D. 符号不能确定6. 已知,下列四个条件中,使得成立的必要而不充分条件是()A. B. C. D.7. 已知四个条件:能推出成立的有个.8. 若,则的取值范围是.9. 已知下列三个不等式:①;②;③,以其中两个作为条件,余下一个作为结论,则可能成个正确命题.10. 已知且,求的取值范围.11. 设,且,求的取值范围.12. 若实数满足,试比较的大小.。
不等式的四条基本性质
不等式的四条基本性质
不等式的四条基本性质是数学中一种重要的概念,它是解决方程的基础,是一门数学的基本知识。
归纳一下,不等式的四条基本性质包括:转置法则、结合率、分配法则、乘法法则。
首先,不等式的转置法则表明当两个不等式之间没有任何改动时,它们保持其相等状态。
例如,对于x>y,则y<x恒成立。
其次,不等式的结合率表明将二元不等式(即只包含两个未知量的不等式)通过乘以一个正实数结合到一起,它不会改变不等式的解的乘法,即任何一个二元不等式的乘法都是它的解的结合率。
例如,若x>0,不论乘以多少正实数都会使x
的大小保持不变,最终仍然>0。
再次,不等式的分配法则表明,当将一个正实常数分别与不等式的两边相乘时,它将被均匀地分配到不等式的两边。
例如,我们如果将2x与3x分别乘以k,那么可以得到(2kx + 3kx)>0,原来的不等式不变,同时常数k也是均匀地分配到不等式的两边。
最后,不等式的乘法法则表明,当将一个变量和一个正实常数相乘时,不等式的大小状态将保持不变。
例如,当我们将一个变量x和c乘起来,x>0时,必然有cx>0,而x<0时,有cx<0,因此这条不等式的大小状态不变。
总的来说,不等式的四条基本性质是探究方程解的根基,由它们可以更进一步地求解数学方程,对学习数学解题技巧再次有所帮助。
课题不等式的基本性质教案
课题不等式的基本性质教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
举例说明不等式的形式,如a > b、a ≥b 等。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(其中c 是任意实数)。
性质2:如果a > b 且c > 0,a + c > b + c。
性质3:如果a > b 且c < 0,a + c < b + c。
性质4:如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。
第二章:不等式的运算规则2.1 加减法规则如果a > b 且c > d,a + c > b + d。
如果a > b 且c < d,a + c < b + d。
2.2 乘除法规则如果a > b 且c > 0,ac > bc。
如果a > b 且c < 0,ac < bc。
如果a > b 且c ≠0,a/c > b/c(其中c ≠0)。
第三章:不等式的比较与排序3.1 两个不等式的比较如果a > b 且c > d,a + c > b + d。
如果a > b 且c < d,a + c < b + d。
3.2 多个不等式的排序如果a > b 且c > d,a + c > b + d > c + d。
如果a > b 且c < d,a + c > b + d > c + d。
第四章:不等式的解法与应用4.1 不等式的解法介绍解不等式的方法,如移项、合并同类项、系数化等。
举例说明解不等式的步骤和技巧。
4.2 不等式的应用介绍不等式在实际问题中的应用,如优化问题、经济问题等。
举例说明如何将实际问题转化为不等式问题,并求解。
5.2不等式的基本性质
不等式的性质 2
等式具有那些性质?
不等式是否具有这些类似性质?
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立 如果a=b,那么a±c=b±c 等式基本性质2: 等式的两边都乘以(或除以)同一个不 为0的数,等式仍旧成立 a b (c≠0), 如果a=b,那么ac=bc或 c c
不等式的基本性质2 依据____________
___.
X≥-2
(3)若-0.5 x≤1,两边同乘以-2,得_______
依据_________
不等式的基本性质3
__
例题解析,当堂练习
下列说法错误的是( B ) A.由a(m2+1)<b(m2+1)成立可推a<b成立 B.由a(m2-1)<b(m2-1)成立可推a<b成立 C.由a(m+1)2<b(m+1)2成立可推a<b成立 D.由a(m+b)<b(m+a)成立可推am<bm成立
∣a∣ 2a a ∣a∣ 0
想一想:还有其他的 ∴ a+a < a 比较方法吗?
∵ a<0,
∴2a<a(不等式的基本性质2)
例题解析,当堂练习
1.若x<y,且3x-2 与3y-2 的大小,并说明理由.
作差法
例2:
x>y,请比较(a-3)x 与 解:(1)当a>3时, ∵a-3>0,x>y, ∴ (a-3)x>(a-3)y (2)当a=3时, ∵a-3=0, ∴ (a-3)x=(a-3)y=0 (3)当a<3时, (a-3)y 的大小
,则 ac bc;( ) ab (3)若 a b ,则 ac bc;( )
(4)若
5.2不等式的基本性质
不等式的基本性质
,得 x >2.
性质3(乘法法则) 如果 a>b,c>0,那么 a c>b c. 如果 a>b,c<0,那么 a c<b c. 如果不等式的两边都乘同一个正数,不等号的方向不变. 如果不等式的两边都乘同一个负数,不等号的方向改变. 证明:因为 a c-b c = (a-b)c,
b b a>b 又由 a>b,即 a-b>0, a 所以 当 c>0时,(a-b)c>0,即 a c>b c; 所以 当 c<0时,(a-b)c<0,即 a c<b c. 2 a>2 b < b . 如果 a>b,那么 a ___
5.2 不等式的基本性质
a﹤ b 我今年a岁,爸爸今年b岁,则我们的年龄大小关系为_____ b﹤c 爸爸今年b岁,爷爷今年c岁,则爸爸爷爷的年龄大小关系为____ 你能说出我和爷爷年龄的大小关系吗? a﹤ c
不等式的基本性质1 若a﹤b,b﹤c.则a﹤c . 这个性质也叫做不等式的传递性。
已知a<b,b<c,在数轴上表示如图
判断下列不等式是否成立,并说明理由: 1. 若 a<b,则 a c<b c. (×)
2. 若 a c>b c,则 a>b.
