土木工程专业英语正文课文翻译1

合集下载

土木工程专业英语(带翻译)

土木工程专业英语(带翻译)

State-of-the-art report of bridge health monitoring AbstractThe damage diagnosis and healthmonitoring of bridge structures are active areas of research in recent years. Comparing with the aerospace engineering and mechanical engineering, civil engineering has the specialities of its own in practice. For example, because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at low amplitudes, the dynamic responses of bridge structure are substantially affected by the nonstructural components, unforeseen environmental conditions, and changes in these components can easily to be confused with structural damage.All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. This paper firstly presents the definition of structural healthmonitoring system and its components. Then, the focus of the discussion is placed on the following sections:①the laboratory and field testing research on the damage assessment;②analytical developments of damage detectionmethods, including (a) signature analysis and pattern recognition approaches, (b) model updating and system identification approaches, (c) neural networks approaches; and③sensors and their optimum placements. The predominance and shortcomings of each method are compared and analyzed. Recent examples of implementation of structural health monitoring and damage identification are summarized in this paper. The key problem of bridge healthmonitoring is damage automatic detection and diagnosis, and it is the most difficult problem. Lastly, research and development needs are addressed.1 IntroductionDue to a wide variety of unforeseen conditions and circumstance, it will never be possible or practical to design and build a structure that has a zero percent probability of failure. Structural aging, environmental conditions, and reuse are examples of circumstances that could affect the reliability and the life of a structure. There are needs of periodic inspections to detect deterioration resulting from normal operation and environmental attack or inspections following extreme events, such as strong-motion earthquakes or hurricanes. To quantify these system performance measures requires some means to monitor and evaluate the integrity of civil structureswhile in service. Since the Aloha Boeing 737 accident that occurred on April28, 1988, such interest has fostered research in the areas of structural health monitoring and non-destructive damage detection in recent years.According to Housner, et al. (1997), structural healthmonitoring is defined as“the use ofin-situ,non-destructive sensing and analysis of structural characteristics, including the structural response, for detecting changes that may indicate damage or degradation”[1]. This definition also identifies the weakness. While researchers have attempted the integration of NDEwith healthmonitoring, the focus has been on data collection, not evaluation. What is needed is an efficient method to collect data from a structure in-service and process the data to evaluate key performance measures, such as serviceability, reliability, and durability. So, the definition byHousner, et al.(1997)should be modified and the structural health monitoring may be defined as“the use ofin-situ,nondestructive sensing and analysis of structural characteristics, including the structural response, for the purpose of identifying if damage has occurred, determining the location of damage, estimatingthe severityof damage and evaluatingthe consequences of damage on the structures”(Fig.1). In general, a structural health monitoring system has the potential to provide both damage detection and condition assessment of a structure.Assessing the structural conditionwithout removingthe individual structural components is known as nondestructive evaluation (NDE) or nondestructive inspection. NDE techniques include those involving acoustics, dye penetrating,eddy current, emission spectroscopy, fiber-optic sensors, fiber-scope, hardness testing, isotope, leak testing, optics, magnetic particles, magnetic perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, ra-diography, and visual inspection, etc. Mostof these techniques have been used successfullyto detect location of certain elements, cracks orweld defects, corrosion/erosion, and so on. The FederalHighwayAdministration(FHWA, USA)was sponsoring a large program of research and development in new technologies for the nondestructive evaluation of highway bridges. One of the two main objectives of the program is to develop newtools and techniques to solve specific problems. The other is to develop technologies for the quantitative assessment of the condition of bridges in support of bridge management and to investigate howbest to incorporate quantitative condition information into bridge management systems. They hoped to develop technologies to quickly, efficiently, and quantitatively measure global bridge parameters, such as flexibility and load-carrying capacity. Obviously, a combination of several NDEtechniques may be used to help assess the condition of the system. They are very important to obtain the data-base for the bridge evaluation.But it is beyond the scope of this review report to get into details of local NDE.Health monitoring techniques may be classified as global and local. Global attempts to simultaneously assess the condition of the whole structure whereas local methods focus NDE tools on specific structural components. Clearly, two approaches are complementaryto eachother. All such available informationmaybe combined and analyzed by experts to assess the damage or safety state of the structure.Structural health monitoring research can be categorized into the following four levels: (I) detecting the existence of damage, (II) findingthe location of damage, (III) estimatingthe extentof damage, and (IV) predictingthe remaining fatigue life. The performance of tasks of Level (III) requires refined structural models and analyses, local physical examination, and/or traditional NDE techniques. To performtasks ofLevel (IV) requires material constitutive information on a local level, materials aging studies, damage mechanics, and high-performance computing. With improved instrumentation and understanding of dynamics of complex structures, health monitoring and damage assessment of civil engineering structures has become more practical in systematic inspection and evaluation of these structures during the past two decades.Most structural health monitoringmethods under current investigation focus on using dynamic responses to detect and locate damage because they are global methods that can provide rapid inspection of large structural systems.These dynamics-based methods can be divided into fourgroups:①spatial-domain methods,②modal-domain methods,③time-domain methods, and④frequency- domain methods. Spatial-domain methods use changes of mass, damping, and stiffness matrices to detect and locate damage. Modal-domain methods use changes of natural frequencies, modal damping ratios, andmode shapesto detect damage. In the frequency domain method, modal quantities such as natural frequencies, damping ratio, and model shapes are identified.The reverse dynamic systemof spectral analysis and the generalized frequency response function estimated fromthe nonlinear auto-regressive moving average (NARMA) model were applied in nonlinear system identification. In time domainmethod, systemparameterswere determined fromthe observational data sampled in time. It is necessaryto identifythe time variation of systemdynamic characteristics fromtime domain approach if the properties of structural systemchangewith time under the external loading condition. Moreover, one can use model-independent methods or model-referenced methods to perform damage detection using dynamic responses presented in any of the four domains. Literature shows that model independent methods can detect the existence of damage without much computational efforts, butthey are not accurate in locating damage. On the otherhand, model-referencedmethods are generally more accurate in locating damage and require fewer sensors than model-independent techniques, but they require appropriate structural models and significant computational efforts. Although time-domain methods use original time-domain datameasured using conventional vibrationmeasurement equipment, theyrequire certain structural information and massive computation and are case sensitive. Furthermore, frequency- and modal-domain methods use transformed data,which contain errors and noise due totransformation.Moreover, themodeling and updatingofmass and stiffnessmatrices in spatial-domain methods are problematic and difficult to be accurate. There are strong developmenttrends that two or three methods are combined together to detect and assess structural damages.For example, several researchers combined data of static and modal tests to assess damages. The combination could remove the weakness of each method and check each other. It suits the complexity of damage detection.Structural health monitoring is also an active area of research in aerospace engineering, but there are significant differences among the aerospace engineering, mechanical engineering, and civil engineering in practice. For example,because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at lowamplitudes, the dynamic responses of bridge structure are substantially affected by the non-structural components, and changes in these components can easily to be confused with structural damage. Moreover,the level of modeling uncertainties in reinforced concrete bridges can be much greater than the single beam or a space truss. All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. Recent examples of research and implementation of structural health monitoring and damage assessment are summarized in the following sections.2 Laboratory and field testing researchIn general, there are two kinds of bridge testing methods, static testing and dynamic testing. The dynamic testing includes ambient vibration testing and forcedvibration testing. In ambient vibration testing, the input excitation is not under the control. The loading could be either micro-tremors, wind, waves, vehicle or pedestrian traffic or any other service loading. The increasing popularity of this method is probably due to the convenience of measuring the vibrationresponse while the bridge is under in-service and also due to the increasing availability of robust data acquisition and storage systems. Since the input is unknown, certain assumptions have to be made. Forced vibration testing involves application of input excitation of known force level at known frequencies. The excitation manners include electro-hydraulic vibrators, force hammers, vehicle impact, etc. The static testing in the laboratory may be conducted by actuators, and by standard vehicles in the field-testing.we can distinguish that①the models in the laboratory are mainly beams, columns, truss and/or frame structures, and the location and severity of damage in the models are determined in advance;②the testing has demonstrated lots of performances of damage structures;③the field-testing and damage assessmentof real bridges are more complicated than the models in the laboratory;④the correlation between the damage indicator and damage type,location, and extentwill still be improved.3Analytical developmentThe bridge damage diagnosis and health monitoring are both concerned with two fundamental criteria of the bridges, namely, the physical condition and the structural function. In terms of mechanics or dynamics, these fundamental criteria can be treated as mathematical models, such as response models, modal models and physical models.Instead of taking measurements directly to assess bridge condition, the bridge damage diagnosis and monitoring systemevaluate these conditions indirectly by using mathematical models. The damage diagnosis and health monitoring are active areas of research in recentyears. For example, numerous papers on these topics appear in the proceedings of Inter-national Modal Analysis Conferences (IMAC) each year, in the proceedings of International Workshop on Structural HealthMonitoring (once of two year, at Standford University), in the proceedings of European Conference on Smart materials and Structures and European Conference on Structural Damage AssessmentUsing Advanced Signal Processing Procedures, in the proceedings ofWorld Conferences of Earthquake Engineering, and in the proceedings of International Workshop on Structural Control, etc.. There are several review papers to be referenced, for examples,Housner, et al. (1997)provided an extensive summary ofthe state of the art in control and health monitoring of civil engineering structures[1].Salawu (1997)discussed and reviewed the use of natural frequency as a diagnostic parameter in structural assessment procedures using vibration monitoring.Doebling, Farrar, et al. (1998)presented a through review of the damage detection methods by examining changes in dynamic properties.Zou, TongandSteven (2000)summarized the methods of vibration-based damage and health monitoring for composite structures, especially in delamination modeling techniques and delamination detection.4Sensors and optimum placementOne of the problems facing structural health monitoring is that very little is known about the actual stress and strains in a structure under external excitations. For example, the standard earthquake recordings are made ofmotions of the floors of the structure and no recordings are made of the actual stresses and strains in structural members. There is a need for special sensors to determine the actual performance of structural members. Structural health monitoring requires integrated sensor functionality to measure changes in external environmental conditions, signal processing functionality to acquire, process, and combine multi-sensor and multi-measured information. Individual sensors and instrumented sensor systems are then required to provide such multiplexed information.FuandMoosa (2000)proposed probabilistic advancing cross-diagnosis method to diagnosis-decision making for structural health monitoring. It was experimented in the laboratory respectively using a coherent laser radar system and a CCD high-resolution camera. Results showed that this method was promising for field application. Another new idea is thatneural networktechniques are used to place sensors. For example,WordenandBurrows (2001)used the neural network and methods of combinatorial optimization to locate and classify faults.The static and dynamic data are collected from all kinds of sensorswhich are installed on the measured structures.And these datawill be processed and usable informationwill be extracted. So the sensitivity, accuracy, and locations,etc. of sensors are very important for the damage detections. The more information are obtained, the damage identification will be conducted more easily, but the price should be considered. That’s why the sensors are determined in an optimal ornearoptimal distribution. In aword, the theory and validation ofoptimumsensor locationswill still being developed.5 Examples of health monitoring implementationIn order for the technology to advance sufficiently to become an operational system for the maintenance and safety of civil structures, it is of paramount importance that new analytical developments are ultimately verified with appropriate data obtained frommonitoring systems, which have been implemented on civil structures, such as bridges.Mufti (2001)summarized the applications of SHM of Canadian bridge engineering, including fibre-reinforced polymers sensors, remote monitoring, intelligent processing, practical applications in bridge engineering, and technology utilization. Further study and applications are still being conducted now.FujinoandAbe(2001)introduced the research and development of SHMsystems at the Bridge and Structural Lab of the University of Tokyo. They also presented the ambient vibration based approaches forLaser DopplerVibrometer (LDV) and the applications in the long-span suspension bridges.The extraction of the measured data is very hard work because it is hard to separate changes in vibration signature duo to damage form changes, normal usage, changes in boundary conditions, or the release of the connection joints.Newbridges offer opportunities for developing complete structural health monitoring systems for bridge inspection and co ndition evaluation from“cradle to grave”of the bridges. Existing bridges provide challenges for applying state-of-the-art in structural health monitoring technologies to determine the current conditions of the structural element,connections and systems, to formulate model for estimating the rate of degradation, and to predict the existing and the future capacities of the structural components and systems. Advanced health monitoring systems may lead to better understanding of structural behavior and significant improvements of design, as well as the reduction of the structural inspection requirements. Great benefits due to the introduction of SHM are being accepted by owners, managers, bridge engineers, etc..6 Research and development needsMost damage detection theories and practices are formulated based on the following assumption: that failure or deterioration would primarily affect the stiffness and therefore affect the modal characteristics of the dynamic response of the structure. This is seldom true in practice, because①Traditional modal parameters (natural frequency, damping ratio and mode shapes, etc.) are not sensitive enough to identifyand locate damage. The estimation methods usually assume that structures are linear and proportional damping systems.②Most currently used damage indices depend on the severity of the damage, which is impractical in the field. Most civil engineering structures, such as highway bridges, have redundancy in design and large in size with low natural frequencies. Any damage index should consider these factors.③Scaledmodelingtechniques are used in currentbridge damage detection. Asingle beam/girder models cannot simulate the true behavior of a real bridge. Similitude laws for dynamic simulation and testing should be considered.④Manymethods usually use the undamaged structural modal parameters as the baseline comparedwith the damaged information. This will result in the need of a large data storage capacity for complex structures. But in practice,there are majority of existing structures for which baseline modal responses are not available. Only one developed method(StubbsandKim (1996)), which tried to quantify damagewithout using a baseline, may be a solution to this difficulty. There is a lot of researchwork to do in this direction.⑤Seldommethods have the ability to distinguish the type of damages on bridge structures. To establish the direct relationship between the various damage patterns and the changes of vibrational signatures is not a simple work.Health monitoring requires clearly defined performance criteria, a set of corresponding condition indicators and global and local damage and deterioration indices, which should help diagnose reasons for changes in condition indicators. It is implausible to expect that damage can be reliably detected or tracked by using a single damage index. We note that many additional localized damage indiceswhich relate to highly localized properties ofmaterials or the circumstances may indicate a susceptibility of deterioration such as the presence of corrosive environments around reinforcing steel in concrete, should be also integrated into the health monitoring systems.There is now a considerable research and development effort in academia, industry, and management department regarding global healthmonitoring for civil engineering structures. Several commercial structural monitoring systems currently exist, but further development is needed in commercialization of the technology. We must realize that damage detection and health monitoring for bridge structures by means of vibration signature analysis is a very difficult task. Itcontains several necessary steps, including defining indicators on variations of structural physical condition, dynamic testing to extract such indication parameters,defining the type of damages and remaining capacity or life of the structure, relating the parameters to the defined damage/aging. Unfortunately, to date, no one has accomplished the above steps. There is a lot of work to do in future.桥梁健康监测应用与研究现状摘要桥梁损伤诊断与健康监测是近年来国际上的研究热点,在实践方面,土木工程和航空航天工程、机械工程有明显的差别,比如桥梁结构以及其他大多数土木结构,尺寸大、质量重,具有较低的自然频率和振动水平,桥梁结构的动力响应极容易受到不可预见的环境状态、非结构构件等的影响,这些变化往往被误解为结构的损伤,这使得桥梁这类复杂结构的损伤评估具有极大的挑战性.本文首先给出了结构健康监测系统的定义和基本构成,然后集中回顾和分析了如下几个方面的问题:①损伤评估的室内实验和现场测试;②损伤检测方法的发展,包括:(a)动力指纹分析和模式识别方法, (b)模型修正和系统识别方法, (c)神经网络方法;③传感器及其优化布置等,并比较和分析了各自方法的优点和不足.文中还总结了健康监测和损伤识别在桥梁工程中的应用,指出桥梁健康监测的关键问题在于损伤的自动检测和诊断,这也是困难的问题;最后展望了桥梁健康监测系统的研究和发展方向.关键词:健康监测系统;损伤检测;状态评估;模型修正;系统识别;传感器优化布置;神经网络方法;桥梁结构1概述由于不可预见的各种条件和情况下,设计和建造一个结构将永远不可能或无实践操作性,它有一个失败的概率百分之零。

