分式运算的八种技巧
第一讲 分式运算中的常用技巧
第一讲 分式运算中的常用技巧在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。
现就分式运算中的技巧与方法举例说明。
一、分组通分法: 例1、计算:xy xy x y x y x y x y x y x --+-----+-24352思路点拔:如果我们将四个分式同时通分,运算量较大且容易出错,仔细观察会发现第一、三项,第二、四项分别为同分母分式,因此先将同分母分式相加减,然后再通分,能简化运算。
※例2、计算:500099009999500010050002002250001001122222222+-++-+++-++-k k k (上海市“宇振杯”竞赛题)思路点拔 首尾配对,考查一般情形,把数值计算转化为分式的运算:2500010010000200250001002001005000100500010010020010020010050001005000)100(100)100()100(5000100222222222222222222=+-+-=+--+++-=++--+-+++-=+----++-n n n n n n nn n n n n n n nn n n n n n n n n n 二、整体通分法:例3.化简:21a a --a-1思路点拔:本题是一个分式与整式的加减运算.如能把(-a-1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 三、逐项通分法 例4.计算4214121111xx x x ++++++- 思路点拔 :本题中原所有分式的最简公分母是()()()()241x 1x 1x 1x -+++,若按此通分解答过程的繁琐性就不用说了;如果我们进行分组、分步通分就不会因为出现“庞大”的分子导致在计算中出错;比如,若我们先计算111x 1x+-+,最简公分母为()()1x 1x -+即21x -,则111x 1x +-+2221x 1x 21x 1x 1x +-=+=---,后面的如法炮制,过程清楚,计算简便. 四、先约分,后通分例5.计算:2262a a a a +++22444a a a -++思路点拔 :按常规的解法本题应先找出两个分式分母的最简公分母()2x x 2+后通分,化成同分母的分式后再相加;细心的同学会发现,若把两个分式的分子、分母分解因式后,先约分就已经是同分母了,就“省去”了通分的过程;相比较先约分、再相加显得更为简捷. 五、裂项相加法 例6、 已知122432+--=--+x Bx A x x x ,其中A 、B 为常数,则4A -B 的值为( )(江苏省竞赛题)A .7B .9C .13D .5思路点拨 对等式右边通分,比较分子的对应项系数求出A 、B 的值. 例7、化简:111.....(1)(1)(2)(99)(100)x x x x x x ++++++++. 思路点拔 :本题的多个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a 是整数),联想到111)1()1()1(1+-=+-+=+x x x x x x x x ,这样可抵消一些项. 例8.化简:))(())(())((a c b c ba abc b a c c a b a c b -----------思路点拔 :本题采用通分的方式,计算量大,式子的特点是:每个分式的分子可用分母的两个因式的差表示,如:ca b a c a b a b a c a c a b a c b ---=-----=---11))(()()())((a b c b a b c b c b a b a b c b a c ---=-----=---11))(()()())((bc a c a c b c a c b c a c b c b a ---=-----=---11))(()()())((※例9.化简:222()()()()()()a bcb ac c aba b a c b c b a c a c b ---++++++++.思路点拔 :本题采用通分的方式,计算量大,仔细观察式子的特点,发现每个分式的分母是两个因式的积的形式,可考虑把分子通过添项的方法化成分母的两个因式的和或差的形式,即:ba bc a a c a b a c a b b a a c a b a bc ab ab a c a b a bc a +-+=+++-+=+++-+=++-))(()()())(()()())((22cb ca b b a b c b b a c c b b a b c b ac bc bc b a b c b ac b +-+=+++-+=+++-+=++-))(()()())(()()())((22ac ab c c b c a c b c a a c c b c a c ab ac ac c b c a c ab c +-+=+++-+=+++-+=++-))(()()())(()()())((22六、分式的换元化简 ※例10.