3. 若 a>b,则 a c2>b c2.
(×)
(× )
4. 若 a c2>b c2,则 a>b.
(√)
5. 若 a>b,则 a(c2+1)>b(c2+1).( √ )
看谁答的又快又准: 练习 : 已知m﹥n,用“﹤”或“﹥”填空 (1)m+5___n+5 (2)m-4___n-4
不等式的基本性质2 不等式的基本性质2 不等式的基本性质3
(3)6m___6n
1 1 m____ n ( 4) 3 3
不等式的基本性质3
不等式的基本性质
(a b)( a b ) ( a b )( a b )2 ab ab 2 1 2 1 a 2 b 2 (定号) 0 ( ) ( ) a b b a
三、例题分析:
a b 例4:已知a 0, b 0,比较 ( ) ( ) b a 与 a b 的大小。
变式练习
已知 3≤a+b≤4,1≤4a-2b≤2,求 4a
+2b 的取值范围.
解:方法 1:(方程组思想) 1 1 x= a+ b a=3x+6y 令 ,则 y= 4a- 2b b=2x- 1y 3 6
.
1 1 2 1 8 1 ∴ 4a+2b=4( x+ y)+ 2( x- y)= x+ y, 3 6 3 6 3 3 8 32 3≤ x≤ 4 8≤3x≤ 3 又 ⇒ 1≤ y≤ 2 1≤1y≤2 3 3 3 25 8 1 34 ⇒ ≤ x+ y≤ , 3 3 3 3
1 2 2 a, b, , 2ab, a b 从小到大的顺序是 2
1 2 2 a 2ab a b b ______________________ 2 1 3 特殊值法: 取 a , b 4 4
三、例题分析:
2 2 2 x 4 y 1 x y 例2:(2)已知 ,比较
方法 2:(待定系数法)设 f(3)=λf(1)+μf(2), ∴9a-c=λ(a-c)+μ(4a-c). 5 λ =- 3 9=λ+4μ ∴ ,解得 -1=-λ-μ μ=8. 3 5 8 ∴f(3)=- f(1)+ f(2).下同方法 1,略. 3 3
• 【方法总结】 本题把所求的问题用已 知不等式表示,然后利用同向不等式性 质解决.本题常用待定系数法解决,设 出方程,求出待定系数即可.
5.2不等式基本性质
如果a=b,且c≠o, 如果 , , 那么ac=bc, , 那么 a b = c c
不等式
若a<b, b<c, 则a<c < < < 如果a>b,那么 如果 > 那么 a+c>b+c,a-c>b-c > , > 如果a> 且 > 如果 >b,且c>0, b a 那么ac> 那么 >bc , > . c c 如果a> 且 < 如果 >b,且c<0, b a 那么ac< 那么 <bc, < . c c
c
b-c b a-c
c
a
若a>b,则a+c>b+c, a-c>b-c. b,则a+c> a-
不等式的基本性质2 不等式的基本性质2
不等式的两边都加上( 或减去) 不等式的两边都加上 ( 或减去 ) 同 一个数,所得到的不等式仍成立。 一个数,所得到的不等式仍成立。
如果a> ,那么a+c>b+c,a-c>b-c; 即 如果 >b,那么 > , > ; 如果a< ,那么a+c<b+c,a-c<b-c. 如果 <b,那么 < , <
小明和小华在探究数学问题. 小明和小华在探究数学问题 小明说: 小明说: “ 3y>4y ”. > 小华认为小明说错了,应该是 < , 小华认为小明说错了,应该是3y<4y, 聪明的你觉得呢?为什么? 聪明的你觉得呢 为什么? 为什么
5.2 不等式的基本性质
观察图形回答: 观察图形回答:
a b c
已知a<0,试比较 与a的大小. 例 已知 ,试比较2a与 的大小 利用不等式基本性质2: 利用不等式基本性质2: 作差法: 数形结合: 作差法 数形结合 不等式的基本性质3: 不等式的基本性质3: ∵a< a=a < , ∵2a-0, <0, - ,
不等式及其性质与解法
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
不等式的基本性质教学设计教案
不等式的基本性质教学设计-教案第一章:不等式的概念1.1 不等式的定义介绍不等式的概念,举例说明。
解释不等式中的“大于”、“小于”、“大于等于”、“小于等于”等符号的含义。
1.2 不等式的表示方法介绍不等式的标准形式和斜线形式。
演示如何书写不等式,并强调箭头和斜线的区别。
1.3 不等式的解集解释不等式的解集的概念。
演示如何表示不等式的解集,包括用数轴表示解集的方法。
第二章:不等式的基本性质2.1 不等式的传递性质介绍不等式的传递性质,即如果a < b且b < c,则a < c。
通过示例解释传递性质的应用。
2.2 不等式的同向加减性质介绍不等式的同向加减性质,即如果a < b,则a + c < b + c(c为正数)和a c > b c(c为负数)。
通过示例解释同向加减性质的应用。
2.3 不等式的反向乘除性质介绍不等式的反向乘除性质,即如果a < b,且c为正数,则ac < bc和a/c > b/c (c不为零)。
通过示例解释反向乘除性质的应用。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如直接解不等式、同向加减、反向乘除等。
通过示例演示如何解简单不等式。
3.2 复合不等式的解法介绍解复合不等式的方法,如先解不等式组、利用不等式的传递性质等。
通过示例演示如何解复合不等式。
3.3 不等式的应用介绍不等式的应用,如解决实际问题、求解最值等。
通过示例演示不等式在实际问题中的应用。
第四章:不等式的性质练习4.1 简单不等式的性质练习提供一些简单不等式,让学生练习解题,并解释解题过程。
强调解题中的关键步骤和常见错误。
4.2 复合不等式的性质练习提供一些复合不等式,让学生练习解题,并解释解题过程。
强调解题中的关键步骤和常见错误。
第五章:不等式的综合应用5.1 不等式的综合应用问题提供一些不等式的综合应用问题,让学生解决问题,并解释解题过程。
不等式的性质是什么
不等式的性质是什么?不等式的性质是什么?不等式的性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
一、不等式的基本性质1.如果x>y,那么y<X;如果Yy;(对称性)2.如果x>y,y>z;那么x>z;(传递性)3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变;<>6.如果x>y,m>n,那么x+m>y+n;7.如果x>y>0,m>n>0,那么xm>yn;8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N 次幂(N为负数)。
< p>二、不等式的基本性质的另一种表达方式有1.对称性;2.传递性;3.加法单调性,即同向不等式可加性;4.乘法单调性;5.同向正值不等式可乘性;6.正值不等式可乘方;7.正值不等式可开方;8.倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
三、不等式的特殊性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
不等式的基本性质
复习:用不等式表示 ⑴ a与1的和是正数; a+1>0 2y+1<3 3y+2x≥0 3x+2≤5
⑵ y的2倍与1的和小于3;
⑶ y的3倍与x的2倍的和是非负 数 ⑷ x乘以3的积加上2最多为5.
