初中数学九年级《和圆有关的比例线段》

合集下载

九年级数学与圆有关的比例线段例题解析(2021年整理)

九年级数学与圆有关的比例线段例题解析(2021年整理)

九年级数学与圆有关的比例线段例题解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学与圆有关的比例线段例题解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学与圆有关的比例线段例题解析(word版可编辑修改)的全部内容。

初三数学同步辅导教材(第16讲)一、教学内容本周主要学习7.12 解决和圆有关的比例线段.二、重点、难点剖析则PBPA =PAPC ,即PD=PB,PA =PC (切线长定理).弄清定理间的相互关系,对于理解、掌握并应用它们解决问题是十分有益,在学习和研究= ;= ;PC = ;=41PD = .=PCPB PA ⋅=567⨯=43(舍去负值)说明(1)为了解题时避免失误,应画个草图,对照条件中的线段,正确使用定理;(2)由于相交弦定理的表达形式是等式,因此解这类题时常设未知数,以建立方程进 行求解;(3)注意区分所求的结论是弦长还是弦的一部分的长.例2 如图,已知:PA 、PC 是⊙O 的切线,A 、C 为切点,割线PDB 交⊙O 于点D 、B .求证:AB△ADAB =CD。

因此,可以用“做做比比"的方法证得结论.AD=PD。

CD=PD。

PD =PD .AD=CD(比比后得出结论2(2) 连结AB 、CM .∵ PA =21PC ,PN =21PC , ∴ ∠PAN =∠PNA 。

又 ∵ ∠MNB =180o-∠PNA ,∠ABM =180o-∠ACM =180o-∠PAN , ∴ ∠MNB =∠ABM . 则 △ABM ∽△BNM ∴BMAM =NMBM ,即 MB 2=MN AM .例5 A 、B 是⊙O 上的两点,过点B 作⊙O 的切线BT ,D 是AB 上的一点,且∠DAB =∠OAB ,AB 的延长线交BT 于点C ,BC =4cm ,CD =2cm .求AB 的长.证法1 连结OB ,则OB ⊥CT 。

九年级数学与圆有关的比例线段(1)

九年级数学与圆有关的比例线段(1)
—————————————。(根据已知条件,结合图形, 编写一道题目)
D
AP
B
C
1、已知,如图,AB是⊙O的弦,P是AB上的一点,AB=10cm,
提 PA=4cm,OP=5cm。求⊙O的半径。 高 练 2、如图⊙O的半径为5cm,OP=8cm,若PC:CD=1:2, 习
求PC的长。
若PC是⊙O的切线呢?
A C
P
E
B
D
巩 固
1.如图:若⊙o的直径AB⊥CD于P,AP=CD=4cm.求 OP的长
练 2. 已知:Rt△ABC的两条直角边AC、BC的长分别为
习 3cm,4cm 以AC为直径作圆与斜边AB交于点D 。求BD的长.
D
A
.P
O
B
第1题 C
B
A D
.O
C
第2题
3、如图,弦AB和CD交于⊙O内一点P,AP=2cm, PB=6cm
C
.O
A
O.
B
p
p
B
E
A
C
D
D
第1题
第2题
O
P
C
已知:如图,AB为⊙O直径,PA切⊙O于A,PCB为⊙O的割线, OM⊥BC,AM交BC于N。
求证:PN2 = PC·PB
A
P
证明:
PA切⊙O于A
O
C ND
B
M PA⊥OA ∠ PAN+∠OAM= 90°
OM⊥BC ∠OMA+∠MND= 90° ∠ANP=∠DNM
和圆有关的比例线段
(复习课)
授课教师: 陈明锋 桥亭乡桥亭中学
2005年12月12日
和圆有关的 比例线段
内容 应用

