最新初中数学命题与证明的易错题汇编含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
根据垂直的性质和平行线的性质,可知“若 , ,那么 ”,是真命题.
故选C.
9.下列命题是真命题的是()
A.若两个数的平方相等,则这两个数相等B.同位角相等
C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角
【答案】C
【解析】
、两边及夹角对应相等的两个三角形全等,是真命题;
故选: .
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果 那么 ”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
B.两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;
C.点 到 轴的距离是2是真命题,故本选项正确;
D.若 ,则 是假命题,正确结果应为 ,故本选项错误.
故选:C.
【点睛】
本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.
∵AD∥BC,
∴∠A+∠B=180°,
∵∠A=∠C,
∴∠C+∠B=180°,
∴AB∥CD,
∴四边形ABCD是平行四边形,故A正确;
B、对角线相等的四边形也可能为等腰梯形,故B错误;
C、一组对边平行且另一组对边相等的四边形也可能为等腰梯形,故C错误;
D、对角线互相垂直平分且相等的四边形是正方形,故D错误.
B.如果a2=9,那么a=3
C.对顶角相等
D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
【答案】C
【解析】
【分析】
首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.
【详解】
解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;
④直角三角形的两个锐角互余;
⑤同角或等角的补角相等.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
【详解】
解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;
命题②两点之间,线段最短,正确,为真命题;
命题③相等的角是对顶角,错误,为假命题;
命题④直角三角形的两个锐角互余,正确,为真命题;
15.下列命题中,假命题是
A.同旁内角互补,两直线平行
B.如果 ,则
C.对应角相等的两个三角形全等
D.两边及夹角对应相等的两个三角形全等
【答案】C
【解析】
【分析】
根据平行线的判定、等式的性质、三角形的全等的判定判断即可.
【详解】
、同旁内角互补,两直线平行,是真命题;
、如果 ,则 ,是真命题;
、对应角相等的两个三角形不一定全等,原命题是假命题;
B、逆命题为:如果a=3,那么a2=9.是真命题;
C、逆命题为:相等的角是对顶角.是假命题;
D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.
故选C.
【点睛】
此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.
4.下列命题是假命题的是()
A.有一个角为 的等腰三角形是等边三角形
【详解】
A、8的立方根是2,正确,是真命题;
B、在函数 的图象中,y随x增大而增大,正确,是真命题;
C、菱形的对角线垂直且平分,故错误,是假命题;
D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,
故选C.
【点睛】
考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.
8.下列命题中是假命题的是().
A.同旁内角互补,两直线平行
B.直线 ,则 与 相交所成的角为直角
C.如果两个角互补,那么这两个角是一个锐角,一个钝角
D.若 , ,那么
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线 ,则 与 相交所成的角为直角”,是真命题;
【解析】
【分析】
根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.
【详解】
A.对顶角相等是真命题,故该选项不合题意,
B.两直线平行,同位角相等,故该选项是假命题,符合题意,
C.同角的余角相等是真命题,故该选项不合题意,
D.全等三角形的面积相等是真命题,故该选项不合题意.
故选:A.
【点睛】
本题考查了平行四边形、矩形、正方形的判定定理,是基础知识要熟练掌握.
17.下列命题中,真命题的序号为()
①相等的角是对顶角;
②在同一平面内,若 , ,则 ;
③同旁内角互补;
④互为邻补角的两角的角平分线互相垂直.
A.①②B.①③C.①②④D.②④
【答案】D
【解析】
【分析】
根据对顶角的性质、平行线的判定、平行线的性质、角平分线的性质判断即可.
命题⑤同角或等角的补角相等,正确,为真命题,
故答案选B.
考点:命题与定理.
11.下列命题中哪一个是假命题( )
A.8的立方根是2
B.在函数y=3x的图象中,y随x增大而增大
C.菱形的对角线相等且平分
D.在同圆中,相等的圆心角所对的弧相等
【答案】Cwk.baidu.com
【解析】
【分析】
利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.
14.下列命题的逆命题是真命题的是()
A.若 ,则
B. 中,若 ,则 是
C.若 ,则
D.四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A、该命题的逆命题为:若|a|=|b|,则a=b,此命题为假命题;
【分析】
正确的命题是真命题,根据定义依次判断即可得到答案.
【详解】
A.若 ,则 ,故A错误;
B.若 ,则a,b中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B错误;
C.两条平行线被第三条直线所截,同位角相等,故C错误;
D.垂直于同一条直线的两条直线平行正确,
故选:D.
【点睛】
此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.