土木工程专业英语第二版段兵延主编经典完整版翻译样本

土木工程专业英语第二版段兵延主编经典完整版翻译样本

《土木工程专业英语》参考译文第一课土木工程学土木工程学作为最老的工程技术学科, 是指规划, 设计, 施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构, 从灌溉和排水系统到火箭发射设施。

土木工程师建造道路, 桥梁, 管道, 大坝, 海港, 发电厂, 给排水系统, 医院, 学校, 公共交通和其它现代社会和大量人口集中地区的基础公共设施。

她们也建造私有设施, 比如飞机场, 铁路, 管线, 摩天大楼, 以及其它设计用作工业, 商业和住宅途径的大型结构。

另外, 土木工程师还规划设计及建造完整的城市和乡镇, 而且最近一直在规划设计容纳设施齐全的社区的空间平台。

土木一词来源于拉丁文词”公民”。

在1782年, 英国人John Smeaton为了把她的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。

自从那时起, 土木工程学被用于提及从事公共设施建设的工程师, 尽管其包含的领域更为广阔。

领域。

因为包含范围太广, 土木工程学又被细分为大量的技术专业。

不同类型的工程需要多种不同土木工程专业技术。

一个项目开始的时候, 土木工程师要对场地进行测绘, 定位有用的布置, 如地下水水位, 下水道, 和电力线。

岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。

环境工程专家研究工程对当地的影响, 包括对空气和地下水的可能污染, 对当地动植物生活的影响, 以及如何让工程设计满足政府针对环境保护的需要。

交通工程专家确定必须的不同种类设施以减轻由整个工程造成的对当地公路和其它交通网络的负担。

同时, 结构工程专家利用初步数据对工程作详细规划, 设计和说明。

从项目开始到结束, 对这些土木工程专家的工作进行监督和调配的则是施工管理专家。

根据其它专家所提供的信息, 施工管理专家计算材料和人工的数量和花费, 所有工作的进度表, 订购工作所需要的材料和设备, 雇佣承包商和分包商, 还要做些额外的监督工作以确保工程能按时按质完成。

土木工程专业外语,课文翻译

土木工程专业外语,课文翻译
English Translation
If one looks at technical on structural engineering ,one will find that the meaning of the space frame has been very diverse or even confusing.
A latticed structure is a structure system in the form of a network of elements (as opposed to a continuous surface).
一个网架结构是一个网络元素形成的一 种结构系统(而不是一个连续的表面) 与…相对的
空间架构是一种由线性元素组装安排的结 构系统,以促使其以三维的方式运行
In some cases, the constituent element may be two-dimensional. Macroscopically a space frame often takes the form of a flat or curved surface.
However, in a more restricted sense, space frame means some type of special structure action in three dimensions.
然而,在一个更受限制的观念中, 三维空 间中,空间框架意味着某种类型的特殊 结构功能。
在某些情况下, 组成元素可能是二维的。 宏观上空间框架通常都用平面或曲面。
It should be noted that virtually the same structure defined as a space frame here is referred to as structure.