市北资优九年级分册 第27章 27.7 与圆有关的比例线段+薛琼

市北资优九年级分册 第27章 27.7 与圆有关的比例线段+薛琼

27.7与圆有关的比例线段前面,我们已经学习了和圆有关的角,现在我们通过圆内一点引圆的两条弦,他们之间又有什么关系呢?实际上,它们之间存在着数量关系.如图27.7.1,从⊙O 内一点P 引圆的两条弦AB ,CD ,我们称它们为相交弦,这时,各弦分别被P 点分成两条线段,只要联结AD ,BC ,我们马上发现这四条线段在两个△P AD 和△PBC 中,容易证得,△P AD ∽△PBC ,于是得到了PB PD PC PA =,转化成乘积式后为PD CP PB AP ⋅=⋅,便得到相交两条弦的重要性质.相交弦定理 圆内的两条相交弦,被交点分成的两条线段的积相等.当圆的两条相交的弦在特殊位置时,如图27.7.2,AB 是直径,弦CD ⊥AB ,垂足为点P ,则CP =PD =21CD ,这时2CP PB AP =⋅.也就是说,如果弦和直径垂直相交,那么弦的一半是它分直径所得两条线段的比例中项.再来讨论两条割线相交于圆外一点时的有关比例线段.如图27.7.3,⊙O 的两条割线P AB 、PCD 交于圆外一点P ,得弦AB 、CD 以及有关线段P A 、PB 、PC 、PD .由相交弦定理,能否也有PD CP PB AP ⋅=⋅.类似于相交弦定理的推导,可得同样结论.如图27.7.4,分别联结AD 与BC ,∵∠ADC 与∠ABC 所对的弧是AC ,∴∠ADC =∠ABC .又∵∠P =∠P ,∴△P AD ∽△PCB .∴PBPD PC PA =.∴PD PC PB PA ⋅=⋅. 于是,得到如下定理:割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段的积相等. 如果两条割线中的一条变为切线呢?又能得到什么结论?如图27.7.5,过⊙O 外一点P 引圆的一条割线P AB 和切线PC ,得弦AB 以及有关线段P A 、PB 、PC .它们有怎样的关系呢?如图27.7.6,分别联结AC 与BC .∵∠ACP 与∠ABC 所对的弧是AC ,PC 切⊙O 于点C ,∴∠ACP =∠ABC .又∵∠P =∠P ,∴△P AC ∽△PCB ∴PB PC PC PA =. ∴PB PA PC ⋅=2.于是得到以下定理:切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项. 例1 AB 为⊙0直径,点C 在⊙O 上,过点C 引直径AB 的垂线,垂足为D ,点D 分这条直径为2:3的两部分,如果⊙O 的半径等于5,求BC 的长.解 如图27.7.7,延长CD 交⊙O 于点E ,设AD =2x ,则BD =3x (或AD =3x ,BD =2x ).∵r =5,∴AB =10.∴2x +3x =10.即x =2.∴AD =4(或AD =6).当AD =4时,BD =6;当AD =6时,BD =4.由相交弦定理,得BD AD ED CD ⋅=⋅.∵直径AB ⊥CE .∴CD =ED .∴BD AD CD ⋅=2.∴6264=⨯=CD .当BD =6时,BC =1523624=+;当BD =4时,BC =1021624=+.例 2 已知:如图27.7.8,AE ⊥BC 于点E ,BD ⊥AC 于点D ,AE 、BD 相交于点F ,求证:BD BF AE AF AB ⋅+⋅=2.证明 作△BEF 的外接圆,设圆心为0,交AB 于M .联结FM ,由切割线定理,得AB AM AE AF ⋅=⋅. ∵∠BEF =90°,∴BF 是⊙0的直径.∴∠BMF =∠BDA .∵∠FBM =∠ABD .∴△BMF ∽△BDA . ∴BD BM AB BF =, 即BM AB BD BF ⋅=⋅. ∴2AB BM AB AB AM BD BF AE AF =⋅+⋅=⋅+⋅例3 已知:如图27.7.9,P 是平行四边形ABCD 的边AB 的延长线上一点,DP 与AC 、BC 分别交于点E 、F ,EG 是过B 、F 、P 三点的圆的切线,G 为切点.求证:EG =DE .证明 ∵AD ∥BC ,∴△AED ∽△CEF .∴DE :EF =AE :EC . ①又∵AP ∥DC ,∴△AEP ∽△CED .∴AE :EC =EP :DE . ②由①、②得,DE :EF =EP :DE ;即EP EF DE ⋅=2.而EG 是过B 、F 、P 三点的圆的切线,EFP 为此圆的割线∴EP EF EG ⋅=2.∴22EG DE =.∴DE =EG练习27.7(1)1.如图,⊙0的直径AB =10,P 是OA 上一点,弦MN 过点P ,且AP =2,MP =22,求弦心距OQ .2.已知:如图,AB 是⊙0的直径,P 是⊙0外一点,PD ⊥AB 于D ,交⊙0于E ,P A 交⊙0于C ,BC 交PD 于F .求证:DP DF DE ⋅=2.3.已知:如图,AB 是⊙0的直径,弦CD ⊥AB ,垂足为E ,弦AQ 交CD 于点P .如果AB =10.CD =8,求:(1)DE 的长;(2)AE 的长;(3)AQ AP ⋅的值.4.如图,A 、B 、C 、D 在同一圆上,BC =CD ,AC 、BD 交于E .若AC =8,CD =4,且线段BE 、ED 为正整数,求BD 的长.5.如图,P AB 为过圆心O 的割线,且P A =OA =4,PCD 为⊙0的另一条割线,且PC =DC .求:(1)PC 的长;(2)S △P AC :S △PDB .6.已知:△ABC 是⊙0的内接三角形,∠BAC 的平分线交BC 于D ,交⊙0于E .求证:DC BD AD AC AB ⋅+=⋅2过一点P 做与圆有关的两条直线,点P 与圆的不同位置有两种:当点P 在圆内时,这两条直线分别交圆于A 、B 和C 、D ,则PD PC PB PA ⋅=⋅,这就是相交弦定理,如图27.7.10(1).当点P 在圆外时,分两种情况:(1)这两条直线与圆都有两个交点,分别为A 、B 与C 、D ,则PD PC PB PA ⋅=⋅称作割线定理,如图27.7.10(2)(2)当这两条直线中一条与圆有两个交点,另一条只有一个交点(切点)M 时,得到割线定理:2PM PB PA =⋅相交弦定理、切割线定理及切割线定理的推论(割线定理),我们统称为圆幂定理.圆幂定理在形式上也可以进一步统一.如图27.7.10(3),点P 在圆内时,像所做的虚线那样,联结OP ,过点P 作弦EF ⊥OP ,交圆于E 、F ,由于PE =PF ,故222-OP r PF PF PE PD PC PB PA ==⋅=⋅=⋅,其中r 为⊙0的半径.如图27.7.10(4),点P 在圆外时,联结OM 、ON 、OP ,有222r OP PM PN PM PD PC PB PA -==⋅=⋅=⋅.综上所述,圆幂定理可以统一为|-|22OP r PB PA =⋅.换言之,圆幂定理可叙述为:通过不在⊙0上一定点P 向⊙0任作一直线交⊙0于A 、B 两点,则有|-|22OP r PB PA =⋅(22-OP r 叫做点P 对于⊙0的幂).圆幂定理揭示了园中线段的比例关系,对于涉及相交弦,切割线的有关计算,常可利用圆幂定理去求.例1 如图27.7.11,AB 是⊙0的直径,AC 是⊙0的切线,A 为切点,割线CDF 交AB 于E ,并且CD :DE :EF =1:2:1,AC =4,求⊙0的直径AB .解 设CD =k ,则DE =2k ,EF =k ,CF =4k ,由切割线定理,有CF CD AC ⋅=2. ∴k k 442⋅=,k =2.∴CE =6,DE =4,EF =2.在Rt △ACE 中,由勾股定理, 有52462222=-=-=AC CE AE .根据相交弦定理,得EF DE EB AE ⋅=⋅.∴2452⨯=⋅EB ,554=EB .。

