高三第四次月考(数学理)(试题及答案)

合集下载

2023届河南省洛阳市第一高级中学高三9月月考数学(理)试题(解析版)

2023届河南省洛阳市第一高级中学高三9月月考数学(理)试题(解析版)

2023届河南省洛阳市第一高级中学高三9月月考数学(理)试题一、单选题1.已知集合{A x y ==,{}22,B y y x x R ==-+∈,则A B =( )A .(,2]-∞B .[1,2]C .[1,2)D .[1,)+∞【答案】B【解析】转化条件为{}1A x x =≥,{}2B y y =≤,再由集合的交集运算即可得解.【详解】因为{{}1A x y x x ===≥,{}{}22,2B y y x x R y y ==-+∈=≤,所以{}[]121,2A B x x ⋂=≤≤=. 故选:B.【点睛】本题考查了集合的交集运算,考查了运算求解能力,属于基础题. 2.利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C【分析】设3()log 3f x x x =-+,根据当连续函数()f x 满足f (a )f (b )0<时,()f x 在区间(,)a b 上有零点,即方程3log 3x x =-在区间(,)a b 上有解,进而得到答案. 【详解】解:设3()log 3f x x x =-+,当连续函数()f x 满足f (a )f (b )0<时,()f x 在区间(,)a b 上有零点, 即方程3log 3x x =-在区间(,)a b 上有解, 又f (2)3log 210=-<,f (3)3log 33310=-+=>,故f (2)f (3)0<,故方程3log 3x x =-在区间(2,3)上有解,即利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是(2,3). 故选:C . 3.若函数y的定义域为R ,则实数a 的取值范围是( )A .(0,12]B .(0,12) C .[0,12]D .[0,12)【答案】D【分析】根据题意将问题转化为二次型不等式恒成立问题,结合对参数a 的讨论,根据∆即可求得结果.【详解】要满足题意,只需2420ax ax -+>在R 上恒成立即可. 当0a =时,显然满足题意. 当0a >时,只需2Δ1680a a =-<, 解得10,2a ⎛⎫∈ ⎪⎝⎭.综上所述,10,2a ⎡⎫∈⎪⎢⎣⎭故选:D .【点睛】本题考查二次型不等式恒成立求参数范围的问题,属基础题.4.已知公比为q 的等比数列{}n a 前n 项和为n S ,则“1q >”是“{}n S 为递增数列”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要 【答案】D【分析】根据充分条件和必要条件的定义,结合等比数列的性质即可得到结论. 【详解】解:①在等比数列中,若1,2q n >≥时,1n n n S S a --=,当10a <时,110n n a a q -=<,则1n n S S -<,此时{}n S 为递减数列,即充分性不成立; ②若“{}n S 为递增数列”,即2n ≥时,1n n S S ->,则有10n n S S -->,而110n n a a q -=>并不能推得1q >,如111,2a q ==,故必要性不成立, 故“1q >”是“{}n S 为递增数列”的既不充分也不必要条件, 故选:D.5.已知函数()f x 的导函数f x 的图像如图所示,那么函数()f x 的图像最有可能的是( )A .B .C .D .【答案】A【分析】由导函数图象可知原函数的单调区间,从而得到答案.【详解】由导函数图象可知,()f x 在(-∞,-2),(0,+∞)上单调递减, 在(-2,0)上单调递增, 故选:A . 6.函数6()e 1||1xmxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4 C .6 D .与m 值有关【答案】C【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解.【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞,所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.7.函数f (x )的图象与其在点P 处的切线如图所示,则()()11f f -'等于( )A .-2B .0C .2D .4【答案】D【分析】根据图象求出切线斜率和方程,由导数的几何意义和切点在切线上可解. 【详解】由题意,切线经过点(2,0),(0,4),可得切线的斜率为40202k -==--,即()12f '=-,又由切线方程为24y x =-+,令1x =,可得2y =,即()12f =, 所以()()11224f f '-=+=. 故选:D8.若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞【答案】B【分析】求导,导函数在[e,)+∞上恒非负,根据恒成立的问题的办法解决.【详解】()1ln f x x a '=+-,又()f x 在[e,)+∞上单调递增,故()0f x '≥在[e,)+∞上恒成立,而[e,)x ∈+∞时,易见min ()2f x a '=-,只需要20a -≥即可,故2a ≤. 故选:B.9.已知()1xf x e =-(e 为自然对数的底数),()ln 1g x x =+,则()f x 与()g x 的公切线条数( )A .0条B .1条C .2条D .3条【答案】C【分析】设直线l 是()f x 与()g x 的公切线,分别设出切点,分别得出切线方程,根据方程表示同一直线,求出参数即可得到答案.【详解】根据题意,设直线l 与()1xf x e =-相切于点(),1m m e - ,与()g x 相切于点(),ln 1n n +,对于()1x f x e =-,()x f x e '=,则1mk e =则直线l 的方程为()1m my e e x m +-=- ,即(1)1m m y e x e m =+--,对于()ln 1g x x =+,()1g x x'=,则21=k n则直线l 的方程为()()1ln 1y n x n n -+=-,即1ln y x n n=+, 直线l 是()f x 与()g x 的公切线,则()11ln 1m m e n m e n ⎧=⎪⎨⎪-=+⎩, 可得110mm e ,即0m =或1m =则切线方程为:1y ex =- 或y x =,切线有两条. 故选:C10.已知()()11e x f x x -=-,()()21g x x a =++,若存在1x ,2R x ∈,使得()()21f x g x ≥成立,则实数a 的取值范围为( ) A .1,e ∞⎡⎫+⎪⎢⎣⎭B .1,e ∞⎛⎤- ⎥⎝⎦C .()0,eD .1,0e ⎡⎫-⎪⎢⎣⎭【答案】B【分析】原命题等价于max min ()()f x g x ≥,再求max ()f x 和min ()g x 解不等式即得解. 【详解】12R ,x x ∃∈,使得()()21f x g x ≥成立,则max min ()()f x g x ≥,由题得()()111e 1e e x x xf x x x ---=-+-=-',当0x >时,()0f x '<,当0x <时,()0f x '>,所以函数()f x 在(-∞,0)单调递增,在(0,+∞)单调递减, 所以()()max 10ef x f ==,由题得min ()(1)g x g a =-=, ∴1ea ≤故选:B.11.已知函数3,0,()212,0,x x f x x x ⎧≥⎪=⎨-++<⎪⎩若存在唯一的整数..x ,使得03()2x a f x -<-成立,则所有满足条件的整数..a 的取值集合为( ) A .{2,1,0,1,2}-- B .{2,1,0,1}-- C .{1,0,1,2}- D .{1,0,1}-【答案】B【分析】作出()3()g x f x =的图象,由不等式的几何意义:曲线上一点与(),2a 连线的直线斜率小于0,结合图象即可求得a 范围.【详解】令33,0,()3()616,0,x x g x f x x x ⎧≥⎪==⎨-++<⎪⎩作出()g x 的图象如图所示:03()2x a f x -<-等价于()20ax x g --<,表示点()(),x g x 与点(),2a 所在直线的斜率,可得曲线()g x 上只有一个整数点()(),x g x 与(),2a 所在的直线斜率小于0,而点(),2a 在直线2y =上运动,由()20,(1)6,(0)0g g g -=-== 可知当-21a ≤≤-时,只有点()00,满足()20a x x g --<,当01a ≤≤时,只有点()16-,满足()20ax x g --<,当1a >时,至少有()16-,,()13,满足()20ax x g --<,不满足唯一整数点,故舍去, 当2a <-时,至少有()()0020-,,,满足()20ax x g --<,不满足唯一整数点,故舍去, 因为a 为整数,故a 可取2101--,,, 故选:B12.已知6ln1.25a =,0.20.2e b =,13c =,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】A【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1x g x x =--,则()e 1xg x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>, 所以函数()g x 在(),0∞-上递减,在()0,∞+上递增, 所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >, 所以c b >, 综上所述a b c <<. 故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.二、填空题13.已知命题“R x ∀∈,210x ax ++>”是假命题,则实数a 的取值范围为______. 【答案】(,2][2,)-∞-+∞【解析】根据“R x ∀∈,210x ax ++> ”是假命题,得出它的否定命题是真命题,求出实数a 的取值范围.【详解】解:∵命题“R x ∀∈,210x ax ++> ”是假命题, ∴R x ∃∈,210x ax ++≤是真命题, 即R x ∃∈使不等式210x ax ++≤有解; 所以240a ∆=-≥,解得:2a ≤-或2a ≥. ∴实数a 的取值范围是(,2][2,)-∞-+∞. 故答案为:(,2][2,)-∞-+∞.【点睛】本题主要考查根据特称命题与全称命题的真假求参数,考查了一元二次不等式能成立问题,属于基础题.14.已知()f x 为R 上的奇函数,且()()20f x f x +-=,当10x -<<时,()2xf x =,则()22log 5f +的值为______. 【答案】45--0.8【分析】由题设条件可得()f x 的周期为2,应用周期性、奇函数的性质有()2242log 5(log )5f f +=-,根据已知解析式求值即可.【详解】由题设,(2)()()f x f x f x -=-=-,故(2)()f x f x +=,即()f x 的周期为2,所以()22225542log 5(22log )(log )(log )445f f f f +=⨯+==-,且241log 05-<<,所以()24log 5242log 525f +=-=-.故答案为:45-.15.已知函数()1,03,0x x f x x x x ⎧+>⎪=⎨⎪-+≤⎩,若方程()f x a =有三个不同的实数根123,,x x x ,且123x x x <<,则123ax x x +的取值范围是________.【答案】(]1,0-【分析】画出函数图象,数形结合得到a 的取值范围,且23x x a +=,解不等式得到(]11,0x ∈-,从而求出(]11231,0ax x x x =∈-+. 【详解】画出函数()f x 的图象:由函数()f x 的图象可知:10x ≤,23a <≤,令1x a x+=,则210x ax -+=, 所以23x x a +=,令1233x <-+≤,解得:(]11,0x ∈-,所以(]11231,0ax x x x =∈-+. 故答案为:(]1,0-.16.已知函数()()()2log 120kx kf x x k k +=+->,若存在0x >,使得()0f x ≥成立,则k的最大值为______. 【答案】12eln 【分析】由()0f x ≥,可得()()()()121log 1120k x x x k x +++-+≥,同构函数()2log g x x x =,结合函数的单调性,转化为()()2log 11x h x x +=+的最大值问题.【详解】由()()2log 120kx kf x x k +=+-≥,可得()()()()121log 1120k x x x k x +++-+≥ 即()()()()121log 112k x x x k x +++≥+,()()()()11221log 12log 2k x k x x x ++++≥⋅构造函数()2log g x x x =,显然在()1,+∞上单调递增, ∴()112k x x ++≥,即()2log 11x k x +≤+,令()()2log 11x h x x +=+,即求函数的最大值即可,()()()()()222221log 1log log 1ln 211x e x h x x x -+-+'==++, ∴在()1,1e -上单调递增,在()1,e -+∞上单调递减, ∴()h x 的最大值为()11ln 2h e e -= ∴10e 2k ln <≤,即k 的最大值为1e 2ln 故答案为:1e 2ln .三、解答题17.已知(){}23log 212A x x x =-+>,11216x aB x -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.(1)当2a =时,求R A B ⋂;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围. 【答案】(1)R {2A B x x ⋂=<-或46}<≤x (2)0a ≥【分析】(1)先求出,A B ,从而可求R B ,故可求R A B ⋂.(2)根据题设条件可得B A ⊆,从而可求0a ≥.【详解】(1){}2|219{2A x x x x x =-+>=<-或4}x >,当2a =时211{6}216x B x x x -⎧⎫⎪⎪⎛⎫=<=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}R6B x x =≤,所以R {2A B x x ⋂=<-或46}<≤x ,(2)11{4}216x aB x x x a -⎧⎫⎪⎪⎛⎫=<=>+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,由“x A ∈”是“x B ∈”的必要条件得B A ⊆ 所以44+≥a ,解得0a ≥.18.命题p :22430x ax a -+->(0a >),命题q :302x x -<-. (1)当1a =且p q ∧为真,求实数x 的取值范围; (2)若p ⌝ 是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)(2,3) (2)[1,2]【分析】(1)结合已知条件分别化简命题p 和q ,然后由1a =且p q ∧为真即可求解; (2)结合(1)中结论分别求出p ⌝ 和q ⌝,然后利用充分不必要的概念即可求解. 【详解】(1)结合已知条件可知,22430()(3)03x ax a x a x a a x a -+->⇔--<⇔<<, 30(2)(3)0232x x x x x -<⇔--<⇔<<-, 当1a =时,命题p :13x <<,命题q :23x <<, 因为p q ∧为真,所以132323x x x <<⎧⇒<<⎨<<⎩,故求实数x 的取值范围为(2,3).(2)结合(1)中可知,命题p ⌝:x a ≤或3x a ≥,命题q ⌝:2x ≤或3x ≥, 因为p ⌝ 是q ⌝的充分不必要条件,所以{|x x a ≤或3}x a ≥是{|2x x ≤或3}x ≥的真子集,从而0233a a <≤⎧⎨≥⎩且等号不同时成立,解得12a ≤≤,故实数a 的取值范围为[1,2].19.函数()2131log 1x x x f x x x ⎧-≤⎪⎨>⎪⎩+,=,,()2g x x k x =-+-,若对任意的12,R x x ∈,都有()()12f x g x ≤成立.(1)求函数()g x 的最小值; (2)求k 的取值范围. 【答案】(1)|k -2| (2)79,,44⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】(1)根据绝对值的三角不等式,即可得答案.(2)分析可得求max min ()()f x g x ≤即可,根据()f x 解析式,作出图象,结合函数的性质,可得max ()f x ,所以可得|k -2|≥14,根据绝对值不等式的解法,即可得答案. 【详解】(1)因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以min ()2g x k =- (2)对任意的12,R x x ∈,都有()()12f x g x ≤成立,即max min ()()f x g x ≤ 观察f (x )=2131log 1x x x x x ⎧-≤⎪⎨>⎪⎩+,,的图象,结合函数性质可得,当x =12时,函数max 1()4f x = 所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是79,,44⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭20.低碳环保,新能源汽车逐渐走进千家万户.新能源汽车采用非常规的车用燃料作为动力来源,目前比较常见的主要有两种:混合动力汽车、纯电动汽车.为了提高生产质量,有关部门在国道上对某型号纯电动汽车进行测试,国道限速80km/h.经数次测试,得到纯电动汽车每小时耗电量Q (单位:wh )与速度x (单位:km/h )的数据如下表所示: x 0 10 40 60 Q132544007200为了描述该纯电动汽车国道上行驶时每小时耗电量Q 与速度x 的关系,现有以下三种函数模型供选择:①3211()40=++Q x x bx cx ;②22()10003⎛⎫=-+ ⎪⎝⎭xQ x a ;③3()300log a Q x x b =+.(1)当080x ≤≤时,请选出你认为最符合表格中所列数据的函数模型(需说明理由),并求出相应的函数表达式;(2)现有一辆同型号纯电动汽车从A 地行驶到B 地,其中,国道上行驶30km ,高速上行驶200km.假设该电动汽车在国道和高速上均做匀速运动,国道上每小时的耗电量Q 与速度x 的关系满足(1)中的函数表达式;高速路上车速v (单位:km/h )满足[80,120]v ∈,且每小时耗电量N (单位:wh )与速度v (单位:km/h )的关系满足()()221020080120N v v v v =-+≤≤.则当国道和高速上的车速分别为多少时,该车辆的总耗电量最少,最少总耗电量为多少? 【答案】(1)选①,理由见解析;321()215040=-+Q x x x x (2)高速上的行驶速度为80km/h ,在国道上的行驶速度为40km/h ;33800wh【分析】(1)判断③、②不符合题意,故选①,再利用待定系数法求解即可. (2)根据已知条件,结合二次函数的性质,以及对勾函数的性质进行求解. 【详解】(1)解:对于③3()300log a Q x x b =+,当0x =时,它无意义,故不符合题意,对于②,22()1000()3x Q x a =-+,()0220100003Q a ⎛⎫=-+= ⎪⎝⎭,解得999a =-,则22()13x Q x ⎛⎫=- ⎪⎝⎭,当10x =时,()02121013Q ⎛⎫=- ⎪⎝⎭,又100122033<⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝=⎭,所以()021210131Q ⎛⎫=- ⎪⎭<⎝,故不符合题意,故选①3211()40=++Q x x bx cx , 由表中数据,可得323211010101325401404040440040b c b c ⎧⨯+⨯+⨯=⎪⎪⎨⎪⨯+⨯+⨯=⎪⎩,解得2150b c =-⎧⎨=⎩,321()215040Q x x x x ∴=-+. (2)解:高速上行驶200km ,所用时间为200h v, 则所耗电量为2200200100()()(210200)400()2000f v N v v v v v v v=⋅=⋅-+=+-,由对勾函数的性质可知,()f v 在[80,120]上单调递增,min 100()(80)400(80)200030500wh 80f v f ∴==⨯+-=, 国道上行驶30km ,所用时间为30h v, 则所耗电量为322303013()()(2150)604500404g v Q v v v v v v v v =⋅=⋅-+=-+, 080v ≤≤,∴当40v =时,min ()(40)3300wh g x g ==,∴当这辆车在高速上的行驶速度为80km /h ,在国道上的行驶速度为40km/h 时,该车从A 地行驶到B 地的总耗电量最少,最少为30500330033800wh +=. 21.已知函数()ln af x x b x x=--. (1)若函数()f x 在1x =处的切线是10x y +-=,求a b +的值; (2)当1a =时,讨论函数()f x 的零点个数. 【答案】(1)4a b +=(2)当2b ≤时,()f x 在()0,∞+上有且只有1个零点,当2b >时,()f x 在()0,∞+上有3个零点.【分析】(1)利用导数的几何意义即可求解;(2)由(1)知()1ln f x x b x x =--,求导()221x bx f x x -+'=,分类讨论22b -≤≤,2b <-和2b >时,利用导数研究函数的单调性,进而得出函数的零点.【详解】(1)∵切点()()1,1f 也在切线10x y +-=上,∴1110a -+-=,即1a =. 函数()ln a f x x b x x =--,求导()21a bf x x x'=+-, 由题设知()111f a b =+-=-',即3b =, ∴4a b +=.(2)当1a =时,()1ln f x x b x x =--,0x >求导()222111b x bx f x x x x -+'=+-=. ①当22b -≤≤时,二次函数210x bx -+≥恒成立,即()0f x '≥在()0,x ∈+∞上恒成立,()f x 在()0,∞+上单调递增, 又()10f =,故()f x 在()0,∞+上有且只有1个零点.②当2b <-时,方程210x bx -+=有两个不同的根,设12,x x ,此时120x x b +=<,1210x x =>,即10x <,20x <,()0f x '>在()0,x ∈+∞上恒成立,()f x 在()0,∞+上单调递增,故()f x 在()0,∞+上有且只有1个零点.③当2b >时,方程210x bx -+=有两个不同的根,设12,x x , 此时120x x b +=>,1210x x =>,即1201x x <<<, 当10x x <<时,()0f x '>,()f x 在()10,x 上单调递增; 当12x x x <<时,()0f x '<,()f x 在()12,x x 上单调递减; 当2x x >时,()0f x '>,()f x 在()2,x +∞上单调递增. 又()()()1210f x f f x >=>,所以21111e ln e 0e ee e bb bb b bf b b ⎛⎫=--=-+< ⎪⎝⎭在()2,b ∈+∞上恒成立, 所以()f x 在()10,x 上有且只有1个零点.又()10f =,故()f x 在()12,x x 上有且只有1个零点.又()2111e e ln e e 0e e e b bb b b b b f b b f ⎛⎫=--=--=-> ⎪⎝⎭在()2,b ∈+∞上恒成立, 故()f x 在()2,x +∞上有且只有1个零点.综上所述,当2b ≤时,()f x 在()0,∞+上有且只有1个零点,当2b >时,()f x 在()0,∞+上有3个零点.22.已知函数()()2ln 211f x x ax a x a =+-+++,其中R a ∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)设()()g x f x '=,求函数()g x 在区间[]1,2上的最小值 (3)若()f x 在区间[]1,2上的最大值为2ln21-,直接写出a 的值. 【答案】(1)0y = (2)详见解析 (3)ln 2【分析】(1)求导求切线方程;(2)求导,含参讨论求最值;(3)求导判断单调性验证成立即可【详解】(1)()()2ln 211f x x ax a x a =+-+++,则()10f =()()1221f x ax a x'=+-+,则()10k f '== 则曲线()y f x =在点()1,0处的切线方程为0y = (2)()()1()221g x f x ax a x'==+-+,[]1,2x ∈ 则222121()2ax g x a x x-'=-+=,[]1,2x ∈ ①当0a ≤时,2221()0ax g x x -'=<,则()g x 在[]1,2上单调递减,()g x 在[]1,2上的最小值为()11(2)421222g a a a =+-+=-②当108a <≤时,由[]1,2x ∈,可得2281ax a ≤≤,则2221()0ax g x x-'=≤ 则()g x 在[]1,2上单调递减,()g x 在[]1,2上的最小值为1(2)22g a =-③当1182a <<时,222221()a x x ax g x x x ⎛ -⎝⎭⎝⎭'==,[]1,2x ∈当1x ≤<()0g x '<,()g x 单调递减;2x ≤时,()0g x '>,()g x 单调递增则当x =()g x取最小值()2211)1g a a =+=- ④当12a ≥时,由[]1,2x ∈,可得2221ax a ≥≥,则2221()0ax g x x -'=≥则()g x 在[]1,2上单调递增,()g x 在[]1,2上的最小值为(1)0g = (3)ln 2a =,理由如下:此时,函数()()2ln 211ln 2ln 2ln 2f x x x x =+-+++,[]1,2x ∈则()()()ln 21(1)ln 2ln 221221x f x x x xx '-+--=+= 由[]1,2x ∈,可得ln 2ln 2ln 4122x ≥=>,10x -≥,0x > 则()()ln 21(120)x f x x x--'=≥,则()f x 在[]1,2单调递增.则()f x 在[]1,2上的最大值为()()ln 2ln 2ln 2ln 212ln2422112f =-+++=-+。

2024学年江苏省南通市启东市启东中学高三4月考数学试题文试题

2024学年江苏省南通市启东市启东中学高三4月考数学试题文试题

2024学年江苏省南通市启东市启东中学高三4月考数学试题文试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A .72种B .36种C .24种D .18种2.已知点()2,0A 、()0,2B -.若点P 在函数y x =的图象上,则使得PAB △的面积为2的点P 的个数为( ) A .1 B .2 C .3 D .43.已知集合{}{}2340,13A x x x B x x =-->=-≤≤,则R ()A B =( )A .()1,3-B .[]1,3-C .[]1,4-D .()1,4- 4.设集合{|3}{|02}A x x B x x x =<=,或,则A B ⋂=( )A .()0-∞,B .()23,C .()()023-∞⋃,, D .()3-∞, 5.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4 6.已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a b a b b a b ⎧=⎨<⎩,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫ ⎪⎝⎭内的图象是( ) A . B .C .D .7.已知i 是虚数单位,则复数24(1)i =-( ) A .2i B .2i - C .2 D .2- 8.在ABC 中,角、、A B C 的对边分别为,,a b c ,若tan 2sin()a B b B C =+.则角B 的大小为( )A .π3B .π6C .π2 D .π49.若i 为虚数单位,则复数22sin cos 33z i ππ=-+的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.若函数()ln f x x =满足()()f a f b =,且0a b <<,则2244 42a b a b+-+的最小值是( ) A .0 B .1 C .32 D .2211.某公园新购进3盆锦紫苏、2盆虞美人、1盆郁金香,6盆盆栽,现将这6盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种A .96B .120C .48D .7212.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以A 、B 、C 、D 、E 为顶点的多边形为正五边形,且512PT AP -=,则512AT ES --=( )A 51+B 51+C 51RD - D 51RC - 二、填空题:本题共4小题,每小题5分,共20分。

2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题

2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题

2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题 请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 满足2(13)(1)i z i +=+,则||z =( ) ABCD2.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,抛物线22(0)y px p =>的焦点坐标为(1,0),若e p =,则双曲线C 的渐近线方程为( )A.y = B.y =±C.y x = D.2y x =± 3.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x=- 4.一个正四棱锥形骨架的底边边长为2,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )A. B .4π C. D .3π5.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .36. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A.75 B.65 C.55 D.457.函数cos()cosx xf xx x+=-在[2,2]ππ-的图象大致为A.B.C.D.8.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月份C.1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元9.已知15455,log 5,log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .c b a >> 10.已知集合{}10,1,0,12x A xB x -⎧⎫=<=-⎨⎬+⎩⎭,则A B 等于( ) A .{}11x x -<<B .{}1,0,1-C .{}1,0-D .{}0,1 11.已知复数11i z i +=-,则z 的虚部是( ) A .i B .i - C .1- D .112.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥二、填空题:本题共4小题,每小题5分,共20分。

宁夏回族自治区银川一中2023-2024学年高三上学期第四次月考理科数学试题(解析版)

宁夏回族自治区银川一中2023-2024学年高三上学期第四次月考理科数学试题(解析版)