化简:)2)(2())(()2)(2())(()2)(2())((z y x x z y z y z x x z y z y x y x y z z y x z y x x z x y +--+--+-+-+--+-++--- 思路点拔:注意到分母与分子的项与项之间的关系,如x -2y+z=(x -y)-(y -z),x+y-2z=(y-z)-(z-x), y+z-2x=(z-x)-(x-y)采用换元法,设x-y=a,y-z=b,z-x=c,原分式可化为:))(())(())((b a a c bca c cb bac b b a ac ---+---+---,再通分,可简化运算。
分式的运算技巧
分式概念形如(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:(A,B,C为整式,且B、C≠0)运算法则约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
分式运算的八种技巧
分式运算综合题1、先化简,再求值:(1-x x -11+x )÷112-x ,其中x=22、先化简,再求值:21+-a a ·12422+--a a a ÷112-a ,其中a 满足a 2-a=12。
3、计算:223y x y x -+-222y x y x -++2232y x yx --。
4、化简:12+x x -1422-+x x ÷1222+-+x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值。
5、已知M=222y x xy -,N=2222y x y x -+,P=224x y xy-,用“+”或“-”连接M ,N ,P 有多种不同的形式,如M+N-P 。
请你任选一种进行计算,并化简求值,其中x :y=5:2。
6、已知abc ≠0且a+b+c=0,求a(b 1+c 1)+b(c 1+a 1)+c(a 1+b1)的值。
7、已知两个式子:A=442-x ,B=21+x +x-21,其中x ≠±2,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B8、已知1<x <2,则式子|2|2--x x -1|1|--x x +xx ||化简的结果是( )A.-1B.1C.2D.39、已知a2+3ab+b2=0(a ≠0,b ≠0),则式子a b +ba= 。
10、已知a 1+b 21=3,则式子b a ab b ab a 634452--+-= 。
11、已知3-x m -2+x n =)2)(3(17+-+x x x ,求m 2+n 2的值。
12、已知a,b 为实数,且ab=1,设M=1+a a +1+b b ,N=11+a +11+b ,试确定M ,N 的大小关系。
13、先化简,再求值:(x-13+x x )÷1222++-x x x ,其中x 满足x 2+x-2=0.14、已知A=(x-3)÷4)96)(2(22-+-+x x x x -1,(1)化简A; 2x-1<x,(2)若x 满足不等式组 且x 为整数,求A 的值。
11.分式的运算
③相同字母的幂取指数最高的。
例
4,(1)
1 2ab2c3d
+
1 3a3b2c
+
1 4a2b2c2
(2)
1+1− x x
1− 1− xy xy
注意:整式与分式的运算,根据题目特点,将整式化为分母为“1”的分式;
例 5:(1)已知: 2m − 5n = 0 ,求下式的值: (1+ n − m ) ÷ (1+ n − m )
m m−n
m m+n
(2)
1+
n m
− −
m 2n
÷
m2
m2 − n2 − 4mn +
4n2
一题多解
例 6:已知:= x2 M− y2
2xy − y2 + x − y x2 − y2 x + y
,则 M
=
________
例 7:
[ (a
1 + b)2
−
(a
1 − b)2
]÷( a
1 +b
−
a
1) −b
11.分式的运算
基础知识 1、分式的定义与意义(变成习惯思维,见到分式想到分母不能为 0)
A
定义:(A、B为整式,B中含有字母,不是系数且B ≠ 0)
B
2x + 2
例 1: 取什么值时试判断 (3x −1)(x +1) 有意义。
2x +1
例 2,当 x 取何值时,分式 1− 1 有意义?
x
2、分式的乘除法法则:注意约分,找公因式
)
D. x x -1
。
7.