初三数学圆中比例线段知识精讲

初三数学圆中比例线段知识精讲

初三数学圆中比例线段【本讲主要内容】圆中比例线段包括圆中相似三角形,得出成比例线段。

【知识掌握】 【知识点精析】1. 在同圆或等圆中,同弧或等弧所对的圆周角相等。

2. 半圆(或直径)所对的圆周角是直角。

3. 过切点的半径垂直于切线。

4. 相似三角形的判定: (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

【解题方法指导】例1. 已知:如图,AB 是圆O 直径,C 是圆O 上一点,CD ⊥AB 于D 。

求证:(1)AB AD AC 2⋅=; (2)BD BC 2=(3)AD CD 2=分析:由AB 图形”欲证AD AC 2=CD AB BD BC 2⋅=,证明:(1)∵AB 是圆O 直径, ∴∠ACB =90°又CD ⊥AB∴∠ADC =90° ∴∠ACB =∠ADC ∵∠CAD =∠CAB ∴△ABC ∽△ACDADACAC AB =∴AB AD AC AC ⋅=⋅∴即AB AD AC 2⋅= (2)∵AB 是圆O 直径, ∴∠ACB =90° 又CD ⊥AB , ∴∠CDB =90° ∴∠ACB =∠CDB 又∠CBD =∠CBA ∴△ABC ∽△CBDAB BD BC BC BDBCBC AB ⋅=⋅∴=∴即AB BD BC 2⋅= (3)∵AB 是圆O 直径 ∴∠ACB =90° ∵CD ⊥AB∴∠ADC =∠CDB =90° ∠ACD =∠CBD ∴△ACD ∽△CBDCDADBD CD =∴DB AD CD CD ⋅=⋅∴ 即DB AD CD 2⋅=评析:当题目中给出等积式时,通常的办法先改写成比例式,再找出它们所在的两个三角形,通过证它们相似加以解决。

九年级数学奥数知识点专题精讲---和圆有关的比例线段

九年级数学奥数知识点专题精讲---和圆有关的比例线段

知识点、重点、难点在圆中,有相交弦定理、切割线定理及其推论,这些定理统称圆幂定理。

1.相交弦定理:圆内的两条相交弦被交点分成的两条线段长的积相等。

推论:若弦与直径垂直相交,则弦的一半是它分直径所成的两部分的比例中项。

2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段的积相等。

3.与圆有关的比例线段问题的一般思考方法:(1)直接应用圆幂定理; (2)找相似三角形,当证明有关线段的比例式、等积式不能直接运用基本定理时,通常是由“三点定形法”证三角形相似,其一般思路为等积式→比例式→中间比→相似三角形。