银川一中2024届高三年级第四次月考数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{05}A xx =<<∣,104x B x x ⎧⎫+=≤⎨⎬-⎩⎭,则A B = ()A.[]1,4- B.[)1,5- C.(]0,4 D.()0,4【答案】D 【解析】【分析】由分式不等式的解法,解出集合B ,根据集合的交集运算,可得答案.【详解】由不等式104x x +≤-,则等价于()()1404x x x ⎧+-≤⎨≠⎩,解得14x -≤<,所以{}14B x x =-≤<,由{}05A x x =<<,则{}04A B x x ⋂=<<.故选:D.2.复平面上,以原点为起点,平行于虚轴的非零向量所对应的复数一定是()A.正数 B.负数C.实部不为零的虚数D.纯虚数【答案】D 【解析】【分析】根据向量的坐标写出对应复数,然后判断即可.【详解】由题意可设()()0,0OZ a a =≠,所以对应复数为()i 0a a ≠,此复数为纯虚数,故选:D.3.已知某几何体的三视图如图所示,则该几何体的体积为()A.20B.32C.203D.323所以该几何体的体积为【答案】D 【解析】【分析】先根据几何体的三视图得出该几何体的直观图,再由几何体的特征得出几何体的体积.【详解】解:如图,根据几何体的三视图可以得出该几何体是底面为矩形的四棱锥E -ABCD ,该几何体的高为EF ,且EF =4,13224433E ABCD V -=⨯⨯⨯=,故选:D.4.“不以规矩,不能成方圆”出自《孟子·离娄章句上》.“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的方尺,是古人用来测量、画圆和方形图案的工具.敦煌壁画就有伏羲女娲手执规矩的记载(如图(1)).今有一块圆形木板,以“矩”量之,如图(2).若将这块圆形木板截成一块四边形形状的木板,且这块四边形木板的一个内角α满足3cos 5α=,则这块四边形木板周长的最大值为()A.20cmB.C. D.30cm【答案】D 【解析】【分析】作出图形,利用余弦定理结合基本不等式可求得这个矩形周长的最大值.【详解】由题图(2)cm =.设截得的四边形木板为ABCD ,设A α∠=,AB c =,BD a =,AD b =,BC n =,CD m =,如下图所示.由3cos 5α=且0πα<<可得4sin 5α=,在ABD △中,由正弦定理得sin aα=,解得a =在ABD △中,由余弦定理,得2222cos a b c bc α=+-.,所以,()()()()222222616168055545b c b c b c bc b c b c ++=+-=+-≥+-⨯=,即()2400b c +≤,可得020b c <+≤,当且仅当10b c ==时等号成立.在BCD △中,πBCD α∠=-,由余弦定理可得()222226802cos π5a m n mn m n mn α==+--=++()()()()22224445545m n m n m n mn m n ++=+-≥+-⨯=,即()2100m n +≤,即010m n <+≤,当且仅当5m n ==时等号成立,因此,这块四边形木板周长的最大值为30cm .故选:D.5.若13α<<,24β-<<,则αβ-的取值范围是()A.31αβ-<-<B.33αβ-<-<C.03αβ<-<D.35αβ-<-<【答案】B 【解析】【分析】利用不等式的性质求解.【详解】∵24β-<<,∴04β≤<,40β-<-≤,又13α<<,∴33αβ-<-<,故选:B.6.已知向量(1,1)a = ,(,1)b x =- 则“()a b b +⊥”是“0x =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据题意,利用向量垂直的坐标表示,列出方程求得0x =或=1x -,结合充分条件、必要条件的判定方法,即可求解.【详解】由向量(1,1)a = ,(,1)b x =-,可得(1,0)a b x +=+r r ,若()a b b +⊥,可得()(1)0a b b x x +⋅=+= ,解得0x =或=1x -,所以()a b b +⊥是0x =的必要不充分条件.故选:B.7.“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,它在很多特殊领域发挥了超常的贡献值.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形(如图所示).现以边长为4的正三角形作一个“莱洛三角形”,则此“莱洛三角形”的面积为()A.8π-B.8π-C.16π-D.16π-【答案】A 【解析】【分析】求出正三角形的面积和弓形的面积,进而求出“莱洛三角形”的面积.【详解】正三角形的面积为21π4sin 23⨯=圆弧的长度为π4π433l =⨯=,故一个弓形的面积为18π423l ⨯-=-,故“莱洛三角形”的面积为8π38π3⎛-+=- ⎝.故选:A8.若数列{}n a 满足11a =,1121n n a a +=+,则9a =()A.10121- B.9121- C.1021- D.921-【答案】B 【解析】【分析】根据题意,由递推公式可得数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,即可得到数列{}n a 的通项公式,从而得到结果.【详解】因为11a =,1121n n a a +=+,所以111121n n a a +⎛⎫+=+ ⎪⎝⎭,又1112a +=,所以数列11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,所以112n n a +=,即121n n a =-,所以99121a =-.故选:B9.如图,圆柱的轴截面为矩形ABCD ,点M ,N 分别在上、下底面圆上,2NB AN =,2CM MD =,2AB =,3BC =,则异面直线AM 与CN 所成角的余弦值为()A.10B.4C.5D.20【答案】D 【解析】【分析】作出异面直线AM 与CN 所成角,然后通过解三角形求得所成角的余弦值.【详解】连接,,,,DM CM AN BN BM ,设BM CN P ⋂=,则P 是BM 的中点,设Q 是AB 的中点,连接PQ ,则//PQ AM ,则NPQ ∠是异面直线AM 与CN 所成角或其补角.由于 2NB AN =, 2CMDM =,所以ππ,36BAN NBA ∠=∠=,由于2AB =,而AB 是圆柱底面圆的直径,则AN BN ⊥,所以1,AN BN ==,则122AM PQ AM ====,12CN PN CN ====,而1QN =,在三角形PQN中,由余弦定理得1010313144cos 20NPQ +-+-∠==.故选:D10.已知n S 是等差数列{}n a 的前n 项和,且70a >,690a a +<则()A.数列{}n a 为递增数列B.80a <C.n S 的最大值为8SD.140S >【答案】B 【解析】【分析】由70a >且78690a a a a +=+<,所以80a <,所以公差870d a a =-<,所以17n ≤≤时0n a >,8n ≥时0n a <,逐项分析判断即可得解.【详解】由70a >且78690a a a a +=+<,所以80a <,故B 正确;所以公差870d a a =-<,数列{}n a 为递减数列,A 错误;由0d <,70a >,80a <,所以17n ≤≤,0n a >,8n ≥时,0n a <,n S 的最大值为7S ,故C 错误;114147814()7()02a a S a a +==+<,故D 错误.故选:B11.银川一中的小组合作学习模式中,每位参与的同学都是受益者,以下这道题就是小组里最关心你成长的那位同桌给你准备的:中国古代数学经典《九章算术》系统地总结了战国秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD =,1ED =,若鳖臑P ADE -的外接球的体积为3,则阳马P ABCD -的外接球的表面积等于()A.15πB.16πC.17πD.18π【答案】C 【解析】【分析】因条件满足“墙角”模型,故可构建长方体模型求解外接球半径,利用公式即得.【详解】如图,因PA ⊥平面ABCE ,AD DE ⊥,故可以构造长方体ADEF PQRS -,易得:长方体ADEF PQRS -的外接球即鳖臑P ADE -的外接球,设球的半径为1R ,PA x =,由12PE R ==,且314π33R =,解得:1R =, 3.x =又因四边形ABCD 为正方形,阳马P ABCD -的外接球即以,,PA AB AD为三条两两垂直的棱组成的正四棱柱的外接球,设其半径为2R22R ==,解得:2172R =故阳马P ABCD -的外接球的表面积为2224π4π(17π.2R =⨯=故选:C.12.若曲线ln y x =与曲线22(0)y x x a x =++<有公切线,则实数a 的取值范围是()A.(ln 21,)--+∞B.[ln 21,)--+∞C.(ln 21,)-++∞D.[ln 21,)-++∞【答案】A 【解析】【分析】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,然后利用导数的几何意义表示出切线方程,则可得21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,再构造函数,然后利用导数可求得结果.【详解】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,由()ln f x x =,得1()f x x '=,所以公切线的斜率为11x ,所以公切线方程为1111ln ()-=-y x x x x ,化简得111(ln 1)y x x x =⋅+-,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,由2()2(0)g x x x a x =++<,得()22g x x '=+,则公切线的斜率为222x +,所以公切线方程为22222(2)(22)()y x x a x x x -++=+-,化简得2222(1)y x x x a =+-+,所以21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,由1>0x ,得210x -<<,令2()ln(22)1(10)F x x x x =-+--<<,则1()201F x x x '=-<+,所以()F x 在(1,0)-上递减,所以()(0)ln 21F x F >=--,所以由题意得ln 21a >--,即实数a 的取值范围是(ln 21,)--+∞,故选:A【点睛】关键点点睛:此题考查导数的几何意义,考查导数的计算,考查利用导数求函数的最值,解题的关键是利用导数的几何意义表示出公切线方程,考查计算能力,属于较难题.二、填空题:本大题共4小题,每小题5分,共20分.13.若实数,x y 满足约束条件4,2,4,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则2z x y =-+的最大值为________.【答案】4【解析】【分析】依题意可画出可行域,并根据目标函数的几何意义求出其最大值为4.【详解】根据题意,画出可行域如下图中阴影部分所示:易知目标函数2z x y =-+可化为2y x z =+,若要求目标函数z 的最大值,即求出2y x z =+在y 轴上的最大截距即可,易知当2y x =(图中虚线所示)平移到过点A 时,截距最大,显然()0,4A ,则max 4z =,所以2z x y =-+的最大值为4.故答案为:414.已知偶函数()f x 满足()()()422f x f x f +=+,则()2022f =__________.【答案】0【解析】【分析】由偶函数的定义和赋值法,以及找出函数的周期,然后计算即可.【详解】令2x =-,则()()()2222f f f =-+,又()()22f f -=,所以()20f =,于是()()()422f x f x f +=+化为:()()4f x f x +=,所以()f x 的周期4T =,所以()()()20225054220f f f =⨯+==.故答案为:0.15.在ABC 中,已知3AB =,4AC =,3BC =,则BA AC ⋅的值为________.【答案】8-【解析】【分析】根据数量积的定义结合余弦定理运算求解.【详解】由题意可得:cos ⋅=-⋅=-⋅∠uu r uuu r uu u r uuu r uu u r uuu rBA AC AB AC AB AC A22222291698222+-+-+-=-⋅⨯=-=-=-⋅AB AC BC AB AC BC AB AC AB AC ,即8BA AC ⋅=-.故答案为:8-.16.将函数sin y x =的图象向左平移π4个单位长度,再把图象上的所有点的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()f x ,已知函数()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增,则ω的取值范围为__________.【答案】150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】根据函数图像平移变换,写出函数()y f x =的解析式,再由函数()y f x =在区间π3π,24⎛⎫ ⎪⎝⎭上单调递增,列出不等式组求出ω的取值范围即可【详解】将函数sin y x =的图象向左平移π4个单位长度得到πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象,再将图象上每个点的横坐标变为原来的1(0)ωω>倍(纵坐标不变),得到函数()πsin 4y f x x ω⎛⎫==+⎪⎝⎭的图象, 函数()y f x =在区间π3π,24⎛⎫⎪⎝⎭上单调递增,所以3ππ242T ≥-,即ππ4ω≥,解得04ω<≤,①又πππ3ππ24444x ωωω+<+<+,所以πππ2π2423πππ2π442k k ωω⎧+≥-+⎪⎪⎨⎪+≤+⎪⎩,解得3184233k k ω-+≤≤+,②由①②可得150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦,故答案为:150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.如图,在棱长为a 的正方体1111ABCD A B C D -中,M ,N 分别是1AA ,11C D 的中点,过D ,M ,N 三点的平面与正方体的下底面1111D C B A 相交于直线l .(1)画出直线l 的位置,保留作图痕迹,不需要说明理由;(2)求三棱锥D MNA -的体积.【答案】(1)答案见解析(2)324a 【解析】【分析】(1)延长DM 与11D A 的延长线交于E ,连接NE 即为所求;(2)根据D MNA N DAM V V --=结合三棱锥的体积公式求解出结果.【小问1详解】如图所示直线NE 即为所求:依据如下:延长DM 交11D A 的延长线于E ,连接NE ,则NE 即为直线l 的位置.11E DM D A ∈ ,E DM ∴∈⊂平面DMN ,11E D A ∈⊂平面1111D C B A ,E ∴∈平面DMN ⋂平面1111D C B A ,又由题意显然有N ∈平面DMN ⋂平面1111D C B A ,EN ∴⊂平面DMN ⋂平面1111D C B A ,则NE 即为直线l 的位置.【小问2详解】因为D MNA N DAM V V --=,所以3111112332224D MNA DAMa aa V ND S a -⨯=⨯⨯=⨯⨯= .18.已知数列{}n a 是等比数列,满足13a =,424a =,数列{}nb 满足14b =,422b =,设n n nc a b =-,且{}n c 是等差数列.(1)求数列{}n a 和{}n c 的通项公式;(2)求{}n b 的通项公式和前n 项和n T .【答案】18.13·2n n a -=,2n c n =-19.1322n n b n -=⋅+-,21332322=⋅-+-n n T n n 【解析】【分析】(1)根据等差数列、等比数列定义求解;(2)先写出数列{}n b 的通项公式,再分组求和即可求解.【小问1详解】设等比数列{}n a 的公比为q ,因为13a =,34124a a q ==,所以2q =,即132n n a -=⋅,设等差数列{}n c 公差为d ,因为1111c a b =-=-,444132c a b c d =-=+=,所以1d =,即2n c n =-.【小问2详解】因为n n n c a b =-,所以n n n b a c =-,由(1)可得1322n n b n -=⋅+-,设{}n b 前n 项和为n T ,()()131242212-=⋅+++⋅⋅⋅++-++⋅⋅⋅+n n T n n 21232122n n n n -+=⋅+--21332322n n n =⋅-+-.19.为践行两会精神,关注民生问题,某市积极优化市民居住环境,进行污水排放管道建设.如图是该市的一矩形区域地块ABCD ,30m AB =,15m AD =,有关部门划定了以D 为圆心,AD 为半径的四分之一圆的地块为古树保护区.若排污管道的入口为AB 边上的点E ,出口为CD 边上的点F ,施工要求EF 与古树保护区边界相切,EF 右侧的四边形BCFE 将作为绿地保护生态区. 1.732≈,长度精确到0.1m ,面积精确到20.01m )(1)若30ADE ∠=︒,求EF 的长;(2)当入口E 在AB 上什么位置时,生态区的面积最大?最大是多少?【答案】(1)17.3m(2)AE =2255.15m 【解析】【分析】(1)根据DH HE ⊥得Rt Rt DHE DAE ≅ ,然后利用锐角三角函数求出EF 即可;(2)设ADE θ∠=,结合锐角三角函数定义可表示,AE HF ,然后表示出面积,结合二倍角公式化简,再利用基本不等式求解.【小问1详解】设切点为H ,连结DH ,如图.15DH DA == ,DA AE ⊥,DH HE ⊥,Rt Rt DHE DAE ∴≅△△;30HDE ADE HDF ∴∠=∠=∠=︒;15tan 3015tan 3017.3m EF EH HF ∴=+=︒+︒≈.【小问2详解】设ADE θ∠=,则902EDH θ∠=︒-,15tan AE θ∴=,()15tan 902HF θ︒=-.()1111515tan 1515tan 1515tan 902222ADE DHE DHF AEFD S S S S θθθ=+=⨯⨯++⨯⨯+⨯⨯︒-△△△梯形 2225111tan 31225tan 225tan 225tan 2tan 222tan 44tan θθθθθθθ⎛⎫-⎛⎫=+=+⨯=+ ⎪ ⎪⎝⎭⎝⎭22513tan 4tan 2θθ⎛⎫=+≥⎪⎝⎭,当且仅当tan 3θ=,即30θ=︒时,等号成立,30152ABCD BCFE AEFD S S S ∴=-=⨯-梯形梯形矩形,15tan AE θ∴==时,生态区即梯形BCEF 的面积最大,最大面积为2450255.15m 2-≈.20.已知向量()π2cos ,cos21,sin ,16a x x b x ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭.设函数()1,R 2f x a b x =⋅+∈ .(1)求函数()f x 的解析式及其单调递增区间;(2)将()f x 图象向左平移π4个单位长度得到()g x 图象,若方程()21g x n -=在π0,2x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解12,x x ,求实数n 的取值范围,并求()12sin2x x +的值.【答案】(1)()πsin 26f x x ⎛⎫=-⎪⎝⎭,()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)实数n的取值范围是)1,1-,()12sin22x x +=【解析】【分析】(1)利用向量数量积的坐标公式和三角恒等变换的公式化简即可;(2)利用函数的平移求出()g x 的解析式,然后利用三角函数的图像和性质求解即可.【小问1详解】由题意可知()1π1112cos sin cos212cos sin cos cos2262222f x a b x x x x x x x ⎛⎫⎛⎫=⋅+=⋅+--+=⋅+-- ⎪ ⎪ ⎪⎝⎭⎝⎭21cos211cos cos cos2=sin2cos22222x x x x x x x +=⋅+--+--1πsin2cos2sin 2226x x x ⎛⎫=-=- ⎪⎝⎭()πsin 26f x x ⎛⎫∴=- ⎪⎝⎭.由πππ2π22π,Z 262k x k k -+≤-≤+∈,可得ππππ,Z 63k x k k -+≤≤+∈,∴函数()f x 的单调增区间为()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】()ππππsin 2sin 24463g x f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,πππ2π22π,Z 232k x k k -+<+<+∈ ,得5ππππ,Z 1212k x k k -+<<+∈,()πsin 23g x x ⎛⎫∴=+ ⎪⎝⎭在区间()5πππ,πZ 1212k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,同理可求得()πsin 23g x x ⎛⎫=+ ⎪⎝⎭在区间()π7ππ,πZ 1212k k k ⎛⎫++∈ ⎪⎝⎭上单调递减,且()g x 的图象关于直线ππ,Z 122k x k =+∈对称,方程()21g x n -=,即()12n g x +=,∴当π0,2x ⎡⎤∈⎢⎥⎣⎦时,方程()12n g x +=有两个不同的解12,x x ,由()g x 单调性知,()g x 在区间π0,12⎡⎤⎢⎥⎣⎦上单调递增,在区间π12π,2⎡⎤⎢⎥⎣⎦上单调递减,且()πππ0,1,,261222g g g g ⎛⎫⎛⎫⎛⎫====- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故当31122n +≤<时,方程()12n g x +=有两个不同的解12,,x x11n -≤<,实数n 的取值范围是)1,1-.又()g x 的图象关于直线π12x =对称,12π212x x +∴=,即()1212π3,sin262x x x x +=∴+=.21.已知函数()ln 1,R f x x ax a =-+∈.(1)若0x ∃>,使得()0f x ≥成立,求实数a 的取值范围;(2)证明:对任意的2222*22221223341N ,e,e 112233k k k k k+++++∈⨯⨯⨯⨯<++++ 为自然对数的底数.【答案】(1)1a ≤;(2)证明见解析.【解析】【分析】(1)变形不等式()0f x ≥,分离参数并构造函数,再求出函数的最大值即得.(2)由(1)的信息可得ln 1(1)x x x <->,令221(N )x k k k k k*+∈+=+,再利用不等式性质、对数运算、数列求和推理即得.【小问1详解】函数()ln 1f x x ax =-+,则不等式()ln 10ln 1x f x ax x a x +≥⇔≤+⇔≤,令ln 1()x g x x+=,求导得2ln ()xg x x'=-,当(0,1)x ∈时,()0g x '>,函数()g x 递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 递减,因此当1x =时,max ()1g x =,依题意,1a ≤,所以实数a 的取值范围是1a ≤.【小问2详解】由(1)知,当1x >时,()(1)g x g <,即当1x >时,ln 1x x <-,而当N k *∈时,222111111()11k k k k k k k k ++=+=+->+++,因此2211111ln 1()111k k k k k k k k ++<+--=-+++,于是222222221223341ln ln ln ln 112233k k k k +++++++++++++ 11111111(1)()()()112233411k k k <-+-+-++-=-<++ ,即有222222*********ln()1112233k k k k +++++⨯⨯⨯⨯<++++ ,所以222222*********e 112233k k k k+++++⨯⨯⨯⨯<++++ .【点睛】结论点睛:函数()y f x =的定义区间为D ,(1)若x D ∀∈,总有()m f x <成立,则min ()m f x <;(2)若x D ∀∈,总有()m f x >成立,则max ()m f x >;(3)若x D ∃∈,使得()m f x <成立,则max ()m f x <;(4)若x D ∃∈,使得()m f x >成立,则min ()m f x >.(二)选考题:共10分.请考生在第22、23题中任选一道作答.如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.在直角坐标系xOy 中,曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()2π3θρ=∈R .(1)求C 的普通方程和直线l 的直角坐标方程;(2)若点P 是C 上的一点,求点P 到直线l 的距离的最小值.【答案】(1)C 的普通方程2212x y -=;直线l0y +=(2【解析】【分析】(1)利用消参法求C 的普通方程,根据极坐标可知直线l 表示过坐标原点O ,倾斜角为2π3的直线,进而可得斜率和直线方程;(2)设33,P t t t t ⎛⎫+- ⎪⎝⎭,利用点到直线的距离结合基本不等式运算求解.【小问1详解】因为曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),两式平方相减得22223312x y t t t t ⎛⎫⎛⎫-=+--= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程2212x y -=;又因为直线l 的极坐标方程为()2π3θρ=∈R ,表示过坐标原点O ,倾斜角为2π3的直线,可得直线l的斜率2πtan 3k ==,所以直线l的直角坐标方程y =0y +=.【小问2详解】由题意可设33,P t t t t ⎛⎫+- ⎪⎝⎭,设点33,P t t t t ⎛⎫+- ⎪⎝⎭到直线l0y +=的距离为d ,则d =当且仅当))311t t+=,即(232t=-时,等号成立,所以点P 到直线l .【选修4-5:不等式选讲】23.已知函数()22f x x x =-++.(1)求不等式()24f x x ≥+的解集;(2)若()f x 的最小值为k ,且实数,,a b c ,满足()a b c k +=,求证:22228a b c ++≥.【答案】(1)(,0]-∞(2)证明见解析【解析】【分析】(1)根据题意分<2x -、22x -≤≤和2x >三种情况解不等式,综合可得出原不等式的解集;(2)利用绝对值三角不等式可求得()f x 的最小值,再利用基本不等式可证得所证不等式成立.【小问1详解】由题意可知:2,2()224,222,2x x f x x x x x x -<-⎧⎪=-++=-≤≤⎨⎪>⎩,①当<2x -时,不等式即为224x x -≥+,解得1x ≤-,所以<2x -;②当22x -≤≤时,不等式即为424x ≥+,解得0x ≤,所以20x -≤≤;③当2x >时,不等式即为224x x ≥+,无解,即x ∈∅;综上所示:不等式()24f x x ≥+的解集为(,0]-∞.【小问2详解】由绝对值不等式的性质可得:()22(2)(2)4=-++≥--+=f x x x x x ,当且仅当22x -≤≤时,等号成立,所以()f x 取最小值4,即4k =,可得()4+=a b c ,即4ab ac +=,所以()()22222222228a b c a bac ab ac ++=+++≥+=当且仅当22224ab ac a b b c +=⎧⎪=⎨⎪=⎩,即a b c ===时,等号成立.。

河北省唐山市乐亭一中2024年高三下学期5月月考数学试题理试题

河北省唐山市乐亭一中2024年高三下学期5月月考数学试题理试题

河北省唐山市乐亭一中2024年高三下学期5月月考数学试题理试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b +=的焦距为2,则双曲线的标准方程为( )A .22143x y -= B .22143y x -= C .22123x y -= D .22132y x -= 2.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ). A .9,4⎛⎤-∞ ⎥⎝⎦ B .19,3⎛⎤-∞ ⎥⎝⎦ C .(,7]-∞ D .23,3⎛⎤-∞ ⎥⎝⎦3.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x=- 4.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.ABC 中,角,,A B C 的对边分别为,,a b c ,若1a =,30B =︒,cos C =ABC 的面积为( )A B C D 6.设集合{}2A x x a =-<<,{}0,2,4B =,若集合A B 中有且仅有2个元素,则实数a 的取值范围为 A .()0,2B .(]2,4C .[)4,+∞ D .(),0-∞7.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( )A .10B .23C .3D .48.若复数z 满足()112i z i -=-+,则||Z =( )A .22B .32C .102D .129.设集合{}1,2,3A =,{}220B x x x m =-+=,若{3}A B ⋂=,则B =( ) A .{}1,3- B .{}2,3- C .{}1,2,3-- D .{}310.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若111,,tan tan tan A B C 依次成等差数列,则( ) A .,,a b c 依次成等差数列B .,,a b c 依次成等差数列C .222,,a b c 依次成等差数列D .333,,a b c 依次成等差数列11.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).A .6500元B .7000元C .7500元D .8000元12.单位正方体ABCD -1111D C B A ,黑、白两蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA 1→A 1D 1→‥,黑蚂蚁爬行的路线是AB →BB 1→‥,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(i ∈N *).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是( )A .1B 2C 3D .0二、填空题:本题共4小题,每小题5分,共20分。

辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析

辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析

辽宁省葫芦岛市绥中县第一高级中学2021-2022学年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. (5分)(2011秋?乐陵市校级期末)已知a,b∈R+,A为a,b的等差中项,正数G为a,b的等比中项,则ab与AG的大小关系是()C解答:解:依题意A=,G=,∴AG﹣ab=?﹣ab=(﹣)=?≥0,∴AG≥ab.故选C2. 已知,则函数有()A.最小值6 B.最大值6 C.最小值 D.最大值参考答案:A 3. 设是定义在上的增函数,且对任意,都有恒成立,如果实数满足不等式,那么的取值范围是(9,49)(13,49)(9,25)(3,7)参考答案:4. 设P为等边所在平面内的一点,满足,若AB=1,则的值为()A.4 B.3 C.2 D.1参考答案:B略5. ,复数= ( )A. B. C.D.参考答案:A因为,可知选A6. 椭圆=1的一个焦点为F1,点P在椭圆上.如果线段PF1的中点M在y轴上,那么点M的纵坐标是()A.± B.± C.± D.±参考答案:A略7. 设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A、B分别在α、β内运动时,那么所有的动点C()A.不共面B.当且仅当A,B在两条相交直线上移动时才共面C.当且仅当A,B在两条给定的平行直线上移动时才共面D.不论A,B如何移动都共面参考答案:D【考点】LJ:平面的基本性质及推论.【分析】本题考查空间想象力,因为平面α∥平面β,所以线段AB的中点到平面α和平面β的距离相等,从而动点C构成的图形是到平面α和平面β的距离相等的一个平面.【解答】解:根据平行平面的性质,不论A、B如何运动,动点C均在过C且与α,β都平行的平面上.故选:D8. 2016年鞍山地区空气质量的记录表明,一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,若今天的空气质量为优良,则明天空气质量为优良的概率是()A.0.48 B.0.6 C.0.75 D.0.8参考答案:C【考点】n次独立重复试验中恰好发生k次的概率.【分析】设随后一天的空气质量为优良的概率是p,利用相互独立事件概率乘法公式能求出结果.【解答】解:∵一天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,设随后一天空气质量为优良的概率为p,若今天的空气质量为优良,则明天空气质量为优良,则有0.8p=0.6,∴p===0.75,故选:C.9. 已知3sin2α=cosα,则sinα可以是()A.﹣B.C.D.参考答案:B【考点】GI:三角函数的化简求值.【分析】根据二倍角公式化简3sin2α=cosα,消去cosα求出sinα的值.【解答】解:3sin2α=cosα,∴6sinαcosα=cosα,若cosα≠0,则6sinα=1,解得sinα=.故选:B.10. 对于一组数据(,2,3,,),如果将它们改变为(,2,,)其中,则下面结论正确的是()A.平均数与方差均不变B.平均数变了,而方差保持不变C.平均数不变,而方差变了D.平均数与方差均发生了变化参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 复数Z=i(1+i)在复平面内对应的点的坐标为.参考答案:(﹣1,1)【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:Z=i(1+i)=i﹣1在复平面内对应的点的坐标为(﹣1,1).故答案为:(﹣1,1)12. 春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动.已知某种盆栽植物每株成活的概率为p,各株是否成活相互独立.该学校的某班随机领养了此种盆栽植物10株,设X为其中成活的株数,若X的方差,,则p=________.参考答案:0.7【分析】由题意可知:,且,从而可得值.【详解】由题意可知:∴,即,∴故答案为:0.7【点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题.13. 设f(x)=,则 ___.参考答案:14. 点G是△ABC 的重心,,(λ,μ∈R),若∠A=120°,,则最小值为.参考答案:【考点】向量的共线定理;两向量的和或差的模的最值;平面向量数量积的运算.【分析】欲求最小值,先求其平方的最小值,这里解决向量模的问题常用的方法.【解答】解:∵点G 是△ABC的重心,∴,∴=∵,∴AB×AC×COSA=﹣2,∴AB×AC=4.∴AG2≥故填.15. 《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有个.参考答案:2316. 设表示等差数列的前项和,且,,若,则=参考答案:15略17. 函数的零点个数为。

2022-2023学年四川省成都市树德中学高二年级下册学期4月月考数学(理)试题【含答案】

2022-2023学年四川省成都市树德中学高二年级下册学期4月月考数学(理)试题【含答案】

2022-2023学年四川省成都市树德中学高二下学期4月月考数学(理)试题一、单选题1.已知复数,则( )1i z =-21z z -=A .B .C .D .31i2--11i 2--11i 2-11i 2+【答案】B【分析】将复数z 代入目标式,结合复数的除法和共轭复数求解即可.【详解】因为,所以.1i z =-21111(1i)i (1i)1i 2i 22z z-=-+=-+=---故选:B .2.若与是两条不同的直线,则“”是“”的( )1:10l x my --=2:(2)310l m x y --+=12l l ∥3m =A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C【分析】利用两直线平行的结论即可进行判断.【详解】由题意,若,则,解得或,12l l ∥1(3)(2)()m m ⨯-=--1m =-3m =经检验,或时,,则“”是“”的必要不充分条件,1m =-3m =12l l ∥12l l ∥3m =故选:C .3.如图是函数的导函数的图象,则下列判断正确的是( )()y f x =()y f x '=A .在区间上,是增函数(2,1)-()f x B .当时,取到极小值2x =()f x C .在区间上,是减函数(1,3)()f x D .在区间上,是增函数(4,5)()f x 【答案】D【分析】对于ACD,根据导数的正负和原函数单调性之间的联系进行判断即可;对于B ,根据极值点处左右两边的单调性进行判断.【详解】由导函数图象知,在时,,递减,A 错;时,取得极322-<<-x ()0f x '<()f x 2x =()f x 大值(函数是先增后减),B 错;时,,递增,C 错;时,12x <<()0f x '>()f x 45x <<,递增,D 正确.()0f x '>()f x 故选:D.4.已知甲、乙两名同学在高三的6次数学测试成绩统计的折线图如下,下列说法正确的是( )A .若甲、乙两组数据的方差分别为,,则21s 22s 2212s s >B .甲成绩比乙成绩更稳定C .甲成绩的极差大于乙成绩的极差D .若甲、乙两组数据的平均数分别为,,则1x 2x 12x x <【答案】B【分析】根据题中折线图的数据信息以及变化趋势,结合平均数、方差和极差的定义逐项分析判断【详解】对A 、B :由折线图的变化趋势可知:甲的成绩较为集中,乙成绩波动很大,故甲成绩比乙成绩更稳定,故,故A 错误,B 正确;2212s s <对C :极差为样本的最大值与最小值之差,甲的极差大约为30,乙的极差远大于30,故甲的极差小于乙的极差,C 错误;对D :由图可知:甲的成绩除第二次略低于乙的成绩,其余均高于乙的成绩,故,D 错误;12x x >故选:B.5.德国数学家莱布尼兹于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.我国数学家、天文学家明安图为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算开创先河,如图所示的程序框图可以用莱布π尼兹“关于的级数展开式计算 的近似值(其中P 表示的近似值)”.若输入,输出的结果Pπππ8n =可以表示为A .B .11114(1)35711P =-+-+- 11114(135713P =-+-++ C .D .11114(135715P =-+-+- 11114(1)35717P =-+-++ 【答案】C【解析】根据已知程序框图依次代入计算,即可得出输出结果.【详解】第1次循环:;1,2S i ==第2次循环:;11,33S i =-=第3次循环: ;111,435S i =-+=…第8次循环:,1111135715S =-+-+⋯-9i =此时满足判定条件,输出结果.111144135715P S ⎛⎫==-+-+⋯- ⎪⎝⎭故选:C【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题6.椭圆与直线相交于A ,B 两点,过AB 的中点M 与坐标原点的直线的斜22221x y a b +=10x y +-=率为2,则=( )ab ABCD .2【答案】A【分析】设,所以,利用点差法,做差化简,利用()()()112200,,,,,A x y B x y M x y 22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解出.0120122,1OM AB y y y k k x x x -====--a b 【详解】解:设()()()112200,,,,,A x y B x y M x y ∴0120122,1OM AB y y y k k x x x -====--由AB 的中点为M 可得①,②1202x x x +=1202y y y +=由A .B 在椭圆上,可得22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减可得③,()()()()1212121222x x x x y y y y a b +-+-+=把①②代入③可得()()01201222220x x x y y y a b --+=整理可得222,b a a b ==故选:A7.已知是区间内任取的一个数,那么函数在上是增函数的m []0,43221()233f x x x m x =-++x ∈R 概率是( )A .B .C .D .14131223【答案】C【分析】首先得到恒成立,则解出的范围,再根据其在内取数,利220()4f x x x m '=-≥+m [0,4]用几何概型公式得到答案.【详解】,22()4f x x x m '=-+在上是增函数3221()233f x x x m x =-++x ∈R 恒成立22()40f x x x m '∴=-+≥21640m ∴∆=-≤解得或2m ≥2m ≤-又是区间内任取的一个数m [0,4]24m ∴≤≤由几何概型概率公式得函数在上是增函数的概率3221()233f x x x m x =-++x ∈R 42142P -==故选:C .8.如图所示,四边形ABCD 为边长为2的菱形,∠B =60°,点E,F 分别在边BC,AB 上运动(不含端点),且EF//AC ,沿EF 把平面BEF 折起,使平面BEF ⊥底面ECDAF ,当五棱锥B-ECDAF 的体积最大时,EF 的长为A .1BCD 【答案】B【分析】由可知三角形为等边三角形,设,由此计算得的高,以及五//EF AC BEF EF x =BEF ∆边形的面积,由此写出五棱锥的体积的表达式,并用导数求得当为何值时,体积取得最ECDAF x 大值.【详解】由可知三角形为等边三角形,设,等边三角形,面//EF AC BEF EF x =BEF x,所以五边形的面积为,故五棱锥的体积为2ECDAF 22222x =.令,解得,且当()23110238x x x x ⎛⎫⨯=-<< ⎪ ⎪⎝⎭'32131088x x x ⎛⎫-=-= ⎪⎝⎭x =时,单调递减,故在0x <<318x x -2x <<318x x -x =也即是最大值.故选B.【点睛】本小题考查等边三角形的面积公式(若等边三角形的边长为.),考查a 2锥体的体积公式,考查利用导数的方法求体积的最大值.题目是一个折叠问题,折叠问题解决的第一步是弄清楚折叠前后,有那些量是不变的,有哪些是改变的.属于中档题.9.已知点,若在圆上存在点满足,则正实()()2,0,1,0M N -221:()(1)4C x a y -+-=P 2PM PN =数的取值范围是( )aA .B .C .D .[]2,41⎡+⎢⎣22⎡⎢⎣59,22⎡⎤⎢⎥⎣⎦【答案】C 【分析】设,由,化简可得,点既在圆上,也在圆上,(),P x y 2PM PN=22:(2)4E x y -+=P C E 所以圆与圆有公共点,由圆与圆的位置关系求解即可.C E【详解】设,由,得(),P x y 2PM PN==整理得,即;2240x y x +-=22(2)4x y -+=记圆,则点既在圆上,也在圆上,所以圆与圆有公共点,22:(2)4E x y -+=P C E C E所以,即,解得.3522CE ≤≤3522≤≤22a ≤≤故选:C.10.已知双曲线的右顶点为,抛物线的焦点为.若在双曲2222:1(0,0)x y E a b a b -=>>A 2:12C y ax =F 线的渐近线上存在点,使得,则双曲线的离心率的取值范围是( )E P 0PA PF ⋅=EA .B .C .D .()1,2⎛ ⎝()2,+∞⎫+∞⎪⎭【答案】B【分析】求出双曲线的右顶点和渐近线方程,抛物线的焦点坐标,可设,根据向量的数,b P m m a ⎛⎫ ⎪⎝⎭量积为;再由二次方程有实根的条件:判别式大于等于,化简整理,结合离心率公式即可得到00所求范围.【详解】双曲线的右顶点,渐近线方程为,()2222:10,0x y E a b a b -=>>(),0A a b y x a =±抛物线的焦点为,2:12C y ax =()3,0F a 设,则,,,b P m m a ⎛⎫⎪⎝⎭,b PA a m m a ⎛⎫=-- ⎪⎝⎭ 3,b PF a m m a ⎛⎫=-- ⎪⎝⎭ 由可得:,0PA PF ⋅= ()()22230b a m a m m a --+=整理可得:,22221430b m ma a a ⎛⎫+-+= ⎪⎝⎭,2222Δ164130b a a a ⎛⎫∴=-+⋅≥ ⎪⎝⎭,()222233a b c a ∴≥=-,2234c a ∴≤则:c e a =≤由可得:.1e>e ⎛∈ ⎝故选:B.11.定义在上的函数的图象是连续不断的曲线,且,当时,R ()f x ()()2xf x f x e =-0x >恒成立,则下列判断一定正确的是( )()()f x f x '>A .B .()()523e f f <-()()523f e f <-C .D .()()523e f f ->()()523f e f -<【答案】B【分析】构造函数,判断为偶函数,且在上单调递增,再计算函数值比较大小()()x f x g x e =()0,∞+得到答案.【详解】构造函数,因为,所以()()x f x g x e =()()2x f x f x e =-()()2x f x f x e -=则,所以为偶数()()()()()2x x x x f x f x f x e g x g x e e e ----====()g x 当时,,所以在上单调递增,0x >()()()0x f x f x g x e '-'=>()g x ()0,∞+所以有,则,即,即.()()32g g >()()32g g ->()()3232f f e e -->()()532e f f ->故选B【点睛】本题考查了函数的综合应用,构造函数判断其奇偶性和单调性是解题的关键.()()x f x g x e =12.已知函数若函数恰有5个零点,则实数2,1,()eln 52,1,xx f x xx x x ⎧>⎪=⎨⎪--≤⎩2[()](24)()1y f x a f x =+-+的取值范围是( )a A .B .949,824⎡⎫⎪⎢⎣⎭491,24⎛⎫⎪⎝⎭C .D .91,8⎛⎤⎥⎝⎦9,8⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】先研究时,的单调性和极值,画出分段函数的图象,换元后数形结合转1x >()e ln xf x x =化为二次函数根的分布情况,列出不等式组,求出实数的取值范围.a 【详解】当时,,则,1x >()e ln xf x x =()2ln 1e ln x f x x -'=当时,,单调递减,当时,,单调递增,1e x <<()0f x '<()f x e x >()0f x ¢>()f x 则时,.当时,.1x >()(e)1f x f ≥=1x ≤22()52(1)66f x x x x =--=-++≤作出大致图象,函数恰有5个不同零点,()f x 2[()](42)()1y f x a f x =--+即方程恰有5个根.令,则需方程.2[()](24)()10f x a f x +-+=()f x t =2(24)10(*)t a t +-+=(l )在区间和上各有一个实数根,令函数,(,1)-∞[2,6)2()(24)1u t t a t =+-+则解得.(1)12410,(2)42(24)10,(6)366(24)10,u a u a u a =+-+<⎧⎪=+-+≤⎨⎪=+-+>⎩949824a ≤<(2)方程(*)在和各有一根时,则(1,2)(6,)+∞(1)12410,(2)42(24)10,(6)366(24)10,u a u a u a =+-+>⎧⎪=+-+<⎨⎪=+-+<⎩即无解.1,9,849,24a a a ⎧⎪<⎪⎪>⎨⎪⎪>⎪⎩(3)方程(*)的一个根为6时,可得,验证得另一根为,不满足.4924a =16(4)方程(*)的一个根为1时,可得,可知不满足.1a =综上,.949824a ≤<故选:A【点睛】复合函数与分段函数结合问题,要利用数形结合思想和转化思想,这道题目中要先研究出分段函数的图象,再令,换元后转化为二次函数根的分布问题,接下来就迎刃而解了.()f x t =二、填空题13.已知呈线性相关的变量与的部分数据如表所示:若其回归直线方程是,则x y 1.050.85y x =+______.m =x24568y34.5m7.59【答案】6.5##132【分析】根据样本中心点一定在回归直线上,代入求解即可.【详解】245685,5x ++++==3 4.57.5924.55m m y +++++==样本点的中心的坐标为24(5,5m +代入得:1.050.85y x =+24 1.0550.85,5m+=⨯+6.5.m =故答案为:6.514.若实数,满足约束条件,设的最大值为,则______.x y 30201x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩2x y +a 11(2)d ax x x +=⎰【答案】##24ln 5+ln 524+【分析】根据给定条件,作出不等式组表示的平面区域,利用目标函数的几何意义求出a ,再计算定积分作答.【详解】作出不等式组表示的平面区域,如图中阴影(含边界),其中30201x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩ABC ,15(2,1),(1,1),(,)22A B C -令,即表示斜率为,纵截距为的平行直线系,2x y z +=2y x z =-+2-z 画直线,平移直线到直线,当直线过点时,直线的纵截距最大,最大,0:2l y x =-0l 1l 1l A 1lz 于是,即,max 2215z =⨯+=5a =所以.5252211111(2)d (2)d (ln )|(5ln 5)(1ln1)24ln 5ax x x x x x x x +=+=+=+-+=+⎰⎰故答案为:24ln 5+15.已知点P 为抛物线C :上一点,若点P 到y 轴和到直线的距离之22(0)y px p =>34120x y -+=和的最小值为2,则抛物线C 的准线方程为___.【答案】=1x -【分析】由抛物线的定义结合距离公式得出,进而得出抛物线C 的准线方程.2p =【详解】过点分别作直线,和y 轴的垂线,垂足分别为,,设焦点为.P 34120x y -+=A B (,0)2pF 点到直线的距离为.F 34120x y -+=531210d p =+由定义可知,,则,||||2pPF BP =+||||||||222p AP BP AP PF p d +=+-≥-=当且仅当三点共线时,取等号,,,A P F 所以,解得,12231052p p+-=2p =则抛物线C 的准线方程为=1x -故答案为:=1x -16.若关于的不等式在上恒成立,则的最大值为__________.x 2121ln n mx e x -≥+1[,)2+∞nm 【答案】1e【解析】分类讨论,时不合题意;时求导,求出函数的单调区间,得到0m <0m >在上的最小值,利用不等式恒成立转化为函数最小值,化简得()21ln mx f x x =+1[,)2+∞122n m e e -≥,构造放缩函数对自变量再研究,可解,nm e ≥nm n 【详解】令;当时,,不合题意;2()1ln mx f x x =+0m <1(1)02n f m e -=<<当时,,0m >()()()22ln 11ln mx x f x x +'=+令,得或,()0f x '<10x e -<<112e x e --<<所以在区间和上单调递减.()f x 1(0)e -,112(,)e e --因为,且在区间上单调递增,1121(,)2e e --∈()f x 12(,)e -+∞所以在处取极小值,即最小值为.()f x 12x e -=2m e 2m e 若,,则,即.12x ∀≥12()n f x e -≥122n me e -≥nm e ≥当时,,当时,则.0n ≤0nm ≤0n >n n n m e ≤设,则.()()0n n g n n e =>1()n ng n e -'=当时,;当时,,01n <<()0g n '>1n >()0g n '<所以在上单调递增;在上单调递减,()g n (0,1)(1,)+∞所以,即,所以的最大值为.()(1)g n g ≤1nn ee ≤nm 1e 故答案为: 1e【点睛】本题考查不等式恒成立问题.不等式恒成立问题的求解思路:已知不等式(为实参数)对任意的恒成立,求参数(,)0f x l ³λx D ∈的取值范围.利用导数解决此类问题可以运用分离参数法; 如果无法分离参数,可以考虑对参数λ或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(,或,)求解.0a >∆<0a<00∆>三、解答题17.已知命题:复数,.复数在复平面内对应的点在第四象p ()()2226i z m m m m =++--Rm ∈z 限.命题:关于的函数在上是增函数.若是真命题,是真命题,q x 21y x mx =++[)1,+∞p q ∨p ⌝求实数的取值范围.m 【答案】[][)2,03,-+∞【分析】由题可求出命题为真时的取值范围,然后根据复合命题的真假即得.,p q m 【详解】若命题为真,则,解得;p 222060m m m m ⎧+>⎨--<⎩03m <<命题为真:可得,所以;q 12m -≤2m ≥-由是真命题,可得命题为假命题,又是真命题,所以命题为真命题,p ⌝p p q ∨q所以或,且,0m ≤3m ≥2m ≥-故或,即的取值范围为.20m -≤≤3m ≥m [][)2,03,-+∞ 18.已知函数,且.()()312R 3f x x ax a =-+∈()20f '=(1)求函数在处的切线方程;()f x 3x =(2)求函数在上的最大值与最小值.()f x []0,3【答案】(1);516y x =-(2)最大值为2,最小值为.103-【分析】(1)由题可得,然后根据导函数在的值,可求出切线斜率,根据点斜式写出切4a =3x =线方程;(2)根据导函数,确定单调区间,进而可得最值.【详解】(1)因为,故,解得,()2f x x a'=-()240f a '=-=4a =因为,所以,()31423f x x x =-+()24f x x '=-则所求切线的斜率为,且,()23345f '=-=()391221f =-+=-故所求切线方程为,即;()()153y x --=-516y x =-(2)因为,,所以,()31423f x x x =-+[]0,3x ∈()24f x x '=-令,得(舍去),()240f x x '=-=2x =2x =-由,可得,函数单调递减,()0f x '≤[]0,2x ∈()f x 由,可得,函数单调递增,()0f x '≥[]2,3x ∈()f x 所以的极小值为,又,,()f x ()81028233f =-+=-()02f =()31f =-所以的最大值为2,最小值为.()f x 103-19.春节期间,我国高速公路继续执行“节假日高速免费政策” .某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间,[)20,409:40~10:00记作,10:00~10:20记作,10:20~10:40记作,例如:[)40,60[)60,80[]80,10010点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取5辆,再从这5辆车中随机抽取3辆,则恰有1辆为9:20~10:00之间通过的概率是多少?【答案】(1)10:04(2)35【分析】(1)运用频率分布直方图中平均数公式计算即可.(2)运用分层抽样比计算各段所抽取的车辆数,再运用列举法求古典概型的概率即可.【详解】(1)这600辆车在时间段内通过该收费点的时刻的平均值为9:2010:40~,即:10点04分.300.00520500.01520700.0220900.012064⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2)由题意知,时间段内抽取车辆数为,分别记为:[20,60)5(0.005200.01520)2⨯⨯+⨯=,,1a 2a 时间段内抽取车辆数为,分别记为:,,[60,80)50.02202⨯⨯=1b 2b 时间段内抽取车辆数为,记为:,[80,100]50.01201⨯⨯=c 所以从这5辆车中随机抽取3辆的基本事件有:,,,,121(,,)a a b 122(,,)a a b 12(,,)a a c 112(,,)a b b ,,,,,共10个,11(,,)a b c 12(,,)a b c 212(,,)a b b 21(,,)a b c 22(,,)a b c 12(,,)b b c 恰有1辆为之间通过的基本事件有:,,,,9:2010:00~112(,,)a b b 11(,,)a b c 12(,,)a b c 212(,,)a b b,共有6个,21(,,)a b c 22(,,)a b c 所以恰有1辆为之间通过的概率为.9:2010:00~63105p ==20.如图1,在梯形中,,,,,,线段的垂直ABCD BC AD ∥AB AD ⊥2AB =3BC =4=AD AD 平分线与交于点,与交于点,现将四边形沿折起,使,分别到点,AD E BC F CDEF EF C D G 的位置,得到几何体,如图2所示.H ABFEHG(1)判断线段上是否存在点,使得平面平面,若存在,求出点的位置;若不存EH P PAF ∥BGH P 在,请说明理由.(2)若,求平面与平面所成角的正弦值.AH =ABH BGH 【答案】(1)存在,点为线段的中点P EH (2).12【分析】(1)当点为线段的中点时,先证明平面,再证平面,由面面P EH HG ∥PAF BG ∥PAF 平行判定定理证明;(2)先证明,再以点为坐标原点,,,所在直线分别为,,轴建立AE EH ⊥E EA EF EH x y z 空间直角坐标系,利用向量法求解.【详解】(1)当点为线段的中点时,平面平面.P EH PAF ∥BGH 证明如下:由题易知,,,因为点为线段的中点,2EH =1GF =EH GF ∥P EH 所以,,所以四边形是平行四边形,所以,1HP GF ==HP GF ∥HPFG HG PF ∥因为平面,平面,所以平面.PF ⊂PAF HG ⊄PAF HG ∥PAF 连接,因为,,所以四边形是平行四边形,PG PE GF ∥1PE GF ==PEFG 所以,且,又,,所以,,所以四边形PG EF ∥PG EF =EF AB ∥EF AB =PG AB ∥PG AB =是平行四边形,所以,ABGP PA BG ∥因为平面,平面,所以平面.PA ⊂PAF BG ⊄PAF BG ∥PAF因为平面,平面,,HG ⊂BGH BG ⊂BGH HG BG G ⋂=所以平面平面.PAF ∥BGH (2)因为,,AH =2AE EH ==所以,所以,222AE EH AH +=AE EH ⊥又,,所以,,两两垂直.EF EA ⊥EF EH ⊥EA EF EH 故以点为坐标原点,,,所在直线分别为,,轴建立如图所示的空间直角坐标E EA EF EH x y z 系,E xyz-则,,,,()2,0,0A ()2,2,0B ()0,0,2H ()0,2,1G 所以,,.()0,2,0AB =()2,2,2BH =--()2,0,1BG =-设平面的法向量为,ABH ()111,,m x y z =则,即,得,取,得.00m AB m BH ⎧⋅=⎪⎨⋅=⎪⎩ 1111202220y x y z =⎧⎨--+=⎩10y =11z =()1,0,1m = 设平面的法向量为,则,即,BGH ()222,,x n y z = 00n BH n BG ⎧⋅=⎪⎨⋅=⎪⎩ 22222222020x y z x z --+=⎧⎨-+=⎩取,得.21x =()1,1,2n =设平面与平面所成角为,ABH BGH θ则,cos m n m n θ⋅====所以,1sin 2θ===所以平面与平面所成角的正弦值为.ABH BGH1221.已知椭圆过点()2222:10x y E a b a b +=>>)(1)求椭圆的标准方程;E(2)过作斜率之积为1的两条直线与,设交于,两点,交于,两点,()1,0T 1l 2l 1lE A B 2l E C D ,的中点分别为,.试问:直线是否恒过定点?若是,请求出与AB CD M N MN OMN 的面积之比;若不是,请说明理由.TMN △【答案】(1);22142x y +=(2)恒过定点,与的面积之比2,理由见解析.OMN TMN △【分析】(1)根据给定的条件,列出关于的方程组,再求解作答.,,a b c (2)设出直线、的方程,与椭圆E 的方程联立,求出点,的坐标,再求出直线的方1l 2l M N MN 程即可作答.【详解】(1)设椭圆半焦距为c ,依题意可得,,解得,22222211a b c a a b c⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩2a b c =⎧⎪⎨⎪=⎩所以椭圆的标准方程是.E 22142x y +=(2)直线恒过定点,MN (2,0)设直线,,,:1AB x my =+()0m ≠()()1122,,,A x y B x y 由消去x 得,22124x my x y =+⎧⎨+=⎩()222230m y my ++-=则,12122223,22m y y y y m m --+==++设点,则,,(,)M M M x y 12222M y y my m +-==+2221122M M m x my m m m -=+=⋅+=++即,显然直线,同理可得,222(,)22mM m m -++1:1CD x y m =+2222(,)2121m m N m m -++直线的斜率有,MN MN k ()22222222211212212MN m m m m m m k m m m -+++==-+++因此直线,即,过定点,()222212:22m m MN x y m m m +⎛⎫-=+ ⎪++⎝⎭()2212m x y m +=+()2,0Q 显然点是线段中点,设点到直线的距离分别为,T OQ ,O T MN 12,d d则,112212212OMN TMN MN d OQ S d S d TQ MN d ⨯====⨯ 所以直线恒过定点,与的面积之比为2.MN ()2,0Q OMN TMN △22.已知函数.()ln f x x ax=-(1)求的单调区间.()f x (2)若存在两个不同的零点,且()fx 12,x x12x x <<【答案】(1)答案见解析(2)证明见解析【分析】(1)求导,并讨论a 的范围,利用导函数的正负得到函数的单调区间;()f x (2)根据零点存在定理可得,令1211e x x a <<<<1212x xa +<<,转化为:221x t x =()122ln ln 11t x t t =>-<,设,通过求导分析单调性即()()22111ln ln 1022t t t t t +-⋅-+-<()()()22111ln ln 122t m t t t t t +=-⋅-+-可证明.【详解】(1)因为,,所以()ln f x x ax =-0x >()11axf x a x x-'=-=(ⅰ)当时,恒成立,在单调递增;0a ≤()0f x ¢>()f x ()0,∞+(ⅱ)当时,令得,,故时,,在单调递增;0a >()0f x '=1x a =10,x a ⎛⎫∈ ⎪⎝⎭()0f x ¢>()f x 10,a ⎛⎫ ⎪⎝⎭时,,在单调递减;1,x a ⎛⎫∈+∞ ⎪⎝⎭()0f x '<()f x 1,a⎛⎫+∞ ⎪⎝⎭(2)因为存在两个不同的零点,且.所以且,()f x 12,x x 12x x <0a >10f a ⎛⎫> ⎪⎝⎭即,解得,且,1ln 10a ->10e a <<121x x a <<根据题意,()()1ln100f a a a a =-=-=->所以,所以,()10fa =-<()11e ln e e 1e 1e 00e e f a a a ⎛⎫=-=->-=<< ⎪⎝⎭所以,又,所以,()e 0f>10e a <<1211e x x a <<<<,又,所以,<()()120f x f x ==1212ln ln x x ax x ==(,且),ln ln 2a b a ba b -+<<-,0a b >a b ¹证明:设,则,设,0a b >>1>ab ()1a t t b =>对数不等式即为,,12ln t t t <-()21ln 1t t t ->+由的导数,12ln y t t t =-+()22212110t y t t t -'=--=-<可得在递减,则恒成立,12ln y t t t =-+()1,+∞12ln 0y t t t =-+<即;12ln t t t <-由的导数,()21ln 1t y t t -=-+()()()222114011t y t t t t -'=-=>++可得在递增,则恒成立,()21ln 1t y t t -=-+()1,+∞()21ln 01t y t t -=->+即;()21ln 1t t t ->+,()12121212121ln ln 2x x x x x xx x a x x a --+<==<--<<令,所以可以转化为:,221x t x =1212ln ln x x x x =()122ln ln 11t x t t =>-,1t t +⎫<⎪⎭1111ln ln ln 222t x t +-+<-即证,212ln 11ln ln 2212t t t t +-⋅+<--即证,即证,212ln 11ln ln 20212t t t t +-⋅+-+<-()()22111ln ln 1022t t t t t +-⋅-+-<设,,()()()22111ln ln 122t m t t t t t +=-⋅-+-1t >,()()()211112ln12ln 1212t t m t t t t t t t t t t t+-+'=+--+=+-+设,则,()11ln 22t t h t t t +-=+()22222111112101222121t t h t t t t t t t t -⎛⎫⎛⎫'=⋅-+=⋅=⋅-< ⎪ ⎪+++⎝⎭⎝⎭则,所以在递减,可得,所以不等式得证;()0m t '<()m t ()1,+∞()()10m t m <=【点睛】本题充分讨论函数的单调性,利用变量转化和构造函数证明不等式.。