写一写 : 写出下列数轴所表示的不等式的解集:
○ ●
-3 ⑴
0
0 ⑵
2
X > -3
< (1) 2__3 2×2 ___ < 3 ×2 2×5 ___ < 3 ×5 2÷4 ___ < 3 ÷4 2÷7 ___ < 3÷7 (2) 6___11 < 6×2 ___ < 11×2 < 11×3 6×3 ___ 6÷5 ___ < 11÷5 6÷8 ___ < 11÷8
不等式性质2: 在不等式两边都乘以或除以同一 个正数,不等号的方向不变。
小结
1、本节课的主要内容: 需要注意的问题:
有哪些收获和疑惑?
2、注意数学中常用的三种语言: 文字语言、图形语言、符号语言 三者之间的转换。
布置作业: 课本P102作业题、作业本
继续探究,若不等式的两边乘以或除以同一个 负数又会发生怎样的变化呢?
填一填、想一想
• 在横线上填上适当的符号,并将你所得的 规律总结出来。
(1)、2 ___3 < > × (-2) 2× (-2)___3 2× (-5)___3 > × (-5) (2)、2÷ (-2)___3 ÷ (-2) > 2÷ (-5) ___3 ÷ (-5) >
4x 3 3 x 4
5 x 1 (1) 6 5 x 6
不等式的基本性质-【帮课堂】2022-2023学年七年级数学下册同步精品讲义(苏科版)
不等式的基本性质知识点一、不等式的基本性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .1. 如果a >b ,那么2a -_______2b -(填“=”、“>”或“<”).知识点二、不等式的性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b且c <0,那么ac <bc 或a b c c <.2. 已知x <y ,则23x --_____23y --(填“>”、“<”或“=”)一.选择题(共10小题)3. 若x y >,则下列式子中错误的是( )A. 22x y > B. 22x y ->- C. 22x y ->- D. 33x y +>+4. 若不等式21x -<,两边同时除以2-,结果正确的是( )A. 12x >- B. 12x < C. 2x >- D. 2x <5. 下列各式中正确的是( )A. 若a b >,则22a b -<- B. 若a b >,则22a b >C. 若a b >,且0c ≠,则22ac bc > D. 若a b c c>,则a b >6. 已知a b <,若c 是任意有理数,则下列不等式中总成立的是( )A. a c b c +<+B. a c b c ->-C. ac bc >D. 22ac bc >7. 已知a b <,则下列各式成立的是( )A. 22ac bc <B. 1313a b -<-C. 23a b -<-D. 33a b +<+8. 已知实数a b c ≤≤,则( )A. 2a c b +≤B. 3a b c +≤C. 2a b c+≥ D. b a c≤+的9. 如图所示,A ,B ,C ,D 四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A. D B A C <<<B. B D C A <<<C. B A D C <<<D. B C D A <<<10. 已知非负实数a ,b ,c 满足123234a b c ---==,设S a b c =++,则S 的最大值为( )A. 112 B. 152 C. 274 D.31411. 已知三个实数a ,b ,c 满足0ab >,a b c +<,0a b c ++=,则下列结论一定成立的是( )A. 0a <,0b <,0c > B. 0a >,0b >,0c <C. 0a >,0b <,0c > D. 0a >,0b <,0c <12. 若2a b +=-,且2a b ≥,则( ).A. b a 有最小值12 B. b a 有最大值1C. a b 有最大值2 D. a b 有最小值89-二.填空题(共10小题)13. 若x y >,且(3)(3)a x a y +<+,求a 的取值范围______.14. 若a<0,则a -_____0.(用<,=,>填空)15. 选择适当的不等号填空:若a b <,则2a -______2b -.16. 已知m n >,则 3.51m -+______ 3.51n -+.(填>、=或<)17. 若a b <,则21a -+__________21b -+.(用“>”,“<”,或“=”填空)18. 如果x >y ,且(a-1)x <(a-1)y ,那么a 的取值范围是______.19. 已知x ,y 满足132x y +=,若13x -≤<,则y 的范围是__________.20. 用不等号填空,并说明根据的是不等式的哪一条基本性质:(1)若x +2>5,则x ________3,根据不等式的基本性质________;(2)若-34x <-1,则x ________43,根据不等式的基本性质________.21. 已知 2ab =.①若31b -≤≤-,则a 的取值范围是________;②若0b >,且225a b +=,则a b +=____.22. 某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.三.解答题(共8小题)23. 已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩.(1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求a 的取值范围.24. 根据不等式的性质:若0x y ->,则x y >;若0x y -<,则x y <.利用上述方法证明:若0n <,则121n n n n -->-.25. 已知:x ,y 满足3x-4y=5.(1)用含x 的代数式表示y ,结果为______;(2)若y 满足-1<y≤2,求x 的取值范围;(3)若x ,y 满足x+2y=a ,且x >2y ,求a 的取值范围.26. 已知实数x 、y 满足231x y +=.(1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围;(3)若实数x 、y 满足1x >-,13y ≥-且23x y k -=,求k 的取值范围.27. 