(完整版)2017沥青路面计算书
2017版公路沥青路面设计计算——胡威

88.8
0.0
0.0
132.8
660.3
164.5
302.1
241.1
1410.1
171.2
388.0
330.2
697.4
0.0
0.0
5479.9
3.7889967E+07
无机结合料稳定层层底拉应力
非满载车
满载车
209.2
2621.6
637.2
9829.6
11.8
2909.9
0.0
0.0
1042.0
疲劳试验回归系数b 12.52
kb 0.605 0.595 0.595
N f1
2.4563333E+08 1.4874454E+08 8.7655525E+08
计算结果
通过 通过 通过
第 2 页 共 3 页 制作人:胡威,未经允许禁止转载作为商业用途
现场综合修正系数:
无机结合料稳定层的疲劳开裂寿命:
非满载车
满载车
路基顶面竖向压应变
非满载车
满载车
2类
0.8
2.8
0.5
35.5
0.6
2.9
3类
0.4
4.1
1.3
314.2
0.4
5.6
4类
0.7
4.2
0.3
137.6
0.9
8.8
5类
0.6
6.3
0.6
72.9
0.7
12.4
6类
1.3
7.9
10.2
1505.7
1.6
17.1
7类
1.4
6.0
(完整版)沥青路面工程课程设计计算书

沥青路面设计错误!未定义书签。
1 设计资料21.1 公路等级情况及周边情况21.2 公路2007年交通量调查情况如下表:21.3 沿线地理特征32 轴载分析32.1以设计弯沉值为设计指标及验算沥青层层底拉应力中的累计当量轴次32.1.1 轴载换算32.1.2 计算累计当量轴次42.2 验算半刚性基层层底拉应力中的累计当量轴次42.2.1 轴载换算42.2.2 计算累计当量轴次53 确定路面等级和面层类型53.1 路面等级53.2 面层类型53.3 结构组合与材料的选取54 确定各结构层材料设计参数。
64.1 各层材料的抗压模量与劈裂强度64.2 土基回弹模量的确定64.2.1 确定路基的平均稠度64.2.2 确定土基回弹模量75 设计指标的确定75.1 设计弯沉值75.2 各层材料的容许底层拉应力76 设计资料总结87 确定石灰土层的厚度88 计算路面结构体系的轮隙弯沉值(理论弯沉值)109 验算各层层底拉应力109.1 上层底面弯拉应力的验算109.1.1 第一层地面拉应力验算119.1.2 第二层地面拉应力验算119.1.3 第三层换算129.1.4 第四层换算129.2 计算中层底面弯拉应力。
13水泥路面设计131 设计资料131.1 公路等级情况及周边情况131.2 公路1998年交通量调查情况如下表:141.3 沿线地理特征142 交通分析142.1 标准轴载与轴载换算142.2 交通分级,设计使用年限,和累计作用次数152.2.1 设计年限内一个车道累计作用次数152.2.2 交通等级的确定及初估板厚163 路面结构层组合设计164 确定结构层材料设计参数164.1 基层顶面的当量回弹模量与计算回弹模量164.2 复合式混凝土面层的截面总刚度与相对刚度半径175 荷载应力计算175.1荷载疲劳应力计算175.2 温度疲劳应力计算186 路面接缝处理196.1 纵向接缝196.1.1 根据规范的要求纵向接缝的布设应路面宽度和施工铺筑宽度而定。
沥青路面计算书

三长线新建路面设计1. 项目概况与交通荷载参数该项目位于江西省,属于一级公路,起点桩号为K0+000,终点桩号为K44+086,设计使用年限为年,根据交通量OD调查分析,断面大型客车和货车交通量为3855辆/日, 交通量年增长率为%, 方向系数取%, 车道系数取%。
根据交通历史数据,按表确定该设计公路为TTC3类,根据表得到车辆类型分布系数如表1所示。
表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。
表2. 非满载车与满载车所占比例(%)根据表,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。
根据附表,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。
表3. 非满载车与满载车当量设计轴载换算系数根据公式()计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为22,351,024, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为1,670,542,389。
本公路设计使用年限内设计车道累计大型客车和货车交通量为10,019,677,交通等级属于重交通。
2. 初拟路面结构方案初拟路面结构如表4所示。
表4. 初拟路面结构路基标准状态下回弹模量取90MPa,回弹模量湿度调整系数Ks取,干湿与冻融循环作用折减系数Kη取,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为61MPa。
3. 路面结构验算沥青混合料层永久变形验算根据表,基准等效温度Tξ为℃,由式()计算得到沥青混合料层永久变形等效温度为℃。
可靠度系数为。
根据条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。
利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。
根据式()和式(),计算得到d1=,d2=。
把d1和d2的计算结果带入式(),可得到各分层的永久变形修正系数(kRi),并进而利用式()计算各分层永久变形量(Rai)。
2017版沥青路面结构计算书