(2011
分式运算的常用技巧与方法
分式运算的常用技巧与方法1.分数的乘法和除法:分数的乘法:分数的乘法可以直接将分子和分母相乘。
例如,计算2/3*4/5,可以直接计算出8/15分数的除法:分数的除法可以转化为乘法的逆运算。
例如,计算2/3÷4/5,可以将除法转化为乘法,即2/3*5/4=10/12,再进行约分得到5/62.分数的加法和减法:分数的加法:对于相同分母的分数,直接将分子相加即可;对于不同分母的分数,需要先进行通分,然后再进行相加。
例如,计算2/3+4/5,需要先找到两个分数的最小公倍数(如15),然后进行通分,计算得到10/15+12/15=22/15分数的减法:分数的减法可以转化为加法的逆运算。
例如,计算2/3-4/5,可以将减法转化为加法,即2/3+(-4/5)=10/15+(-12/15)=-2/153.分数的化简:分数的化简即将分数表示成最简形式。
最简形式的分数是指分子和分母没有公共因子,即它们的最大公约数为1、例如,将4/6化简成最简形式,找到最大公约数(如2),然后将分子和分母同时除以最大公约数,得到2/3化简还可以使用质因数分解的方法,将分子和分母分别进行质因数分解,然后约去公共的质因数。
例如,将20/30化简成最简形式,将分子和分母分别进行质因数分解(20=2*2*5,30=2*3*5),然后约去公共的质因数2和5,得到2/34.分数的比较:分数的比较可以通过交叉相乘的方法。
对于两个分数a/b和c/d,可以将它们转换为分数的乘法形式,即a/b和c/d可以写成a*d和b*c。
然后,将乘积进行比较,即比较a*d和b*c的大小。
例如,比较2/3和3/5的大小,可以计算2*5和3*3的大小,得到10和9,所以2/3大于3/55.分数的倒数和相反数:分数的倒数是指分子和分母互换位置,例如,分数3/4的倒数即为4/3、分数的相反数是指分子加上负号,例如,分数3/4的相反数即为-3/46.分式方程的解法:对于含有分式的方程,可以通过通分、化简、消去分母等方法进行求解。
分式运算的常见应用技巧
∴不等式组的解集为-1<x<1,即整数x=0,
则A=-
1. 3
技巧10 整体法求值 12.【中考·齐齐哈尔】先化简,再求值:
1- 2 x
x2-4 x+4 - x+4 ,
x 2-4
x+2
其中x2+2x-15=0.
解:原式= x-2 x
( x-2)2 - x+4 ( x+2)( x-2) x+2
可以用两点法画图象,列表:
x 0 1 描点连线,
y= 3 x 0 3 图象如图
2
2
y=-3x 0 -3 所示.
课堂小结
正比例函数
图象:正比例函数y=kx(k是常数,k≠0)的图象是 一条经过原点的直线,我们称它为直线y=kx. 性质:
当k>0时,直线y=kx经过第一、三象限,从 左向右上升,y随着x的增大而增大;
当k<0时,直线y=kx经过第二、四象限,从 左向右下降,y随着x的增大而减小.
=
x-x 2·xx+ -22
-
x+4 x+2
=
x+2- x+4 x x+2
∵x2+2x-15=0,
( x+2)2-x( x+4)
=
x( x+2)
=
4 x2+2x ,
∴x2+2x=15. ∴原式= 4 .
15
点拨: 本题考查了分式的化简求值,解题关键是掌
握分式的基本运算.先按照分式计算的顺序(先算 乘除,再算加减)化简分式.再根据题目的需要, 灵活运用条件x2+2x-15=0转化整体代入求值.
图). 它也是一条经过原点和第二、第四象限的直线.
感悟新知
知识点 1 正比例函数的图象
知1-讲
分式技巧
一、分式运算的几种技巧1、先约分后通分 例1 计算2312+++x x x +4222--x xx2、分离整数 例2 计算233322+-+-x x x x -657522+-+-x x x x -3412+-x x3、裂项相消 例3 计算)1(1+x x +)3)(1(2++x x +)6)(3(3++x x4、分组通分 例4 计算21-a +12+a -12-a -21+a二、分式方程的特殊解法1、交叉相乘法 例1.解方程:231+=x x2、化归法 例2.解方程:012112=---x x3、左边通分法 例3:解方程:87178=----x x x4、分子对等法 例4.解方程:)(11b a x b b x a a ≠+=+5、观察比较法 例5.解方程:417425254=-+-x x x x6、分离常数法 例6.解方程:87329821+++++=+++++x x x x x x x x7、分组通分法 例7.解方程:41315121+++=+++x x x x三、条件分式求值的常用技巧1、整体代入法例1. 若分式73222++y y 的值为41,则21461y y +-的值为 . 例2. 已知a 1+b 1=4,则bab a b ab a 323434-+-++= 。