土木工程专业英语课文 翻译 考试必备

土木工程专业英语课文 翻译 考试必备

土木工程专业英语课文翻译The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Greeks and Romans sometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also used a natural cement called puzzling, made from volcanic ash, that became as hard as stone under water.早期时代的主要施工材料,木材和砌体砖,石,或瓷砖,和类似的材料。

这些课程或层密切联系在一起,用砂浆或沥青,焦油一个样物质,或其他一些有约束力的代理人。

希腊人和罗马人有时用铁棍或拍手以加强其建设。

在雅典的帕台农神庙列,例如,在他们的铁钻的酒吧现在已经生锈了孔。

罗马人还使用了天然水泥称为令人费解的,由火山灰制成,变得像石头一样坚硬在水中。

Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile force which, as we have seen, tends to pull apart many materials. New alloys have further, which is a tendency for it to weaken as a result of continual changes in stress.钢铁和水泥,两个最重要的现代建筑材料,介绍了在十九世纪。

土木工程专业英语段兵延第二版全书文章翻译

土木工程专业英语段兵延第二版全书文章翻译

第一课土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。

此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。

土木一词来源于拉丁文词“公民”。

在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。

自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。

领域。

因为包含范围太广,土木工程学又被细分为大量的技术专业。

不同类型的工程需要多种不同土木工程专业技术。

一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。

岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。

环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。

交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。

同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。

从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。

根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。

贯穿任何给定项目,土木工程师都需要大量使用计算机。

计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。

土木工程专业英语段兵延第二版全书文章翻译

土木工程专业英语段兵延第二版全书文章翻译

第一课土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。

此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。

土木一词来源于拉丁文词“公民”。

在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。

自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。

领域。

因为包含范围太广,土木工程学又被细分为大量的技术专业。

不同类型的工程需要多种不同土木工程专业技术。

一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。

岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。

环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。

交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。

同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。

从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。

根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。

贯穿任何给定项目,土木工程师都需要大量使用计算机。

计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。

土木工程专业英语第二版 段兵延主编_经典完整版翻译

土木工程专业英语第二版 段兵延主编_经典完整版翻译

《土木工程专业英语》参考译文第一课土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。

此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。

土木一词来源于拉丁文词“公民”。

在1782年,英国人JohnSmeaton 为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。

自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。

领域。

因为包含范围太广,土木工程学又被细分为大量的技术专业。

不同类型的工程需要多种不同土木工程专业技术。

一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。

岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。

环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。

交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。

同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。

从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。

根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。

贯穿任何给定项目,土木工程师都需要大量使用计算机。

计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。

土木工程专业英语课文译文

土木工程专业英语课文译文

参考译文第一单元第一部分钢筋混凝土混凝土混凝土由水,砂,石子和水泥构成。

这些不同的,分散的材料混合在一起就构成了一种坚硬的大块状物体(形状各异),有着良好的性能。

混凝土被用作建筑材料已有150年的历史。

它的普遍应用主要由于以下几点:(1)恶劣环境下的耐久性(包括耐水)(2)极易被浇铸成不同的形状和尺寸(3)相对经济实惠,极易获得(4)有极强的抗压能力但众所周知,与其较强的抗压强度相比,混凝土抗拉和抗弯强度较低。

因此,每当荷载,限制收缩或是温度发生变化,产生的拉应力超过混凝土的拉伸强度时,就会有裂缝出现。

在结构应用方面,通常的做法是利用钢筋来抵抗拉力或者是给混凝土施加压力来抵消这些拉力。

预应力混凝土对混凝土构件加载之前,对其进行压缩的方法称为预应力。

把钢筋和混凝土使用很强的力结合在一起就被称为预应力混凝土。

预应力混凝土的优点如下:1.在预应力操作过程中,混凝土和钢筋经过严格测试,较低的安全系数也是正当的。

2.混凝土中可容许的工作压力通常是抗压强度的三分之一,从而使保证金来弥补劣质混凝土在临界区发生的风险。

3.预应力减少风险,是由于混凝土在预应力操作期间产生的应力可能是其抗压强度的50%到75%。

今天,预应力混凝土被应用于建筑物,地下结构,电视塔,浮动储藏器和海上结构,电站,核反应堆容器和包括拱形桥和斜拉桥在内的各种桥梁系统当中。

这说明了预应力概念的多方面适应性以及对它的广泛应用。

所有这些结构的发展和建造的成功都是由于材料技术的进步,尤其是预应力钢和在估计预应力长期和短期损失方面积累的知识。

钢筋钢筋是一种极好的建筑材料。

与其他材料相比,钢筋有着较高的抗拉强度。

尽管在体积上是木材的十倍以上。

钢筋有着较高的弹性模量,因此在荷载下容易发生小的变形。

到目前为止所描述的钢筋的特性只适用于温度保持在70F上下的情况,大约从30F到110F。

这个温度区间覆盖了大多数结构的运行状况,但搞清楚当温度远远超出正常水平时所发生的情况仍然非常重要。

土木工程专业英语课文原文及对照翻译

土木工程专业英语课文原文及对照翻译

土木工程专业英语课文原文及对照翻译土木工程师建造道路、桥梁、隧道、水坝、港口、发电厂、水和污水系统、医院、学校、大众交通和其他对现代社会和大量人口集中地区至关重要的公共设施。

他们还建造私人拥有的设施,如机场、铁路、管道、摩天大楼和其他为工业、商业或住宅使用而设计的大型结构。

此外,土木工程师规划、设计和建造完整的城市和城镇,最近还在规划和设计太空平台,以容纳自给自足的社区。

___ passes the planning。

design。

n。

and management of the built ___ scientific principles。

from ___ are essential to modern society。

such as roads。

bridges。

___。

dams。

and hospitals.___ public facilities。

civil engineers also design and build privately-owned structures。

including airports。

railroads。

pipelines。

skyscrapers。

and other ___。

and ___.Overall。

___ civil engineers。

our modern infrastructure and public facilities would not exist.___。

n。

and maintenance of public and private infrastructure。

This includes roads。

bridges。

pipelines。

dams。

ports。

power plants。

water supply and sewage systems。

hospitals。

schools。

___。

and other structures that are essential to modern ___ as airports。

土木工程专业英语课文翻译

土木工程专业英语课文翻译

⼟⽊⼯程专业英语课⽂翻译⼟⽊⼯程专业英语课⽂翻译 导语:⼟⽊⼯程专业,是⼤学的⼀种⾃然学科。

专门培养掌握各类⼟⽊⼯程学科的基本理论和基本知识,能在房屋建筑、地下建筑、道路、隧道、桥梁建筑、⽔电站、港⼝及近海结构与设施。

以下是⼩编整理⼟⽊⼯程专业英语课⽂翻译的资料,欢迎阅读参考。

weight of the project. Environmental specialists study the project’s impact on the local area: the potential for air and groundwater pollution, the project’s impact on local animal and plant life, and how the project can be designed to meet government requirements aimed at protecting the environment. Transportation specialists determine what kind of facilities are needed to ease the burden on local roads and other transportation networks that will result from the completed project. Meanwhile, structural specialists use preliminary data to make detailed designs, plans, and specifications for the project. Supervising and coordinating the work of these civil engineer specialists, from beginning to end of the project, are the construction management specialists. Based on information supplies by the other specialists, construction management civil engineers estimate quantities and costs of materials and labor, schedule all work, order materials and equipment for the job, hire contractors and subcontractors, and perform other supervisory work to ensure the project is completed on time and as specified. 领域。

土木工程专业英语课文翻译(雷自学)

土木工程专业英语课文翻译(雷自学)