内蒙古自治区呼和浩特市准格尔旗世纪中学高三数学理月考试卷含解析

内蒙古自治区呼和浩特市准格尔旗世纪中学高三数学理月考试卷含解析

内蒙古自治区呼和浩特市准格尔旗世纪中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,集合,则()A. B.C. D.参考答案:B试题分析:因,则,故应选B.考点:不等式的解法与集合的运算.2. 如图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为()A.20+2B.20+2C.18+2D.18+2参考答案:D【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是一个四棱锥,其中后面的侧面与底面垂直.利用三角形与矩形面积计算公式即可得出.【解答】解:由三视图可知:该几何体是一个四棱锥,其中后面的侧面与底面垂直.∴该几何体的表面积=4×2+2×+×4+=2+18,故选:D.3. 已知m和n是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中,一定能推出m⊥β的是( )A.α⊥β且m?αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β;参考答案:C考点:直线与平面垂直的判定.专题:阅读型;空间位置关系与距离.分析:根据A,B,C,D所给的条件,分别进行判断,能够得到正确结果.解答:解:α⊥β,且m?α?m?β,或m∥β,或m与β相交,故A不成立;α⊥β,且m∥α?m?β,或m∥β,或m与β相交,故B不成立;m∥n,且n⊥β?m⊥β,故C成立;由m⊥n,且n∥β,知m⊥β不成立,故D不正确.故选:C.点评:本题考查直线与平面的位置关系的判断,解题时要认真审题,仔细解答,属于基础题.4. 函数的大致图象是()A.B.C.D.参考答案:C【考点】函数的图象.【分析】求得函数的定义域为{x|x≠0},从而排除即可得到答案.【解答】解:∵e2x﹣1≠0,∴x≠0,故函数的定义域为{x|x≠0},故选C.5. 已知是实数,是纯虚数,则等于()A B C D参考答案:A略6. 在三角形中,角,,所对的边分别是,,,且,,成等差数列,若,则的最大值为A. B. C. D.参考答案:C7. 直线l ,m与平面,满足,l //,,,则必有()A.且B.且C .且D.且参考答案:B8. ,复数= ( )A. B. C.D.参考答案:A因为,可知选A9. 已知参考答案:D略10. 若变量满足约束条件,,则取最小值时,二项展开式中的常数项为()A.B. C.D.参考答案:A做出不等式对应的平面区域,由得,平移直线,由图象可知当直线经过点B时,最小,当时,,即,代入得,所以二项式为.二项式的通项公式为,所以当时,展开式的常数项为,选A.二、填空题:本大题共7小题,每小题4分,共28分11. 对任意,的概率为______.参考答案:【分析】由几何概率列式求解即可.【详解】设事件,则构成区域的长度为,所有的基本事件构成的区域的长度为,故.故答案为:.【点睛】本题主要考查了长度型的几何概型的计算,属于基础题.12. 已知,若恒成立,则实数的取值范围是。

四川省某重点中学2015届高三上学期第四次月考 数学理 Word版含答案

四川省某重点中学2015届高三上学期第四次月考 数学理 Word版含答案

高2012级高三上期第四学月考试数学试题(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合M ={1,2,3},N ={2,3,4},则( )A .M ⊆NB .N ⊆MC .M ∪N ={1,4}D .M ∩N ={2,3}2.2532()x x展开式中的常数项为( ) A .80 B .-80 C .40 D .-403. 设是公比为的等比数列,则“为递增数列”是“”的()A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 1 qB.C.D.65.将直线绕原点逆时针旋转,再向右平移俯视侧视图正视图个单位,所得到的直线为()A.B.C. D.6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰.如果甲、乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有()种A.12 B.18 C.24 D.487.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递增 B.在区间上单调递减C.在区间上单调递减 D.在区间上单调递增8.已知函数,则y=f(x)的图像大致为()9.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为()(A)36万元(B)30.4万元(C)31.2万元(D)24万元10..已知R上的函数g(x)满足:①当时,恒成立(为函数的导函数);②对任意的都有,又函数满足:对任意的,都有成立。

渭南市重点中学2024年高三(下)4月月考数学试题试卷

渭南市重点中学2024年高三(下)4月月考数学试题试卷

渭南市重点中学2024年高三(下)4月月考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+2.若实数x 、y 满足21y x y y x ≤⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值是( )A .6B .5C .2D .323.已知,a b 为非零向量,“22a b b a =”为“a a b b =”的( ) A .充分不必要条件 B .充分必要条件C .必要不充分条件D .既不充分也不必要条件4.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .6.一袋中装有5个红球和3个黑球(除颜色外无区别),任取3球,记其中黑球数为X ,则()E X 为( )A .98B .78C .12D .62567.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=( )A .52B .4C .2D .13+8.已知函数()f x 是定义域为R 的偶函数,且满足()(2)f x f x =-,当[0,1]x ∈时,()f x x =,则函数4()()12x F x f x x+=+-在区间[9,10]-上零点的个数为( ) A .9B .10C .18D .209.在三角形ABC 中,1a =,sin sin sin sin b c a bA AB C++=+-,求sin b A =( ) A 3B .23C .12D 610.已知平面向量a b ,满足21a b a =,=,与b 的夹角为2 3π,且)2(()a b a b λ⊥+-,则实数λ的值为( ) A .7-B .3-C .2D .311.已知向量a ,b 夹角为30,()1,2a =,2b = ,则2a b -=( ) A .2B .4C .3D .2712.已知y ax b =+与函数()2ln 5f x x =+和2()4g x x =+都相切,则不等式组3020x ay x by -+≥⎧⎨+-≥⎩所确定的平面区域在2222220x y x y ++--=内的面积为( )A .2πB .3πC .6πD .12π二、填空题:本题共4小题,每小题5分,共20分。

西藏自治区林芝市第一中学2024届高三下学期第一次月考(4月)数学试题试卷

西藏自治区林芝市第一中学2024届高三下学期第一次月考(4月)数学试题试卷

西藏自治区林芝市第一中学2024届高三下学期第一次月考(4月)数学试题试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数2sin cos ()20x x xf x x =+在[2,0)(0,2]ππ-⋃上的图象大致为( ) A . B .C .D .2.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不正确...的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行D .三棱锥1F ABD -的体积为定值3.定义运算()()a a b a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .4.各项都是正数的等比数列{}n a 的公比1q ≠,且2311,,2a a a 成等差数列,则3445a a a a ++的值为( )A 15- B 51+ C 51- D 51+51- 5.复数2(1)41i z i -+=+的虚部为( )A .—1B .—3C .1D .26.设a R ∈,0b >,则“32a b >”是“3log a b >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .21+B .12C .21D .21-8.已知31(2)(1)mx x--的展开式中的常数项为8,则实数m =( )A .2B .-2C .-3D .39.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-10.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -=B .221515x y -=C .221312y x -=D .221217y x -=11.已知集合(){}lg 2A x y x ==-,集合1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( ) A .{}2x x >-B .{}22x x -<<C .{}22x x -≤<D .{}2x x <12.若集合{}(2)0A x x x =->,{}10B x x =->,则A B =A .{}10x x x ><或B .{}12x x <<C .{|2}x x >D .{}1x x >二、填空题:本题共4小题,每小题5分,共20分。

江苏省南京市宁海中学2023届高三下学期4月月考数学试题

江苏省南京市宁海中学2023届高三下学期4月月考数学试题

值时, DNA 的数量 X n 与扩增次数 n 满足 lg Xn n lg1 p lg X0 ,其中 p 为扩增效率,
X 0 为 DNA 的初始数量.已知某被测标本 DNA 扩增10 次后,数量变为原来的100 倍,那么
该样本的扩增效率 p 约为( )
(参考数据:100.2 1.585 ,100.2 0.631)
cos nx Pn (cos x) ,这些多项式 Pn (t) 称为切比雪夫(P.L.Tschebyscheff)多项式.则 ()
A. P3(t) 4t3 3t C. a1 a2 a2 an 2
B.当 n 3 时, a0 0 D. sin18 5 1
4
三、填空题
13.已知点
试卷第 2 页,共 7 页
给出下列说法,其中正确的是( ) A.从 2016 年至 2020 年国内生产总值逐年递增; B.从 2016 年至 2020 年国内生产总值增长速度逐年递减; C.从 2016 年至 2020 年第三产业增加值占国内生产总值比重逐年递增; D.从 2016 年至 2020 年第二产业增加值占国内生产总值比重逐年递减.
BN 分别交 e C :x2 y 12 1于异于点 B 的点 P ,Q ,设直线 PQ 的斜率为 k2 ,直线 BM ,
BN 的斜率分别为 k3, k4 . ①求证: k3 k4 为定值; ②求证:直线 PQ 过定点. 22.已知函数 f (x) ln(2x 1) m(2x 1) 1 . (1)若 y f (x) 在 x 2 处的切线与直线 3x y 2017 0垂直,求 y f (x) 的极值; (2)若函数 y f (x) 的图象恒在直线 y 1的下方. ①求实数 m 的取值范围; ②求证:对任意正整数 n 1,都有 ln[(2n)!] 4n(n 1) .

【恒心】【好卷速递】甘肃省张掖中学2012届高三上学期第四次月考 数学理

【恒心】【好卷速递】甘肃省张掖中学2012届高三上学期第四次月考 数学理

张掖中学2011-2012学年度高三第四次月考数学试题(理科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数111iz i-+=-+,在复平面内,z 所对应的点在 (A)第一象限(B)第二象限(C)第三象限(D)第四象限2.在等差数列{}n a 中,若4108a a +=,则此数列的前13项之和为 (A)104(B)52(C) 39(D)243.3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行的 (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分又不必要条件4.函数()||2(0)f x x x x x =+<的反函数为(A) 1(0)x < (B) 1(0)x ≥(C) 1(0)x < (D) 1(0)x ≥5.设→→a ,b 都是非零向量,若函数()()()f x x a b a x b →→→→=+- (x ∈R )是偶函数,则必有 (A) →→a ⊥b (B)a b →→(C) ||||a b →→=(D) ||||a b →→≠6.把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 (A) 2π-=x (B) 4π-=x (C) 8π=x (D) 4π=x7. 设函数()mf x x ax =+的导函数()21f x x '=+,则数列1()f n ⎧⎫⎨⎬⎩⎭(n ∈N *)的前n 项和是 (A) n n -1 (B) n +2n +1 (C) n n +1 (D) n +1n8. 设有直线m 、n 和平面α、β.下列四个命题中,正确的是(A)若m ∥α,n ∥α,则m ∥n (B)若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βO A B C DA 1B 1C 1D 1· (C)若α⊥β,m ⊂α,则m ⊥β (D)若α⊥β,m ⊥β,m ⊄α,则m ∥α9. 若1ln ln 1(,1),ln ,(),2x xx e a x b c e -∈===,则(A) a b c >> (B) b c a >> (C) b a c >> (D) c b a >>10.已知点(0,1)A 和圆224x y +=上一动点P ,动点M 满足2MA AP =,则点M 的轨迹方程是(A) 22(3)16x y -+= (B) 22(3)16x y +-= (C) 22(3)16x y ++= (D) 22(3)16x y ++=11. 如图,已知球O 是棱长为1 的正方体1111ABCD A BCD -的内切球,则平面1ACD 截球O 的截面面积为(A)3 (B )3π (C )6(D )6π12.()f x 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '-≤,对任意正数a 、b 若a b ≤,则必有(A )()()af b bf a ≤ (B )()()bf a af b ≤ (C )()()af a f b ≤(D )()()bf b f a ≤第Ⅱ卷 非选择题 (共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的横线上(注意:在试卷上作答无效........) 13.已知13sin cos ,524ππθθθ+=≤≤,则cos 2θ= . 14.已知点(0,1)A -及直线:1l x =-,点P 是抛物线24y x =上一动点,则点P 到定点A 的距离与P 到直线l 的距离和的最小值为 .15.已知实数,x y 满足121x y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-1,则实数m =____.16.给出下列四个命题:①已知,,a b m 都是正数,且a m ab m b+>+,则a b <;②已知a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 也成等差数列,则yc x a +的值等于2;③函数x y tan =的图象关于点()(),0,k k Z π∈对称; ④关于x 的不等式|1||3|x x m ++-≥的解集为R ,则4m ≤; 其中为真命题的序号是 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知角A 、B 、C 为ABC ∆的内角,其对边分别为a 、b 、c ,若向量(cos ,sin )22A A m →=-,(cos ,sin )22A A n →=,a =12m n →→⋅=,ABC ∆的面积S =求b c +的值.18.(本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为平行四边形,22==AD AB ,3=BD ,PD ⊥底面ABCD .(Ⅰ)证明:平面⊥PBC 平面PBD ;(Ⅱ)若1=PD ,求AP 与平面PBC 所成角的正弦值.19.(本小题满分12分)已知定点F(0,1)和直线1l :y=-1,过定点F 与直线1l 相切的动圆圆心为点C. (Ⅰ)求动点C 的轨迹方程;(Ⅱ)过点F 的直线2l 交轨迹于两点P 、Q ,交直线1l 于点R ,求RP RQ的最小值.20.(本小题满12分)已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(I)求数列{}n a 的通项公式;(Ⅱ)>.21.(本题满分12分)已知函数14341ln )(-+-=xx x x f . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)设42)(2-+-=bx x x g ,若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立,求实数b 的取值范围.22. (本题满分12分)已知双曲线:C 22221x y a b-=(0,0)a b >>与圆22:3O x y +=相切,过C 的一个焦O 相切.(Ⅰ)求双曲线C 的方程;(Ⅱ)P 是圆O 上在第一象限的点,过P 且与圆O 相切的直线l 与C 的右支交于A 、B两点,AOB ∆的面积为l 的方程.张掖中学2011—2012学年高三第四次月考数学参考答案(理科)一、选择题:(本题共12小题,每题5分,共60分) 题号1 2 3 4 5 6 7 8 9 10 11 12答案 B B C A C A C D B B D A 二、填空题:(本题有4小题,每题5分,共20分)13. 725- 14.15. 5 16. ①③④ 三、解答题:(本题有6小题,共70分,把题答在框格里) 17.(本小题满分10分)解:cos ,sin ,cos ,sin 2222A A A A m n ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭ ,且12m n ⋅=221cos sin 222A A ∴-+=, 即1cos 2A =-……………………………………4分又20,3A A ππ<<∴=.……………………….5分112sin sin 223S bc A bc π=⋅=⋅==4bc ∴=………………………………………7分由余弦定理,222222cos 12a b c bc A b c bc =+-=++=……9分2()16b c ∴+=,故4b c +=.………………10分18.(Ⅰ) 证明: ∵222BD AD AB += ∴BD AD ⊥又∵PD ⊥底面ABCD ∴AD PD ⊥又∵D BD PD =⋂∴⊥AD 平面PBD又∵AD BC //∴⊥BC 平面PBD ∵⊂BC 平面PBC∴平面⊥PBC 平面PBD ……6分(Ⅱ)如图,分别以DA 、DB 、DP 为x 轴、y 轴、z 轴建立空间直角坐标系.则)0,0,1(A ,)0,3,0(B ,)1,0,0(P ,)0,3,1(-C)1,0,1(-=,)0,0,1(-=,)1,3,0(-= 设平面PBC 的法向量为,⎪⎩⎪⎨⎧=∙=∙0BC n 解得)3,1,0(=46sin ==θ…………12分 19.解:(Ⅰ)由题设知点C 到点F 的距离等于它到1l 的距离, 所以点C 的轨迹是以F 为焦点,1l 为准线的抛物线. 即24x y = ……4分(Ⅱ)设直线2l 的方程为1y kx =+,1122(,),(,)P x y Q x y得2(,1)R k--将直线2l 的方程与抛物线方程联立消去y , 得2440x kx --=.…………8分 且12124,4x x k x x +==-∴RP RQ =112222(,1)(,1)x y x y k k++++=2214()816k k++≥当且仅当21k =时取等号.所以RP RQ的最小值为16. ……12分20.解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件 n n n S a a 22=+11212+++=+n n n S a a ,上述两式相减,得0)1)((11=--+++n n n n a a a a001>+∴>+n n n a a a ∴11n n a a +-= 所以, n n a n =-⨯+=)1(11, ………………6分(2)(1)2n n n S +=因为n ,<2)1(23222121+++⨯+⨯=++n n S S S n ; 222)1(2222121n n S n n n S S S =+=+++>++ ………12分21.解:(I )14341ln )(-+-=xx x x f )0(>x , 22243443411)(xx x x x x f --=--=' ............2分 由0>x 及0)(>'x f 得31<<x ;由0>x 及0)(<'x f 得310><<x x 或,故函数)(x f 的单调递增区间是)3,1(; 单调递减区间是),3(,)1,0(∞+...................4分(II )若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立,问题等价于max min )()(x g x f ≥,............ 5分由(I )可知,在(0,2)上,1x =是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min 1()(1)2f x f ==-;...................6分[]2()24,1,2g x x bx x =-+-∈ 当1b <时,max ()(1)25g x g b ==-; 当12b ≤≤时,2max ()()4g x g b b ==-; 当2b >时,max ()(2)48g x g b ==-;问题等价于11252b b <⎧⎪⎨-≥-⎪⎩212142b b ≤≤⎧⎪⎨-≥-⎪⎩ 或21482b b >⎧⎪⎨-≥-⎪⎩.......11分 解得1b <或12b ≤≤或 b ∈∅ 即实数b的取值范围是,2⎛-∞ ⎝⎦...................12分 22.解:(Ⅰ)∵双曲线C 与圆O 相切,∴a = ………………2分过CO 相切,得2c =,既而1b =故双曲线C 的方程为2213x y -= ………………5分(Ⅱ)设直线l :m kx y +=,)0,0(><m k ,),(11y x A ,),(22y x B 圆心O 到直线l 的距离12+=k m d,由d =2233m k =+………6分由2213y kx m x y =+⎧⎪⎨-=⎪⎩ 得222(31)6330k x kmx m -+++= 122631km x x k +=--, 21223331m x x k +=- ……………8分1221x x k AB -⋅+==2121224)(1x x x x k -+⋅+==又AOB ∆的面积12S OP AB =⋅==10分∴AB = = 解得1-=k ,m =∴直线l 的方程为y x =-…………………12分。