知识阅读:我们知道,当a >2时,代数式a -2>0;当a <2时,代数式a -2<0;当a =2时,代数式a -2=0.(1)基本应用:当a >2时,用“>,<,=”填空:a +5________0;(a +7)(a -2)________0;(2)理解应用:当a >1时,求代数式2a +2a -15的值的大小;(3)灵活应用:当a >2时,比较代数式a +2与2a +5a -19的大小关系.28. 用等号或不等号填空:(1)比较4m 与24m +的大小当3m =时,4m24m +当2m =时,4m24m +当3m =-时,4m 24m +(2)无论取什么值,4m 与24m +总有这样的大小关系吗?试说明理由.(3)比较22x +与2246x x ++的大小关系,并说明理由.(4)比较23x +与37--x 的大小关系.29. 阅读下列材料:问题:已知2x y -=,且1x >,0y <,试确定x y +的取值范围解:2x y -= ,2x y ∴=+,又1x > ,21y ∴+>,1y ∴>-,又0y < ,10y ∴-<<①,12202y ∴-+<+<+,即12x <<②,①+②得:1102x y -+<+<+,x y ∴+的取值范围是02x y <+<.请按照上述方法,完成下列问题:(1)已知5x y -=,且2x >-,0y <,①试确定y 的取值范围;②试确定x y +的取值范围;(2)已知1x y a -=+,且x b <-,2y b >,若根据上述做法得到35x y -的取值范围是103526x y -<-<,请直接写出a 、b 的值.30. 题目:已知关于x 、y 的方程组2324x y a x y a +=-+⎧⎨+=⎩①②,求:(1)若3x +3y =18,求a 值;(2)若-5x -y =16,求a 值.问题解决:(1)王磊解决的思路:观察方程组中x 、y 的系数发现,将①+②可得3x +3y =3a +3,又因为3x +3y =18,则a 值为________;(2)王磊解决的思路:观察方程组中x 、y 的系数发现,若将方程组中的①与②直接进行加减,已经不能解决问题,经过思考,王磊将①×m ,②×n ,得2324mx my ma m nx ny na +=-+⎧⎨+=⎩③④,再将③+④得:(m +2n )x +(2m +n )y =(-m +4n )a +3m ,又因为-5x -y =16,……,请根据王磊的思路,求出m 、n 及a 的值;问题拓展:(3)已知关于x 、y 的不等式组2324x y a x y a +-+⎧⎨+⎩><,若x +5y =2,求a 的取值范围.不等式的基本性质知识点一、不等式的基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;即如果a >b ,那么a +c >b +c 或a -c >b -c ;如果a <b ,那么a +c <b +c 或a -c <b -c .【1题答案】【答案】<【解析】【分析】根据不等式的性质进行变形即可.【详解】解:∵a >b ,∴-a <-b ,∴2-a <2-b ,故答案为:<.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.知识点二、不等式的性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b 且c >0,那么ac >bc 或a b c c >,如果a >b 且c <0,那么ac <bc 或a b c c<.【2题答案】【答案】>【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵x <y ,∴22x y ->-,∴2323x y -->--.故答案为:>.【点睛】本题主要考查了不等式的基本性质,注意不等式两边同时乘以或除以一个负数,不等号方向发生改变.一.选择题(共10小题)的【3题答案】【答案】B【解析】【分析】根据不等式的性质可进行求解.【详解】解:由x y >可知:A 、22x y >,正确,故不符合题意;B 、22x y -<-,原不等式错误,故符合题意;C 、22x y ->-,正确,故不符合题意;D 、33x y +>+,正确,故不符合题意;故选B .【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【4题答案】【答案】A【解析】【分析】根据不等式的性质即可求出答案.【详解】不等式21x -<,两边同时除以2-,可得12x >-,故选:A .【点睛】本题考查不等式的性质,解题的关键是正确理解不等式的性质,本题属于基础题型.【5题答案】【答案】D【解析】【分析】根据不等式的性质逐项分析判断即可求解.【详解】解:A. 若a b >,则22a b ->-,故该选项不正确,不符合题意;B. 若0a b >>,则22a b >,故该选项不正确,不符合题意;C. 若a b >,且0c >,则22ac bc >,故该选项不正确,不符合题意;D. 若a b c c>,则a b >,故该选项正确,符合题意;【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【6题答案】【答案】A【解析】【分析】根据不等式的性质逐一判断即可:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、由a b <根据不等式的性质1,可得a c b c +<+,故此选项正确,符合题意;B 、由a b <根据不等式的性质1,可得a c b c -<-,不能得到a c b c ->-,故此选项错误,不符合题意;C 、根据不等式的性质,如果0c <则可得ac bc >,如果0c >,则ac bc <,故此选项错误,不符合题意;D 、当0c 时,22ac bc =,故此选项错误,不符合题意.故选:A .【点睛】本题主要考查了不等式的性质,熟知不等式的性质是解题的关键.【7题答案】【答案】D【解析】【分析】根据不等式的性质逐一判断即可解题.【详解】解:A.a b <,当0c ≠时,22ac bc <,故A 不成立;B.a b <,1313a b ->-,故B 不成立;C.a b <,22a b -<-,故C 不成立;D.33a b a b ++<,<,故D 成立;【点睛】本题考查了不等式的性质,注意不等式的两边都乘或除以一个负数,不等号的方向改变.