第一课人造建材建筑材料是用于建筑目的任何材料,许多自然形成的物质,如黏土、砂子、木材、岩石,甚至岩石和树叶都用来建造房屋.除了天然材料之外,人们还使用许多人造材料,它们或多或少地都是人工合成的.建材生产已经是许多国家的固有产业,这些人工材料通常都按特定工种分类,如木工、管道工、屋面和保温工程,此处涉及到的是用于居住和结构的建筑材料.砖和砌块砖是一种窖中烧制的块材,通常由黏土或者页岩,甚至低级泥土等制成.在软泥制作法中,粘土砖是用模具成型;而在商业化硬泥加工法中,更多的是将粘土挤压过一个硬模,然后用钢丝将其切成合适的尺寸. 在17、18和19世纪,砖曾被广泛用作为建筑材料,这大概是因为其在不断拥挤的城市中比木材更耐火,而且较廉价的事实.在20世纪晚期,另一种块材取代了粘土砖,这就是所谓的煤渣砌块,它们大都由混凝土制成.在发展中国家有一种重要的廉价建材称为砂砖,与烧制粘土砖相比,其强度较低但却更加廉价.混凝土混凝土是一种复合材料,由骨料和粘结物(如水泥)制成.最常见的混凝土是波特兰水泥,它是由矿物骨料、波特兰水泥和水混合而成的.混合之后,水泥发生硬化反应,最终硬结成为一种像石头一样的材料.当在一般意义上的使用时,将这种材料称为混凝土.对任意尺寸的混凝土结构,由于其抗拉强度很低,通常用钢筋对其进行加强.为了尽可能的减少使混凝土结构性能降低的气泡,当将具有流动性的混凝土拌合料浇入钢模时,用振捣器将其排出.混凝土已经是现代社会的主要建筑材料. 混凝土造价低廉并且能够长期支撑结构物.金属金属用作为大型建筑物(如摩天大楼)的结构框架,或者作为内装修材料.用于建材的金属有很多种,钢材是一种金属合金,其主要成分为铁,常用作为金属结构的建筑材料.钢材强度高,柔性好,例如精制而成或者经过处理,其耐久性亦好.若使用年限较长,锈蚀则是金属的主要缺陷.铝合金和锡合金的低密度和更好的耐锈蚀性有事抵消了其高成本,黄铜在过去更为常见,但是现在仅限于一些特殊场合.金属广泛应用于预制结构中,如匡西特活动板房,在大多数大都市中其应用比比皆是.生产金属需要大量人力,特别是建筑业需要大量金属时更是如此.其他用途的金属有钛、铬、金和银.钛可以用于结构物,但是其价格比钢材高出许多.铬、金和银用于装饰,这是因为它们价格高而且结构性能差,比如其抗拉强度和硬度都较低.玻璃自从有了覆盖建筑物的小洞口的玻璃以来人们一直在使用明亮的窗户.玻璃能使光线射入房间同时还能隔绝外界恶劣气候.它通常是由硅和硅酸盐混合制成,因而极易破碎. 现代玻璃幕墙可以用来覆盖整个建筑物表面,在空间框架中也可以玻璃来覆盖大跨度屋面结构.陶瓷陶瓷制品有瓷砖和固定设备等,陶瓷最常用作为固定设备或建筑物表面装饰.陶瓷曾经是一种特殊的窑中烧制的粘土陶瓷,但是它已经发展为一种技术含量更高的材料.塑料塑料这一术语包括一系列人造或者半人造有机缩合或聚合物,只要它们能模制或挤压成为物体、膜或者纤维即可.其名来自于在半液态时的延展性.塑料的耐热性、硬度和弹性千差万别,结合此适应性,塑料成分的一致性和其较轻的自重使其几乎可以用于各行各业. 纤维织物帐篷曾经是游牧民族住所首选,这其中包括两种著名的形式,即圆锥形帐篷和蒙古包.随着抗拉结构的出现,帐篷已经发展成为以后总主要的结构技术.现代建筑物可由柔性材料制成,并由一种钢缆体系或者内部气压支撑.第二课抗拉强度抗拉强度是使材料发生断裂或者产生永久变形的应力.材料的抗拉强度是一种延展特性,因此它并不取决于时间的尺寸.但是它取决于试件的制备、测试环境的温度和材料温度.抗拉强度以及弹性模量和抗锈蚀性都是用于各种结构和机械装置的工程材料的重要参数,对于各种材料,如合金、复合材料、陶瓷、塑料盒木材等都规定了其抗拉强度.有三种抗拉强度屈服强度,是材料从弹性变形到塑性变形转化时的应力极限强度,是材料承受拉伸、压缩或者剪切时可以承受的最大应力,是应力应变曲线上的最大应力断裂强度,与应以应变曲线上的断裂点相对应的应力各种抗拉强度如下面的低碳钢的应力应变图(Fig.T1.1a)所示:金属材料在达到屈服点之前具有线性应力应变的关系.如图Fig.T1.1a 所示.由于应力作用区的碳原子相互作用和错位,有一些钢材在屈服强度后出现应力下降现象.冷加工钢材和合金钢并无这种效果.大多数金属的屈服点不是那么明确.应力低于屈服强度是,在卸载之后变形可以完全恢复,材料将返回到期初始形状.如果应力超过屈服点,则变形就是不可恢复的,材料不会恢复到其最初始的形状.这种不可恢复的变形称为塑性变形.对于许多应用来讲,塑性变形是不能接受的,因而将屈服强度作为设计极限强度.过了屈服点之后,钢材和许多其他延性金属将经历一段应变硬化的过程,即在达到其极限强度之前随着应变的增长,应力再次出现增长.如果材料是在这一点上卸荷,应力应变曲线将与起点和屈服点之间的曲线相平行.若是重新加载,它将会按照卸载曲线重新达到极限强度,并成为新的屈服强度.当将金属材料加载到其屈服强度之后,它将发生颈缩,即截面面积由于塑性流动而开始减小.当颈缩很大时,可能导致工程应力应变曲线关系逆转变化,即因为几何效应而使应力减少应变增加.这是因为工程应力应变是在假设发生颈缩前原横截面积的基础上算得的.如果此曲线是以真正的应力和应变描出,即真正的应力是按减小后的截面修改后得到的,它将总是上升的而没有下降段.在材料受压加载中没有观察到颈缩现象.工程应力应变曲线的峰值应力称为极限强度.颈缩过后,材料将被拉断,所储蓄的弹性能量将以声和热的形式释放出来.材料断裂时的应力称为材料的抗拉强度.延性金属没有明确定义的屈服点,通常将屈服强度定义为“0.2%残余应变”相对应的应力值.0.2%残余应变对应的屈服强度可以通过残余应变为0.2%的横坐标,以初始斜率画平行直线与应力应变曲线的交点来确定.一条典型的铝的0.2%残余变形的应力应变曲线如图T1.1b所示.脆性材料比如混凝土和碳纤维是没有屈服点的,没有应变硬化,这意味着最终的强度和断裂强度是相同的.某一特殊的应力应变曲线如图T1.1c所示.典型的脆性材料不显示任何的塑性变形,而且在弹性变形阶段破坏.脆性破坏的特征之一是,这两个部分可以被重新组合而形成与原始构件相同的形状.典型的脆性材料的应力应变曲线是线性的.测试几个相同的试件会有不同的破坏应力.下面描述的是一典型的在高于玻璃转化温度以及低应变率下所测试的脆性聚合物应力应变曲线.一些工程陶瓷在应力低于破坏应力是表现出较差的延性,但是曲线的初始部分是线性的.抗拉强度是用材料单位面积可以承受的力的大小来衡量的.在SI 单位制中,单位是牛顿每平方米或者帕斯卡,可以加上适当的前缀.非十进制单位是磅每平方英寸.北美工程师通常使用该协会的单位是兆帕.一兆帕是每平方英寸145.037738英镑的力.对于例如岩石、砼、铸铁或土壤的脆性材料,抗拉强度与抗压强度相比可以忽略不计,许多工程应用中假设为0.玻璃纤维比钢具有更强的抗拉强度,但是大部分玻璃通常没有,这是由于材料应力强度因子缺陷.由于样本尺寸较大,该缺陷大小也增加.一般说来,一个绳索抗拉强度总是比其单个纤维抗拉强度低.第三课梁梁是一种能够通过抵抗弯曲变形来承受荷载的构件.由于外部荷载、自重和外部反应使梁产生弯曲的力都称为弯矩.梁一般可以承受竖直方向的重力荷载,也能承受横向荷载(例如由地震或风引起的荷载).由梁所承受的荷载被传至柱、墙或大梁,大梁再将力传至其附近的受压结构构件.在轻型框架结构中次梁安置在主梁上.梁的性能由它们的横截面形状长度和材料所决定.在现代建筑中,梁一般是由钢材、钢筋混凝土或木材制成.最常见的一种钢梁是工字梁或者宽翼缘梁(也被称为通用钢梁)它们通常用在钢结构建筑或者桥梁结构当中.其他常见的梁的形状还有槽型、箱型梁(空心结构截面梁)、管型截面和L型弯矩的影响因素在本质上讲,由于施加在梁上的荷载,梁通常要承受压力、拉力和剪力.一般而言,在重力荷载作用下,原梁上缘长度会略有减少而形成一较短的弧线,从而受压;而同样长度的原下缘则略有伸长而形成一较长的弧线,从而受拉.介于梁上缘和下缘中间部位的梁轴线的原厂与弯曲弧线长度相等,它既不受压也不受拉,从而确定了中性轴的位置.在支撑处,梁承受剪力.有些钢筋混凝土梁是完全受压的.这些梁就是预应力钢筋混凝土梁,在制作时就希望它们在荷载作用下能够产生压力而不是拉力.先张拉高强度钢筋,再将砼浇筑于其上,然后,当混凝土开始养护时,放松梁中的钢筋,梁便受到偏心压力的作用.