安徽省六安第一中学2022-2023学年高三上学期第四次月考数学试题含答案

安徽省六安第一中学2022-2023学年高三上学期第四次月考数学试题含答案

六安一中2023届高三年级第四次月考数学试卷时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足13i1iz +=-(i 为虚数单位),z 是z 的共轭复数,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知空间中的两个不同的平面α,β,直线m ⊥平面β,则“αβ⊥”是“//m α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.一个水平放置的平面图形,用斜二测画法画出了它的直观图,如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.B. C.8D.4.如图,已知1111ABCD A B C D -是正方体,以下结论错误..的是()A.向量AC与向量1C D 的夹角为60°B.110AC A B ⋅= C.()2211111113A A A D A B A B ++=D.若1113A P A C =,则点P 是11AB D 的中心5.(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =() A.33B.C.D.26.过点()3,4P -作圆22:25C x y +=的切线l ,直线:40m ax y -=与切线l 平行,则切线l 与直线m 间的距离为()A.5B.2C.4D.7.如图,已知平面αβ⊥,l αβ= ,,A B 是直线l 上的两点,C D 、是平面β内的两点,且.,3,6,6DA l CB l AD AB CB ⊥⊥===,P 是平面α上的一动点,且直线PD PC 、与平面α所成角相等,则四棱锥P ABCD -体积的最大值为()A.18B.36C.24D.488.在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =.当该正四棱台的体积最大时,其外接球的表面积为(A.332πB.33πC.572π D.57π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下四个命题表述正确的是()A.若直线l 的斜率为l 的倾斜角为π3-B.三棱锥-P ABC 中,E F 、分别为PB PC 、的中点,23PG PA =,则平面EFG 将该三棱锥所分的两部分几何体的体积之比为1:5,即:1:5P EFG EFG ABC V V --=C.若直线l 过点(2,1)P -且在两坐标轴上的截距之和为0,则直线l 的方程为30x y --=D.在四面体O ABC -中,若,OA BC OB AC ⊥⊥,则OC AB⊥10.在三棱锥-P ABC 中,已知PA ⊥底面ABC ,AB BC E F ⊥,、分别是线段PB PC 、上的动点.则下列说法正确的是()A.当AE PB ⊥时,AE PC⊥B.当AF PC ⊥时,AEF △一定为直角三角形C.当//EF BC 时,平面AEF ⊥平面PABD.当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直11.已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中λ,[]0,1μ∈,则下列选项正确的是()A.当12λ=时,三棱锥11A PCD -的体积为定值B.当34μ=时,1B P PD + C.当1λμ+=时,直线1A P 与平面11B D E 的交点轨迹长度为22D.当11,23λμ==时,点1B 到平面11PC D 的距离为6131312.若实数,x y 满足x -=)A.x 的最小值是0B.x 的最大值是5C.若关于y 的方程有一解,则x 的取值范围为[){}1,45D.若关于y 的方程有两解,则x 的取值范围为(4,5)三、填空题:本大题共4小题,每小题5分,共20分.13.若直线120kx y k -+-=与圆229x y +=分别交于M 、N 两点.则弦MN 长的最小值为___________.14.如图,在四面体A BCD -中,2==AC BD ,AC 与BD 所成的角为60︒,M 、N 分别为AB 、CD 的中点,则线段MN 的长为_______.15.已知ABC 的一条内角平分线所在的直线方程为y x =,两个顶点坐标分别为(1,1),(3,2)B C -,则边AC 所在的直线方程为__________.(结果用一般式表示)16.已知数列{}n a 满足:()()()1*21131n nn n a a n n ++-+-=+∈N ,若121a a ==,则数列{}n a 的前20项和20S =___________.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的半径2OA =,侧面积为,120AOP ∠=o .(1)求证:AG BD ⊥;(2)求直线PD 与平面ABD 所成角的正弦值.18.如图,P 为ABC 内的一点,BAP ∠记为α,ABP ∠记为β,且α、β在ABP 中的对边分别记为,,(2)sin cos m n m n ββ+=,π,0,3αβ⎛⎫∈ ⎪⎝⎭.(1)求APB ∠;(2)若1,2AB BP AC AP AP PC ===⊥,,求线段AP 和BC 的长.19.如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点,(1,0)(1,2)A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||MN =l 的方程;(2)圆C 上是否存在点P ,使得22||12||PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.20.已知数列{}n a 的前n 项和为n S ,且22nn n S a =-.(1)求证:2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设3(2)n nn b n a +=+,求证:1231n b b b b ++++< .21.在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答.如图,在五面体ABCDE 中,已知,,//AC BC ED AC ⊥,且22,AC BC ED DC DB =====.(1)设平面BDE 与平面ABC 的交线为l ,证明://l 平面ACDE ;(2)求证:平面ABE ⊥平面ABC ;(3)线段BC 上是否存在一点F ,使得平面AEF 与平面ABF夹角的余弦值等于43,若存在,求BFBC的值;若不存在,请说明理由.22.已知a b ∈R ,,函数()()sin ,xf x e a xg x =-=(1)求函数()y f x =在()()0,0f 处的切线方程;(2)若()y f x =和()y g x =有公共点,(i )当0a =时,求b 的取值范围;(ii )求证:22e a b +>.六安一中2023届高三年级第四次月考数学试卷时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足13i1i z +=-(i 为虚数单位),z 是z 的共轭复数,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】求出12i z =-+即得解.【详解】解:因为131i iz+=-,所以()()()()13i 1i 13i 24i 12i 1i 1i 1i 2z +++-+====-+--+,所以12z i =--在复平面内对应的点为()1,2--,在第三象限.故选:C.2.已知空间中的两个不同的平面α,β,直线m ⊥平面β,则“αβ⊥”是“//m α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B 【解析】【分析】根据直线和平面,平面和平面的位置关系,依次判断充分性和必要性得到答案.【详解】两个不同的平面α,β,直线m ⊥平面β,当αβ⊥时,m α⊂或m α ,不充分;当m α 时,αβ⊥,必要.故选:B.3.一个水平放置的平面图形,用斜二测画法画出了它的直观图,如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.B. C.8D.【答案】D 【解析】【分析】根据斜二测画法的过程将直观图还原回原图形,找到直观图中正方形的四个顶点在原图形中对应的点,用直线段连结后得到原四边形,再计算平行四边形的面积即可.【详解】还原直观图为原图形如图所示,因为2O A ''=,所以O B ''=2OA O A =''=,2OB O B =''=;所以原图形的面积为2⨯=故选:D4.如图,已知1111ABCD A B C D -是正方体,以下结论错误..的是()A.向量AC与向量1C D 的夹角为60°B.110AC A B ⋅=C.()2211111113A A A D A B A B ++= D.若1113A P A C =,则点P 是11AB D 的中心【答案】A 【解析】【分析】由1160A C D ∠=︒得向量AC 与1C D夹角,判断A ,建立如图所示的空间直角坐标系,设1AB =,得各点坐标,用空间向量法判断BCD .【详解】正方体中,11//AC AC (由1AA与1CC 平行且相等得平行四边形11ACC A ),11A C D 是正三角形,1160A C D ∠=︒,但AC 与1C D夹角等于11A C 与1C D 的夹角为120︒,A 错;以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,如图,设1AB =,则(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,1(1,1,1)B ,1(1,0,1)A ,1(0,1,1)C ,1(0,0,1)D ,1(1,1,1)AC =- ,1(0,1,1)A B =- ,110AC A B ⋅=,B 正确;111111(1,1,1)A A A D A B AC ++==-- ,221111111()33A A A D A B A B ++== ,C 正确;1111113(,,333A P A C =--= ,P 点坐标为212(,,)333(1,0,0)(1,1,1)(0,0,1)3++=,所以P 是11AB D 的重心,即中心,D 正确.故选:A .5.(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =() A.33B.C.D.2【答案】C 【解析】【分析】将问题转化为半圆y =位于直线(0)y kx k =>下方的区间长度为2,由此可得2,4a b ==,求出直线与半圆的交点坐标即可求得k 的值.【详解】解:如图所示:因为y =表示以坐标原点为圆心,4为半径位于x 轴上方(含和x 轴交点)的半圆,(0)y kx k =>表示过坐标原点及第一三象限内的直线,(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,即半圆位于直线下方的区间长度为2,所以2,4a b ==,所以直线与半圆的交点(2,,所以2k ==.故选:C.6.过点()3,4P -作圆22:C x y +=的切线l ,直线:40m ax y -=与切线l 平行,则切线l 与直线m 间的距离为()A.5 B.2C.4D.【答案】A 【解析】【分析】根据平行关系可假设():434al y x -=+,由直线与圆相切可知圆心到直线距离d 等于半径,由此可构造方程求得a ,利用平行直线间距离公式可求得结果.【详解】由40ax y -=得:4ay x =;//l m ,∴直线l 斜率4a k =,则():434al y x -=+,即:43160l ax y a -++=,l 与圆C 相切,∴圆心()0,0C 到直线l的距离5d ==,解得:3a =,则:34250l x y -+=,:340m x y -=,l ∴与m 之间的距离5d ==.故选:A.7.如图,已知平面αβ⊥,l αβ= ,,A B 是直线l 上的两点,C D 、是平面β内的两点,且.,3,6,6DA l CB l AD AB CB ⊥⊥===,P 是平面α上的一动点,且直线PD PC 、与平面α所成角相等,则四棱锥P ABCD -体积的最大值为()A.18B.36C.24D.48【答案】B 【解析】【分析】首先根据线面角的定义得12PA DA PB BC ==,再在平面α内,建立平面直角坐标系,则()()3030A B -,,,,设()()0P x y y >,,得出点P 的轨迹,从而确定点P 到平面ABCD距离的最大值,即可求解体积的最大值.【详解】DA l ⊥ ,αβ⊥,l αβ= ,AD β⊂AD α∴⊥,同理BC α⊥,DPA ∴∠为直线PD 与平面α所成的角,CPB ∠为直线PC 与平面α所成的角,DPA CPB ∴∠=∠,又90DAP CBP ∠=∠=︒,DAP CPB ∴~ ,3162PA DA PB BC ===,在平面α内,以AB 为x 轴,以AB 的中垂线为y 轴建立平面直角坐标系,则()()3030A B -,,,,设()()0P x y y >,,∴=,整理可得:()22516x y ++=,P ∴在α内的轨迹为()50M -,为圆心,以4为半径的上半圆,所以点P 到直线AB 距离的最大值是半径4,因为αβ⊥,l αβ= ,点P 到AB 距离就是点P 到平面ABCD 的距离即点P 到平面ABCD 距离的最大值是4,所以四棱锥P ABCD -体积的最大值()1114366436332ABCD V S =⨯⨯=⨯⨯+⨯⨯=.故选:B8.在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =.当该正四棱台的体积最大时,其外接球的表面积为()A.332πB.33πC.572π D.57π【答案】D 【解析】【分析】根据正棱台的性质,表示出棱台的高与边长之间的关系,根据棱台的体积公式,将体积函数式子表示出来,利用不等式求解最值,得到棱台的高.因为外接球的球心一定在棱台上下底面中心的连线及其延长线上,通过作图,数形结合,求出外接球的半径,得到表面积.【详解】图1设底边长为a ,原四棱锥的高为h ,如图1,1,O O 分别是上下底面的中心,连结1OO ,11O A ,OA ,根据边长关系,知该棱台的高为2h,则11112173224ABCD A B C D h a h V -==,由1AA =11AOO A为直角梯形,111124O A A B a ==,2222OA AB a ===h =,11112724ABCD A B C D a h V -==283=当且仅当22482a a =-,即4a =时等号成立,此时棱台的高为1.上底面外接圆半径111r A O ==r AO ==,设球的半径为R ,显然球心M 在1OO 所在的直线上.显然球心M 在1OO 所在的直线上.图2当棱台两底面在球心异侧时,即球心M 在线段1OO 上,如图2,设OM x =,则11O M x =-,01x <<,显然1MA MA R===,即=解得0x <,舍去.图3当棱台两底面在球心异侧时,显然球心M 在线段1O O 的延长线上,如图3,设OM x =,则11O M x =+,显然1MC MA R ====解得52x =,572R ==,此时,外接球的表面积为225744572R πππ⎛=⨯= ⎝⎭.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下四个命题表述正确的是()A.若直线l 的斜率为l 的倾斜角为π3-B.三棱锥-P ABC 中,E F 、分别为PB PC 、的中点,23PG PA =,则平面EFG 将该三棱锥所分的两部分几何体的体积之比为1:5,即:1:5P EFG EFG ABC V V --=C.若直线l 过点(2,1)P -且在两坐标轴上的截距之和为0,则直线l 的方程为30x y --=D.在四面体O ABC -中,若,OA BC OB AC ⊥⊥,则OC AB ⊥【答案】BD 【解析】【分析】根据倾斜角的定义即可判断A ;由题意可得14PEF PBC S S =△△,点G 到平面PBC 的距离是点A 到平面PBC 的距离的23,再根据棱锥的体积公式计算即可判断B ;分直线l 过原点和不过原点两种情况讨论,即可判断C ;将,,AB AC BC uu u r uuu r uu u r 分别用,,OA OB OC表示,再根据数量积的运算律及空间向量的线性运算即可判断D.【详解】解:对于A ,若直线l 的斜率为l 的倾斜角为2π3,故A 错误;对于B ,因为E F 、分别为PB PC 、的中点,所以14PEF PBC S S =△△,设点A 到平面PBC 的距离为h ,点G 到平面PBC 的距离为h ',因为23PG PA = ,所以23'=h h ,则13P ABC A PBC PBC V V S h --==,11213436P GEF G PEF PBC P ABC V V S h V ---==⋅⋅= ,则56EFG ABC P ABC P EFG P ABC V V V V ----==-,所以:1:5P EFG EFG ABC V V --=,故B 正确;对于C ,当直线l 过原点时,直线方程为12y x =-,当直线l 不过原点时,设直线方程为1x y a a+=-,则有211a a-+=-,解得3a =,所以直线方程为133x y-=,即30x y --=,综上,所求直线方程为12y x =-或30x y --=;对于D ,在四面体O ABC -中,,,AB OB OA AC OC OA BC OC OB =-=-=-,因为,OA BC OB AC ⊥⊥,所以()()0,0OA BC OA OC OB OB AC OB OC OA ⋅=⋅-=⋅=⋅-=,即,OA OC OA OB OB OC OA OB ⋅=⋅⋅=⋅ ,所以OA OC OB OC ⋅=⋅ ,即()0OA OB OC -⋅= ,所以0BA OC ⋅=,所以AB OC ⊥,故D 正确.故选:BD .10.在三棱锥-P ABC 中,已知PA ⊥底面ABC ,AB BC E F ⊥,、分别是线段PB PC 、上的动点.则下列说法正确的是()A.当AE PB ⊥时,AE PC⊥B.当AF PC ⊥时,AEF △一定为直角三角形C.当//EF BC 时,平面AEF ⊥平面PABD.当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直【答案】ACD 【解析】【分析】对A ,根据PA ⊥底面ABC 得到PA BC ⊥,结合AB BC ⊥得到BC ⊥平面PAB ,则BC AE ⊥,AE PB ⊥ ,最后利用线面垂直的判定得到⊥AE 平面BCP ,则AE PC ⊥;对B ,取点E 位于点B 处即可判断,对C ,由BC ⊥平面PAB ,//EF BC 得到EF ⊥平面PAB ,则平面AEF ⊥平面PAB ,对D ,利用反证法,假设平面AEF ⊥平面PAB ,根据面面垂直的性质定理得到线面垂直,从而得到与基本事实相矛盾的结论,所以当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直.【详解】对A 选项,PA ⊥ 底面ABC ,且BC ⊂平面ABC ,PA BC ∴⊥,AB BC ⊥ ,PA AB A = ,且,PA AB ⊂平面PAB ,BC ∴⊥平面PAB ,AE ⊂ 平面PAB ,BC AE ∴⊥,AE PB ⊥ ,BC PB B = ,且,BC PB ⊂平面BCP ,AE ∴⊥平面BCP ,PC ⊂ 平面BCP ,AE PC ∴⊥,故A 正确,对B 选项,当AF PC ⊥时,无法得出AEF △一定为直角三角形,例如E 点取点,B ABF 不是直角三角形,若90AFB ∠= ,则BF AF ⊥,又AF PC ⊥ ,BF PC F ⋂=,,BF PC ⊂平面BCP ,则AF ⊥平面BCP ,BC ⊂ 平面BCP ,则AF BC ⊥,而PA BC ⊥,AF PA A = ,,AF PA ⊂平面ACP ,则BC ⊥平面ACP ,AC ⊂ 平面ACP ,则BC AC ⊥,显然不成立,故此时90AFB ∠≠ ,若90BAF ∠= ,则AF AB ⊥,AP AB ⊥ ,AF AP A ⋂=,,AF AP ⊂平面ACP,AB ∴⊥平面ACP ,AC ⊂ 平面ACP ,AB AC ∴⊥,显然不成立,故此时90BAF ∠≠ ,若90ABF ∠= ,则BF BA ⊥,而CB BA ⊥,,BF CB ⊂平面BCP ,BF CB B = ,所以BA ⊥平面BCP ,BP ⊂ 平面BCP ,BA BP ∴⊥,显然不成立,故90ABF ∠≠ ,故B 错误,对C 选项,由A 选项证得BC ⊥平面PAB ,//EF BC Q ,EF ∴⊥平面PAB ,EF ⊂ 平面AEF ,∴平面AEF ⊥平面PAB ,故C 正确,对D 选项,在平面PAB 内,过点P 作AE 的垂线,垂足为G ,假设平面AEF ⊥平面PAB , 平面AEF ⋂平面PAB AE =,PG AE ⊥,且PG ⊂平面PAB ,PG ∴⊥平面AEF ,而若此时PC ⊥平面AEF ,这与过平面外一点作平面的垂线有且只有一条矛盾,故当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直,故D 正确,故选:ACD.11.已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中λ,[]0,1μ∈,则下列选项正确的是()A.当12λ=时,三棱锥11A PCD -的体积为定值B.当34μ=时,1B P PD +C.当1λμ+=时,直线1A P 与平面11B D E 的交点轨迹长度为2D.当11,23λμ==时,点1B 到平面11PC D 的距离为61313【答案】ABD 【解析】【分析】对A :由题意确定点P 的位置,利用转换顶点法求体积;对B :由题意确定点P 的位置,借助于展开图分析求解;对C :由题意确定点P 的位置,分析可得直线1A P 与平面11B D E 的交点轨迹为MN ,即可求得结果;对D :由题意确定点P 的位置,利用等积法求点到面的距离.【详解】对A :取,AB CD 的中点,M N ,连接MN ,则MN AD ,∵11A D AD ,∴MN 11A D ,MN ⊄平面11ACD ,11A D ⊂平面11ACD ,∴MN 平面11ACD ,若12λ=,则点P 在线段MN 上,∴点P 到平面11ACD 的距离相等,过N 作1NF CD ⊥,垂足为F ,∵11A D ⊥平面11CDD C ,1,CD NF ⊂平面11CDD C ,∴11111,CD A D NF A D ⊥⊥1111CD A D D ⋂=,111,CD A D ⊂平面11ACD ,∴NF ⊥平面11ACD ,故三棱锥11P ACD -的高为2NF =,∴1111122122323A PCD P A CD V V --==⨯⨯⨯⨯(定值),A 正确;对B :分别在,AD BC 上取点,M N ,使得3AM BNDM NC==,连接11,,MN A M B N ,则MN AB ,又∵AB 11A B ,∴MN 11A B ,则11,,,A B M N 四点共面,135,22BN B N ===若34μ=,则P MN ∈,故1B P ⊂平面11A B NM ,如图,将平面11A B NM 和平面CDMN 对接成一个平面时,则113B C B N NC =+=,∴11B P PD B D +≥=B 正确;对C :若1λμ+=,则P BD ∈,1A P ⊂平面1A BD ,设1111,A D D E M A B B E N ==I I ,则平面1A BD ⋂平面11B D E MN =,即直线1A P 与平面11B D E 的交点轨迹为MN ,∵1112A M A N MD BN ==,∴12233MN BD ==,故直线1A P 与平面11B D E 的交点轨迹长为223,C 错误;对D :分别在,AD BC 上取点,M N ,使得12AM BN DM NC ==,连接11,,MN MD NC ,则MN CD ,MN =CD ,∵11C D CD ,11C D =CD ,∴MN 11C D ,11MN C D =,则11MNC D 为平行四边形,又∵11C D ⊥平面11AA D D ,1MD ⊂平面11AA D D ∴111C D MD ⊥,则11MNC D 为矩形,若11,23λμ==,则点P 为MN 的中点,12133D M ==,设点1B 到平面11PC D 的距离为d ,由111111B PC D P B C D V V --=,即1111222232332d ⨯⨯⨯⨯=⨯⨯⨯⨯,解得13d=,故点1B 到平面11PC D 的距离为61313,D 正确;故选:ABD.12.若实数,x y 满足x -=)A.x 的最小值是0B.x 的最大值是5C.若关于y 的方程有一解,则x 的取值范围为[){}1,45D.若关于y 的方程有两解,则x 的取值范围为(4,5)【答案】AB 【解析】【分析】根据特殊值可判断A 项;设t =t ⎡∈⎣,原方程即为2t x -+=,将t 当成变量,设()2f t t x =-+,()g t =t ⎡∈⎣,原方程有解等价于()f t 的图象和()g t 的图象有公共点,即可利用数形结合解出.【详解】对于A 项:由已知可得,0x =≥,且当0x =时,解得0y =,符合题意,故A 项正确;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为2t x -+=.设()2f t t x =-+,()g t =t ⎡∈⎣,整理得()20t f t x +-=,t ⎡∈⎣,则()f t 的图象是斜率为2-的直线的一部分;整理可得()222t g t x +=,t ⎡∈⎣,()g t 的四分之一圆.如图,作出函数()y f t =与()y g t =的图象,则问题等价于()f t 的图象和()g t 的图象有公共点,观察图形可知,当直线与圆相切时,直线()2f t t x =-+的截距最大,此时x 有最大值,由=得5x =,故B 项正确;当直线过点(时,x =,解得1x =或0x =(舍去);当直线过点)时,x =4x =或0x =(舍去).因此,要使直线与圆有公共点,则有[]1,5x ∈,综上,[]{}1,50x ∈ ,故x 的最大值为5,最小值为0.对于C 、D 项:综上并结合图象可知,当0x =或5x =或[)1,4x ∈时,y 有一解;当[)4,5x ∈时,y 有两解.故C 、D 项错误.故选:AB .三、填空题:本大题共4小题,每小题5分,共20分.13.若直线120kx y k -+-=与圆229x y +=分别交于M 、N 两点.则弦MN 长的最小值为___________.【答案】4【解析】【分析】分析直线过定点,再由勾股定理即可求解.【详解】由圆229x y +=可得圆心()0,0O ,半径为3,直线120kx y k -+-=,即()210k x y --+=,直线过定点P (2,1),又因为22219+<,所以点在圆的内部,当圆心到直线MN 距离最大时,弦长MN 最小,此时OP MN ⊥,此时4MN ==,故答案为:4.14.如图,在四面体A BCD -中,2==AC BD ,AC 与BD 所成的角为60︒,M 、N 分别为AB 、CD 的中点,则线段MN 的长为_______.【答案】1或1【解析】【分析】取BC 的中点E ,连接EM 、EN ,求出MEN ∠的值,利用余弦定理可求得线段MN 的长.【详解】取BC 的中点E ,连接EM 、EN ,M 、E 分别为AB 、BC 的中点,//ME AC ∴且112ME AC ==,同理可得EN //BD 且112EN BD ==,MEN ∴∠为异面直线AC 与BD 所成的角或其补角,则60MEN ∠= 或120 .在MEN 中,1EM EN ==.若60MEN ∠= ,则MEN 为等边三角形,此时,1MN =;若120MEN ∠= ,由余弦定理可得MN =综上所述,1MN =故答案为:115.已知ABC 的一条内角平分线所在的直线方程为y x =,两个顶点坐标分别为(1,1),(3,2)B C -,则边AC 所在的直线方程为__________.(结果用一般式表示)【答案】3250x y --=【解析】【分析】根据题意可知,y x =是角A 的平分线,所以点B 关于角平分线的对称点B '在直线AC 上,即可求得边AC 所在的直线方程.【详解】由题意可知,直线y x =为三角形内角A 的平分线,所以,点B 关于角平分线y x =的对称点B '在直线AC 上,设(,)B a b ',即1111122b a b a -⎧=-⎪⎪+⎨+-⎪=⎪⎩,解得1,1a b ==-,所以(1,1)B '-此时直线BC '所在直线方程即为边AC 所在的直线方程,即212(3)31y x +-=--,整理得3250x y --=.故答案为:3250x y --=16.已知数列{}n a 满足:()()()1*21131n n n n a a n n ++-+-=+∈N ,若121a a ==,则数列{}n a 的前20项和20S =___________.【答案】115-【解析】【分析】分别讨论*21,n m n m m =-=∈N 、,由累加法得2122m m a a ++、的通项,即可求20S .【详解】当*21,n m m =-∈N 时,()()()2212121212111321162m m m m m m a a a a m m -+-+--+-=-=-+=-,∴()()212121212331126121216121312m m m m m a a a a a a a a m m m m m m m m ++---=-+-++-+=+-+++-++=-+=++ ∴()()2221319312912910a a a +++=⨯++++++++ ;当*2,n m m =∈N 时,()()2122222221161m m m m m m a a a a m +++-+-=-+=+,即()22261m m a a m +-=-+,∴()()222222224222612116113412m m m m m a a a a a a a a m m m m m m m m ++-=-+-++-+=-+-+++-+-+=-+=--+ ∴()()22224203129412910a a a +++=-⨯+++-⨯++++ .故()22220131924203129(129)10S a a a a a a =+++++++=⨯++++++++ ()()2229(19)31294129103201152+-⨯+++-⨯++++=-⨯+=- 故答案为:115-四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的半径2OA =,侧面积为,120AOP ∠=o.(1)求证:AG BD ⊥;(2)求直线PD 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)24【解析】【分析】(1)根据圆柱侧面积公式可求得母线长AD ,利用余弦定理可求得AP ,根据等腰三角形三线合一性质可证得AG DP ⊥;由AP BP ⊥,BP AD ⊥可证得BP ⊥平面ADP ,由线面垂直性质可得BP AG ⊥;利用线面垂直的判定和性质可证得结论;(2)取OB 中点E ,根据等腰三角形三线合一和线面垂直性质可证得PE ⊥平面ABD ,由线面角定义可知所求角为PDE ∠,根据长度关系可得结果.【小问1详解】由圆柱侧面积可知:2π4πOA AD AD ⋅⋅=⋅=,解得:AD =2OA OP ==,120AOP ∠=o,AP ∴=,AD AP ∴=,又G 为DP 中点,AG DP ∴⊥;AB 是圆O 的直径,AP BP ∴⊥;AD ⊥ 平面ABP ,BP ⊂平面ABP ,BP AD ∴⊥,又,AD AP ⊂平面ADP ,AD AP A = ,BP ∴⊥平面ADP ,AG ⊂ 平面ADP ,BP AG ∴⊥,又,BP DP ⊂平面BDP ,BP DP P = ,AG ∴⊥平面BDP ,BD ⊂Q 平面BDP ,AG BD ∴⊥.【小问2详解】取OB 中点E ,连接PE ,18060BOP AOP ∠=-∠= ,OB OP =,OBP ∴△为等边三角形,PE AB ∴⊥;AD ⊥ 平面ABP ,PE ⊂平面ABP ,PE AD ⊥∴;AB AD A =Q I ,,AB AD ⊂平面ABD ,PE ∴⊥平面ABD ,PDE ∴∠即为直线PD 与平面ABD 所成角,DP =,PE ==,2sin4PE PDE DP ∴∠==,即直线PD 与平面ABD 所成角的正弦值为4.18.如图,P 为ABC 内的一点,BAP ∠记为α,ABP ∠记为β,且α、β在ABP 中的对边分别记为,,(2)sin cos m n m n ββ+=,π,0,3αβ⎛⎫∈ ⎪⎝⎭.(1)求APB ∠;(2)若1,2AB BP AC AP AP PC ===⊥,,求线段AP 和BC 的长.【答案】(1)2π3(2)1AP =,BC =【解析】【分析】(1)首先利用正弦定理将(2)sin cos m n ββ+=化简为sin sin 3παβ⎛⎫=-⎪⎝⎭,再结合所给角的范围,即可求解.(2)利用余弦定理求出AP ,再结合AP PC ⊥150BPC ∠=︒,,利用余弦定理即可求出BC .【小问1详解】已知()2sin cos m n ββ+=,由正弦定理可得22sin sin sin cos αββββ+=,由sin 0β≠,31sin cos sin sin sin 223παββαβ⎛⎫∴=-⇒= ⎪⎝⎭,πππ,0,0,333αββ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,,3παβ=-,233APB ππαβ+=⇒∠=.【小问2详解】在APB △中,由余弦定理得知:2222cos AB AP BP AP BP APB=+-⋅⋅∠即231+1AP AP AP =+⇒=又AP PC ⊥ ,且2AC AP PC =⇒=,又150BPC ∠=︒ ,在BPC △中,2222cos BC PB PC PB PC BPC =+-⋅⋅∠,2312BC BC =+⇒=19.如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点,(1,0)(1,2)A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||MN =l 的方程;(2)圆C 上是否存在点P ,使得22||12||PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.【答案】(1)1x =或34110x y +-=(2)存在,两个【解析】【分析】(1)根据垂径定理可得圆心到直线l 的距离为1,然后利用点到直线的距离即可求解;(2)假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,利用题干条件得到点P 也满足22(1)4x y +-=,根据两圆的位置关系即可得出结果.【小问1详解】圆22:40C x y x +-=可化为22(2)4x y -+=,圆心为(2,0),2r =,若l 的斜率不存在时,1l x =:,此时||MN =.当l 的斜率存在时,设l 的斜率为k ,则令:2(1)l y k x -=-,因为||MN =1d ==314k =⇒=-,34110x y ∴+-=所以直线l 的方程为1x =或34110x y +-=.【小问2详解】假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,222222||||(1)(0)(1)(2)12PA PB x y x y +=++-+-+-=,即22230x y y +--=,即22(1)4x y +-=,|22|22-<<+ ,22(2)4x y ∴-+=与22(1)4x y +-=相交,则点P 有两个.20.已知数列{}n a 的前n 项和为n S ,且22nn n S a =-.(1)求证:2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设3(2)n nn b n a +=+,求证:1231n b b b b ++++< .【答案】(1)证明见解析;()112n n a n -=+⋅(2)证明见解析【解析】【分析】(1)利用公式()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩得到1122n n n a a --=+,可构造等差数列并求通项.(2)求出的通项,利用裂项相消求和证明不等式.【小问1详解】因为22n n n S a =-①,所以2n ≥时,11122n n n S a ---=-②,-①②得112222n n n n n a a a --=--+,即1122n n n a a --=+,2n ≥,所以111222n n n n a a ---=,2n ≥,在①式中,令1n =,得12a =,所以数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项12为公差的等差数列.所以111(1)222n n a n n +=+-⋅=,所以()112n n a n -=+⋅.【小问2详解】)由121311(2)(1)2(1)2(2)2n n n n n b n n n n ---+==-++⋅+⋅+⋅,所以1230011211111(1()(3232424252n b b b b ++++=-+-+-+⨯⨯⨯⨯⨯ 2111111(1)2(2)2(2)2n n n n n n ---⎡⎤+-=-⎢⎥+⋅+⋅+⋅⎣⎦.因为110(2)2n n ->+⋅,所以1231n b b b b ++++< ,得证.21.在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答.如图,在五面体ABCDE 中,已知,,//AC BC ED AC ⊥,且22,AC BC ED DC DB =====.(1)设平面BDE 与平面ABC 的交线为l ,证明://l 平面ACDE ;(2)求证:平面ABE ⊥平面ABC ;(3)线段BC 上是否存在一点F ,使得平面AEF 与平面ABF 夹角的余弦值等于43,若存在,求BF BC的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)答案见解析;(3)线段以上不存在点F ,使得平面AEF 与平面ABF 夹角的余弦值等于54343,理由见解析.【解析】【分析】(1)由线面平行的判定定理证线面平行//DE 平面ABC ,,再由线面平行的性质定理得线线平行//DE l ,从而再得证线面平行;(2)选①,取AC 中点G ,BC 中点,O AB 中点H ,连接,,EG DO OH ,由勾股定理证明AG EG ⊥,然后证明AC ⊥平面BCD ,从而得面面垂直,由面面垂直的性质定理得线面垂直,从而得线线垂直DO ⊥平面ABC ,又有OH BC ⊥,然后以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,用空间向量法证明面面垂直;选②,先证明平面ABC ⊥平面BCD ,然后取BC 中点O ,AB 中点H ,连接,DO OH ,证明DO ⊥平面ABC ,然后同选①,选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,结合勾股定理证明BD DE ⊥,然后证明证明DO ⊥平面ABC ,再然后同选①;(3)设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABF 夹角的余弦值等于54343,然后由空间向量法求二面角的余弦,求解t ,有解说明存在,无解说明不存在.【小问1详解】//DE AC ,AC ⊂平面ABC ,DE ⊄平面ABC ,//DE ∴平面ABC ,又DE ⊂ 平面BDE 且平面BDE ⋂平面=ABC l ,//DE l∴又DE ⊂ 平面ACDE ,l ⊄平面ACDE ,//l ⇒平面ACDE .【小问2详解】若选①,取AC 中点G ,BC 中点,O AB 中点H ,连接,,EG DO OH ,//ED AC ,12CG AC ED ==,∴四边形EDCG 为平行四边形,EG CD ∴∥,EG ∴=112AG AC ==,2AE =,222AG EG AE ∴+=,AG EG ∴⊥,又//CD EG ,AC CD ∴⊥,又AC BC ⊥,BC CD C ⋂=,,BC CD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,BD CD = ,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.则以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,则()2,1,0A -,()0,1,0B,(E ,()2,2,0AB ∴=-,(1,BE =- ,DO ⊥ 平面ABC ,∴平面ABC 的一个法向量()0,0,1m = ;设平面ABE 的法向量()1111,,n x y z = ,则11111112200AB n x y BE n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令11x =,解得:11y =,10z =,()1=1,1,0∴ n ,10m n ∴⋅= ,即1m n ⊥ ,∴平面ABE ⊥与平面ABC .若选②,AC BD ^ ,AC BC ⊥,BC BD B = ,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,取BC 中点O ,AB 中点H ,连接,DO OH ,BD CD = ,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.以下同选①;若选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,DC BD ==DO BC ∴⊥,又2BC =,DO ∴=,O H 分别为,BC AB 中点,12OH AC ∴∥,又12ED AC ∥,OH ED ∴∥,∴四边形DEHO为平行四边形,EH DO ∴==AC BC ⊥,2AC BC ==,AB ∴=,12EH AB ∴=,AE BE ∴⊥,EAB EBA ∠=∠ ,2∴==BE AE ,222BD DE BE ∴+=,BD DE ∴⊥,又//DE AC ,AC BD ∴⊥,又AC BC ⊥,BC BD B = ,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,又DO BC ⊥,DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.以下同选①;【小问3详解】设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABF夹角的余弦值等于43,由(2)得:(1,,EF t =-,(AE =- ,设平面AEF 的法向量()2222,,n x y z = ,则2222222200AE n x y EF n x ty ⎧⋅=-++=⎪⎨⋅=-+-=⎪⎩ ,令24y =,则())2221,1x t z t =+=-,())()221,1n t t ∴=+- ,∵面ABF 的法向量为(0,0,1)n = ,222cos ,43n n n n n n ⋅∴<>===⋅ ,化简得2417290t t -+=,21744291750∆=-⨯⨯=-<,方程无实数解,所以线段BC 上不存在点F ,使得平面AEF 与平面ABF 夹角的余弦值等于54343.22.已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程;(2)若()y f x =和()y g x =有公共点,(i )当0a =时,求b 的取值范围;(ii )求证:22e a b +>.【答案】(1)(1)1=-+y a x (2)(i))b ∞∈+;(ii )证明见解析【解析】【分析】(1)求出(0)f '可求切线方程;(2)(i )当0a =时,曲线()y f x =和()y g x =有公共点即为()2e ,0t s t bt t =-≥在[)0,+∞)b ∈+∞.(ii )曲线()y f x =和()y g x =有公共点即00sin e 0x a x +=,利用点到直线的距离x ≥22e >e sin x x x +,从而可得不等式成立.【小问1详解】()e cos x f x a x '=-,故(0)1f a '=-,而(0)1f =,曲线()f x 在点(0,(0))f 处的切线方程为()()101y a x =--+即()11y a x =-+.【小问2详解】(i )当0a =时,因为曲线()y f x =和()y g x =有公共点,故e x =设t =,故2x t =,故2e t bt =在[)0,+∞上有解,设()2e ,0t s t bt t =-≥,故()s t 在[)0,+∞上有零点,而()22e ,0t s t t b t '=->,若0b =,则()2e 0t s t =>恒成立,此时()s t 在[)0,+∞上无零点,若0b <,则()0s t '>在()0,+∞上恒成立,故()s t 在[)0,+∞上为增函数,而()010s =>,()()01s t s ≥=,故()s t 在[)0,+∞上无零点,故0b >,设()22e ,0t u t t b t =->,则()()2224e 0t u t t '=+>,故()u t 在()0,+∞上为增函数,而()00u b =-<,()()22e 10b u b b =->,故()u t 在()0,+∞上存在唯一零点0t ,且00t t <<时,()0u t <;0t t >时,()0u t >;故00t t <<时,()0s t '<;0t t >时,()0s t '>;所以()s t 在()00,t 上为减函数,在()0,t +∞上为增函数,故()()0min s t s t =,因为()s t 在[)0,+∞上有零点,故()00s t ≤,故200e 0t bt -≤,而2002e 0t t b -=,故220020e 2e 0t t t -≤即02t ≥,设()22e ,0t v t t t =>,则()()2224e 0t v t t '=+>,故()v t 在()0,+∞上为增函数,而2002e t b t =,故12b ≥=.(ii )因为曲线()y f x =和()y g x =有公共点,所以e sin x a x -=有解0x ,其中00x ≥,若00x =,则100a b -⨯=⨯,该式不成立,故00x >.故00sin e 0x a x +=,考虑直线00sin e 0x a x +=,表示原点与直线00sin e 0x a x +=上的动点(),a b 之间的距离,x ≥0222200e sin x a b x x +≥+,下证:对任意0x >,总有sin x x <,证明:当2x π≥时,有sin 12x x π≤<≤,故sin x x <成立.当02x π<<时,即证sin x x <,设()sin p x x x =-,则()cos 10p x x '=-≤(不恒为零),故()sin p x x x =-在[)0,+∞上为减函数,故()()00p x p <=即sin x <成立.综上,sin x x <成立.下证:当0x >时,e 1x x >+恒成立,()e 1,0x q x x x =-->,则()e 10x q x '=->,故()q x 在()0,+∞上为增函数,故()()00q x q >=即e 1x x >+恒成立.下证:22e >e sin xx x+在()0,+∞上恒成立,即证:212e sin x x x ->+,即证:2211sin x x x -+≥+,即证:2sin x x ≥,而2sin sin x x x >≥,故2sin x x ≥成立.e x >,即22e a b +>成立.【点睛】思路点睛:导数背景下零点问题,注意利用函数的单调性结合零点存在定理来处理,而多变量的不等式的成立问题,注意从几何意义取构建不等式关系,再利用分析法来证明目标不等式.。