新建路面设计1. 项目概况与交通荷载参数该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。
根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。
表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。
表2. 非满载车与满载车所占比例(%)根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。
根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。
表3. 非满载车与满载车当量设计轴载换算系数根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。
本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。
2. 初拟路面结构方案初拟路面结构如表4所示。
表4. 初拟路面结构路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。
3. 路面结构验算3.1 沥青混合料层永久变形验算根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。
可靠度系数为1.04。
根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。
利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。
2017版沥青路面结构计算书

新建路面设计1. 项目概况与交通荷载参数该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。
根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。
表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。
表2. 非满载车与满载车所占比例(%)根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。
根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。
表3. 非满载车与满载车当量设计轴载换算系数根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。
本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。
2. 初拟路面结构方案初拟路面结构如表4所示。
表4. 初拟路面结构路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。
3. 路面结构验算3.1 沥青混合料层永久变形验算根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。
可靠度系数为1.04。
根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。
利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。
2017规范两种路面加铺沥青计算书

水泥路面直接加铺沥青和水泥路面碎石化后加铺沥青路面结构计算书本文档根据最新规范《公路沥青路面设计规范》(JTG D50-2017)和《公路水泥混凝土路面设计规范》(JTG D40-2012)利用2017计算软件,计算了两种水泥混凝土路面不同加铺方式:(1)碎石化把碎石化层作为粒料基层按照沥青路面计算路面结构。
(2)保留水泥路面直接加铺,按照水泥混凝土相关规范计算路面结构。
一、水泥路面碎石化后加铺沥青(1)交通量计算表1.1 实测交通量(辆/日)公路等级:二级公路目标可靠指标:1.04初始年大型客车和货车双向年平均日交通量(辆/日):1001路面设计使用年限(年):12通车至首次针对车辙维修的期限(年):12交通量年平均增长率:8.5%方向系数:0.55车道系数:1整体式货车比例:73%半挂式货车比例:27%表1.2非满载车与满载车所占比例(%)初始年设计车道大型客车和货车年平均日交通量(辆/日):550设计使用年限内设计车道累计大型客车和货车交通量(辆):3924511根据《公路沥青路面设计规范》(JTG D50-2017)规范表3.0.4,路面设计交通荷载等级为:轻交通荷载等级。
表1.3 设计交通荷载等级(规范表3.0.4)注:大型客车和货车为规范规定的2~11类车。
当验算沥青混合料层疲劳开裂时:设计使用年限内设计车道上的当量设计轴载累计作用次数为:7588457当验算无机结合料稳定层疲劳开裂时:设计使用年限内设计车道上的当量设计轴载累计作用次数为:7.377117×108当验算沥青混合料层永久变形量时:通车至首次针对车辙维修的期限内设计车道上的当量设计轴载累计作用次数为:7588457当验算路基顶面竖向压应变时:设计使用年限内设计车道上的当量设计轴载累计作用次数为:1.325065×107(2)路面结构设计与验算路面结构的层数:6设计轴载: 100kN路面设计层层位: 3设计层起始厚度: 300 (mm)加铺层最下层位: 3表1.4 路面结构参数表1)第 3 层无机结合料稳定层疲劳开裂验算设计层厚度 H(3)=300 mm季节性冻土地区调整系数 KA=1温度调整系数 KT2=1.275现场综合修正系数 KC=-0.946第 3 层层底拉应力σ=0.282 MPa第 3 层无机结合料稳定层疲劳开裂寿命 NF2=1.747613×109轴次设计使用年限内设计车道上的当量设计轴载累计作用次数 NZB2= 7.377117×108轴次第 3 层无机结合料稳定层疲劳开裂验算已满足设计要求。
新版规范(2017)沥青混凝土路面设计(详细应用)