圆幂定理用乘积的形式反映了圆内的线段的比例关系,它们之间有着密切的联系,我们应当熟悉以下基本图形。

例题精讲例1:如图,已知⊙1O 与⊙2O 相交于A 、B 两点,过点A 作⊙1O 的切线,交⊙2O 于点C ,过点B 作两圆的割线分别交⊙1O 、⊙2O 于点D 、E ,DE 与AC 相交于点P .当AD 与⊙2O 相切,且PA = 6,PC =2,PD =12时,求AD 的长。

解 连结AB .因为CA 切⊙1O ;于点A ,所以∠1 =∠D .又∠1=∠E ,所以∠D =∠E .又∠2=∠3,所以△APD ∽△CPE ,所以PA PDPC PE=, 即PA ·PE = PC ·PD .因为PA =6,PC =2,PD =12,得6×PE =2×12,得PE =4.由相交弦定理得PE ·PB =PA ·PC ,所以4PB =6×2,得PB =3.所以BD = PD -PB =9,DE =DP +PE =12+4=16.因为DA 切⊙2O 于点A ,所以DA 2= DB ·DE ,即AD 2=9×16,得AD =12.例2:如图,已知圆内接四边形ABCD ,延长AB 、DC 交于E ,延长AD 、BC 交于F ,EM 、FN 为圆的切线,分别以E 和F 为圆心、EM 和FN 为半径作弧,两弧交于K ,求证:EK ⊥FK .证明 连结EF ,过B 、C 、E 三点作圆交EF 于H ,连结CH .因为B 、C 、H 、E 共圆,所以∠1=∠2.因为A 、B 、C 、D 共圆,所以∠1=∠3,于是∠2 =∠3,故D 、C 、H 、F 共圆.由切割线定理得EM 2=EC ·ED =EH ·EF ,FN 2= FC ·FB=FH ·FE ,所以EM 2+FN 2=(EH +FH )·EF =EF 2.又因为EM=EK ,FN=FK ,所以EK 2+FK 2=EF 2.故△EKF 为直角三角形,且∠EKF =90°,即EK ⊥FK .例3:如图,⊙1O 与⊙2O 相交于P 、Q 两点,在公共弦QP 延长线上取一点M ,过M 作两圆割线分别交两圆于A 、B 、C 、D . 求证:.AD BD DMAC CB CM=证明 由切割线定理得MA ·MB = MP ·MQ=MC ·MD ,所以A 、B 、D 、C 四点共圆,可得∠ADB =∠ACB .又11sin ,sin 22ADB ACB S AD BD ADB S AC BC ACB ∆∆=∠=∠,所以.ADB ACB S AD BDS AC BC∆∆=过C 作CG ⊥MB ,垂足为G ,过D 作DH ⊥MB ,垂足为H .所以CG ∥DH ,得△MGC ∽△MHD ,得.A D B A C B S DH DMS CG CM∆∆==所以AD BD AC BC =.DMCM例4:如图,两个同心圆的圆心为O ,大圆的弦AD 交小圆于B 、C ,大 圆的弦AF 切小圆于E ,经过B 、E 的直线交大圆于M 、N,求证:(1) AE 2= BN ·EN ;(2)若AD 经过圆心O ,且AE = EC ,求∠AFC 的度数。

数学培优之圆(九年级)-第5讲-圆中比例线段

数学培优之圆(九年级)-第5讲-圆中比例线段

数学培优之圆(九年级)-第5讲-圆中比例线段知识点归纳角在圆中能灵活转化,为寻找构造相似三角形,得到比例线段提供了可能;而圆幂定理实质上反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段相关。

相交弦定理、切割线定理、割线定理统称为圆幂定理。

1、相交弦定理如图①,若圆内两条弦AB、CD交于点P,则PAPBPCPD。

2、切割线定理如图②,若从圆外一点P引圆的切线TP,和割线PAB,则PTPAPB。

3、割线定理如图③,若从圆外一点P引圆的两条割线PAB、PCD,则PAPBPCPD。

ATCDOPBPAOBCPAOB2D例题精讲【例1】如图,已知AB是o的直径,弦CD与AB交于点E,过点A作圆的切线与CD的延长线交于点F,若DE3CE,AC85,D点为EF的中点,则AB_______.4(全国初中数学联赛题)思路点拨设法求出AE,BE的长,可考虑应用相交弦定理、勾股定理等。

【例2】如图,在平行四边形ABCD中,过A、B、C三点的圆交AD于点E,且与CD相切,若AB4,BE5,则DE的长为()。

A.3B.4C.1516D.45(全国初中数学联赛题)思路点拨连AC、CE,由条件可得许多等线段,为切割线定理的运用创造条件。

【例3】如图,已知o是ABC的外接圆,BC是o的直径,D是劣弧AC 的中点,BD交AC于点E。

(1)求证:ADDEDB;2(2)若BC55,CD,求DE的长。

22(泸州市中考题)思路点拨对于(1),只需证明ADE∽BDA。

图,已知AC为o的直径且PAAC,BC是o的【例4】如一条弦,直线PB交直线AC于点D,DBDC2.DPDO3(1)求证:直线PB是o的切线;(2)求coBCA的值。