这种偏心压力时梁产生内部弯矩,从而提高了梁的抗弯承载力.它们通常用在高速公路的桥梁中. 梁的结构分析的主要工具是欧拉伯努利梁方程.其他的确定梁的挠度的数学方法由虚功法和转角位移法.工程师对确定梁的最大挠度最感兴趣,因为梁有可能与玻璃之类的易碎材料接触.出于美观方面的考虑,梁的挠度要减小到最小.一个可见的下垂梁,即使在结构上是安全的,也不能忽视,要避免产生较大的挠度.刚度较大的梁(更高的弹性模量)在荷载作用下产生的挠度更小.确定梁的应力的数学方法有力矩分配法,柔度法和刚度法.一般形状在钢筋混凝土建筑物中,大多数梁的截面形状是矩形,但是最有效的截面形式是通用梁.将大多数材料放置于距中性轴(对于通用梁来说就是其对称轴)较远的位置增大了梁截面的二次矩,这反过来也增大了梁的刚度.在一个方向受弯时,通用梁是最有效的截面形式:上下看起来都如工字型.如果柱子是在任何方向都受弯时,最有效的截面形式是圆筒状或者管状.但对于单向受弯来说,通用梁就是首选.有效意味着对于相同的截面面积,当承受相同的荷载时,梁的挠度最小.梁的其他截面形式,例如L型梁、槽型梁或者管状梁,当工程中由特殊要求时也会使用.第六课结构分析的基本原理结构分析的主要目的是确定由外荷载引起的结构内力和变形,结构设计包括以适当的方法选定结构形式、确定荷载和构件尺寸以便使所组成的结构能在设计极限状态内支承各种荷载.结构模型是对真实结构的理想化.它尽可能准确反映材料、结构细部构造、荷载及边界条件的真实性能.结构通常以三维形式出现,对于不知规整的仅受对称荷载作用的矩形结构,可以将其理想化为布置在正交轴上的二维框架.如果一个结构的构件处于同一平面,就称为二维结构或者平面结构,结构的特点就是两个或者更多构件相连接的点.梁是仅受到与其纵轴相交且只引起弯矩的荷载的构件.拉杆就是仅受拉力作用的构件,而柱式仅受轴向压力作用的构件.桁架是由设计成只受轴力作用的构件所组成的结构体系.如果结构体系的节点能够传递弯矩,则称为框架,并假定其构件既能承受弯矩,也能承受轴力和剪力.边界条件铰接点不传递力矩.假定它是无摩擦的,从而能使构件相互转动.滚轴支座能使与刚性表面所连接的构件相对于此表面自由转动,而且能沿着平行于此表面的任何一方向自由平动,但是不能沿着其他方向平动.固定支座不允许在任何方向上发生转动或者平动.转动弹簧能提供一些转动约束,但是不能提供任何平动约束.位移弹簧能在其变形方向上提供部分约束作用.荷载及反力量值和作用位置都不发生变化的荷载称为永久荷载,也称为恒载.它们可以包括结构自重和其他一些荷载,如墙壁、楼面、屋面和永久荷载固定于结构上的管道和设备.作用方向或者量值发生变化的荷载称为可变荷载,常将它们称为活荷载或者外加荷载,可包括由施工、风、雨、地震、雪、爆炸和温度变化等引起的荷载以及那些可以移动的荷载,如家具和储藏的材料.积水荷载由积累速度大于流离速度的雨水或者积雪在屋顶上产生的.风荷载是作用于迎风面的压力或者作用于背风面的压力或者吸力.冲击荷载是由突然施加的荷载或者由移动荷载的变化引起的,通常取作为活荷载的一个分量.当受外力作用时,如果一个原来静止的结构受外力作用后仍保持静止,则称其处于静力平衡状态,外力与支撑反力的合力为0.如果一个结构在一个力系的作用下处于平衡,那么它必须满足一下六个方程(T6.1).以上方程的求和是关于x、y和z轴方向上所有的分力和弯矩进行的.如果一个结构仅受处于一个平面上的力的作用,以上方程简化为(T6.2). 在固定支、铰支座和滚轴支座上分别由三个、两个和一个未知反力.对于一个特定结构,如果其总反力分量个数等于其可以列出的方程数,则这些位置力便可以由平衡方程求出,并称此结构为静定结构;如果未知数的个数大于所能得到的方程数,结构便为超静定结构;否则,为不稳定结构.结构能支撑外界荷载的能力不但取决于反力分量的个数而且还取决于它们的排列.一个结构可能有与可列出平衡方程相等或者更多的反力分量而并不稳定,此时结构称为几何不稳定.叠加原理此原理认为:如果一个结构的性能为线弹性,则其上的作用力可以被分开或者分成任意方便的形式,并按照此形式对结构进行分析,且最终结果可由将这些单个结构相加而得.此原理是用于计算像弯矩、剪力和挠度等的一些结构反应.然而,以下两种形式不适用叠加原理:1、当加载后结构的几何形状发生很大的变化,2、结构材料的应力与应变不成线性关系.第七课建筑框架分类对于建筑框架的设计,定义各种框架体系有助于简化分析模型.例如,对于框架及其支撑能用单一模型分析,因而没有必要将它们分开.另一方面,对于设计不同的结构体系之间相互作用的较复杂的三维结构,简化模型是有助于初步设计和计算结果的检查.这些模型应该能够体现单个子结构的性能以及他们对整个结构的影响.刚架刚架的横向刚度主要是通过由刚性节点相互连接的结构构件的抗弯刚度.这些节点的设计必须使其具有足够的强度和刚度,以及忽略不计的变形.变形必须足够小,以便其对结构内力和弯矩或者结构整体变形的分布无显著影响. 无支撑刚架应在不依赖于额外横向支撑系统来维持稳定性前提下就可以抵抗侧向荷载.这种框架本身必须能够抵抗包括重力以及侧向力在内的一切设计荷载.同时,在受到横向风或者地震荷载时,它应该由足够的抗侧移刚度抵抗侧移.简支框架(铰接框架)铰接框架是指结构体系中的梁和柱通过铰接来连接,体系不能抵抗任何侧向荷载.整个结构的整体性必须通过与其相连接的某种支撑体系来提供.横向荷载由支撑体系来承担,而重力荷载由铰接框架和支撑体系共同承担.在大多数情况下,支撑系统的横向荷载影响非常小,框架设计中可以忽略二阶效应.因此连接于支撑体系的简单框架可以被归类为无侧移刚架.多层框架设计中可以采用铰接的原因有以下几条:1、铰接框架更容易制作.对于钢结构,只连接构件腹板而不连接其翼缘更为方便.2、螺栓连接优于焊接,主要是因为焊接通常要求焊缝检测、天气保障以及表面处理.3、将结构分为抗竖向荷载和抗水平方向荷载体系后,更容易对其进行设计和分析.例如,如果所有的柱子之间的大梁都采用简支,简支梁和柱子尺寸的确定将是一种直截了当的工作.4、为了有效减小水平位移,采用有支撑体系的简支框架比采用刚性连接的无支撑框架体系更为经济.实际结构连接并不总是属于铰接或者刚性连接的范畴.事实上,实践中所有的连接都是半刚性的.因此铰接和刚接只是一种理想化的处理.现代设计规范允许使用的目前风荷载弯矩设计概念中的半刚性框架设计.在风荷载弯矩设计中,假定该连接可以传递部分弯矩.支撑系统支撑系统是指可以为整个结构体系提供横向稳定的结构,其形式可能是三角形桁架、剪力墙/核心筒或者是刚接框架.在钢结构中,常用三角形桁架来表示支撑体系,这是因为与节点自然连接的混凝土结构不同,钢构件间最直接的连接方式就是将它们相互铰接.因此,普通钢结构建筑设计有支撑系统,以提供抗侧移力.因此,除了如剪力墙或核心筒等刚性结构外,一般仅采用三角形桁架做支撑.建筑物抵抗侧向力的效能取决于其所采用的支撑体系的位置和类型、是否存在剪力墙、电梯井或楼梯井周围的核心筒. 支撑结构与无支撑结构的比较支撑系统的主要功能是抵抗侧向力.建筑框架体系可以分为抵抗竖向荷载体系和抵抗水平荷载体系两部分.在某些情况下,竖向承载体系也有一定的抵抗水平荷载的能力.因此,有必要确定两种抗力的来源并比较其抵抗水平作用的能力.但是由于支撑体系是整体结构的一部分,这种区别并不是那么明显.为了比较二者,需要做出一些假设来定义这两种结构.高层建筑高层建筑被唯一的定义为这样一种建筑,其结构导致在设计、施工和使用中出现与一般建筑不同的情况.从结构工程师的角度看,合适的高层建筑结构系统的选择必须满足两个重要条件:强度和刚度.高层建筑结构必须能足以抵抗导致其水平方向剪切变形和倾覆变形的侧向荷载和重力荷载.另一个重要的方面试在结构规划和布置时,必须考虑到关于建筑细节、建筑物服务设施、垂直运输、防火安全以及其他方面的要求.结构体系的效率是通过其抵抗更高的随着框架高度而增加的侧向荷载的能力来衡量.当在一栋建筑物的设计中反映出侧向荷载效应时,就认为它是高层建筑.高层建筑的横向位移必须加以限制,以防止结构构件和非结构构件的是损坏.在常遇的风暴期间,楼顶的加速度应维持在可以接受的限度内,以减少居住者的不舒适感.第八课建筑施工在建筑和土木工程等领域,建设是一个过程,包括基础设施建设或组装。