例3. 已知a 2-3a+1=0,求142+a a 的值。
2、参数法例4. 已知c z b y a x ==,求证:22ax ca bc ab zx yz xy =++++例5.已知532-==z y x ,求xz y x 232++的值.三、倒数法例6.已知a 1+b 1=61,b 1+c 1=91,a 1+c 1=151,求bc ac ab abc ++的值。
例7.已知,,,0.xy xz yz a b c abc x y x z y z===≠+++且求证ab ac bc abc x -+=2四、主元法例8.已知:2a-3b+c=0,3a-2b-6c=0,且abc ≠0,求2223333242ac c b b a c b a +-+-的值.例9.已知a+b+c=0,a+2b+3c=0,且abc ≠0,求2ab bc ca b++的值.五、变形代入法 例10.(非负变形). 已知:2286250a b a b +-++=,求22222644a ab b a ab b ---+的值.例11.(归类变形). 已知a c c b b a 111+=+=+,且a 、b 、c 互不相等,求证:1222=c b a。
分式的运算技巧
分式概念形如(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:(A,B,C为整式,且B、C≠0)运算法则约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
分式求值的技巧点拨
分式求值的技巧点拨胡伟在分式运算中,常遇到求值问题,这类问题题型多样,技巧性强,若根据题目中分式的结构特点,采用适当方法,则可巧妙获解。
一、巧用配方法求值例1 已知01x 5x 2=+-求44x 1x +的值。
解:由0x 01x 5x 2≠=+-知,由此得5x 1x =+∴2)x1x (x 1x 22244-+=+ 5272]2)x1x [(22=--+= 说明:在求解有关分式中两数(或两式)的平方和问题时,可考虑用完全平方公式进行解答。
二、巧用因式分解法求值例2 先化简,再求值:1n mn )n m n mn n mn 2m n m (22222--+-+--。
其中231m -=,231n +=。
解:原式=1n mn ])n m )(n m ()n m (n )n m (n m [2--++--- n m mn 1n mn n m n 11n mn )n m n n m 1(--=-⋅--=----= ∵23231m --=-=,23231n +-=+=∴1)23)(23(mn -=+---=,4)23()23(n m -=+----=- ∴41n m mn -=--=原式 说明:因式分解法是一种重要的数学方法,解决很多数学问题都要用到它,尤其是在分式化简和分式的四则运算中运用较多。
因此,希望同学们对因式分解的各种方法熟练掌握。
三、巧用整体代入法求值例3 已知3b 1a 1=-,求bab 2a b 2ab 3a 2---+的值。
解:由3b1a 1=-变形得ab 3b a -=-,代入所求式得: 原式ab 2)b a (ab 3)b a (2--+-= 53ab 2ab 3ab3ab 6=--+-=说明:在解答给定条件下求分式的值这类问题时,需要把待求值的分式进行恒等变形,转化成能用已知条件表示的形式,再代入计算,或先把条件进行化简再采用上述方法求值。
四、巧设参数(辅助未知数)求值例4 已知实数x 、y 满足x:y=1:2,则=+-yx y x 3__________。
分式运算的八种技巧
技巧1、直接约分法:
通过公式提公因式,直接约分即可!技巧2、整体通分法:
技巧3:顺次相加法:
先计算前两项,通分化简的结果再和第三项结合计算!技巧4:通分换元法
每个多项式有相同项的时候,可以考虑换技巧5:裂项相消法:
通过把每一项变形,达到与其它项相抵消技巧6:整体带入法
每一项通分整理后,把相同的项整体带入
技巧7:倒数求值法
直接求不方便,可先求其倒数
技巧8:消元法
多个参数计算,可用一个参数表示出其它
分式的基本性质,以及通分、约分都是分式运算的基础!。
分式的运算通分技巧大放送
通分技巧大放送分式运算,一要准确,二要迅速,其中起着关键作用的就是通分. 但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,对于分式的通分,要讲究技巧.下面介绍几种常用的通分技巧.一、逐步通分例1 计算2111111x x x ++++- 分析:此题若采用将各项一起通分后相加的方法,计算量很大.注意到前后分母之间存 在着平方差关系,可逐步通分达到目的.解:原式=221212x x ++-=414x- 评注:若一次通分,计算量太大,利用分母间的递进关系,逐步通分,避免了复杂的计算.依次通分构成平方差公式,采用逐步通分,则可使问题简单化。