(呼和浩特市中考题)思路点拨对于(1),恰当连线,为已知条件的运用创设条件;对于(2)将问题转化求线段的比值。

【例5】如图,BC是半圆O的直径,D是弧AC中点,四边形ABCD的对角线AC、BD交于点E。

与圆有关的比例线段 课件

与圆有关的比例线段 课件

1.如图所示,PA,PB是⊙O的两条切线,A,B为切点, 连接OP交AB于C,连接OA,OB,则图中等腰三角形、直 角三角形的个数分别为( )
A.1,2
B.2,2
C.2,6
D.1,6
【答案】C
2.如图所示,△ABC是圆的内接三角形,∠BAC的平分线 交圆于点D,交BC于点E,过点B的圆的切线与AD的延长 线交于点F.在上述条件下,给出下列四个结论:①BD平 分∠CBF;②FB2=FD·FA;③AE·CE=BE·DE;④ AF·BD=AB·BF.则所有正确结论的序号是( )
【解析】连接 OC,则 OC⊥DE.
又 AD⊥DE,∴AD∥OC.∴OADC=OAEE.
由切割线定理可得 CE2=BE·AE, ∴(2 3)2=BE·(BE+4). 解得 BE=2,∴OE=4,AE=6. ∴AD=OCO·EAE=2×4 6=3.

四条定理统称为圆幂定理,它们之间的相互联系如下: 相交弦定理―弦―交―点―P―拉―到―圆―外→割线定理 割―线―P―AB―绕―P―转―到―相→切切割线定理 割线―P―C―D―再―绕―P―转―到→相切切线长定理.
A.①②
B.③④
C.①②③
D.①②④
【答案】D
3.如图所示,PA 切⊙O 于 A,PBC 是⊙O 的割线,PB=
BC,PA=3 2,那么 BC 的长为( )
A. 3
B.2 3
C.3
D.3 3
【答案】C
证明
【例1】 如图所示,AB是⊙O的直径,过A,
B引两条弦AD和BE,相交于C.
求证:AC·AD+BC·BE=AB2. 【解题探究】 无法在已知圆中利用相关定
理解决问题,可考虑作辅助线构造新圆.
【证明】如图所示,连接AE,BD, 过C作CF⊥AB,与AB交于F. ∵AB是⊙O的直径,∴∠AEB=∠ADB=90°. ∵∠AFC=90°,∴A,F,C,E四点共圆. ∴BC·BE=BF·BA.① 同理可证F,B,D,C四点共圆. ∴AC·AD=AF·AB.② ①+②得AC·AD+BC·BE=AB·(AF+BF)=AB2.

初中数学与圆有关的比例线段

初中数学与圆有关的比例线段

初中数学与圆有关的比例线段
与圆有关的比例线段
《宫长路》
弦切角定理:弦切角等于它所夹的弧所对的圆周角.
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半.
圆心角定理:圆心角的度数等于它所对弧的度数.
推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;反之,相等的圆周角所对的弧也相等.
推论2:半圆(或直径)所对的圆周角是直角;反之,90°的圆周角所对的弦是直径.
——相交弦、切割线、切线长定理
五与圆有关的比例线段
一、下面我们首先沿用从特殊到一般的思路,讨论与圆有关的相交弦的问题. 探究1:如图1,AB 是⊙O 的直径,CD⊥AB,AB 与CD 相交于P,线段PA、PB、PC、PD 之间有什幺关系?
证明:连接AD、BC.
则由圆周角定理的推论可得:∠A=∠C.
∴Rt△APD∽Rt△CPB.
探究2:将图1中的AB 向上(或向下)平移,使AB 不再是直径(如图2),结论(1)还成立吗?
证明:连接AD、BC.
则由圆周角定理的推论可得:∠A=∠C.
∴Rt△APD∽Rt△CPB.。

九年级数学切线长定理、弦切角、和圆有关的比例线段人教版知识精讲

九年级数学切线长定理、弦切角、和圆有关的比例线段人教版知识精讲

九年级数学切线长定理、弦切角、和圆有关的比例线段人教版【本讲教育信息】一. 教学内容:切线长定理、弦切角、和圆有关的比例线段[学习目标]1. 切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2. 切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3. 弦切角、顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4. 弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5. 弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6. 遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7. 与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于PPA·PB=PC·PD 连结AC、BD,证:△APC∽△DPB相交弦定理的推论⊙O 中,AB 为直径,CD ⊥AB 于PPC 2=PA ·PB 用相交弦定理切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA ·PB 连结TA 、TB ,证:△PTB ∽△PAT切割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA ·PB =PC ·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆幂定理⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C ·P'D =r 2-OP'2 PA ·PB =OP 2-r 2 r 为⊙O 的半径延长P'O 交⊙O 于M ,延长OP'交⊙O 于N ,用相交弦定理证;过P 作切线用切割线定理勾股定理证8. 圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数|OP R 22-|(R 为圆半径),因为OP R 22-叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。