【详解】
①相等的角不一定是对顶角,是假命题;
②在同一平面内,若a∥b,b∥c,则a∥c,是真命题;
③两直线平行,同旁内角互补;是假命题;
④互为邻补角的两角的角平分线互相垂直,是真命题;
故选:D.
【点睛】
此题考查命题的真假判断,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
18.下列说法正确的是( )
12.下列命题中是真命题的是()
A.两个锐角的和是锐角B.两条直线被第三条直线所截,同位角相等
C.点 到 轴的距离是2D.若 ,则
【答案】C
【解析】
【分析】
根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.
【详解】
A.两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;
【详解】
A.两点确定一条直线,正确;
B.两点之间,线段最短,所以B选项错误;
C.等角的余角相等,正确;
D.等角的补角相等,正确.
故选B
考点:定理
7.下列命题中,是真命题的是()
A.若 ,则
B.若 ,则a,b都是正数
C.两条直线被第三条直线所截,同位角相等
D.垂直于同一条直线的两条直线平行
【答案】D
【解析】
16.下列命题是真命题的是()
A.一组对边平行且有一组对角相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.一组对边平行且另一组对边相等的四边形是平行四边形
D.对角线互相垂直且相等的四边形是正方形
【答案】A
【解析】
【分析】
根据平行四边形的判定定理以及矩形、正方形的判定即可逐一判断.
【详解】
解:如下图,若四边形ABCD,AD∥BC,∠A=∠C,
有一个角是 度的等腰三角形是等边三角形;不正确;
等腰三角形的对称轴是顶角的平分线所在的直线,不正确.
正确命题为: 个;
故选:
【点睛】
本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.
3.下列命题中逆命题是假命题的是()
A.如果两个三角形的三条边都对应相等,那么这两个三角形全等
B.等角的余角相等
C.钝角三角形一定有一个角大于
D.同位角相等
【答案】D
【解析】
【分析】
【详解】
解:选项A、B、C都是真命题;
选项D,两直线平行,同位角相等,选项D错误,是假命题,
故选:D.
5.下列命题中,是假命题的是()
A.对顶角相等B.同位角相等
C.同角的余角相等D.全等三角形的面积相等
【答案】B
故选:B.
【点睛】
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
6.下列结论中,不正确的是()
A.两点确定一条直线
B.两点之间,直线最短
C.等角的余角相等
D.等角的补角相等
【答案】B
【解析】
【分析】
根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.
13.下列语句中不正确的是()
A.同一平面内,不相交的两条直线叫做平行线
B.在同一平面内,过一点有且只有一条直线与己知直线垂直
C.如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等
D.角是轴对称图形,它的角平分线是对称轴
【答案】D
【解析】
【分析】
利用平行线的定义、垂直的定义、三角形的全等和轴对称图形分别判断后即可确定正确的选项.
B、该命题的逆命题为:若△ABC是Rt△,则AC2+BC2=AB2,此命题为假命题;
C、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;
D、该命题的逆命题为:菱形的四边相等,此命题为真命题;
故选:D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
最新初中数学命题与证明的易错题汇编含答案
一、选择题
1.下列命题的逆命题成立的是( )
A.对顶角相等
B.全等三角形的对应角相等
C.如果两个数相等,那么它们的绝对值相等
D.两直线平行,同位角相等
【答案】D
【解析】
【分析】
写出各个命题的逆命题,然后判断是否成立即可.
【详解】
解:A、逆命题为相等的角为对顶角,不成立;
A. B. C. D.
【答案】A
【解析】
【分析】
利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.
【详解】
解: 等腰三角形底边的中点到两腰的距离相等;正确;
等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确:
若 与 成轴对称,则 一定与 全等;正确;
D.相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D选项错误,
故选C.
【点睛】
本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.
10.下列命题:
①两条直线被第三条直线所截,同位角相等;
②两点之间,线段最短;
③相等的角是对顶角;
【分析】
根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.
【详解】
A.若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A选项错误;
B.只有两直线平行的情况下,才有同位角相等,故B选项错误;
C.同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;
B、逆命题为对应角相等的三角形全等,不成立;
C、逆命题为绝对值相等的两个数相等,不成立;
D、逆命题为同位角相等,两直线平行,成立,
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够正确的写出各个命题的逆命题,难度不大.
2.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若 与 成轴对称,则 一定与 全等;④有一个角是 度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()
【详解】
A、在同一平面内不相交的两条直线叫做平行线,正确;
B、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确;
C、如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等,正确;
D、角是轴对称图形,它的平分线所在直线是它的对称轴,故错误;
故选:D.
【点睛】
此题考查命题与定理的知识,解题的关键是了解平行线的定义、垂直的定义、三角形的全等和轴对称图形,难度不大.
相关文档
最新文档