辽宁省阜新二高2024届高三下学期期末考试(第四次月考)数学试题

辽宁省阜新二高2024届高三下学期期末考试(第四次月考)数学试题

辽宁省阜新二高2024届高三下学期期末考试(第四次月考)数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( )A .[2,4]B .[4,6]C .[5,8]D .[6,7]2.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A .3-B .3C . 1D .1-3.已知i 是虚数单位,则( ) A .B .C .D .4.若复数()(1)2z i i =++(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限5.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭, 则()1E ξ= D .am bm >是a b >的充分不必要条件6.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )A .4383π+B .2383π+C .343π+D .8343π+7.等差数列{}n a 中,已知51037a a =,且10a <,则数列{}n a 的前n 项和n S *()n N ∈中最小的是( )A .7S 或8SB .12SC .13SD .14S8.已知幂函数()f x x α=的图象过点(3,5),且1a e α⎛⎫= ⎪⎝⎭,3b α=,1log 4c α=,则a ,b ,c 的大小关系为( )A .c a b <<B .a c b <<C .a b c <<D .c b a <<9.由实数组成的等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 9>S 8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=( )A .1-B .0C .1D .211.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1-B .1C .2-D .212.若复数z 满足3(1)1z z i +=,复数z 的共轭复数是z ,则z z +=( ) A .1B .0C .1-D .132-+ 二、填空题:本题共4小题,每小题5分,共20分。

安徽省合肥市2024-2025学年高三上学期10月月考试题 数学含答案

安徽省合肥市2024-2025学年高三上学期10月月考试题 数学含答案

合肥2025届高三10月段考试卷数学(答案在最后)考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分)1.已知集合{A x x =<,1ln 3B x x ⎧⎫=<⎨⎬⎩⎭,则A B = ()A .{x x <B .{x x <C .{0x x <<D .{0x x <<2.设a ,b 均为单位向量,则“55a b a b -=+”是“a b ⊥ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知数列{}n a 满足()111n n a a +-=,若11a =-,则10a =()A .2B .-2C .-1D .124.已知实数a ,b ,c 满足0a b c <<<,则下列不等式中成立的是()A .11a b b a+>+B .22a b aa b b+<+C .a b b c a c<--D .ac bc>5.已知a ∈R ,2sin cos 2αα+=,则tan 2α=()A .43B .34C .43-D .34-6.10名环卫工人在一段直线公路一侧植树,每人植一棵,相邻两棵树相距15米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从(1)到(10)依次编号,为使每名环卫工人从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()A .(1)和(10)B .(4)和(5)C .(5)和(6)D .(4)和(6)7.设0.1e1a =-,111b =,ln1.1c =,则()A .b c a <<B .c b a<<C .a b c<<D .a c b<<8.定义在R 上的奇函数()f x ,且对任意实数x 都有()302f x f x ⎛⎫--+=⎪⎝⎭,()12024e f =.若()()0f x f x '+->,则不等式()11ex f x +>的解集是()A .()3,+∞B .(),3-∞C .()1,+∞D .(),1-∞二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分)9.已知O 为坐标原点,点()1cos1,sin1P ,()2cos 2,sin 2P -,()3cos 3,sin 3P ,()1,0Q ,则()A .12OP OP = B .12QP QP =C .312OQ OP OP OP ⋅=⋅ D .123OQ OP OP OP ⋅=⋅ 10.三次函数()32f x x ax =++叙述正确的是()A .当1a =时,函数()f x 无极值点B .函数()f x 的图象关于点()0,2中心对称C .过点()0,2的切线有两条D .当a <-3时,函数()f x 有3个零点11.已知()2sin 2f x x =+,对任意的π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()123f x f x α=+成立,则下列选项中,α可能的值是()A .3π4B .4π7C .6π7D .8π7三、填空题(本大题共3小题,每小题5分,共15分)12.已知复数1+与3i 在复平面内用向量OA 和OB 表示(其中i 是虚数单位,O 为坐标原点),则OA与OB夹角为______.13.函数2x y m m =-+在(],2-∞上的最大值为4,则m 的取值范围是______.14.设a 、b 、[]0,1c ∈,则M =+______.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,cos sin 0a C C b c --=.(1)求角A ;(2)已知8b =,从下列三个条件中选择一个作为已知,使得ABC △存在,并求出ABC △的面积.条件①:2cos 3B =-;条件②:7a =;条件③:AC .(注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.)16.(15分)某地区上年度天然气价格为2.8元/3m ,年用气量为3m a .本年度计划将天然气单价下调到2.55元/3m 至2.75元/3m 之间.经调查测算,用户期望天然气单价为2.4元/3m ,下调单价后新增用气量和实际单价与用户的期望单价的差成反比(比例系数为k ).已知天然气的成本价为2.3元/3m .(1)写出本年度天然气价格下调后燃气公司的收益y (单位:元)关于实际单价x (单位:元/3m )的函数解析式;(收益=实际用气量×(实际单价-成本价))(2)设0.2k a =,当天然气单价最低定为多少时,仍可保证燃气公司的收益比上年度至少增加20%?17.(15分)已知函数()824x x xa f x a +⋅=⋅(a 为常数,且0a ≠,a ∈R ),且()f x 是奇函数.(1)求a 的值;(2)若[]1,2x ∀∈,都有()()20f x mf x -≥成立,求实数m 的取值范围.18.(17分)已知函数()()2ln f x x x =-(1)讨论函数()f x 的单调性;(2)求函数()f x 在()()22e ,ef 处切线方程;(3)若()f x m =有两解1x ,2x ,且12x x <,求证:2122e e x x <+<.19.(17分)(1)若干个正整数之和等于20,求这些正整数乘积的最大值.(2)①已知12,,,n a a a ⋅⋅⋅,都是正数,求证:12n a a a n++⋅⋅⋅+≥;②若干个正实数之和等于20,求这些正实数乘积的最大值.合肥2025届高三10月段考试卷·数学参考答案、提示及评分细则题号1234567891011答案DCCBBCACACABDAC一、单选题(本大题共8小题,每小题5分,共40分)1.【答案】D【解析】131ln 0e 3x x <⇒<<,∵23e 2<,∴661132e 2⎛⎫⎛⎫<⇒< ⎪ ⎪⎝⎭⎝⎭.故选D .2.【答案】C【解析】∵“55a b a b -=+ ”,∴平方得222225102510a b a b a b a b +-⋅=++⋅,即200a b ⋅= ,则0a b ⋅= ,即a b ⊥,反之也成立.故选C .3.【答案】C 【解析】因为111n n a a +=-,11a =-,所以212a =,32a =,41a =-,所以数列{}n a 的周期为3,所以101a =-.故选C .4.【答案】B【解析】对于A ,因为0a b <<,所以11a b >,所以11a b b a+<+,故A 错误;对于B ,因为0a b <<,所以()()()()222220222a b b a a b a b a b a a b b a b b a b b+-++--==<+++,故B 正确;对于C ,当2a =-,1b =-,1c =时,13b a c =-,1a b c =-,b aa cb c<--,故C 错误;对于D ,因为a b <,0c >,所以ac bc <,故D 错误.故选B .5.【答案】B【解析】102sin cos 2αα+=,则()252sin cos 2αα+=,即2254sin 4sin cos cos 2αααα++=,可得224tan 4tan 15tan 12ααα++=+,解得tan 3α=-或13.那么22tan 3tan 21tan 4ααα==-.故选B .6.【答案】C【解析】设树苗可以放置的两个最佳坑位的编号为x ,则各位同学从各自树坑前来领取树苗所走的路程总和为:1152151015S x x x =-⨯+-⨯+⋅⋅⋅+-⨯.若S 取最小值,则函数()()()()22222221210101101210y x x x x x =-+-+⋅⋅⋅+-=-+++⋅⋅⋅+也取最小值,由二次函数的性质,可得函数()2222101101210y x x =-+++⋅⋅⋅+的对称轴为 5.5x =,又∵x 为正整数,故5x =或6.故选C 7.【答案】A【解析】构造函数()1ln f x x x =+,0x >,则()211f x x x'=-,0x >,当()0f x '=时,1x =,01x <<时,()0f x '<,()f x 单调递减;1x >时,()0f x '>,()f x 单调递增.∴()f x 在1x =处取最小值()11f =,∴1ln 1x x>-,(0x >且1x ≠),∴101ln1.111111>-=,∴c b >;构造函数()1e 1ln x g x x -=--,1x >,()11ex g x x-'=-,∵1x >,1e1x ->,11x<,∴()0g x '>,()g x 在()1,+∞上递增,∴()()10g x g >=,∴ 1.11e 1ln1.1-->,即0.1e 1ln1.1->,∴a c >.故选A .8.【答案】C【解析】因为()f x 是奇函数,所以()f x '是偶函数,因为()()0f x f x '+->,所以()()0f x f x '+>,令()()e x g x f x =,()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦,()g x 在R 上单调递增.又因为()302f x f x ⎛⎫--+=⎪⎝⎭且()f x 是奇函数,所以()f x 的周期为3,()12024e f =,则()12ef =,所以()212e e e g =⨯=,则不等式()()()()111e 1e 12ex x f x f x g x g ++>⇒+>⇒+>,因为()g x 在R 上单调递增,所以12x +>,即1x >.故选C .二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AC【解析】∵()1cos1,sin1P ,()2cos 2,sin 2P -,()()()3cos 12,sin 12P ++,()1,0Q ,∴()1cos1,sin1OP = ,()2cos 2,sin 2OP =- ,()()()3cos 12,sin 12OP =++ ,()1,0OQ = ,()1cos11,sin1QP =- ,()2cos 21,sin 2QP =-- ,易知121OP OP == ,故A 正确;∵1QP = ,2QP = 12QP QP ≠ ,故B 错误;()3cos 12cos1cos 2sin1sin 2OQ OP ⋅=+=- ,12cos1cos 2sin1sin 2OP OP ⋅=-,∴312OQ OP OP OP ⋅=⋅ ,故C 正确;1cos1OQ OP ⋅= ,23cos 2cos 3sin 2sin 3cos 5cos1OP OP ⋅=-=≠,故D 错误.故选AC .10.【答案】ABD【解析】对于A :1a =,()32f x x x =++,()2310f x x '=+>,()f x 单调递增,无极值点,故A 正确;对于B :因为()()4f x f x +-=,所以函数()f x 的图象关于点()0,2中心对称,故B 正确;对于C :设切点()()1,x f x ,则切线方程为()()()111y f x f x x x '-=-,因为过点()0,2,所以()()()112f x f x x '-=-,331111223x ax x ax ---=--,解得10x =,即只有一个切点,即只有一条切线,故C 错误;对于D :()23f x x a '=+,当3a <-时,()0f x '=,x =,当,x ⎛∈-∞ ⎝时,()0f x '>,()f x 单调递增,当x ⎛∈ ⎝时,()0f x '<,()f x 单调递减,当x ⎫∈+∞⎪⎪⎭时,()0f x '>,()f x 单调递增,()f x 有极大值为20f ⎛=> ⎝,所以若函数()f x 有3个零点,()f x有极小值为20f =<,得到3a <-,故D 正确.故选ABD .11.【答案】AC【解析】∵π0,2x ⎡⎤∈⎢⎥⎣⎦,∴[]1sin 0,1x ∈,∴()[]12,4f x ∈,∵对任意的1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎣⎦,使得()()123f x f x a =+成立,∴()2min 23f x α+≤,()2max 43f x α+≥,∴()2sin 2f x x =+,∴()2min 2sin 3x α+≤-,()2max 1sin 3x α+≥-,sin y x =在π3π,22⎡⎤⎢⎥⎣⎦上单调递减.在3π,2π2⎡⎤⎢⎥⎣⎦上单调递增.当3π4α=时,23π5π,44x α⎡⎤+∈⎢⎥⎣⎦,()2max 3π1sin sin043x α+=>>-,()2min 5π2sin sin42x α+==-23<-,故A 正确,当4π7α=时,24π15π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 15π7π12sin sin sin 14623x α+=>=->-,故B 错误,当6π7α=时,26π19π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 6π1sin sin073x α+=>>-,()2min 19πsin sin14x α+=<4π2sin 323=-<-,故C 正确,当8π7α=时,28π23π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 8π9π1sin sin sin 783x α+=<=-.故错误.故选AC .三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】π6【解析】由题知(OA = ,()0,3OB =,cos ,2OA OB OA OB OA OB⋅==⋅,∴π6AOB ∠=.故本题答案为π6.13.【答案】(],2-∞【解析】当0m ≤时,函数2x y m m =-+的图象是由2xy =向上平移m 个单位后,再向下平移m 个单位,函数图象还是2xy =的图象,满足题意,当02m <≤时,函数2x y m m =-+图象是由2xy =向下平移m 个单位后,再把x 轴下方的图象对称到上方,再向上平移m 个单位,根据图象可知02m <≤满足题意,2m >时不合题意.故本题答案为(],2-∞.14.23【解析】不妨设01a b c ≤≤≤≤,则3M b a c b c a =---,()622b a c b a c b c a --≤-+-=-∴32323M b a c b c a c a =----+,当且仅当b a c b -=-,0a =,1c =,即0a =,12b =,1c =时,等号成立.23+.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解析】(1)因为cos 3sin 0a C a C b c +--=,由正弦定理得sin cos 3sin sin sin 0A C A C B C +--=.即:()sin cos 3sin sin sin 0A C A C A C C +-+-=,()3sin cos sin sin 0sin 0A C A C C C --=>3cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭,因为0πA <<,所以ππ66A -=,得π3A =;(2)选条件②:7a =.在ABC △中,由余弦定理得:2222cos a b c bc A =+-,即222π7816cos3c c =+-⋅.整理得28150c c -+=,解得3c =或5c =.当3c =时,ABC △的面积为:1sin 632ABC S bc A ==△,当c=5时,ABC △的面积为:1sin 1032ABC S bc A ==△选条件③:AC,设AC边中点为M,连接BM,则BM=,4AM=,在ABM△中,由余弦定理得2222cosBM AB AM AB AM A=+-⋅⋅,即2π21168cos3AB AB=+-⋅.整理得2450AB AB--=,解得5AB=或1AB=-(舍).所以ABC△的面积为1sin2ABCS AB AC A=⋅⋅=△.16.【解析】(1)()2.32.4ky a xx⎛⎫=+-⎪-⎝⎭,[]2.55,2.75x∈;(2)由题意可知要同时满足以下条件:()()[]0.2 2.3 1.2 2.8 2.32.42.55,2.75a a x axx⎧⎛⎫+-≥-⎪⎪-⎝⎭⎨⎪∈⎩,∴2.6 2.75x≤≤,即单价最低定为2.6元/3m.17.【解析】(1)()1122xxf xa=⨯+,因为()f x是奇函数,所以()()f x f x-=-,所以11112222x xx xa a⎛⎫⨯+=-⨯+⎪⎝⎭,所以111202xxa⎛⎫⎛⎫++=⎪⎪⎝⎭⎝⎭,所以110a+=,1a=-;(2)因为()122xxf x=-,[]1,2x∈,所以22112222x xx xm⎛⎫-≥-⎪⎝⎭,所以122xxm≥+,[]1,2x∈,令2xt=,[]1,2x∈,[]2,4t∈,由于1y tt=+在[]2,4单调递增,所以117444m≥+=.18.【解析】(1)()f x的定义域为()0,+∞,()1lnf x x'=-,当()0f x'=时,ex=,当()0,ex∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,故()f x 在区间()0,e 内为增函数,在区间()e,+∞为减函数;(2)()2e 0f =,()22e 1ln e 1f '=-=-,所以()()22e ,ef 处切线方程为:()()201e y x -=--,即2e 0x y +-=;(3)先证122e x x +>,由(1)可知:2120e e x x <<<<,要证12212e 2e x x x x +>⇔>-,也就是要证:()()()()21112e 2e f x f x f x f x <-⇔<-,令()()()2e g x f x f x =--,()0,e x ∈,则()()()2ln 2e 2ln e 2e e 0g x x x '=--≥--=,所以()g x 在区间()0,e 内单调递增,()()e 0g x g <=,即122e x x +>,再证212e x x +<,由(2)可知曲线()f x 在点()2e ,0处的切线方程为()2e x x ϕ=-,令()()()()()222ln e 3ln e m x f x x x x x x x x ϕ=-=---+=--,()2ln m x x '=-,∴()m x 在e x =处取得极大值为0,故当()0,e x ∈时,()()f x x ϕ<,()()12m f x f x ==,则()()2222e m f x x x ϕ=<=-,即22e m x +<,又10e x <<,()()111111112ln 1ln m f x x x x x x x x ==-=+->,∴2122e x x m x +<+<.19.【解析】(1)将20分成正整数1,,n x x ⋅⋅⋅之和,即120n x x =+⋅⋅⋅+,假定乘积1n p x x =⋅⋅⋅已经最大.若11x =,则将1x 与2x 合并为一个数1221x x x +=+,其和不变,乘积由122x x x =增加到21x +,说明原来的p 不是最大,不满足假设,故2i x ≥,同理()21,2,,i x i n ≥=⋅⋅⋅.将每个大于2的22i i x x =+-拆成2,2i x -之和,和不变,乘积()224i i i x x x -≤⇒≤.故所有的i x 只能取2,3,4之一,而42222=⨯=+,所以将i x 取2和3即可.如果2的个数≥3,将3个2换成两个3,这时和不变,乘积则由8变成9,故在p 中2的个数不超过2个.那只能是202333333=++++++,最大乘积为6321458⨯=;(2)①证明:先证:1ex x -≥.令()1e x f x x -=-,则()1e 1x f x -'=-,()10f '=,且()()10f x f ≥=,1-≥1,2,,i n =⋅⋅⋅,1111⋅⋅⋅⋅⋅≥,1n ≥0n ≥,∴12n a a a n++⋅⋅⋅+≥②让n 固定,设n 个正实数1,,n x x ⋅⋅⋅之和为20,120n x x n n +⋅⋅⋅+≤=,1220nn p x x x n ⎛⎫=⋅⋅⋅≤ ⎪⎝⎭,要是20nn ⎛⎫ ⎪⎝⎭最大,20ln nn ⎛⎫⎪⎝⎭最大即可,令()()20ln ln 20ln tg t t t t ⎛⎫==- ⎪⎝⎭,其中*t ∈N ,()20ln ln e g t t '=-,∴7t ≤时,()g t 单调递增,8t ≥时,()g t 单调递减,而()()()()87787ln 207ln 78ln 208ln 8ln 8ln 7200g g -=---=-⨯>,所以这些正实数乘积的最大值为7207⎛⎫⎪⎝⎭.。