【8题答案】【答案】B【解析】【分析】根据实数a b c ≤≤,逐项给出a b c 、、的值举例,看能否举出反例,即可得到答案.【详解】解:当12a =-,0b =,1c =时,2a c b +>,故A 选项错误;当12a =-,0b =,1c =时,2a b c +<,故C 选项错误;当2a =-,0b =,1c =时,a c b +<,故D 选项错误;故选:B .【点睛】本题考查不等式的性质,可以通过举反例来得到结论.【9题答案】【答案】C【解析】【分析】根据不等式的性质,进行计算即可解答.【详解】解:由题意得:D A >①,A C B D +>+②,B C A D +=+③,由③得:C A D B =+-④,把④代入②得:A A D B B D ++->+,22A B >,A B ∴>,0A B ∴->,由③得:A B C D -=-,0D A -> ,0C D ∴->,C D ∴>,C D A B ∴>>>,即B A D C <<<.故本题选:C .【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.【10题答案】【答案】C【解析】【分析】设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,可得6S k =+;利用a ,b ,c 为非负实数可得k 的取值范围,从而求得最大值.【详解】解:设123234a b c k ---===,则21a k =+,32b k =+,34c k =-,()()()2132346S a b c k k k k ∴=++=++++-=+.a ,b ,c 为非负实数,210320340k k k +≥⎧⎪∴+≥⎨⎪-≥⎩,解得:1324k -≤≤.∴当12k =-时,S 取最小值,当34k =时,S 取最大值.116522S ∴=-+=最小值,327644S =+=最大值.故选:C .【点睛】本题主要考查了不等式的性质,非负数的应用,设123234a b c k ---=== 是解题的关键.【11题答案】【答案】A【解析】【分析】根据0ab >,可得a 和b 同号,再根据a b c +<和0a b c ++=,即可判断a ,b ,c 的符号.【详解】解:∵0ab >,∴a 和b 同号,又∵a b c +<和0a b c ++=,∴0a <,0b <,0c >.故选:A .【点睛】本题主要考查了有理数的运算法则,解题的关键是掌握两数相乘,同号得正,异号得负;同号两数相加,取它们相同的符号;异号两数相加,取绝对值较大数的符号.【12题答案】【答案】C【解析】【详解】由已知条件,根据不等式的性质求得b≤23-<0和a≥43-;然后根据不等式的基本性质求得a b ≤2 和当a >0时,b a <0;当43-≤a <0时,b a ≥12;所以A 、当a >0时,b a <0,即b a 的最小值不是12,故本选项错误;B 、当43-≤a <0时,b a ≥12,b a 有最小值是12,无最大值;故本选项错误;C 、a b有最大值2;故本选项正确;D 、a b 无最小值;故本选项错误.故选C .考点:不等式的性质.二.填空题(共10小题)【13题答案】【答案】3a <-【解析】【分析】根据题意,在不等式x y >的两边同时乘以(3)a +后不等号改变方向,根据不等式的性质3,得出30a +<,解此不等式即可求解.【详解】解:∵x y >,且(3)(3)a x a y +<+,∴30a +<,则3a <-.故答案为:3a <-.【点睛】本题考查了不等式的性质,解题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【答案】>【解析】【分析】根据不等式的性质可进行求解.【详解】∵a<0,∴0a ->,故答案为:>.【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.【15题答案】【答案】>【解析】【分析】根据不等式的性质,即可解答.【详解】解:∵a b <,∴22a b ->-,故答案为:>.【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.【16题答案】【答案】<【解析】【分析】先根据不等式的性质3得 3.5m -< 3.5n -,再根据不等式的性质1即可得到结论.【详解】解:m n >,根据不等式的性质3,得 3.5m -< 3.5n -,根据不等式的性质1,得 3.51m -+< 3.51n -+,故答案为:<.【点睛】本题考查不等式的基本性质,解题关键是熟练掌握不等式的三个基本性质,特别是性质3,不等式的两边同乘以或同除以同一个负数不等号的方向改变.【17题答案】【解析】【分析】根据不等式的性质即可求解.【详解】解:∵a b <,∴22a b->-2121a b ∴-+>-+故答案为:>【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【18题答案】【答案】a <1【解析】【分析】根据不等式的性质3,可得答案.【详解】解:由题意,得a-1<0,解得a <1,故答案为a <1.【点睛】本题考查不等式的性质,利用不等式的性质是解题关键.【19题答案】【答案】-1.5<y ≤3.5【解析】【分析】先变形为x =6-2y ,根据13x -≤<列得-1≤6-2y <3,求解即可.【详解】解:∵132x y +=,∴x =6-2y ,∵13x -≤<,∴-1≤6-2y <3,解得-1.5<y ≤3.5,故答案为:-1.5<y ≤3.5.【点睛】此题考查了解一元一次不等式组,正确理解题意将方程变形得到不等式组是解题的关键.【20题答案】【答案】①. (1)> ②. 1 ③. (2)> ④. 2【解析】【分析】根据不等式的性质,即可解答.【详解】(1)若x+2>5,则x >3,根据不等式的性质1;(2)若−34x <-1,则x >43,根据不等式的性质3;故答案为(1)>,1;(2)>,3.【点睛】本题考查了不等式的性质,解决本题的关键是熟记不等式的性质.【21题答案】【答案】①. 223a -≤≤- ②. 3【解析】【分析】①由2ab =,可得2b a =,代入31b -≤≤-,即可求解,②由0b >,2ab =,可得0a >,即0a b +>,再利用完全平方公式即可作答.