土木工程专业英语译文1

土木工程专业英语译文1

1Careers in Civil Engineering土木工程专业Engineering is a profession, which means that an engineer must have a specialized university education. (工程是一个专业,这就是说一个工程师必须受过专业的大学教育) Many government jurisdictions also have licensing procedures which require engineering graduates to pass an examination, similar to the bar examination for a lawyer, before they can actively start on their careers. (许多政府行政区还有签发资格认可的程序,要求工科毕业生在充满自信地开始他们的职业生涯以前要通过一次考试,就象律师必须通过律师资格考试一样)In the university, mathematics, physics, and chemistry are heavily emphasized throughout the engineering curriculum, but particularly in the first two or three years. (在大学里,特别是头二、三年,数学、物理、化学时被重点强调的工科课程) Mathematics is very important in all branches of engineering, so it is greatly stressed. (在所有工程分支中数学都非常重要,所以一向特别强调它) Today, mathematics includes courses in statistics, which deals with gathering, classifying, and using numerical data, or pieces of information. (现在数学课程包括统计学,它是一门研究数据、一些信息的收集、分类和使用的课程) An important aspect of statistical mathematics is probability, which deals with what may happen when there are different factors, or variables, that can change the results of a problem. (统计数学的一个重要部分是概率论,他是研究不同因子或变量对问题所产生的各种结果发生的可能性大小的学科) Before the construction of a bridge is undertaken for example,a statistical study is made of the amount of traffic the bridge will be expected to handle. (例如,在建设一座桥梁前,要对它可能承担的交通量进行一次统计研究) In the design of the bridge, variables such as water pressure on the foundation, impact, the effects of different wind forces, and many other factors must be considered. (在设计这座桥梁时,必须考虑到各个变量,如作用于基础上的水压、冲力、不同风力的影响以及许多其它因素)Because a great deal of calculation is involved in solving these problems, computer programming is now included in almost all engineering curricula. (因为解决这些问题需要进行大量的计算,所以目前计算机程序编制已列入几乎所有工科的课程中) Computers, of course, can solve many problems involving calculations with greater speed and accuracy than a human being can. (诚然计算机能比人更快、更精确地解决许多需要计算的问题) But computers are useless they are given clear and accurate instructions and information-in other words, a good program. (但是除非给他们清楚而准确的指令和信息——换而言之,就是编制良好的程序,否则计算机就毫无用处) In spite of the heavy emphasis on technical subjects in the engineering curriculum, a current trend is to require students to take courses in the social science and the language arts. (尽管在工科的课程设置中重点应放在技术科目上,但是当前的一个趋势还是要求学生学习一些社会科学和语言艺术方面的课程) The relationship between engineering and society is getting closer; it is sufficient, therefore, to say again that the work performed by an engineer affects society in many different and important ways that he or she should be aware of. (工程和社会之间的关系越来越密切,因此有充分理由再次提出,一个工程师的工作在所通晓的许多不同而且重要的方面影响着社会) An engineer also needs a sufficient command of language to be able to prepare reports that are clear and, in many cases, persuasive. (一个工程师还需要能自如地运用语言,能写出条理清楚并在许多情况下具有说服力的报告) An engineer engaged in research will need to able to write up his or her findings for scientific publications. (从事科学研究的工程师要能将他(她)的科研成果写成文章提供给科学刊物)The last two years of an engineering program include subjects within the student’s field of specialization. (最后两年的工科教学计划包括学生所学专业领域内的课程) For the student who is preparing to become a civil engineer, these specialized courses may deal with such subjects as geodetic surveying, soil mechanics, or hydraulics. (对将要成为土木工程师的大学生来说,这些专业课程可能涉及到大地测量、土力学或水力学)Active recruiting for engineers often begins before the student’s last year in the university. (现行的工程师招聘往往在大学生最后一年前就开始进行) Many different corporation and government agencies have competed for the services of engineers in recent years. (近年来,许多不同公司和政府机构竞相争取录用工程师) In the science-oriented society of today, people who have technical training are, of course, in demand. (在当今这个重视科学的社会,当然需要受过技术培训的人才) Young engineers may choose to go into environmental or sanitary engineering, for example, where environmental concerns have created many openings; or they may prefer choose construction firms that specialize in highway work,or they may to work with one of the government agencies that deal with water resource. (年轻的工程师可能选择从事环境或卫生工程,例如环境工程专业为他们提供了许多就业机会;他们也可能选择专门从事高速公路工程施工的工程公司,他们可能更愿意到与水资源有关的政府机构工作) Indeed, the choice is large and varied. (事实上,可供选择的机会是广泛的、多样的)When the young engineer has finally started actual practice, the theoretical knowledge acquired in the university must be applied. (当年轻的工程师最终开始实际的业务工作时,肯定要用到大学里学到的理论知识) He or she will probably be assigned at the beginning to work with a team of engineers. (他(她)在开始时可能被派去和一个工程师小组一起工作) Thus, on-the-job training can be acquired that will demonstrate his or her ability to translate theory into practice to the supervisors. (这样,就能获得实际工作的锻炼,使主管人了解他(她)将理论应用于实践的能力)The civil engineer may work in research, design, construction supervision, maintenance, or even in sales or management. (土木工程师可从事研究、设计、施工管理、维修甚至销售或经营工作) Each of these areas involves different duties, different emphases, and different uses of engineer’s knowledge and experience. (这些领域的每一种工作都有不同的职责、不同的重点和工程师的知识和经验的不同应用)Research is one of the most important aspects of scientific and engineering practice. (科学研究是科学和实践最重要的一个方面) A researcher usually works as a member of a team with other scientists and engineers. (一个科研工作者通常是和其它科学家和工程师一道工作,是小组的成员) He or she is often employed in a laboratory that is financed by government or industry. (他(她)往往在一个由政府或工业企业资助的实验室里工作) Areas of research connected with civil engineering include soil mechanics and soil stabilization techniques, and also the development and testing of new structural materials.( 与土木工程有关的研究领域包括土力学、土加固技术,以及新型结构材料的研制和试验)Civil engineering projects are almost always unique; that is, each has own problems and design features. (土木工程设计几乎都具有独特性,那就是各有其特有的问题和设计特点) Therefore, careful study is given to each project even before design work begins. (因此,甚至设计工作还没有开始之前就要对每项工程进行仔细的研究) The study includes a survey both of topography and subsoil features of the proposed site. (这些研究包括对拟建项目场址地形和地基土特征进行勘测) It also includes a consideration of possible alternatives, such as a concrete gravity dam or an earth-fill embankment dam. (研究还包括要考虑各种可供选择的方案,例如是选用混凝土重力坝还是填土堤坝) The economic factors involved in each of the possible alternatives must also be weighed. (对每种可能方案的经济因素也必须权衡) Today, a study usually includes a consideration of the environmental impact of the project. (现在,一项研究工作通常还包括要考虑这个项目对环境的影响) Many engineers, usually working as a team that includes surveyors, specialists in soil mechanics, and experts in design and construction, are involved in making these feasibility studies. (在进行这些可行性研究时要由许多工程师来完成。