四川省绵阳市2024届高三数学上学期第四次月考理试题含解析

四川省绵阳市2024届高三数学上学期第四次月考理试题含解析

高中2021级高三第四学月测试理科数学本试卷分为试题卷和答题卡两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卡共6页.满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的学校、班级、姓名用0.5毫米黑色签字笔填写清楚,同时用2B 铅笔将考号准确填涂在“考号”栏目内.2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后再选涂其它答案;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.考试结束后将答题卡收回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意要求的.1.已知集合{}*2450M x x x =∈--≤N ,{}04N x x =≤≤,则M N ⋂=()A.{0,1,2,3,4}B.{1,2,3,4}C.{}04x x ≤≤ D.{}14x x ≤≤【答案】B 【解析】【分析】解不等式求出集合M ,根据集合的交集运算,即可得答案.【详解】解2450x x --≤,得:15x -≤≤,所以{}{}*151,2,3,4,5M x x =∈-≤≤=N ,{}04N x x =≤≤,所以{1,2,3,4}M N ⋂=.故选:B.2.在复平面内,复数342i i++对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】通过复数的运算求出复数的代数形式,然后再进行判断即可.【详解】由题意得()()()5234522222i ii i i i i -+===-+++-,所以复数342i i++在复平面内对应的点为()2,1-,在第四象限.故选D .【点睛】解题的关键是将复数化为代数形式,然后再根据复数的几何意义进行判断,属于基础题.3.设S n 是等差数列{a n }的前n 项和,若53a a =59,则95S S 等于()A.1 B.-1C.2D.12【答案】A 【解析】【分析】利用等差数列的求和公式计算即可.【详解】95S S =19159()25()2a a a a ++=5395a a =1.故选:A.4.已知向量a,b不共线,向量3c a b =+,2d a kb =+,且c d ∥,则k =()A.-3 B.3C.-6D.6【答案】D 【解析】【分析】设d c λ=,从而得到23a kb a b λλ+=+ ,得到方程,求出k 的值.【详解】设d c λ=,则()233a kb a b a b λλλ+=+=+ ,故2,36k λλ===.故选:D5.南山中学某学习小组有5名男同学,4名女同学,现从该学习小组选出3名同学参加数学知识比赛,则选出的3名同学中男女生均有的概率是()A.45B.56C.67D.78【答案】B 【解析】【分析】首先计算出基本事件总数,依题意选出的3名同学中男女生均有,分为两种情况:①1名男同学,2名女同学;②2名男同学,1名女同学,计算出所有可能情况,再根据古典概型的概率公式计算可得;【详解】解:从有5名男同学,4名女同学,现从该学习小组选出3名同学参加数学知识比赛,则有3998784321C ⨯⨯==⨯⨯;依题意选出的3名同学中男女生均有,分为两种情况:①1名男同学,2名女同学,有1254C C 30=(种);②2名男同学,1名女同学,215440C C =(种);故概率为30405846P +==故选:B【点睛】本题考查简单的组合问题,古典概型的概率问题,属于基础题.6.已知1sin cos 3αβ-=,1cos sin 2αβ+=,则()sin αβ-=()A.572B.572- C.5972D.5972-【答案】C 【解析】【分析】将已知等式平方后相加,结合同角的三角函数关系以及两角和的正弦公式,即可求得答案.【详解】由题意得()2221sin cos sin cos 2sin cos 9αβαβαβ-=+-=,()2221cos sin cos sin 2cos sin 4αβαβαβ+=++=,两式相加得()1322sin cos cos sin 36αβαβ--=,得()59sin 72αβ-=,故选:C7.在2022年某省普通高中学业水平考试(合格考)中,对全省所有考生的数学成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[)[)[)[)[]40,50,50,60,60,70,80,90,90,100,90分以上为优秀,则下列说法中不正确的是()A.该省考生数学成绩的中位数为75分B.若要全省的合格考通过率达到96%,则合格分数线约为44分C.从全体考生中随机抽取1000人,则其中得优秀考试约有100人D.若同一组中数据用该组区间中间值作代表值,可得考试数学成绩的平均分约为70.5.【答案】A 【解析】【分析】根据频率分布直方图计算中位数、平均分,由不合格率为4%求得合格线,利用优秀率估算抽取的1000人中的优秀从数,从而判断各选项.【详解】由频率分布直方图知中位数在[70,80]上,设其为x ,则700.5(0.10.150.2)80700.3x --++=-,解得71.67x ≈,A 错;要全省的合格考通过率达到96%,设合格分数线为y ,则4010.96100.1y --=,44y =,B 正确;由频率分布直方图优秀的频率为0.1,因此人数为10000.1100⨯=,C 正确;由频率分布直方图得平均分为450.1550.15650.2750.3850.15950.170.5⨯+⨯+⨯+⨯+⨯+⨯=,考试数学成绩的平均分约为70.5,D 正确.故选:A.8.在[2,3]-上随机取一个数k ,则事件“直线3y kx =+与圆22(2)9x y ++=有公共点”发生的概率为()A.715B.815C.25D.35【答案】A 【解析】【分析】根据直线与圆有公共点,求出k 的范围,再根据几何概型的概率公式计算即可.【详解】若直线3y kx =+,即30kx y -+=与圆22(2)9x y ++=有公共点,则圆心到直线距离3d =≤,故5≥解得43k ≥或43k ≤-,由几何概型的概率公式,得事件“直线3y kx =+与圆22(2)9x y ++=有公共点”发生的概率为()()44323373215P ⎡⎤⎛⎫⎛⎫-+--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==--.故选:A.9.已知函数()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,且3x π=时,函数()f x 取最小值,若函数()f x 在[]0,a 上单调递减,则a 的最大值是()A.6πB.56π C.23π D.3π【答案】D 【解析】【分析】由周期求得ω,再由最小值求得ϕ函数解析式,然后由单调性可得a 的范围,从而得最大值.【详解】由题意22πωπ==,cos(2)13πϕ⨯+=-,22,Z 3k k πϕππ+=+∈,又2πϕ<,∴3πϕ=,()cos(2)3f x x π=+,[0,]x a ∈时,2[,2]333x a πππ+∈+,又()f x 在[0,]a 上单调递减,所以23a ππ+≤,3a π≤,即03a π<≤,a 的最大值是3π.故选:D .10.点P 是以12,F F 为焦点的的椭圆上一点,过焦点作12F PF ∠外角平分线的垂线,垂足为M ,则点M 的轨迹是()A.圆 B.椭圆 C.双曲线 D.抛物线【答案】A 【解析】【分析】P 是以1F ,2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为M ,延长2F M 交1F 延长线于Q ,可证得2PQ PF =,且M 是2PF 的中点,由此可求得OM 的长度是定值,即可求点M 的轨迹的几何特征.【详解】解:由题意,P 是以1F ,2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为M ,延长2F M 交1F P 延长线于Q ,得2PQ PF =,由椭圆的定义知122PF PF a +=,故有112PF PQ QF a +==,连接OM ,知OM 是三角形12F F Q 的中位线OM a ∴=,即点M 到原点的距离是定值,由此知点M 的轨迹是圆故选:A .【点睛】本题在椭圆中求动点Q 的轨迹,着重考查了椭圆的定义、等腰三角形的判定和三角形中位线定理等知识,属于中档题.11.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为C 的焦点,若2FA FB =,则k=A.13B.3C.23D.223【答案】D 【解析】【详解】将y=k(x+2)代入y 2=8x,得k 2x 2+(4k 2-8)x+4k 2=0.设交点的横坐标分别为x A ,x B ,则x A +x B =28k-4,①x A ·x B =4.又|FA|=x A +2,|FB|=x B +2,|FA|=2|FB|,∴2x B +4=x A +2.∴x A =2x B +2.②∴将②代入①得x B =283k -2,x A =283k -4+2=283k -2.故x A ·x B =228162233k k ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭=4.解之得k 2=89.而k>0,∴k=3,满足Δ>0.故选D.12.已知函数()22e1xf x ax bx =-+-,其中a 、b ∈R ,e 为自然对数的底数,若()10f =,()f x '是()f x 的导函数,函数()f x '在区间()0,1内有两个零点,则a 的取值范围是()A.()22e3,e 1-+ B.()2e3,-+∞C.()2,2e2-∞+ D.()222e6,2e 2-+【答案】A 【解析】【分析】由()0f x '=可得222e 21e x ax a =--+,作出函数函数22e x y =与221e y ax a =--+的图象在()0,1上有两个交点,数形结合可得出实数a 的取值范围.【详解】因为()22e1xf x ax bx =-+-,则()21e 10f a b =-+-=,可得21e b a =+-,所以,()()222e 1e1xf x ax a x =-++--,则()222e21e xf x ax a '=-++-,由()0f x '=可得222e 21e x ax a =--+,因为函数()f x '在区间()0,1内有两个零点,所以,函数22e xy =与221e y ax a =--+的图象在()0,1上有两个交点,作出22e xy =与()2221e 211e y ax a a x =--+=--+的函数图象,如图所示:若直线221e y ax a =--+经过点()21,2e,则2e1a =+,若直线221e y ax a =--+经过点()0,2,则2e 3a =-,结合图形可知,实数a 的取值范围是()22e 3,e 1-+.故选:A .第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案直接填答题卷的横线上.13.若一组数据123,,,,n x x x x ⋯的方差为10,则另一组数据1221,21,,21n x x x --⋯-的方差为______.【答案】40【解析】【分析】由题意先设出两组数据的平均数,然后根据已知方差、方差公式运算即可得解.【详解】由题意设123,,,,n x x x x ⋯的平均数为x ,则1221,21,,21n x x x --⋯-的平均数为21x -,由题意123,,,,n x x x x ⋯的方差为()()()222212110n s x x x x x x n ⎡⎤=-+-++-=⎢⎥⎣⎦ ,从而1221,21,,21n x x x --⋯-的方差为()()()222221121222222441040n s x x x x x x s n ⎡⎤=-+-++-==⨯=⎢⎥⎣⎦ .故答案为:40.14.若二项式2nx的展开式中第5项是常数项,则展开式中各项系数的和为__________.【答案】1【解析】【分析】利用二项展开式的通项公式求出展开式的第五项,令x 的指数为0,求出n 的值,令1x =,可得展开式中各项系数的和.【详解】解:2nx ⎫⎪⎭展开式的第5项为44452()n n T C x -=-二项式2nx ⎫-⎪⎭的展开式中第5项是常数项,∴4402n --=,12n ∴=∴二项式为122x ⎫-⎪⎭令1x =,可得展开式中各项系数的和()12121n T =-=故答案为:1.【点睛】本题考查展开式的特殊项,正确运用二项展开式是关键,属于基础题.15.在平面直角坐标系中,A,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为___.【答案】45π【解析】【详解】由题意,圆心C 到原点的距离与到直线的距离相等,所以面积最小时,圆心在原点到直线的垂线中点上,则d =r =,45S π=.点睛:本题考查直线和圆的位置关系.本题中,由,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆,则半径就是圆心C 到原点的距离,所以圆心C 到原点的距离与到直线的距离相等,得到解答情况.16.过双曲线22221(0)x y b a a b -=>>的左焦点(,0)(0)F c c ->作圆222x y a +=的切线,切点为E ,延长FE 交抛物线24y cx =于点P ,O 为坐标原点,若1()2OE OF OP =+,则双曲线的离心率为_________.【答案】152【解析】【详解】试题分析:因为,,OF c OE a OE EF ==⊥,所以EF b =,因为1()2OE OF OP =+,所以E为PF 的中点,2PF b =,又因为O 为FF '的中点,所以//PF EO ',所以2PF a '=,因为抛物线的方程为24y cx =,所以抛物线的焦点坐标为(,0)c ,即抛物线和双曲线的右焦点相同,过F 点作x 的垂线l ,过P 点作PD l ⊥,则l 为抛物线的准线,所以2PD PF a '==,所以点P 的横坐标为2a c -,设(,)P x y ,在Rt PDF ∆中,222PD DF PF +=,即22222244,44(2)4()a y b a c a c c b +=+-=-,解得12e =.考点:双曲线的简单的几何性质.【方法点晴】本题主要考查了双曲线的标准方程、以及谁去下的简单的几何性质的应用,同时考查了双曲线的定义及性质,着重考查了学生推理与运算能力、数形结合思想、转化与化归思想的应用,属于中档试题,本题的解答中,根据题意得到抛物线和双曲线的右焦点相同,得出点P 的横坐标为2a c -,再根据在Rt PDF ∆中,得出22244(2)4()a c a c c b +-=-是解答的关键.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{}n a 的前n 项和为n S ,且21n n S a =-.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2log ,,n n na nb a n ⎧=⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .【答案】(1)12n n a -=(2)212212233n n T n n +=⨯+--【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a .(2)根据分组求和法求得正确答案.【小问1详解】依题意,21n n S a =-,当1n =时,11121,1a a a =-=,当2n ≥时,1121n n S a --=-,所以()11122,22n n n n n n n a S S a a a a n ---=-=-=≥,所以数列{}n a 是首项为1,公比为2的等比数列,所以12n n a -=,1a 也符合.所以12n n a -=.【小问2详解】由(1)得11,2,n n n n b n --⎧=⎨⎩为奇数为偶数,所以()()321202422222n n T n -=++++-++++ ()214022214n n n -+-=⨯+-222433n n n =⨯+--21212233n n n +=⨯+--.18.某水果种植户对某种水果进行网上销售,为了合理定价,现将该水果按事先拟定的价格进行试销,得到如下数据:单价x (元)789111213销量y (kg )120118112110108104(1)已知销量与单价之间存在线性相关关系求y 关于x 的线性回归方程;(2)若在表格中的6种单价中任选3种单价作进一步分析,求销量恰在区间[110,118]内的单价种数ξ的分布列和期望.附:回归直线的斜率和截距的最小二乘法估计公式分别为:b =()121((ni i i n i i x x y y x x ==---∑∑,a y bx =-$$.【答案】(1) 2.5137y x =-+;(2)见解析【解析】【分析】(1)由已知表格中数据求得ˆa与ˆb ,则可求得线性回归方程;(2)求出ξ的所有可能取值为0,1,2,3,求出概率,可得分布列与期望.【详解】解:(1)()1789111213106x =+++++=,()11201181121101081046y =+++++=112.ˆb =()121()()ni i i ni i x x y y x x ==---∑∑═70 2.528-=-,()112 2.510137ˆˆa y bx =-=--⨯=.∴y 关于x 的线性回归方程为 2.5137ˆyx =-+;(2)6种单价中销售量在[110,118]内的单价种数有3种.∴销量恰在区间[110,118]内的单价种数ξ的取值为0,1,2,3,P (ξ=0)=0336120C C =,P (ξ=1)=123336920C C C ⋅=,P (ξ=2)=213336920C C C ⋅=,P (ξ=3)=3336120C C =.∴ξ的分布列为:ξ0123P120920920120期望为E (ξ)=199130123202020202⨯+⨯+⨯+⨯=.【点睛】本题考查线性回归方程的求法,考查离散型随机变量的期望,考查计算能力,求离散型随机变量ξ的分布列与均值的方法:(1)理解离散型随机变量ξ的意义,写出ξ的所有可能取值;(2)求ξ取每个值的概率;(3)写出ξ的分布列;(4)根据均值的定义求E()ξ19.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin 2sin sin b B c C a A b B C +-=且π2C ≠.(1)求证:π2B A =+;(2)求cos sin sin A B C ++的取值范围.【答案】(1)证明见解析(2))【解析】【分析】(1)根据正弦定理和余弦定理可把题设中的边角关系化简为cos sin A B =,结合诱导公式及π2C ≠可证π2B A =+.(2)根据π2B A =+及cos sin A B =,结合诱导公式和二倍角余弦公式将ππcos sin sin 2sin sin 2sin sin 222A B C B C A A ⎛⎫⎛⎫++=+=++- ⎪ ⎪⎝⎭⎝⎭化为2132cos 22A ⎛⎫+- ⎪⎝⎭,先求出角A 的范围,然后利用余弦函数和二次函数的性质求解即可.【小问1详解】因为sin sin sin 2sin sin b B c C a A b B C +-=,由正弦定理得,2222sin b c a bc B +-=,由余弦定理得2222cos 2sin b c a bc A bc B +-==,所以cos sin A B =,又cos sin()2A A π=-,所以πsin()sin 2A B -=.又0πA <<,0πB <<,所以π2A B -=或ππ2A B -+=,所以π2A B +=或π2B A =+,又π2C ≠,所以ππ2A B C +=-≠,所以π2B A =+,得证.【小问2详解】由(1)知π2B A =+,所以ππ22C A B A =--=-,又cos sin A B =,所以ππcos sin sin 2sin sin 2sin sin 222A B C B C A A ⎛⎫⎛⎫++=+=++- ⎪ ⎪⎝⎭⎝⎭22132cos cos 22cos 2cos 12cos 22A A A A A ⎛⎫=+=+-=+- ⎪⎝⎭,因为0ππ0π2π02π2A B A C A ⎧⎪<<⎪⎪<=+<⎨⎪⎪<=-<⎪⎩,所以π04A <<,所以2cos 12A <<,因为函数2132cos 22y A ⎛⎫=+- ⎪⎝⎭在2cos 2A ⎛⎫∈ ⎪ ⎪⎝⎭单调递增,所以22213131322cos 2132222222A ⎛⎫⎛⎫⎛⎫+-=+-<+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以cos sin sin A B C ++的取值范围为).20.椭圆有两个顶点(1,0),(1,0),A B -过其焦点(0,1)F 的直线l 与椭圆交于,C D 两点,并与x 轴交于点P ,直线AC 与BD 交于点Q.(1)当2CD =时,求直线l 的方程;(2)当P 点异于,A B 两点时,证明:OP OQ ⋅为定值.【答案】(1)1y =+;(2)证明见解析.【解析】【分析】(1)先由题意求出椭圆方程,直线l 不与两坐标轴垂直,设l 的方程为()10,1y kx k k =+≠≠±,然后将直线方程与椭圆方程联立方程组,消去y ,利用根与系数的关系,再由弦长公式列方程可求出k 的值,从而可得直线方程;(2)表示直线AC ,BD 的方程,联立方程组可得1221121211.11Q Q x kx x kx x x kx x kx x ++++=--+-而12222kx x k =--+代入化简可得Q x k =-,而1P x k =-,则可得P Q OP OQ x x ⋅= 的结果【详解】(1)由题意,椭圆的方程为2212y x +=易得直线l 不与两坐标轴垂直,故可设l 的方程为()10,1y kx k k =+≠≠±,设()()1122,,,C x y D x y ,由221,1,2y kx y x =+⎧⎪⎨+=⎪⎩消去y 整理得()222210k x kx ++-=,判别式()2Δ810.k =+>由韦达定理得12122221,22k x x x x k k +=-=-++,①故12322CD x x =-=,解得k =即直线l 的方程为1y =+.(2)证明:直线AC 的斜率为111AC y k x =+,故其方程为()1111y y x x =++,直线BD 的斜率为221BD y k x =-,故其方程为()2211y y x x =--,由()()11221,11,1y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩两式相除得()()()()()()2121121211111111y x kx x x x y x kx x ++++===--+-1221121211kx x kx x kx x kx x +++-+-即1221121211.11Q Q x kx x kx x x kx x kx x ++++=--+-由(1)知12222kx x k =--+,故()()()()()()222222222222122111222212111222Q Q k k k kkx x k x x k k k k k k k x k x x k x k k k ---+--++-++++===-+-⎛⎫----+-++ ⎪+++⎝⎭11k k -+解得Q x k =-.易得1,0P k ⎛⎫- ⎪⎝⎭,故()11P Q OP OQ x x k k⋅==-⋅-= ,所以OP OQ ⋅为定值121.已知函数2313()(4)e 32xf x x a x x ⎛⎫=---⎪⎝⎭()R a ∈.(1)若0a ≤,求()f x 在()0,∞+上的单调区间;(2)若函数()f x 在区间()0,3上存在两个极值点,求a 的取值范围.【答案】(1)单调递减区间为()0,3,单调递增区间为()3,+∞(2)3e e,3⎛⎫⎪⎝⎭【解析】【分析】(1)对函数求导得到()()()3e xf x x ax '=--,再根据导数与函数单调性间的关系即可求出结果;(2)对函数求导得()()()3e xf x x ax '=--,令()e xg x ax =-,将问题转化为()e xg x ax =-在()0,3内有两个交点,再应用导数研究的单调性并确定其区间最值及边界值,进而可得a 的范围.【小问1详解】因为2313()(4)e 32xf x x a x x ⎛⎫=--- ⎪⎝⎭,所以()()()()()()()24e e 33e 33e x x x xf x x a x x x ax x x ax '=-+--=---=--,又因为0a ≤,0x >,则e 0x ax ->,所以,当()0,3x ∈时,()0f x '<,函数()f x 单调递减;当()3,x ∈+∞时,()0f x ¢>,函数()f x 单调递增,所以()f x 在(0,)+∞上的单调递减区间为()0,3,单调递增区间为()3,+∞.【小问2详解】由(1)知,当0a ≤,函数()f x 在()0,3上单调递减,此时()f x 在()0,3上不存在极值点,不符合题意,所以0a >,设()e xg x ax =-,[0,)x ∈+∞,所以()e xg x a '=-,当01a <≤时,当()0,3x ∈时,()e 0xg x a '=->,所以()g x 在()0,3上单调递增,所以当()0,3x ∈时,()()010g x g >=>,所以当()0,3x ∈时,()0f x '<,所以()f x 在()0,3上单调递减,故()f x 在()0,3上不存在极值点,不符合题意;当1a >时,令()0g x '<,解得0ln x a <<,令()0g x '>,解得ln x a >,所以函数()g x 在()0,ln a 上单调递减,在()ln ,a ∞+上单调递增,所以函数()g x 的最小值为()()ln 1ln g a a a =-,若函数()f x 在()0,3上存在两个极值点,则()()()00,ln 0,30,0ln 3,g g a g a ⎧>⎪<⎪⎨>⎪⎪<<⎩,即()310,1ln 0,e 30,0ln 3,a a a a >⎧⎪-<⎪⎨->⎪⎪<<⎩解得3e e 3a <<.综上,a 的取值范围为3e e,3⎛⎫⎪⎝⎭.选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.已知曲线12,C C 的参数方程分别为11:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),222cos :2sin x C y αα=+⎧⎨=⎩(α为参数).(1)将12,C C 的参数方程化为普通方程;(2)以坐标原点O 为极点,以x 轴的非负半轴为极轴,建立极坐标系.若射线()π06θρ=>与曲线12,C C 分别交于,A B 两点(异于极点),点()2,0P ,求PAB 的面积.【答案】(1)224x y -=;22(2)4x y -+=(2【解析】【分析】(1)利用消参法与完全平方公式求得1C 的普通方程,利用22cos sin 1θθ+=得到2C 的普通方程;(2)分别求得12,C C 的极坐标方程,联立射线,从而得到A ρ,B ρ,进而利用三角形面积公式即可得解.【小问1详解】因为曲线1C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),则22212x t t=++,22212y t t =+-,两式相减,得1C 的普通方程为:224x y -=;曲线2C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),所以2C 的普通方程为:()2224x y -+=.【小问2详解】因为cos ,sin x y ρθρθ==,所以曲线1C 的极坐标方程为2222cos sin 4ρθρθ-=ππ()42k θ≠+,即24cos 2ρθ=,联立2π64cos 2θρθ⎧=⎪⎪⎨⎪=⎪⎩,得A ρ=,所以射线π(0)6θρ=>与曲线1C 交于A π6⎛⎫ ⎪⎝⎭,而2C 的普通方程()2224x y -+=,可化为224x y x +=,所以曲线2C 的极坐标方程为24cos ρρθ=,即4cos ρθ=,联立π64cos θρθ⎧=⎪⎨⎪=⎩,得B ρ=,所以射线π(0)6θρ=>与曲线2C 交于B π6⎛⎫ ⎪⎝⎭,又点()2,0P ,所以2OP =,则1π||()sin 26POA B PAB POB A S S OP S ρρ=-=⨯⨯-= .[选修4-5:不等式选讲]23.已知函数()(),h x x m g x x n =-=+,其中00m n >>,.(1)若函数()h x 的图像关于直线1x =对称,且()()23f x h x x =+-,求不等式()2f x >的解集.(2)若函数()()()x h x g x ϕ=+的最小值为2,求11m n+的最小值及相应的m 和n 的值.【答案】(1)()2,2,3∞∞⎛⎫-⋃+ ⎪⎝⎭;(2)11m n+的最小值为2,相应的m n 1==【解析】【分析】()1先根据对称性求出1m =,对x 分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;()2根据绝对值三角不等式即可求出2m n +=,可得()11111m n m n 2m n ⎛⎫+=++ ⎪⎝⎭,再根据基本不等式即可求出.【详解】()1函数()h x 的图象关于直线x 1=对称,1m ∴=,()()f x h x 2x 3x 12x 3∴=+-=-+-,①当x 1≤时,()321432x x x x =-+-=->,解得2x 3<,②当31x 2<<时,()f x 32x x 12x 2=-+-=->,此时不等式无解,②当3x 2≥时,()f x 2x 3x 13x 42=-+-=->,解得x 2>,综上所述不等式()f x 2>的解集为()2,2,3⎛⎫-∞+∞ ⎪⎝⎭ .()()()()()2x h x g x x m x n x m x n m n m n ϕ=+=-++≥--+=+=+ ,又()()()x h x g x ϕ=+的最小值为2,2m n ∴+=,()111111n m 1m n 222m n 2m n 2m n 2⎛⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当1m n ==时取等号,故11m n+的最小值为2,其相应的1m n ==.【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;。