【详解】∵2ab =,即2b a=,①若31b -≤≤-,即231a-≤≤-,即有a<0,解得:223a -≤≤-;②若0b >,2ab =,∴0a >,即0a b +>,∵225a b +=,∴()22225229a b a b ab +=++=+⨯=,∴3a b +=.故答案为:①223a -≤≤-;②3.【点睛】本题考查了求解不等式的解,运用完全平方公式进行计算等知识,根据已知条件确定a 的符号是解答本题的关键.【22题答案】【答案】12x ≤【解析】【分析】通过找到临界值解决问题.【详解】由题意知,令3x-1=x ,x=12,此时无输出值当x >12时,数值越来越大,会有输出值;当x <12时,数值越来越小,不可能大于10,永远不会有输出值故x≤12,故答案为x≤12.【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.三.解答题(共8小题)【23题答案】【答案】(1)2a ≥(2)30a -<<【解析】【分析】(1)用加减消元法解二元一次方程组,再由题意可得21020a a +≥⎧⎨-≥⎩,求出a 的范围即可;(2)由题意可得212a a +>-,50a <,求出a 的范围即可.【小问1详解】解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得21x a =+,将21x a =+代入①得,2y a =-,x ,y 为非负数,∴21020a a +≥⎧⎨-≥⎩,解得2a ≥;【小问2详解】解:x y > ,212a a ∴+>-,3a ∴>-,20x y +< ,50a ∴<,<0a ∴,30a ∴-<<.【点睛】本题考查二元一次方程组的解,一元一次不等式组的解,熟练掌握加减消元法和代入消元法解二元一次方程组、并准确求解一元一次不等式组的解集是解题的关键.【24题答案】【答案】见解析【解析】【分析】先求出1211(1)n n n n n n ---=--,根据0n <,得出10n -<,从而得出()10n n ->,即10(1)n n ->,从而证明结论.【详解】证明:121n n n n ----2(1)(2)(1)n n n n n ---=-1(1)n n =-∵0n<,∴10n-<,∴()10 n n->,∴121n nn n-->-.【点睛】本题主要考查了分式加减运算的应用,不等式的性质,解题的关键是熟练掌握分式加减运算法则.【25题答案】【答案】(1)354x-;(2)13<x≤133;(3)a<10.【解析】【分析】(1)解关于y的方程即可;(2)利用y满足-1<y≤2得到关于x的不等式,然后解不等式即可;(3)先解方程组,由x>2y得不等式,解不等式即可.【详解】(1)y=354x-;故答案为:y=354x-;(2)根据题意得:-1<354x-≤2,解得:13<x≤133;(3)解方程组345,2, x yx y a-=⎧⎨+=⎩得:2553510axay+⎧=⎪⎪⎨-⎪=⎪⎩,,∵x>2y,∴255a+>2×3510a-,解得:a<10.【点睛】本题考查了解不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【26题答案】【答案】(1)123x y -=;(2)1x <-;(3)53k -<≤【解析】【分析】(1)移项得出3y =1−2x ,方程两边都除以3即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)解方程组求出x 、y ,得出不等式组,求出不等式组的解集即可.【详解】解:(1)2x +3y =1,3y =1−2x ,123x y -=;(2)123x y -=>1,解得:x <−1,即若实数y 满足y >1,x 的取值范围是x <−1;(3)联立2x +3y =1和2x −3y =k 得:23123x y x y k +=⎧⎨-=⎩,解方程组得:1416k x k y +⎧=⎪⎪⎨-⎪=⎪⎩,由题意得:1141163k x k y +⎧=>-⎪⎪⎨-⎪=≥-⎪⎩,解得:−5<k ≤3.【点睛】本题考查了解二元一次方程和解二元一次方程组、解一元一次不等式组等知识点,能正确解方程组或不等式组是解此题的关键.【27题答案】【答案】(1)>,> (2)a 2+2a -15>-12(3)当a ≥3时,a 2+5a -19≥a +2;当2<a <3时,a 2+5a -19<a +2【解析】【分析】(1)当a >2时,a +5>2+5=7>0;a +7>2+7=9>0;a -2>2-2>0;根据同号得正判断即可.(2)运用完全平方公式,变形后,运用(1)的性质计算即可.(3)先对代数式作差后,分差值大于等于零和小于零,讨论计算即可.【小问1详解】∵a >2,∴a +5>0;∵a >2,∴a -2>0,a +7>0,(a +7)(a -2)>0,故答案为:>,>.【小问2详解】因为2a +2a -15=2(1)a +-16,当a =1时,2a +2a -15=-12,所以当a >1时,2a +2a -15>-12.【小问3详解】先对代数式作差,(2a +5a -19)-(a +2)=2a +4a -21=2(2)a +-25,当2(2)a +-25>0时,a <-7或a >3.因此,当a ≥3时,2a +5a -19≥a +2;当2<a <3时,2a +5a -19<a +2.【点睛】本题考查了不等式的性质及其应用,熟练掌握性质,灵活运用完全平方公式作差计算是解题的关键.【28题答案】【答案】(1)<=<,, (2)无论取什么值,总有244m m ≤+;理由见解析(3)222246x x x +≤++,理由见解析(4)当2x >-时,2337x x +>--;当2x =-时,2337x x +=--;当<2x -时,2337x x +<--.【解析】【分析】(1)当3m =时,当2m =时,当3m =-时,分别代入计算,再进行比较即可;(2)根据()()224420m m m +-=-≥,即可得出答案;(3)根据 ()()()222246220x x x x ++-+=+≥ ,即可得出答案;(4)先求出()()2337510x x x +---=+,再分当2x >-时,当2x =-时,当<2x -时分别进行讨论即可.