新版规范(2017)沥青混凝⼟路⾯设计(详细应⽤)公路⾃然区划IV交通年增长率设计区域的路基⼟为低液限黏⼟(CL)地下⽔位沥青路⾯设计1.设计资料交通组成和代表车型的技术参数如下/⽇)注:本表为⼿算计算书⽂档对应的计算表,包含公式、计算过程在内,可供⽼师教学,可供学⽣学习。
下载本表后请在作者个⼈中⼼中下载对应的WORD计算过程⽂档。
(若还需要相关cad图纸或者有相关意见及建议,请私信作者!)团队成果,侵权必究!⼆级公路---三级公路---四级公路---交通荷载等级极重特重重TTC5车型⼆类三类四类车辆类型分布系数确定根据下表确定本次设计公路的TTC 分类由上表可知TTC 分类为TTC5,再由下表确定确定车辆类型分布系数设计基准期内设计车道累⼤型客车、货车交通量Ne (106)≥5050--1919--8由15年设计车道累⼤型客车、货车交通量8283336可知本次设计交通荷载等级为TTC59.942.314.8EALFml ⾮满载换算系数EALF mh 满载换算系数PER ml ⾮满载⽐例PER mh 满载⽐例⼆类三类沥青混合料0.800.40⽆机结合料0.50 1.30路基顶⾯0.600.40沥青混合料2.80 4.10⽆机结合料35.50314.20路基顶⾯ 2.90 5.600.850.900.150.10沥青混合料0.290.15⽆机结合料2.2636.76路基顶⾯0.220.20车辆当量设计轴载换算车型PER mlPER mhEALF ml EALF mhEALF m 计算好不同的设计指标下各类车辆的当量设计轴载换算系数之后,根据沥青规范中式 A.4.1)计算初始年设计车道⽇平均当量轴次:当量设计轴载累作⽤次数2600(辆 /d )计算结果如下表:换算⽅法沥青混合料层层底拉应变、沥青混合料层永久变形⽆机结合料稳定层层底拉应⼒N 11000.671040121.82N e 14235670.00614575600.00填⼊软件计算值14235670.00614575600.00⼟组取值范围(MPa)代表值(MPa )砾(G)110~135123含细粒⼟砾(GF)100~130115粉⼟质砾(GM)100~125113黏⼟质砾(GC)95~120108砂(S)95~125110含细粒⼟砂(SF)80~11598粉⼟质砂(SM)65~9580黏⼟质砂(SC)60~9075低液限粉⼟(ML)50~9070低液限黏⼟(CL)50~8568⾼液限粉⼟(MH)30~7050⾼液限黏⼟(CH)20~5035再根据初始年设计车道⽇平均当量轴次N 1、设计使⽤年限等,按下式计算设计车道上的当量设计轴载累计20357220路基顶⾯竖向2652.9⼟基回弹模量的确定其中2轴6轮及以上车辆的双向年平均⽇交通量AADTT=20357220根据公路⾃然区划为IV 区,确定路基湿度状态为潮湿。
沥青路面计算书

2017沥青路面计算书-CAL-FENGHAI.-(YICAI)-Company One1三长线新建路面设计1. 项目概况与交通荷载参数该项目位于江西省,属于一级公路,起点桩号为K0+000,终点桩号为K44+086,设计使用年限为年,根据交通量OD调查分析,断面大型客车和货车交通量为3855辆/日, 交通量年增长率为%, 方向系数取%, 车道系数取%。
根据交通历史数据,按表确定该设计公路为TTC3类,根据表得到车辆类型分布系数如表1所示。
表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。
表2. 非满载车与满载车所占比例(%)根据表,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。
根据附表,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。
表3. 非满载车与满载车当量设计轴载换算系数根据公式()计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为22,351,024, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为1,670,542,389。
本公路设计使用年限内设计车道累计大型客车和货车交通量为10,019,677,交通等级属于重交通。
2. 初拟路面结构方案初拟路面结构如表4所示。
表4. 初拟路面结构路基标准状态下回弹模量取90MPa,回弹模量湿度调整系数Ks取,干湿与冻融循环作用折减系数Kη取,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为61MPa。
3. 路面结构验算沥青混合料层永久变形验算根据表,基准等效温度Tξ为℃,由式()计算得到沥青混合料层永久变形等效温度为℃。
可靠度系数为。
根据条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。
利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。
根据式()和式(),计算得到d1=,d2=。
城市支路路面结构计算书(完整版)