与圆有关的比例线段 课件

与圆有关的比例线段  课件
中有三条线段共线,那么一般往往把平方项线段用“等线段”进行代
换.
(3)利用“中间积”代换得到,在证明“等积式”形如a2=bc时,如果其
中有三条线段共线,可以把平方项的线段利用中间积进行代换.
(4)利用“中间比”代换得到,在证明比例线段(不论共线与否),如果
不能直接运用有关定理,可以寻找“中间比”进行代换.
常用到切割线定理.
题型四
切线长定理的应用
【例4】 如图,AB是☉O的直径,C是☉O上一点,过点C的切线与过
A,B两点的切线分别交于点E,F,AF与BE交于点P.
求证:∠EPC=∠EBF.

分析:由切线长定理→EA=EC,FC=FB→ = →CP∥FB→结论

证明:∵EA,EF,FB是☉O的切线,
反思如果已知条件中出现过圆外同一点的圆的割线,那么常用到
割线定理.本题中,利用割线定理列出关于半径r的方程,进而可求出
r的值.
题型三
切割线定理的应用
【例 3】 如图,AB 切☉O 于点 B,ACD 为割线,E为 的中点
, 交于点. 求证: 2 = ·AD.
证明:如图,连接BC,BD.
分析:由于PO既不是☉O的切线,也不是割线,故需将PO延长交
☉O于点D,构成圆的一条割线,而OD又恰好是☉O的半径,于是运用
割线定理解题即可.
解:如图,将PO延长交☉O于D.
根据割线定理,可得PA·PB=PC·PD.
设☉O的半径为r cm,
则6×(6+8)=(10.9-r)(10.9+r),
解得r=5.9,即☉O的半径为5.9 cm.
∵E为 的中点,
∴∠DBE=∠CBE.
又AB是☉O的切线,

九年级数学与圆有关的比例线段

九年级数学与圆有关的比例线段

第32课 与圆有关的比例线段〖知识点〗相交弦定理、切割线定理及其推论 〖大纲要求〗1. 正误相交弦定理、切割线定理及其推论; 2. 了解圆幂定理的内在联系; 3. 熟练地应用定理解决有关问题;4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似 三角形结合的产物。

这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。

使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点;(2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形。