【小问1详解】当3m =时,2412413m m =+=,,则244m m <+,当2m =时,24848m m =+=,,则244m m =+,当3m =-时,2412413m m =-+=,,则244m m <+,故答案为;<=<,,;【小问2详解】∵()()224420m m m +-=-≥,∴无论取什么值,总有244m m ≤+;【小问3详解】∵()()()222224624420x x x x x x ++-+=+=+≥+∴222246x x x +≤++;【小问4详解】∵()()2337510x x x +---=+,∴当2x >-时,51002337x x x +>+>--,,当2x =-时,51002337x x x +=+=--,,当<2x -时,51002337x x x +<+<--,.【点睛】本题考查了不等式的性质、完全平方公式、非负数的性质,整式的加减,实数大小的比较等知识点,关键是根据两个式子的差比较出数的大小.【29题答案】【答案】(1)①70y -<<;②95x y -<+<(2)122a b ⎧=⎪⎨⎪=-⎩【解析】【分析】(1)①结合题干给出的思路,根据5x y -=,可得5x y =+,结合2x >-,可得7y >-,即有70y -<<;②由①得:70y -<<,同理可得25x -<<②,问题随之得解;(2)结合题干给出的思路,可得555510a b y b ++<-<-①、63333b a x b ++<<-②,即有11883513b a x y b ++<-<-,结合103526x y -<-<,可得1188101326b a b ++=-⎧⎨-=⎩,解方程即可求解.【小问1详解】①5x y -= ,5x y ∴=+,2x >- ,52y ∴+>-,7y ∴>-,0y < ,70y ∴-<<,②由①得:70y -<<,255y ∴-<+<,即25x -<<②,7205y x ∴--<+<+,x y ∴+的取值范围是95x y -<+<;【小问2详解】1x y a -=+ ,1x y a ∴=++,x b <- ,1y a b ∴++<-,1y a b ∴<---,1y a b ∴->++,2y b > ,2y b ∴-<-,12a b y b ∴++<-<-,即()21b y a b <<-++,即555510a b y b ++<-<-①,105555b y a b ∴<<---,()21b y a b <<-++ 211b a y a b ∴++<++<-,21b a x b ∴++<<-,63333b a x b ∴++<<-②,∴①+②得:11883513b a x y b ++<-<-,35x y - 的取值范围是103526x y -<-<,1188101326b a b ++=-⎧∴⎨-=⎩,解得:122a b ⎧=⎪⎨⎪=-⎩.【点睛】本题考查了一元一次不等式组的运用、一元一次不等式的解法,解题的关键是熟练掌握一元一次不等式的解法,并能进行推理论证.【30题答案】【答案】(1)5;(2)m=1,n=-3,a=-1;(3)a的取值范围为1a>.【解析】【分析】(1)将方程组中的两个方程直接相加,整体代换求值;(2)通过对比得到关于m,n,a的方程组求值;(3)利用不等式的性质得到关于a的不等式,求出a的范围.【小问1详解】解:2324x y ax y a+=-+⎧⎨+=⎩①②,①+②得:3x+3y=3a+3,∵3x+3y=18,∴3a+3=18,∴a=5.故答案为:5;【小问2详解】解:∵(m+2n)x+(2m+n)y=(-m+4n)a+3m,又因为-5x-y=16,∴2521 (4)316m nm nm n a m+=-⎧⎪+=-⎨⎪-++=⎩,∴m=1,n=-3,a=-1;【小问3详解】解:已知关于x,y的不等式组2324x y ax y a+>-+⎧⎨+<⎩①②,①×3得:3x+6y>-3a+9④,②×(-1)得:-2x-y>-4a⑤,④+⑤得:x+5y>-7a+9,∵x+5y=2,∴2>-7a+9.∴a>1.【点睛】本题考查二元一次方程组,不等式,根据题意建立适当的方程和不等式是求解本题的关键.。
简述不等式的4个基本性质
简述不等式的4个基本性质
不等式的基本性质:1、在一个区间上可导,在另一个区间上也可导;2、对于任何实数,都存在至少一个解析式;3、当不等式两边同时乘以或除以一个常数时,所得结果仍然是不等式。
4、如果有增根,那么它们互为相反数。
不等式的解题思路:首先要弄清楚该不等式左右两边到底是什么关系,因此必须从函数的角度考虑问题,即把不等式转化成一般形式,然后再利用各种方法进行求解。
由于不等号两边的关系较复杂,建议大家通过举例来理解和掌握。
在做题过程中,应注意分类讨论的作用,多联想一些与之有关的知识点,能起到事半功倍的效果。
不等式的基本性质知识点总结
4.2 实例分析 以一道具体的不等式问题为例,详细分析其 解题过程和思路,展示如何运用不等式的性 质进行解题。通过实例分析,加深对不等式 基本性质的理解和掌握
不等式的常见题型与解题技巧
如何激发对不等式学习的兴趣
A
学习不等式 需要耐心和
毅力
B
当我们遇到困 难时,不要轻 易放弃,而是 要坚持下去, 相信自己能够
解决问题
C
通过不断练习 和反思,我们 可以逐渐提高 自己的解决问
题的能力
总结与展望未来
12.1 总结
01
本文总结了不等式的基本性质、解法与变形、常见题型 与解题技巧等方面的知识点,并探讨了如何进一步提高 不等式问题的解决能力以及学习不等式的重要性和意义。 同时,也提出了一些激发对不等式学习兴趣的方法
不等式在实际生 活中的应用
7.1 经济学中的应用:在经济学中,不等式常被用来描述和解决资 源分配、市场供需、成本与收益等问题。例如,通过比较不同投资 方案的收益与成本,利用不等式来选择最优的投资方案
7.2 物理学中的应用:在物理学中,不等式被广泛应用于力学、 热学、电磁学等领域。例如,牛顿第二定律中的力与加速度的 关系就可以用不等式来描述
10.4 提高综合素质
学习不等式不仅可以提高我 们的数学能力,还可以培养 我们的耐心、毅力和创新精 神
通过解决复杂的问题,我们 可以锻炼自己的意志品质, 提高自己的综合素质
如何激发对不等式学习的兴趣
了解不等式在实际生活中的应用,可以激发我们对不等式学 习的兴趣。当我们知道所学知识能够解决实际问题时,自然 会产生学习的动力 参加数学竞赛和活动,可以让我们更好地了解数学的魅力, 提高解决数学问题的能力。在竞赛和活动中,我们可以结交 志同道合的朋友,共同探讨数学问题,分享解决问题的乐趣 寻找合适的学习资源,如教材、网络课程、学习 app 等, 可以帮助我们更好地学习不等式。同时,也可以通过参加学 习小组或找老师请教等方式,获取更多的学习帮助和支持