土木工程专业英语正文课文翻译

土木工程专业英语正文课文翻译

第一课土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。

此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。

土木一词来源于拉丁文词“公民”。

在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。

自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。

领域。

因为包含范围太广,土木工程学又被细分为大量的技术专业。

不同类型的工程需要多种不同土木工程专业技术。

一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。

岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。

环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。

交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。

同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。

从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。

根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。

贯穿任何给定项目,土木工程师都需要大量使用计算机。

计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。

土木工程英语文献原文及中文翻译

土木工程英语文献原文及中文翻译

Civil engineering introduction papers[英语原文]Abstract: the civil engineering is a huge discipline, but the main one is building, building whether in China or abroad, has a long history, long-term development process. The world is changing every day, but the building also along with the progress of science and development. Mechanics findings, material of update, ever more scientific technology into the building. But before a room with a tile to cover the top of the house, now for comfort, different ideas, different scientific, promoted the development of civil engineering, making it more perfect.[key words] : civil engineering; Architecture; Mechanics, Materials.Civil engineering is build various projects collectively. It was meant to be and "military project" corresponding. In English the history of Civil Engineering, mechanical Engineering, electrical Engineering, chemical Engineering belong to to Engineering, because they all have MinYongXing. Later, as the project development of science and technology, mechanical, electrical, chemical has gradually formed independent scientific, to Engineering became Civil Engineering of specialized nouns. So far, in English, to Engineering include water conservancy project, port Engineering, While in our country, water conservancy projects and port projects also become very close and civil engineering relatively independent branch. Civil engineering construction of object, both refers to that built on the ground, underground water engineering facilities, also refers to applied materials equipment and conduct of the investigation, design and construction, maintenance, repair and other professional technology.Civil engineering is a kind of with people's food, clothing, shelter and transportation has close relation of the project. Among them with "live" relationship is directly. Because, to solve the "live" problem must build various types of buildings. To solve the "line, food and clothes" problem both direct side, but also a indirect side. "Line", must build railways, roads, Bridges, "Feed", must be well drilling water, water conservancy, farm irrigation, drainage water supply for the city, that is direct relation. Indirectly relationship is no matter what you do, manufacturing cars, ships, or spinning and weaving, clothing, or even production steel, launch satellites, conducting scientific research activities are inseparable from build various buildings, structures and build all kinds of project facilities.Civil engineering with the progress of human society and development, yet has evolved into large-scale comprehensive discipline, it has out many branch, such as: architectural engineering, the railway engineering, road engineering, bridge engineering, special engineering structure, water and wastewater engineering, port engineering, hydraulic engineering, environment engineering disciplines. [1]Civil engineering as an important basic disciplines, and has its important attributes of: integrated, sociality, practicality, unity. Civil engineering for the development of national economy and the improvement of people's life provides an important material and technical basis, for many industrial invigoration played a role in promoting, engineering construction is the formation of a fixed asset basic production process, therefore, construction and real estate become in many countries and regions, economic powerhouses.Construction project is housing planning, survey, design, construction of the floorboard. Purpose is for human life and production provide places.Houses will be like a man, it's like a man's life planning environment is responsible by the planners, Its layout and artistic processing, corresponding to the body shape looks and temperament, is responsible by the architect, Its structure is like a person's bones and life expectancy, the structural engineer is responsible, Its water, heating ventilation and electrical facilities such as the human organ and the nerve, is by the equipment engineer is responsible for. Also like nature intact shaped like people, in the city I district planning based on build houses, and is the construction unit, reconnaissance unit, design unit of various design engineers and construction units comprehensive coordination and cooperation process.After all, but is structural stress body reaction force and the internal stress and how external force balance. Building to tackle, also must solve the problem is mechanical problems. We have to solve the problem of discipline called architectural mechanics. Architectural mechanics have can be divided into: statics, material mechanics and structural mechanics three mechanical system. Architectural mechanics is discussion and research building structure and component in load and other factors affecting the working condition of, also is the building of intensity, stiffness and stability. In load, bear load and load of structure and component can cause the surrounding objects in their function, and the object itself by the load effect and deformation, and there is the possibility of damage, but the structure itself has certain resistance to deformation and destruction of competence, and the bearing capacity of the structure size is and component of materials, cross section, and the structural properties of geometry size, working conditions and structure circumstance relevant. While these relationships can be improved by mechanics formula solved through calculation.Building materials in building and has a pivotal role. Building material is with human society productivity and science and technology improves gradually developed. In ancient times, the human lives, the line USES is the rocks andTrees. The 4th century BC, 12 ~ has created a tile and brick, humans are only useful synthetic materials made of housing. The 17th century had cast iron and ShouTie later, until the eighteenth century had Portland cement, just make later reinforced concrete engineering get vigorous development. Now all sorts of high-strength structural materials, new decoration materials and waterproof material development, criterion and 20th century since mid organic polymer materials in civil engineering are closely related to the widely application. In all materials, the most main and most popular is steel, concrete, lumber, masonry. In recent years, by using two kinds of material advantage, will make them together, the combination of structure was developed. Now, architecture, engineering quality fit and unfit quality usually adopted materials quality, performance and using reasonable or not have direct connection, in meet the same technical indicators and quality requirements, under the precondition of choice of different material is different, use method of engineering cost has direct impact.In construction process, building construction is and architectural mechanics, building materials also important links. Construction is to the mind of the designer, intention and idea into realistic process, from the ancient hole JuChao place to now skyscrapers, from rural to urban country road elevated road all need through "construction" means. A construction project, including many jobs such as dredging engineering, deep foundation pit bracing engineering, foundation engineering, reinforced concrete structure engineering, structural lifting project, waterproofing, decorate projects, each type of project has its own rules, all need according to different construction object and construction environment conditions using relevant construction technology, in work-site.whenever while, need and the relevant hydropower and other equipment composition of a whole, each project between reasonable organizing and coordination, better play investment benefit. Civil engineering construction in the benefit, while also issued by the state in strict accordance with the relevant construction technology standard, thus further enhance China's construction level to ensure construction quality, reduce the cost for the project.Any building built on the surface of the earth all strata, building weight eventually to stratum, have to bear. Formation Support building the rocks were referred to as foundation, and the buildings on the ground and under the upper structure of self-respect and liable to load transfer to the foundation of components or component called foundation. Foundation, and the foundation and the superstructure is a building of three inseparable part. According to the function is different, but in load, under the action of them are related to each other, is the interaction of the whole. Foundation can be divided into natural foundation and artificial foundation, basic according to the buried depthis divided into deep foundation and shallow foundation. , foundation and foundation is the guarantee of the quality of the buildings and normal use close button, where buildings foundation in building under loads of both must maintain overall stability and if the settlement of foundation produce in building scope permitted inside, and foundation itself should have sufficient strength, stiffness and durability, also consider repair methods and the necessary foundation soil retaining retaining water and relevant measures. [3]As people living standard rise ceaselessly, the people to their place of building space has become not only from the number, and put forward higher requirement from quality are put car higher demands that the environment is beautiful, have certain comfort. This needs to decorate a building to be necessary. If architecture major engineering constitutes the skeleton of the building, then after adornment building has become the flesh-and-blood organism, final with rich, perfect appearance in people's in front, the best architecture should fully embody all sorts of adornment material related properties, with existing construction technology, the most effective gimmick, to achieve conception must express effect. Building outfit fix to consider the architectural space use requirement, protect the subject institutions from damage, give a person with beautifulenjoying, satisfy the requirements of fire evacuation, decorative materials and scheme of rationality, construction technology and economic feasibility, etc. Housing construction development and at the same time, like housing construction as affecting people life of roads, Bridges, tunnels has made great progress.In general civil engineering is one of the oldest subjects, it has made great achievements, the future of the civil engineering will occupy in people's life more important position. The environment worsening population increase, people to fight for survival, to strive for a more comfortable living environment, and will pay more attention to civil engineering. In the near future, some major projects extimated to build, insert roller skyscrapers, across the oceanBridges, more convenient traffic would not dream. The development of science and technology, and the earth is deteriorating environment will be prompted civil engineering to aerospace and Marine development, provide mankind broader space of living. In recent years, engineering materials mainly is reinforced concrete, lumber and brick materials, in the future, the traditional materials will be improved, more suitable for some new building materials market, especially the chemistry materials will promote the construction of towards a higher point. Meanwhile, design method of precision, design work of automation, information and intelligent technology of introducing, will be people have a more comfortable living environment. The word, and the development of the theory and new materials, the emergence of the application of computer,high-tech introduction to wait to will make civil engineering have a new leap.This is a door needs calm and a great deal of patience and attentive professional. Because hundreds of thousands, even hundreds of thousands of lines to building each place structure clearly reflected. Without a gentle state of mind, do what thing just floating on the surface, to any a building structure, to be engaged in business and could not have had a clear, accurate and profound understanding of, the nature is no good. In this business, probably not burn the midnight oil of courage, not to reach the goal of spirit not to give up, will only be companies eliminated.This is a responsible and caring industry. Should have a single responsible heart - I one's life in my hand, thousands of life in my hand. Since the civil, should choose dependably shoulder the responsibility.Finally, this is a constant pursuit of perfect industry. Pyramid, spectacular now: The Great Wall, the majestic... But if no generations of the pursuit of today, we may also use the sort of the oldest way to build this same architecture. Design a building structure is numerous, but this is all experienced centuries of clarification, through continuous accumulation, keep improving, innovation obtained. And such pursuit, not confined in the past. Just think, if the design of a building can be like calculation one plus one equals two as simple and easy to grasp, that was not for what? Therefore, a civil engineer is in constant of in formation. One of the most simple structure, the least cost, the biggest function. Choose civil, choosing a steadfast diligence, innovation, pursuit of perfect path.Reference:[1] LuoFuWu editor. Civil engineering (professional). Introduction to wuhan. Wuhan university of technology press. 2007[2] WangFuChuan, palace rice expensive editor. Construction engineering materials. Beijing. Science and technology literature press. 2002[3] jiang see whales, zhiming editor. Civil engineering introduction of higher education press. Beijing.. 1992土木工程概论 [译文]摘要:土木工程是个庞大的学科,但最主要的是建筑,建筑无论是在中国还是在国外,都有着悠久的历史,长期的发展历程。

土木工程专业英语完整版本

土木工程专业英语完整版本
他们还要确定合适的材料组合,包括钢材、混凝土、塑料、石头、 沥青、砖、铝及其它建筑材
Most structural engineer work for apartment or public construction and factory constructions.
大多数结构工程师从事公寓建筑、公共建筑和厂房建筑工作。
这些工程师要分析支撑结构和影响结构性能的土壤及岩石的性能。 They evaluate and work to minimize the potential settlement of buildings and other structures, which stems from the pressure of their weight on the earth. 他们评估并采取措施使建筑物和其他结构的重量对地面的压力引 起的潜在的沉降最小化。
工程师们设计并维护港口、水电坝、河流设施,控制水流量,控 制并治理不同的水资源,他们建造坝、水库并把水渠分布到耕地。
Contents
Those engaged in environmental engineering design systems to sanitize water and air, they provide safety drinking water for people and control pollution of water supplies, they help to build water and wastewater treatment plants, dump sites to eliminate hazardous or toxic wastes and prevent pollution of surrounding land.

土木工程专业英语正文课文翻译1.

土木工程专业英语正文课文翻译1.

第一课土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。

此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。

土木一词来源于拉丁文词“公民”。

在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。

自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。

领域。

因为包含范围太广,土木工程学又被细分为大量的技术专业。

不同类型的工程需要多种不同土木工程专业技术。

一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。

岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。

环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。

交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。

同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。

从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。

根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。

贯穿任何给定项目,土木工程师都需要大量使用计算机。

计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。

(完整版)土木工程专业英语课文原文及对照翻译

(完整版)土木工程专业英语课文原文及对照翻译

Civil EngineeringCivil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities.土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities.土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

土木工程专业英语(苏小卒版)翻译

土木工程专业英语(苏小卒版)翻译

第一单元Fundamentally, engineering is an end-product-oriented discipline that is innovative, cost-conscious and mindful of human factors. It is concerned with the creation of new entities, devices or methods of solution: a new process, a new material, an improved power source, a more efficient arrangement of tasks to accomplish a desired goal or a new structure. Engineering is also more often than not concerned with obtaining economical solutions. And, finally, human safety is always a key consideration.从根本上,工程是一个以最终产品为导向的行业,它具有创新、成本意识,同时也注意到人为因素。

它与创建新的实体、设备或解决方案有关:新工艺、新材料、一个改进的动力来源、任务的一项更有效地安排,用以完成所需的目标或创建一个新的结构。

工程是也不仅仅关心获得经济的解决方案。

最终,人类安全才是一个最重要的考虑因素。

Engineering is concerned with the use of abstract scientific ways of thinking and of defining real world problems. The use of idealizations and development of procedures for establishing bounds within which behavior can be ascertained are part of the process.工程关心的是,使用抽象的科学方法思考和定义现实世界的问题。

专业英语【土木工程(路桥方向)】

专业英语【土木工程(路桥方向)】

专业英语English article in Civil Engineering (土木工程专业英语课文)Lesson1Careers in Civil EngineeringEngineering is a profession, which means that an engineer must have a specialized university education. Many government jurisdictions also have licensing procedures which require engineering graduates to pass an examination, similar to the bar examination for a lawyer, before they can actively start on their careers.specialized专门的, 专科的 jurisdiction管辖权,权限 license许可(证),执照 bar 律师业土木工程是一个意味着工程师必须要经过专门的大学教育的职业。

许多政府管辖部门还有(一套)认证程序,这一程序要求工科毕业生在他们能积极地开始(从事)他们的事业之前,通过(认证)考试, 这种考试类似于律师职业里的律师考试一样。