二、整体通分例2 计算112+-+a a a 分析 题目中既有分式又有整式,不相统一,我们可以寻求到可以做为整体的部分,那么计算起来就可以简便一些.解:原式=11111)1)(1(1222+=++-=++--+a a a a a a a a a 评注:此题是一个分式与多项式的和,若把整个多项式看作分母为1的分式,再通分相 加,使得问题的解法更简便.三、分裂整数例3. 计算:34452312-----+++-++x x x x x x x x 分析 如果几个分母不同通分时可使用分裂整数法,对分子降次后再通分. 31412111)311()411()211()111(3134********:-+--+-+=-----+++-++=-------++++-+++=x x x x x x x x x x x x x x x x 原式解 )4)(3(1)2)(1(1)3)(4()4(3)2)(1()1(2---++=------+++-+=x x x x x x x x x x x x)4)(3)(2)(1(23127)4)(3)(2)(1()2)(1()4)(3(22--++---+-=--+++----=x x x x x x x x x x x x x x x x )4)(3)(2)(1(1010--+++-=x x x x x 评注:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。
分式运算的常用技巧与方法
分式运算的常用技巧与方法分式运算是数学中常见的运算形式,掌握一些常用的技巧和方法可以帮助我们更快、更准确地进行计算。
以下是一些分式运算的常用技巧和方法:一、化简与约分:化简和约分是分式运算的基本操作,可以简化分式,使其更容易处理。
化简分式的方法有:1.因式分解:将分子和分母同除以其最大公因数,化简为最简形式的分式。
2.合并同类项:对于分子或分母中含有多项的情况,将同类项相加或相减,化简为简单的形式。
3.分解为部分分式:一些分式可以通过分解为部分分式的形式进行化简,如等式两端分别乘以一个分子时。
二、通分:当两个分式的分母不同时,我们需要将分母化为相同的公分母,这个过程称为通分。
通分的方法有:1.找到两个分母的最小公倍数,在分子和分母同时乘上适当的倍数,使得两个分母相等。
2.当两个分式的分母为一次因式的幂指时,可以将较高次幂的分母分解为较低次幂的分母,再进行通分。
三、分式的加减运算:分式的加减运算可以通过通分和合并同类项来进行。
具体的步骤如下:1.找到两个分式的最小公倍数作为通分的分母。
2.将两个分式的分子乘以一个适当的倍数,使得它们的分母相同。
乘上的倍数可以通过最小公倍数与原分母的比值得到。
3.合并同类项,将分子进行相加或相减。
四、分式的乘除运算:分式的乘除运算可以通过相乘或相除的方式进行。
具体的步骤如下:1.乘法:将两个分式的分子相乘,分母相乘,得到新的分子和分母后化简。
2.除法:将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,得到新的分子和分母后化简。
五、分式的倒数和幂运算:分式的倒数就是将分子和分母互换的操作。
分式的幂运算可以通过将分子和分母同时进行幂运算来进行。
六、一些特殊的分式运算:除了以上常见的分式运算方法,还有一些特殊的分式运算,如:1.分式的比较大小:将两个分式的分子和分母相乘后进行比较。
2.分式的求值:将分式中的变量替换为具体的数值进行计算。
分式的运算技巧
分式概念形如(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:(A,B,C为整式,且B、C≠0)运算法则约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
分式的运算技巧
分式概念形如〔A、B是整式,B中含有字母〕的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的根本性质分式的分子和分母同时乘以〔或除以〕同一个不为0的整式,分式的值不变。
用式子表示为:〔A,B,C为整式,且B、C≠0〕运算法那么约分根据分式根本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:单项式或者是几个因式乘积的形式,将它们的公因式约去。
多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法那么:〔1〕两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
用字母表示为:分式的加减法法那么:同分母分式的加减法法那么:同分母的分式相加减,分母不变,把分子相加减。
分式方程解法技巧