八年级上52不等式的基本性质的教学反思
八年级上《5.2不等式的基本性质》的教学反思横溪镇中学徐丽波在七年级的时候学过一元一次方程的解法,而列方程也是处理很多实际问题的一种很好的途径。
而生活中的例子告诉我们列方程并不是唯一方法,生活中的数学还存在很多不等量关系,所以会列不等式与解不等式就变得更加重要,而不等式的基本性质将是整章的关键。
本解课的整体过程是:首先是不等式的基本性质1的推出:让学生在数轴上从左到右,任意画三个数,如“-5”,“-2”,“3.5”,不同学声画的数不同,然后让学生体会,-5与-2的大小关系,-2与3.5的大小关系,然后总结出-5与3.5的大小关系。
由于每一个同学画的数字不一样,所以我们可以总结出不等式的基本性质1(不等式的传递性)。
其次在学生完成后,继续利用数轴,在数轴上任意画两个数a<b,让学生同时向右移动相同的单位,如移动c长(其中c>0),然后让学生思考移动后的数的大小,结果仍然满足a+c<b+c,同样的方法推出a-c<b-c。
然后让学生总结不等式的基本性质2。
由于以前学过等式的基本性质2推出移项法则。
所以在此选择两道实际的例子推理出移项仍然满足于不等式!接着再次总结一下移项容易犯的几种错误:①移项没有变号;②没移动的项也改变了符号;③移项改变了不等式的方向(不等式专有)。
接着利用多媒体展示两组数据:①2〈5,-3〈1,0〈4.5三个式子两边同乘以2,结果如何?②2〈5,-3〈1,0〈4.5三个式子两边同乘以-1又如何?如果换成除以呢?然后总结出不等式的基本性质3(其中的总结过程都由学生完成),由于两边乘(除)负数很多学生容易忘记了变方向,所以设计了一部分的对应练习。
然后讲解例1,由于解方程已经奠定了基础,所以不等式的基本性质的推出,大部分学生掌握,所以例1这样的基础题目容易解决,为了培养学生的发散思维能力,这道例题设计了几种解决方法,其中包含数轴解决,同时也让学生体会了数形结合的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2不等式的基本性质
教学目的:
1.使学生理解不等式的概念,初步掌握不等式的三条基本性质;
2.培养学生对比以及观察、分析问题的能力,并初步领会对比的思想方法.
教学重点:
不等式的三条基本性质.
教学难点:
不等式的基本性质3.
教学过程:
引言:运用对比的方法,引导学生猜想出不等式的三条基本性质,并通过实例加以验证
首先,让学生用“>”或“<”号填空:
(1)7+3______4+3; (2)7+(-3)______ 4+(-3);
(3)7×3 ______ 4×3; (4)7×(-3)______ 4×(-3).
然后,启发学生由上面第(1)、(2)小题猜想出与等式的基本性质类似的不等式的性质.并请学生叙述不等式的基本性质1.此时,教师应抓住学生叙述中的问题予以纠正.即不能笼统地说“仍是不等式”,要改为书中所说的“不等号的方向不变”.对比等式中关于两边都乘以或除以同一个数的性质,让学生思考不等式类似的性质.引导学生观察上述第(3)、(4)小题,并将题中的3换成5,-3换成-5,按题中的要求再做一遍,并猜想出结论.然后让学生试着叙述所得到的不等式的基本性质2,3.(在观察上述练习题时,引导学生注意不等号的方向,并用彩色粉笔标出来,并问原因是什么?当学生在叙述不等式的基本性质感到困难时,教师应作适当的引导,启发.并依次板书这几条基本性质)
不等式基本性质:
1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变.
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变.
此时,教师要特别强调不等式基本性质3,并举例:若a <b ,c <0,则ac >bc(或c a >c b
) 然后,让学生用不等式-2<4两边都分别加上5,-6,两边都分别乘以3, -3来验证上述不等式的三条基本性质.
问题:(1)在不等式 -2<6两边都乘以m 后,结论将会怎样?(当字母m 的取值不明确时,需对m 分情况讨论)
(2)比较等式性质与不等式的基本性质的异同.
(问这两个问题的目的在于,强化学生对不等式基本性质的理解,特别是对不等式基本性质3的理解)
五、应用举例,变式练习
例1 根据不等式基本性质,把下列等式化成x >a 或x <a 的形式:
(1)x-2<3; (2)6x <5x-1;
解:(1)由不等式的基本性质1可知,不等式的两边都加上2,不等号的方向不变,所以
x-2+2<3+2,
x <5.
(2)、(3)、(4)题略.
(解题时,要求学生要联想解一元一次方程的思想方法,并将原题与x >a 或x <a 对照着用哪条基本性质能达到题目要求.同时强调推理的根据,尤其要注意不等式基本性质3和基本性质2的区别,解题书写要规范)
例2 设a >b ,用“<”或“>”号填空:
(3)-4a ______ -4b ; (4)ma ______mb .(m ≠0)
解:(1)因为a >b ,两边都减去3,所以由不等式基本性质1,得
a-3>b-3.
(2),(3)题略.
(4)因为a>b,两边都乘以m.
当m>0时,由不等式基本性质2,得
ma>mb,
当m<0时,由不等式基本性质3,得
ma<mb.
(解题时,要让学生明白推理要有根据,并要求以后做类似的习题时,都要写出根据,逐步培养学生逻辑思维的能力)
练习(投影)
1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:
(1)x+1>2; (2)4x<3x-5;
(5)3x<x+4; (6)x<3x+4.
2.设a<b,用“>”或“<”号填空:
(1)a+5______ b+5; (2)2a ______ 2b;
3. 7页 1.2.3
六、小结
七、作业
1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:
(5)4x<2x+6.
2.设 a>b,用“>”或“<”号填空:
(1)a+3 ______ b+3; (2)5a ______ 5b;
(5)ma______ mb(m≠0).
3.8页3题,4题
4.9页B组,C组做书上。