In the university, mathematics, physics, and chemistry are heavily emphasized throughout the engineering curriculum, but particularly in the first two or three years. Mathematics is very important in all branches of engineering, so it is greatly stressed. Today, mathematics includes courses in statistics, which deals with gathering, classifying, and using numerical data, or pieces of information.mathematics n.数学 curriculum n.课程 branch n. (学科)分科 stress 强调 courses n.课程,路线statistics n. 统计学,统计 deal with涉及,处理An important aspect of statistical mathematics is probability, which deals with what may happen when there are different factors, or variables, that can change the results of a problem. Before the construction of a bridge is undertaken, for example, a statistical study is made of the amount of traffic (which) the bridge will be expected to handle. In the design of the bridge, variables such as water pressure on the foundation, impact, the effects of different wind forces, and many other factors must be considered handleundertake vt.承担 amount of traffic n.交通量 impact碰撞,冲击 Variable 变量大学里, 工科课程中着重强调数学、物理, 和化学,尤其在开始的二到三年。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。

此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。

土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。

他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。

此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。

土木一词来源于拉丁文词“公民”。

在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。

自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。

领域。

因为包含范围太广,土木工程学又被细分为大量的技术专业。

不同类型的工程需要多种不同土木工程专业技术。

一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。

岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。

环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。

交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。

同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。

从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。

根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。

贯穿任何给定项目,土木工程师都需要大量使用计算机。

计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。

计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。

结构工程学。

在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。

结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。

他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。

水利工程学。

土木工程师在这一领域主要处理水的物理控制方面的种种问题。

他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。

此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。

岩土工程学。

专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。

他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。

他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。

环境工程学。

在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。

他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。

他们建造供水和废水处理厂,设计空气净化器和其他设备以最小化甚至消除由工业加工、焚化及其他产烟生产活动引起的空气污染。

他们也采用建造特殊倾倒地点或使用有毒有害物中和剂的措施来控制有毒有害废弃物。

此外,工程师还对垃圾掩埋进行设计和管理以预防其对周围环境造成污染。

交通工程学。

从事这一专业领域的土木工程师建造可以确保人和货物安全高效运行的设施。

他们专门研究各种类型运输设施的设计和维护,如公路和街道,公共交通系统,铁路和飞机场,港口和海港。

交通工程师应用技术知识及考虑经济,政治和社会因素来设计每一个项目。

他们的工作和城市规划者十分相似,因为交通运输系统的质量直接关系到社区的质量。

渠道工程学。

在土木工程学的这一支链中,土木工程师建造渠道和运送从煤泥浆(混合的煤和水)和半流体废污,到水、石油和多种类型的高度可燃和不可燃的气体中分离出来的液体,气体和固体的相关设备。

工程师决定渠道的设计,项目所处地区必须考虑到的经济性和环境因素,以及所使用材料的类型——钢、混凝土、塑料、或多种材料的复合——的安装技术,测试渠道强度的方法,和控制所运送流体材料保持适当的压力和流速。

当流体中携带危险材料时,安全性因素也需要被考虑。

建筑工程学。

土木工程师在这个领域中从开始到结束监督项目的建筑。

他们,有时被称为项目工程师,应用技术和管理技能,包括建筑工艺,规划,组织,财务,和操作项目建设的知识。

事实上,他们协调工程中每个人的活动:测量员,布置和建造临时道路和斜坡,开挖基础,支模板和浇注混凝土的工人,以及钢筋工人。

这些工程师也向结构的业主提供进度计划报告。

社区和城市规划。

从事土木工程这一方面的工程师可能规划和发展一个城市中的社区,或整个城市。

此规划中所包括的远远不仅仅为工程因素,土地的开发使用和自然资源环境的,社会的和经济的因素也是主要的成分。

这些土木工程师对公共建设工程的规划和私人建筑的发展进行协调。

他们评估所需的设施,包括街道,公路,公共运输系统,机场,港口,给排水和污水处理系统,公共建筑,公园,和娱乐及其他设施以保证社会,经济和环境地协调发展。

摄影测量,测量学和地图绘制。

在这一专业领域的土木工程师精确测量地球表面以获得可靠的信息来定位和设计工程项目。

这一方面包括高工艺学方法,如卫星成相,航拍,和计算机成相。

来自人造卫星的无线电信号,通过激光和音波柱扫描被转换为地图,为隧道钻孔,建造高速公路和大坝,绘制洪水控制和灌溉方案,定位可能影响建筑项目的地下岩石构成,以及许多其他建筑用途提供更精准的测量。

其他的专门项目。

还有两个并不完全在土木工程范围里面但对训练相当重要的附加的专门项目是工程管理和工程教学。

工程管理。

许多土木工程师都选择最终通向管理的职业。

其他则能让他们的事业从管理位置开始。

土木工程管理者结合技术上的知识和一种组织能力来协调劳动力,材料,机械和钱。

这些工程师可能工作在政府——市政、国家、州或联邦;在美国陆军军团作为军队或平民的管理工程师;或在半自治地区,城市主管当局或相似的组织。

他们也可能管理规模为从几个到百个雇员的私营工程公司。

工程教学。

通常选择教学事业的土木工程师教授研究生和本科生技术上的专门项目。

许多从事教学的土木工程师参与会导致建筑材料和施工方法技术革新的基础研究。

多数也担任工程项目或技术领域的顾问,和主要项目的代理。

第二课建筑物与建筑学建筑物的目的是给人类的活动提供一个遮风挡雨的地方。

从穴居时代到现在,人类的第一需要最基本的就是有一个可以遮风避雨之所。

在一个比较一般的感觉中,建筑物的艺术包含人类试图控制环境和直接自然力以满足需要所取得的所有成就。

除建筑物外,这种艺术还包括大坝,运河,隧道,沟渠和桥。

遮风避雨的建筑物的设计和其他功用的土木工程结构的设计的科学基础原理是相同的。

而只是因为现代社会特定的需要,这两个领域才沿着不同的路径发展。

相似的,关注作为遮风避雨的建筑物的主要营造者也不再是一个单独的个体;相反的是由多个专家组成的小组:规划师,建筑师,工程师和建造者。

一个现代建筑物的实现依赖这个小组集体的智慧。

建筑物的结构是建筑物的功能、环境及各种社会经济因素共同作用的产物。

公寓,办公大楼和学校的不同在于它们实现的功能不同。

公寓的每一个可居住空间如起居室和卧室必须有来自窗户的自然光,而浴室和厨房可以采用人造光源因而可以安排在建筑物内部。

这种必要的设置对公寓的进深必然有限制。

另一方面,对办公大楼而言,人造光源更能达到均匀照明的要求,因此,对自然光的需求不再有建筑物进深的限制。

环境可能影响到建筑物的形状和外观。

城市里的学校通过使用空白的围墙完全的封闭于城市之外,而乡村的学校可能发展成为景观的一个主要部分,即使两者实现同样的功能。

最后,建筑物的结构被各种社会经济因素影响,包括地价,租赁,工程预算,分区限制。

城市的高地价造成高层建筑物,而乡村的低地价造成低的建筑物。

富人的住房建筑计划不同于廉价的住房建筑计划。

有威望的办公大楼的预算将大大地超过其他的办公大楼。

建筑物的大小和外形可能受到分区的限制。

在所有这些例子中,有着相似功能的建筑物常常采用不同的结构。

建筑学是建筑物的艺术。

事实上所有的建筑学都是关于为了人类的使用而围住的空间。

在任何特殊的建筑物中所覆盖的精确活动——广泛到从工厂的一条装配线到一个家庭的起居室——应该规定几个内部区域的大小和形状。

这些空间也必须被安排在彼此合乎一定逻辑的关系中。

此外,在建筑物中的人类活动——建筑学中的说法是“流通”——需要大厅,楼梯和电梯,它们的尺寸受到预期荷载的支配。

建筑物的结构平面图,总是建筑师的第一考虑,是深入实现建筑物意图的空间组织中的这些不同目的的决定。

好的平面组织可以指引访客到达他们的在建筑物中的目的地并且使他们留下印象。

他们也许是下意识地被大厦很显然的各个单元的关联所指引。

相反地,不好的平面组织将带来不便,浪费和视觉混乱。

此外, 一个结构需要很好地被建造。

它应该有结构需要的和被选材料允许的耐久性。

建筑学的未经加工的材料,如石,砖,木,钢或玻璃,部分决定了建筑物的结构并对建筑物进行表达。

石能抵抗压缩,尽管一起压挤的力几乎是不能确定的。

在一个实验室里压碎石是可能,但是对于实际应用,它的抗压强度则是无限的。

另一方面,石在抵抗各向拉力方面是很弱的。

任何空间跨度的梁在支承之间容易向下弯曲,梁的下半区承受拉力。

由于石承受拉力的能力很弱,这种材料的梁相对地比较短, 并且支撑间距比较小。

此外,石柱必须坚固,其高宽比极少超过10。

在石类建筑中,门,窗及柱之间的空间几乎都被迫高大于宽,这源于石的垂直矩形美学。

石在西方世界建筑学中占有如此之高的统治地位,以致,即使在木结构建筑时期其适当的造型一直被妥善保护着,像在美国的乔治王时代。

然后,石借助它本身的构造类型,成为支撑楼板和屋顶的墙,成为承重结构中的密排柱,成为主要承受压力的拱形结构。

木是一种纤维材料,相比其抵抗压力的能力而言,它更易于抵抗拉力。

木制梁可能相对比石制梁长,并且木制柱较细且可以广泛地作一定间隔的排列。

由于木的自然性质常形成宽大于高的水平矩形,这在日本建筑学中常被见到。

钢的抗拉强度也等于或大于其抗压强度。

已经观察过钢结构建筑物建筑过程的任何人一定曾注意到由细的广泛地作一定间距排列的柱及每个楼板的长梁所组成的水平格状矩形。

相关文档
最新文档