分式方程解法技巧要解决分式方程,需要掌握一些解法技巧。
以下是解决分式方程的常见技巧:1.清除分母:如果方程中存在分母,我们可以通过乘以一个适当的数来清除分母。
例如,如果方程中含有:a/b+c/d=e/f我们可以通分,使得方程变为:(a*d+b*c)/(b*d)=e/f或者直接消去分母,得到:a*d+b*c=e*(b*d)/f2.合并同类项:当方程中存在相同的分式项,我们可以将它们合并成一个分式。
例如,如果方程中含有:a/b+c/b=d/b我们可以合并分式项,得到:(a+c)/b=d/b3.变量代换:有时候,我们可以引入一个新的变量来替代原来的分式,从而简化方程。
例如,如果方程中含有:a/b=c/d+e/f我们可以假设y=c/d+e/f,并将方程变为:a/b=y接下来,我们只需要解决新的方程a/b=y,而不需要处理原方程中的复杂分式。
4.乘法法则:如果方程中存在两个分式相乘,我们可以将它们变为一个分式。
例如,如果方程中含有:(a/b)*(c/d)=e/f我们可以将两个分式相乘,得到:(a*c)/(b*d)=e/f5.分式与整数运算:当方程中存在分式与整数的运算,我们可以通过通分来简化方程。
例如,如果方程中含有:a/b=c+d/e我们可以通过通分,得到:(a*e)/b=c*e+d6.分式与分式运算:当方程中存在两个分式相加或相减,我们可以通分来简化方程。
例如,如果方程中含有:a/b+c/d=e/f我们可以通分,得到:(a*d+b*c)/(b*d)=e/f7.求倒数:有时候,我们可以通过求分式的倒数来简化方程。
例如,如果方程中含有:a/b=c/d我们可以将等式两边求倒数,得到:b/a=d/c8.分式的两侧取平方根:当方程中含有平方根时,我们可以通过两侧取平方根来简化方程。
例如,如果方程中含有:√(a/b)=c/d我们可以两侧同时平方,得到:a/b=(c/d)^2然后继续求解得到结果。
这些技巧可以应用于各种类型的分式方程,但是在解题过程中还需要根据具体情况进行判断和使用。
分式运算的若干技巧
分式运算的若干技巧进行分式运算应以分式的性质为基础,根据已知的条件特征和结构特征,克服思维定势,通过适当的变形、转化、沟通等解题手段,找到解题的捷径。
本文介绍几种常见的方法与技巧,供同学们参考。
一. 通分例1. 化简:a a a a 3211---- 解:原式=---++-a a a a a a 321111()()=-+-=-a a a a 331111二. 约分例2. 化简:a a a a a a a a 4323432311-++-++-解:原式=-++-+-++-++a a a a a a a a a a a a 222222111111()()()()()()=---+-=--a a a a a a a a 3232221121()()三. 运用分配律例3. 化简:()()1111112a a a -++-- 解:原式=--++---1111111222a a a a a ()()() =--+--+=--1112122a a a a a四. 倒数法例4. 已知a a +=13,求a a a 2421++的值。
解: a a a a a 42222111++=++ =+-()a a 112=-=3182∴++=a a a 242118五. 降次法例5. 已知a a 2310-+=,求a a 361+的值。
解:由已知,得a a 213+=∴原式=+-+=+-a a a a a a a a 3242322211313()()[()] ==a a 3318118六. 裂项法例6. 计算:113215617122222a a a a a a a a ++++++++++ 解:原式=-+++-+++-+++-+()()()()111111212131314a a a a a a a a =-+=+11444a a a a ()七. 递进通分法例7. 计算:1124822344788a x a x x a x x a x x x a --+-+-++- 解:原式=--+-++-22482222344788x a x x a x x a x x x a=--++-=--+-=448880344344788788788x a x x a x x x a x x a x x a八. 换元法例8. 化简:b a a b b a a b b a a b b a a b b a a b222233332222232++---÷++-()解:设b a x a b y==,,则xy =1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式运算的八种技巧
-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
分式运算综合题
1、先化简,再求值:(1-x x -11+x )÷1