广东广雅中学2024-2025学年高三10月月考数学试题(含答案)

广东广雅中学2024-2025学年高三10月月考数学试题(含答案)

广东广雅中学2025届高三10月月考数学(时间:120分钟,满分:150分)第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是符合要求的。

1.有下列一组数据:2,17,33,15,11,42,34,13,22,则这组数据的第30百分位数是( ) A .11B .15C .13D .342.设常数a R ∈,集合}(1)|()0{A x x x a =−−≥,}1{|B x x a =≥−,若A B R ⋃=,则a 的取值范围为( ) A .(,2)−∞B .(,2]−∞C .(2+∞,)D .[2+∞,)3.如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB ,则12z z ⋅对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.sin 3α=,π0,2α⎛⎫∈ ⎪⎝⎭,π4β=,则()tan αβ−=( ) A .1 B .3− C .3D .3−5.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的是( ) A .若//m n ,n ⊂α,则//m α B .若αγ⊥,βγ⊥,则//αβC .若m α⊥,n α⊥,m β⊂,n γ⊂,则//βγD .若//m α,//n α,则m ,n 平行、相交、异面均有可能6.已知O 为坐标原点,()11,P x y 是椭圆()2222:10x y E a b a b+=>>上一点()10x >,F 为右焦点.延长PO ,PF 交椭圆E 于D ,G 两点,0DF FG ⋅=,4DF FG =,则椭圆E 的离心率为( )A .3B .5C .6D .57.已知函数()()f x g x ,的定义域是R ,()g x 的导函数为()g x ',且()()5f x g x '+=,()()155f x g x −'−−=,若()g x 为偶函数,则下列说法中错误的是( ) A .()05f =B .()()()()123202410120f f f f ++++=C .若存在0x 使()f x 在[]00,x 上严格增,在[]0,2x 上严格减,则2024是()g x 的极小值点D .若()f x 为偶函数,则满足题意的()f x 唯一,()g x 不唯一8.小丽同学有一枚不对称的硬币,每次掷出后正面向上的概率为(01)p p <<,她掷了N 次硬币后有10次正面向上.但她没有留意自己一共掷了多少次硬币.设随机变量X 表示每掷N 次硬币中正面向上的次数,现以使(10)P X =最大的N 值估计N 的取值并计算()E X .(若有多个N 使(10)P X =最大,则取其中的最小N 值).下列说法正确的是( ) A .()10E X > B .()10E X <C .()10E X =D .()E X 与10的大小无法确定二、多选题:本题共3小题,每小题6分,共18分。

安徽省巢湖市六中高三数学第四次月考试题(理)

安徽省巢湖市六中高三数学第四次月考试题(理)

2009届高三数学第四次月考理科卷考试时间:120分钟 满分:150分 命题人:郑成龙 审题人:高三数学备课组一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1、已知53)4sin(=-x π,则x 2sin 的值为( ) A .257B .2514C . 2516D .25192、在△ABC 中,a,b,c 分别为三个内角A,B,C 所对的边,设向量(,),(,)m b c c a n b c a =--=+,若m n ⊥,则角A 的大小为( )A.6π B. 3π C. 2π D. 32π3、要得到函数sin(2)3y x =-π的图象,只需将函数cos 2y x =的图象A .向右平移6π个单位 B .向右平移12π个单位C .向左平移6π个单位 D .向左平移12π个单位4、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:①若m∥β,n∥β,m 、n ⊂α,则α∥β; ②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m⊥n; ③若m⊥α,α⊥β,m∥n,则n∥β; ④若n∥α,n∥β,α∩β=m ,那么m∥n; 其中所有正确命题的个数是 ( )A.1B.2C.3D.4.5、函数()sin()(0,,)2f x A x x R πωϕωϕ=+><∈部分图象如上图,则()f x 的表达式为( ) A .()4sin()44f x x ππ=+ B .()4sin()44f x x ππ=- C .()4sin()84f x x ππ=-+ D .()4sin()84f x x ππ=-- 6、半径为2cm 的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( ) A .4cmB .2cmC .cm 32D .cm 37、已知tan α,tan β是方程04x 33x 2=++两根,且α,β)2,2(ππ-∈,则α+β等于( )A .π-32 B .π-32或3π C .3π-或π32 D .3π8、已知P 为抛物线24y x =上一点,设P 到准线的距离为1d ,P 到点(1,4)A 的距离为2d,则12d d +的最小值为( )A .5B .4C .3D .29、已知向量R ∈=-==ααα),sin 2,cos 2(),1,1(),1,1(,实数n m ,满足n m =+,则22)3(n m +-的最大值为( )A .2B .3C .4D .1610、已知函数()y f x =是R 上的奇函数,函数()y g x =是R 上的偶函数,且()(1)f x g x =+,当02x ≤≤时,()1g x x =-,则(10.5)g 的值为( )A . 1.5-B .8.5C .0.5D .0.5-11、我们把由半椭圆)0(1)0(122222222<=+≥=+x cx b y x b y a x 与半椭圆合成的曲线称作“果圆”(其中0,222>>>+=c b a c b a )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省上高二中高三上学期第四次月考数学理命题:晏海鹰一、选择题(12×5=60分)1.已知集合{}{}lg ,1,2,1,1,2A y y x x B ==>=--,全集U R =,则下列结论正确的是 ( ) A .{}2,1A B =-- B . )0,()(-∞=⋃B A C U C .()0,A B =+∞D .}1,2{)(--=⋂B A C U2、下列电路图中,闭合开关A 是灯泡B 亮的必要不充分条件的是( )3、若等比数列{}n a 的前n 项和为213n n S a +=+,则常数a 的值等于( )A .13-B .-1C .13D .-34.△ABC 中,若sinA ·sinB=cos22C,则△ABC 是 ( ) A 等边三角形 B 等腰三角形 C 不等边三角形 D 直角三角形5.已知实数,a b 均不为零,sin cos tan ,,cos sin 6a b ba b a ααπββααα+=-=-且则等于( ) AB.3 C. D.3-6.函数21()()log 3x f x x =-, 正实数,,a b c 成公比大于1的等比数列,且满足()()()0f a f b f c ⋅⋅<,若0x 是方程()0f x =的解,那么下列不等式中不可能成立的是( )A .0x a <B .0x b >C .0x c <D .0x c >7.设M 是ABC ∆内一点,且23,30AB AC BAC ⋅=∠=,定义()(,,)f M m n p =,其中,,m n p 分别是,,MBC MCA MAB ∆∆∆的面积,若1()(,,)2f M x y =,则14x y+的最小值是 ( ) A .8B .9C .16D .188. 设函数若将的图像沿x 轴向右平移个单位长度,得到的图像经过坐标原点;若将的图像上所有的点横坐标缩短到原来的倍(纵坐标不变),得到的图像经过点(则 ( ) A .B .C .D .适合条件的不存在 ).20,0)(sin()(πφωφω<<>+=x x f )(x f 61)(x f 21)1,616,πφπω==3,2πφπω==8,43πφπω==φω,9. 已知函数满足,则的解是( ) A . B . C . D . 10、如图所示,在△OAB 中,OA >OB ,OC =OB , 设=→a ,=→b ,若=λ·,则实数λ的值为( )A .||)(→→→→→--⋅b a b a a B .2||)(→→→→→--⋅b a b a a C .||22→→→→--b a ba D .222||→→→→--b a ba11.若函数74sin(2)(0,)66y x xππ⎡⎤=+∈⎢⎥⎣⎦的图象与直线y m =有三个交点的横坐标分别为123123,,(),x x x x x x <<则1232x x x ++的值是 ( )A .34πB .43πC .53πD .32π12. O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP OA λ=+,[0,)sin ||sin ||AB ACB ABC AC λ⎛⎫+∈+∞ ⎪⎝⎭则P 的轨迹一定通过ABC ∆的 ( )A .外心B .内心C .重心D .垂心二、填空题(4×4=16分)13.在ABC △中,若43tan =A ,︒=120C ,32=BC ,则AB = .14、如图,半圆的直径 , 为圆心, 为半圆上不同于 的任意一点,若为半径 上的动 点,则的最小值是__________.15.已知函数()sin())f x x x ωϕωϕ=++,()0>ω为偶函数,集合(){}0A x f x ==,若[]1,1- A 含有10个元素,则ω的取值范围是 .16、在ΔABC 中,∠B=300,∠C=450,若∠A 的平分线 AD 交BC 于D ,使,AD AB u AC λ=+则uλ=()log (01)a f x x a a =>≠且23()()f f a a >1(1)1f x->111x a <<-11x a <<10x a <<101x a<<-6AB =O C A B 、P OC ()PA PB PC +⋅ BP C BA座 位 号高三年级第四次数学月考试卷(理)答题卡一、选择题1 2 3 4 5 6 7 8 9 10 11 12二、填空题13、 14、 15、 16、 三、解答题(74分)17.(12分) 已知:,().(Ⅰ) 求关于的表达式,并求的最小正周期;(Ⅱ) 若时,的最小值为5,求的值.18、(12分)在△ABC 中,3tan tan tan tan 3A B A B --=. (I )求∠C 的大小;(Ⅱ)设角A ,B ,C 的对边依次为,,a b c ,若2c =,且△ABC 是锐角三角形,求22a b + 的取值范围.19.( 12分)近段时间我国北方严重缺水, 某城市曾一度取消洗车行业. 时间久了,车容影响了市容市貌. 今年该市决定引进一种高科技产品污水净化器,允许洗车行开始营业,规定洗车行必须购买这种污水净化器,使用净化后的污水(达到生活用水标准)洗车. 污水净化器的(3sin ,cos ),(cos ,cos )a x x b x x ==122)(-+⋅=m b a x fR m x ∈,()f x x ()f x ]2,0[π∈x ()f x m价格是每台90万元,全市统一洗车价格为每辆每次8元. 该市今年的汽车总量是80000辆,预计今后每年汽车数量将增加辆.洗车行A 经过测算,如果全市的汽车总量是x ,那么一年内在该洗车行洗车的平均辆次是x 41,该洗车行每年的其他费用是0元. 问:洗车行A 从今年开始至少经过多少年才能收回购买净化器的成本?(注:洗车行A 买一台污水净化器就能满足洗车净水需求)20.(12分)设函数21()(0)ax bx f x a x c++=>+为奇函数,且min |()|f x ={}n a 与{}n b 满足如下关系:11()12,,.21n n n n nn f a a a a a b a +--===+ (1)求()f x 的解析式;(2)求数列{}n b 的通项公式n b ;(3)记n S 为数列{}n a 的前n 项和,求证:对任意的*n N ∈有3.2n S n <+21.(12分)已知xe a x xf )()(2-=(I )若a =3,求)(x f 的单调区间和极值;(II )已知21,x x 是)(x f 的两个不同的极值点,且||||2121x x x x ≥+, 若b a a a a f +-+<323)(323恒成立,求实数b 的取值范围.22.( 14分)已知函数()ln pf x px x x =--,()222ln 1p e e g x x x p ⎛⎫-=-+ ⎪⎝⎭,其中e 为无理数 2.71828e =.(1)若0p =,求证:()1f x x ≥-;(2)若()f x 在其定义域内是单调函数,求p 的取值范围;(3)对于区间(1,2)中的任意常数p ,是否存在00x >使()()00f x g x ≤成立?若存在,求出符合条件的一个0x ;否则,说明理由.高三年级第四次数学月考试卷(理)答案1—5:D B D B B 6—10:D D A A D 11—12:C C13. 5 14.92-15、)211,9[ππ17.解:(Ⅰ) ……2分……………………………………………………4分. …………………………………………………………6分的最小正周期是. …………………………………………………7分(Ⅱ) ∵, ∴. ………………………………………………………9分∴当即时,函数取得最小值是. ………11分∵,∴.……………………………………………12分18、解:(1)依题意:,∴,∴,(2)由三角形是锐角三角形可得,即。

由正弦定理得∴,∴,∵ ,∴,∴即。

19.本题主要考查数列与不等式等基本知识,考查运用数学知识分析问题与解决问题的能力,考查应用意识. 满分13分.解:设第一年(今年)的汽车总量为1a ,第n 年的汽车总量为n a ,则180000a = 282000a =,…80000(1)2000n a n=+-⋅.数列{}n a 构成的首项为80000,公差为的等差数列,12(1)8000020002n n n n S a a a n -=++⋅⋅⋅+=+⋅. ……………………(4分) 2()cos 2cos 21f x x x x m =++-2cos 22x x m =++2sin(2)26x m π=++()f x ∴π]2,0[π∈x ]67,6[62πππ∈+x 6762ππ=+x 2π=x ()f x 12-m 512=-m 3=m tan tan 1tan tan A BA B +=-tan()A B +=0A B π<+<23A B π+=3C A B ππ=--=22A B ππ⎧<⎪⎪⎨⎪<⎪⎩62A ππ<<sin sin sin a b c A B C ==sin sin ca A A C =⨯2sin()3b B A π-2222162[sin sin ()]()33a b A A f A π+=+-=222216[sin sin ]3a b A C +=+168sin(2)336A π=+-62A ππ<<52666A πππ<-<1sin(2)126A π<-≤222083a b <+≤若洗车行A 从今年开始经过n 年可以收回购买净化设备的成本.((1)8000020002n n n -+⋅)184⋅⋅-0n ≥900000,………………(8分) 整理得,2694500,n n +-≥ (6)(75)0,n n -+≥ 因为0n >,所以 6n ≥.答:至少要经过6年才能收回成本. …………………(13分)20. 解:(1)由()f x 是奇函数,得0b c ==,由min |()|f x =,得2,a =故221().x f x x+=(2)∵21()122n n n n nf a a a a a +-+==∴22221122111122111121112n n n n n n n n n n n n n na a a a a ab b a a a a a a ++++-⎛⎫--+-===== ⎪+++++⎝⎭+∴1242121n n n n b b b b ---====…,而113b =,∴121()3n n b -=(3)证明:由(2) 11111122222211()113123()111331311()3n n n n n n n n n a a a ------+-+=⇒===++--- 要证明的问题即为1121122222232313131n ---+++<---… 当1n =时,12n n -=当2n ≥时,1101112(11)n n n n C C n ----=+≥+= ∴12n n -≥则1211113333233231n n n n n n -----≥=⨯=⨯+≥⨯+故11221()331n n --≤- 则11211212221[1()]22211131()()133331313113n n n -----+++≤++++=---- (3313)()2232n =-<得证21.解:(1)xe x xf a )3()(,32-=∴=130)32()(2或-=⇒=-+='x e x x x f x ……………1分 当),1()3,(+∞⋃--∞∈x 时()0,(3,1)f x x '>∈-时0)(<'x f)(x f ∴的增区间为]3,(--∞,;),1[+∞减区间为[-3,1], ………………3分)(x f 的极大值为36)3(-=-e f ;极小值为.2)1(e f -= …………………5分(2)0)2()(2=-+='x e a x x x f 即02=-+2a x x由题意两根为21,x x ,a x x x x -=-=+∴2121,2.故22≤≤-a 又044>+=∆a .21≤<-∴a ………………7分 记a a a e a a a a a a f a g a 323)(3323)(3)(23223+---=+--=333)1(3)(22+---+='a a e a a a g a02510)1)(1(32=±-=⇒=--+=a a e a a a 或(() ()0 ()0 ()0a g a g a g a g a -''''><> ()g a 递增 递减 递增 …………10分又2(0)0,(2)68g g e ==- 2max ()68g a e ∴=- ……………11分268b e ∴>- …………12分22.解:(Ⅰ)证明:当0p =时,()ln f x x =-.令()ln 1m x x x =-+,则()111xm x x x-'=-=. 若()01,0x m x '<<>,()m x 递增;若()1,0x m x '><,()m x 递减, 则1x =是()m x 的极(最)大值点.于是()()10m x m ≤=,即ln 10x x -+≤.故当0p =时,有()1f x x ≥-.(Ⅱ)解:对()ln p f x px x x=--求导,得()2221p px x pf x p x x x -+'=+-=.①若0p =,()10f x x'=-<,则()f x 在()0,+∞上单调递减,故0p =合题意.②若0p >,()22111244h x px x p p x p p p p p ⎛⎫=-+=-+-≥- ⎪⎝⎭. 则必须()10,04p f x p '-≥≥,故当12p ≥时,()f x 在()0,+∞上单调递增. ③若0p <,()h x 的对称轴102x p=<,则必须()()00,0h f x '≤≤, 故当0p <时,()f x 在()0,+∞上单调递减.综合上述,p 的取值范围是(]1,0,2⎡⎫-∞+∞⎪⎢⎣⎭. (Ⅲ)解:令()()()222ln e eF x f x g x px x px-=-=-+.则问题等价于找一个00x >使()0F x ≤成立,故只需满足函数的最小值()min 0F x ≤即可.因()()()22222222px e px e e e p e e F x p x x x px px x p p --+⎛⎫⎛⎫--'=--==-- ⎪⎪⎝⎭⎝⎭,而220,12,0,0e ex p p p p-><<>><, 故当0e x p <<时,()0F x '<,()F x 递减;当ex p>时,()0F x '>,()F x 递增.于是,()min 22ln 222ln 40e F x F e p e e p p ⎛⎫==-++-=+-> ⎪⎝⎭.与上述要求()min 0F x ≤相矛盾,故不存在符合条件的0x .。

相关文档
最新文档