〖考查重点与常见题型〗证明等积式、等比式及混合等式等。

此种结论的证明重点考查了相似三角形,切割线定 理及其推论,相交弦定理及圆的一些知识。

常见题型以中档解答题为主,也有一些出现在选择题或填空题中。

〖预习练习〗1.圆内两弦相交,其中一条弦长为8cm ,且被交点平分,另一条被交点分为1:4两部分,则这条弦长为( )(A )2cm (B )8cm (C )10cm (D )16cm 2.自圆外一点所作过圆心的割线长是12cm ,圆的半径为4cm ,则过此点所引的切线长为( )(A ) 16cm (B )4 3 cm (C )4 2 cm (D )以上答案都不对3.如图,圆内接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交 于E ,则图中相似三角形有( )(A )2对 (B )3对 (C )4对 (D )5对4.圆内两条弦AB 与CD 相交于E ,如果AE =BE ,CE =9,DE =4,那么AB =5.从圆外一点P 向圆引两条割线PAB 、PCD ,分别与圆相交于A 、B 、C 、D ,如果PA =4,PC =3,CD =5,那么AB =6.Rt △ABC 中两条直角边分别为6cm ,8cm ,则外接圆半径为 ,内切圆半径为7.PA 、PB 分别是⊙O 的切线,切点分别为A 、B ,∠AOB =144°,则∠P =考点训练:1.⊙O 中直径CD ⊥弦AB 于E ,AB =6,DE ∶CE =1∶3,则DE 的长为( ) (A) 3 (B) 3 (C) 2 3 (D) 62.由圆外一点作圆的切线长为6,过这点作过圆心的割线长为12,则此圆半径长为( ) (A) 19cm (B) 6cm (C) 4.5cm (D)以上答案都不对3. 如图1,⊙O 的半径为6,PQ =6,AR =8则QR 的长为( ) (A) 9 (B) 10 (C) 11 (D) 124. 如图2,CD 为⊙O 直径,弦AB 垂直CD 于P,AP =4,PD =2,则PO =___.R QA O P 1A BO CD P245. 如图3,PAB 为⊙O 的割线,PC 切⊙O 于C ,PC =10,AB =15,则PA 长为___________.6.如图4,弦AB ⊥弦CD 于E ,若AE =2,BE =6,DE =3,则⊙O 的直径长=________. 7.如图,PAB 为⊙O 的割线,PO 交⊙O 于C ,OP =13,PA =9,AB =7,求⊙O 直径的长.8.如图,P 是⊙O 外一点,PA 切⊙O 于A ,PBC 为⊙O 的割线,求证:AB 2AC 2 =PBPC9.如图,在两圆公共弦AB 上,任取一点G ,过G E,F. 求证:CG ·ED =EG ·CF.解题指导1. 如图,ABCD 是⊙O 的内接四边形,DP∥AC ,交BA 的延长线于P ,求证:AD ·DC =PA·BC.2.如图,锐角△ABC ,以BC 为直径作圆,在AB 上截取AE 交AC 延长线于F ,求证:AE AB = ACAF.3. 如图,若△ABC 的∠A 平分线交BC 于D ,交其外接圆于E ,求证:AD 2=AB ·AC -BD ·CD.r AB C O P P C E4.如图,△ABC 内接于⊙O ,CP 切⊙O 于C ,交AB 延长线于P ,割线PD 交AC 于F ,CB 于E ,且CE =CF , 求证:(1)PD 是∠APC 的平分线,(2)CF 2=AF ·BE.独立训练:1.AB 是⊙O 直径,C 是AB 延长线上一点,CD 切⊙O 于D ,AB =6,CD =4,则CB 的长为( )(A) 2 (B) 83 (C) 23(D) 32.如图1,P 在半圆O 的直径AB 延长线上,且PB =OB =2, PC 切⊙O 于C ,CD ⊥AB 于D ,则CD 的长为( )(A) 2 3 (B) 3 (C) 3 2(D) 4 3 3.如图2,△ABC 中∠A =90°,AC =3,AB =4AB,AC 切于D,E ,则⊙O 半径为( ) (A) 127 (B) 712 (C) 72 (D) 2 34.⊙O 中直径CD 垂直弦AB 于E ,AB =8,DE ∶CE =3∶1,则DE 的长为( ) (A)2 (B)4 (C)2 3 (D)4 3 5.如图3,AB 为⊙O 直径,弦CD ⊥AB 于P ,若CD =a ,AP =b , 则半径R =____.6.如图4,AB 为⊙O 直径,CD 切⊙O 于B ,且BC =BD ,AD 交⊙O 于E ,AB =8,CD =12,则S △CDE =___________.7.如图5,BE 为半圆O 直径,AD 切⊙O 于B ,BC 切 ⊙O 于B ,BE =BC =6,则AD 长为___________. 8.如图6,以直角坐标系的原点O 为圆心作圆,A 是x 轴上一点, AB 切⊙O 于B ,若AB =12,AD =8,则点B 坐标为____________.9.如图,AB 是⊙O 直径,BC 是弦,CD 切⊙O 于C ,AD ⊥CD 交BC 延长线于的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复习相交弦定理:
过P引圆的两条弦C
A 弦和直径垂直时 A
• P
•P
C •P •O D
点在圆内
B
D
PA•PB=PC•PD
B PA²=PB²=PC•PD
定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成
的两条线段的比例中项。
思考:若点P在圆外时,过P引圆的两条直线,则有又会有什 么情况发生?
2、相交弦定理,切割线定理及其推论,经常用于证线段的比 例式或等积式,证明线段相等,角相等,且直线平行或垂直等。
作业:
1、课本P119,习题7、4 A组5、7
课余探索:
在小结中把相交弦定理、切割线定理及其推论(割线定理 )、切线长定理的结论统一为:过一点P(无论点P在圆内,还 是在圆外)的两条直线,与圆相交或相切(把切点看成两个重 合的“交点”)于点A、B、C、D,则PA•PB=PC•PD 。
这点到割线与圆交点的两条线段长的比例中项。
推论:从圆外一点引圆的两条割线,这一点到每条割线与
圆的交点的两条线段长的积相等。(常称之为“割线定理”)
例1、已知:⊙O的割线PAB交⊙O于点A和B,PA=6cm,AB
=8cm,PO=10.9cm,求⊙O的半径。
解:设⊙O的半径为r,PO和它的延
长线交⊙O于C、D。根据切割线定
下面,试探索PA•PB( PC•PD )的值等于什么? (1)若⊙O的弦AB、CD相交于点P,试证明PA•PB=PC•PD = r²–OP².(提示:作过点P的直径) (2)若PA是⊙O的切线,PCD是⊙O的割线,试证明PA²= PC
•PD=OP²–r² (3)若PAB、PCD是⊙O的割线,试证明 PA•PB=PC•PD = OP² –r²(提示:作直线PO)
PP—AC
=
—PPAD,
证明:连结AC、AD。
∠PAC=∠D ∠APC=∠DPA
PP—AC = PP—AD
ΔPAD∽ ΔPCA PA²=PC•PD
思考:当从P点向圆引两条割线时, 则PA•PB=PC•PD是否成立?
(分析:可从P点向圆引一条切线PT, 则有PA•PB,PC•PD都等于PT²)
切割线定理:从圆外一点引圆的切线和割线,切线长是
•P 点P在圆外
A •P
B A
•P C
A •P
C
切线长定理 PA=PB
切线与割线