城市支路路面结构计算书本次设计采用2017版公路路面设计程序系统(Hpds)计算软件一、设计弯沉值计算Nh= 540 ,属轻交通等级当以设计弯沉值和沥青层层底拉应力为指标时:路面营运第一年双向日平均当量轴次: 900设计年限内一个车道上的累计当量轴次: 2597935属轻交通等级路面设计交通等级为轻交通等级城市道路类型支路道路分类系数 1.2 面层类型系数 1 路面结构类型系数 1 路面设计弯沉值: 37.5 (0.01mm)二、新建路面结构厚度计算新建路面的层数: 4标准轴载: BZZ-100路面设计弯沉值: 37.5 (0.01mm)路面设计层层位: 4设计层最小厚度: 150 (mm)层位结构层材料名称厚度20℃平均抗压标准差(mm) 模量(MPa) (MPa)1 细粒式沥青混凝土40 1400 02 中粒式沥青混凝土60 1200 03 水泥稳定碎石180 1500 04 水泥稳定碎石? 1500 05 新建路基30按设计弯沉值计算设计层厚度:LD= 37.5 (0.01mm)H( 4 )= 150 mm LS= 36.8 (0.01mm)由于设计层厚度H( 4 )=Hmin时LS<=LD,故弯沉计算已满足要求.路面设计层厚度:H( 4 )= 150 mm(仅考虑弯沉)通过对设计层厚度取整以及设计人员对路面厚度进一步的修改,最后得到路面结构设计结果如下:----------------------------------------细粒式沥青混凝土40 mm----------------------------------------中粒式沥青混凝土60 mm----------------------------------------水泥稳定碎石180 mm----------------------------------------水泥稳定碎石170 mm----------------------------------------新建路基三、交工验收弯沉值计算层位结构层材料名称厚度20℃平均抗压标准差综合影响系数(mm) 模量(MPa) (MPa)1 细粒式沥青混凝土40 1400 0 12 中粒式沥青混凝土60 1200 0 13 水泥稳定碎石180 1500 0 14 水泥稳定碎石170 1500 0 15 新建路基30 1计算新建路面各结构层及路基顶面交工验收弯沉值:第1 层路面顶面交工验收弯沉值LS= 34.5 (0.01mm)第2 层路面顶面交工验收弯沉值LS= 39.4 (0.01mm)第3 层路面顶面交工验收弯沉值LS= 47.8 (0.01mm)第4 层路面顶面交工验收弯沉值LS= 128.5 (0.01mm)路基顶面交工验收弯沉值LS= 310.5 (0.01mm)( 根据“公路沥青路面设计规范”公式计算)LS= 383.1 (0.01mm)( 根据“公路路面基层施工技术规范”公式计算)。
2017版沥青路面结构计算

;
E2 E1
,
E3 E2
,..., E0 `) En1
=
0.35
Mpa 各层层底拉应力
σ( 1 ) σ( 2 ) σ( 3 )
σ( 4 ) 0.144
σ( 5 ) 0.092
结合料稳定层疲劳开裂寿命Ne
0.144 0.092
结合料稳定层疲劳开裂寿命 =
K K K 10 1
a b t t Kc 0 .57
2、设计路面结构的验收弯沉值
路基顶面验收弯沉值
l 176 pr
g
E0
=
256.7(0.01mm)
平衡湿度模量调整系数
1.30
0.8
路表验收弯沉值 la p la
=
25.2(0.01mm)
路基顶面回弹模量调整系数KS1
0.5
(七)验算结论
1、各项验算分析结果如下:
编号
验算内容
单位
1
沥青层车辙
>
Ne, 因此沥青混合料层疲劳开裂验算通过。
(四)无机结合料稳定层疲劳开裂验算
1、无机结合料稳定层的疲劳开裂寿命Nf2计算
疲劳试验回归系数a
13.24
疲劳试验回归系数b
现场修正系数Kc 结合料稳定层底拉应力σt =
12.479
(南昌)温度调整系数KT2
pt
pf(h1
,
h2
,...,hn1
1.5 5.1 0.7 204.3 1.5 5.1 2.8
2.4 7 37.8 426.8 2.4
7
3.7
1.5 12.1 2.5 985.4 1.5 12.1 1.6
2.9 5.6 8.8 12.4 17.1 11.7 12.5 12.5 13.3 20.8
沥青路面计算书