12-x ,其中x=2
2、先化简,再求值:
2
1
+-a a ·12422
+--a a a ÷1
1
2
-a ,其中a 满足a 2-a=12。
3、计算:223y x y x -+-222y x y x -++2
232y
x y
x --。
4、化简:
12+x x -1422-+x x ÷1
22
2+-+x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值。
5、已知M=222y x xy -,N=2222y x y x -+,P=2
24x y xy
-,用
“+”或“-”连接M ,N ,P 有多种不同的形式,如M+N-P 。
请你任选一种进行计算,并化简求值,其中x :y=5:2。
6、已知abc ≠0且a+b+c=0,求a(b 1+c 1)+b(c 1+a 1)+c(a 1+b
1
)的
值。
7、已知两个式子:A=
442-x ,B=21+x +x
-21
,其中x ≠±2,则A 与B 的关系是( )
A.相等
B.互为倒数
C.互为相反数 大于B
8、已知1<x <2,则式子|2|2--x x -1|1|--x x +x
x |
|化简的结
果是( )
A.-1
9、已知a2+3ab+b2=0(a ≠0,b ≠0),则式子a b +b
a
= 。
10、已知a 1+b 21=3,则式子b a ab b
ab a 634452--+-= 。
11、已知3-x m -2+x n
=)
2)(3(17+-+x x x ,求m 2+n 2的值。
12、已知a,b 为实数,且ab=1,设M=1+a a +1
+b b
,N=
11+a +1
1
+b ,试确定M ,N 的大小关系。
13、先化简,再求值:(x-
13+x x )÷1
22
2++-x x x ,其中x 满足x 2+x-2=0.
14、已知A=(x-3)÷4
)
96)(2(22-+-+x x x x -1,(1)化简A;
2x-1<x,
(2)若x 满足不等式组 且x 为整数,求A 的值。
1-
3x <3
4
,
15、计算:21-x -12-x +12+x -2
1+x 。
16、计算:3
22
3223322342b
b a ab a b a ab b a b a b a a ---++-+
17计算:2
12
1111x x x ++
++-
18、计算:
)
2018)(2017(1)2)(1(1)1(11++--++-+-x x x x x x x
19、阅读下面的解题过程:已知
12
+x x =3
1
,求14
2+x x 的值。
解:由12+x x =31
知x ≠0,所以x x 12+=3,即x+x 1
=3.所以241x x +=x 2+2
1x
=(x+x
1)2-2=32
-2=7.故142+x x 的值为
7
1。
该题的解法叫做“倒数法”,请你利用“倒数法”解下面的题目:
已知132+-x x x =5
1
,求12
42++x x x 的值。
20、已知实数a,b,c 满足a+b=ab=c ,有下列结论:
①若c ≠0,则a 1+b
1
=1;②若a=3,则b+c=9;③若
a=b=c ,则abc=0;④若a,b,c 中只有两个数相等,则a+b+c=8。
其中正确的是 (填正确结论的序号)。
21、一个批发零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有学生小明购买铅笔,如果给九年级学生每人买1支,那么只能按零售价付款,需用(m 2-1)元;如果多买60支,那么可按批发价付款,同样需用(m 2-1)元。
设九年级共有x 名学生,解答下列问题:
(1)求x 的取值范围。
(2)每支铅笔的零售价、批发价分别为多少元(用含x,m 的式子表示)
(3)每支铅笔的零售价比批发价贵多少元?
22、计算:(1+x -11)÷12--x x ·2
1
--x x
23、先化简:(12222-+x x x -1222+--x x x x )÷1
+x x
,
然后解答下列问题:
(1)当x=3时,求分式的值.
(2)原分式的值能等于-1吗为什么
24、先化简,再求值:(a a a 222-++4
412+--a a a
) ÷
a a 4
-,其中a 满足a 2-4a-1=0.
25、计算;[
2)(1b a +-2)(1b a -]÷(b
a +1-b
a -1
)。
26、已知x (
y 1+z 1)+y (x 1+z 1)+z (x
1
+y 1)+3=0,且x 1+y 1+z
1
≠0,求x+y+z 的值。
27、已知x 为正整数,且
32+x +x -32+9
1822
-+x x 也为正整数,求所有符合条件的x 的值。
28、已知x+y+z=0,xyz ≠0,求
||z y x ++|
|x z y
++|
|y x z
+的值。