PA²=PC•PD D B
割线与割线

PA•PB=PC•PD D
A
•P
•O
C
D
切线与割线
T B
A •P
C D
割线与割线
已知:PA切圆O于点A,PCD是割线,C、
D是它与圆O的交点。
求证:PA²=PC•PD
分析:要证PA²=PC•PD,需证 则必先证ΔPAD ∽ ΔPCA。
当A沿数轴移动4个单位到点B时,点B
所表示的实数是( )
A2B -6ຫໍສະໝຸດ C -6或2 D 以上都不对
直接分类法
练习1、商场促销活动中,将标价为 200元的商品,在打8折的基础上,再 打8折销售,现该商品的售价是( ) A 160元 B 128元 C 120元 D 88元
直接计算
2
练8习2、下列与 2 是同类二次根式 的是( 10)
B
AC=BD,AE、BF分别切⊙O于
Γ FC
E、F。求证:AE=BF。
•O
AC
D
B
E
小结:
1、我们已经学习了下列有关的定理和推论:
相交弦定理 CA
•P
BD PA•PB=PC•PD
割线定理
切割线定理
PA•PB=PC•PD PA²=PC•PD
切线长定理 (B)
(D) PA=PC
统一叙述为:过一点P(无论点P在圆内,还是在圆外)的两 条直线,与圆相交或相切(把切点看成两个重合的“交点”)于点 A、B、C、D,则PA•PB=PC•PD 。
下面举例再回顾一下解数学选择题的几种常用方 法,供大家复习时参考,希望对同学们有所启发和帮 助。
一、直接法:
直接根据选择题的题设,通过计算、推理、判断得出正确选项
例1、抛物线y=x2-4x+5的顶点坐标是( A、(-2,1) B、(-2,-1) C、(2,1) D、(2,-1)
)。
类比:点A为数轴上表示-2的动点,
的延长线交于点P,下列结论中成立的是( D )
A
(A)PC•CA=PB•BD (B)CE•AE=BE•ED
C
•P
E •O
(C)CE•CD=BE•BA (D)PB•PD=PC•PA 2、已知:Rt△ABC的两条直角边
B AD
AC、BC的长分别为3cm、4cm。 以AC为直径作圆与斜边AB交于
D •O
点D。求BD的长。 3、如图,线段AB和⊙O交于C、D,
A
128 27
C 12
B 10 D 27
直接变形法
选项变形
练习3 、当a=-1时,代数式(a+1)2+a(a-3) 的值是( )
A -4
B4
C -2
D2
直接代入法
已知代入
练习4、
不等式组
x
2x 3 1 8 2x
的最小整数解是 ( )
A -1 B 0
C2 D3
直接代入法
选项代入
在模拟考试中,有学生大题做得 好,却在选择题上失误丢分,主 要原因有二:
1、复习不够全面,存在知识死角,或者部分
知识点不够清楚导致随便应付;
2、解题没有注意训练解题技巧 ,导致耽误宝
贵的时间。
选择题考查的内容覆盖了初中阶段所学的重要 知识点,要求学生通过计算、推理、综合分析进行判 断,从“相似”的结论中排除错误选项的干扰,找到 正确的选项。部分学生碰到选择题提笔就计算,答题 思维比较“死”,往往耗时过多,如果一个选择题是 "超时"答对的,那么就意味着你已隐性丢分了,因为占 用了解答别的题目的时间.因此,除了具备扎实的基 本功外,巧妙的解题技巧也是必不可少的。
二、排除法:
排除法根据题设和有关知识,排除明显不正确选项,那么剩下
惟一的选项,自然就是正确的选项,如果不能立即得到正确的选 项,至少可以缩小选择范围,提高解题的准确率。排除法是解选 择题的间接方法,也是选择题的常用方法。
已知一次函数y=ax+c与二次函数y=ax2+bx+c,它们在同 一坐标系内的大致图象是( )
B
理的推论,有
A
PA•PB=PC•PD
•P C
•O D ∵PB=PA+AB=14,
PC=10.9–r,
PD=10.9+r, ∴(10.9–r)(10.9+r)=6×14. 取正数解,得 r=5.9(cm). ∴ ⊙O的半径为5.9cm.
练习
1、选择题:如图, ⊙O的两条弦AB、CD相交于点E,AC和DB
相关文档
最新文档