沥青路面计算书沥青混凝土路面厚度计算书一、 设计资料(见任务书)二、交通分析路面设计以双轮组单轴载100KN 为标准轴载。
1.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。
(1)轴载换算。
轴载换算采用如下的计算公式:4.35121()Ki i i PN C C n P ==∑计算结果如表1所示表 1 轴载换算结果表(弯沉) 车型iP KN1C 2C in 4.3512()i i PC C n P黄河JN150 前轴 49 1.0 6.4 820 235.69 后轴101.6 1.0 1.0 820 878.62 解放CA10B 前轴 19.04 1.0 6.4 1845 - 后轴60.85 1.0 1.0 1845 212.58 东风EQ140 前轴23.70 1.06.4820-后轴 69.20 1.0 1.0 820 165.30 太脱拉138前轴 51.4 1.0 6.4 205 72.55 后轴802.2 1.0205170.85 总和1735.59(2)累计当量轴次。
根据设计规范,二级公路沥青路面的设计年限取12年,二车道的车道系数是0.6~0.7,取0.65。
()()11236511N 3651735.5910.04910.650.0496516361te N γηγ⎡⎤+-⎣⎦=⎡⎤⨯⨯+-⎣⎦=⨯=次2.验算半刚性基层层底拉应力中的累计当量轴次。
(1)轴载换算。
验算半刚性基层层底拉应力的轴载换算公式为128''1()Ki i i PN C C n P ==∑计算结果如表2所示。
表 2 轴载换算结果表(弯沉) 车型 iP KN1'C 2'C in 12''8()i i PC C n P黄河前49 1.0 18.5 820 -JN150 轴后轴 101.6 1.0 1.0 820 931.03 解放CA10B 前轴 19.04 1.0 18.5 1845 - 后轴 60.85 1.0 1.0 1845 34.68 东风EQ140 前轴 23.70 1.0 18.5 820 - 后轴 69.20 1.0 1.0 820 43.12 太脱拉138前轴 51.4 1.0 18.5 205 18.48 后轴803.0 1.0205103.18 总和1130()()1'e 1236511N 365113010.04910.650.0494242642tN γηγ⎡⎤+-⎣⎦=⎡⎤⨯⨯+-⎣⎦=⨯=次根据公路沥青路面设计规范(JTG D50-2006)P14表3.1.8《交通分级》可确定轴载等级为:中等交通等级。
沥青路面及水泥路面计算书

一、沥青路面计算书1.基本资料:公路等级为一级公路,地处II2区;为双向四车道,设计车速:80km/h;设计标准轴载:BZZ-100;中液限粘性土,填方路基高1.6m,地下水位距路床2.2m,属中湿状态;年降雨量850mm;最高气温38℃,最低气温-25℃;多年最大冻深120cm;2.设计路段路基出于中湿状态,地基土为中液限粘性土,取土基回弹模量为36MPa。
3.其交通量增长率为5.5%.近期交通量及其累计轴次计算结果如下表,属重交通等级。
沥青路面弯沉与沥青层层底弯拉应力计算轴载换算N=ΣC1C2n i(P i/P)4.35N e=[(1+r)t-1]*365*N i*η/r半刚性基层层底弯拉应力计算轴载换算N=ΣC1C2n i(P i/P)8N e=[(1+r)t-1]*365*N i*η/r4.初拟路面结构根据结构层的最小施工厚度,材料,水文,交通量等因素,初步确定路面结构组合与各层层厚如下:方案1:30mm细粒式沥青混凝土+50mm中粒式沥青混凝土+70mm粗粒式沥青混凝土+?mm水泥稳定碎石+250mm水泥石灰砂砾土,以水泥稳定碎石为设计层。
方案2:40mm细粒式沥青混凝土+60mm中粒式沥青混凝土+80mm粗粒式沥青混凝土+? mm密级配沥青碎石+250mm级配碎石。
以密级配沥青碎石为设计层。
5.各层材料的抗压模量与劈裂强度(1)方案1:层位结构层材料名称 20℃平均 15℃平均综合影容许应力劈裂强度抗压模量抗压模量响系数 (MPa) (MPa)1 细粒式沥青混凝土 1400 2000 1 0.42 1.42 中粒式沥青混凝土 1200 1800 1 0.3 13 粗粒式沥青混凝土 1000 1200 1 0.24 0.84 水泥稳定碎石 1500 1500 1 0.29 0.65 水泥石灰砂砾土 1000 1000 1 0.15 0.46 新建路基 36 1(2)方案2:层位结构层材料名称 20℃平均 15℃平均综合影容许应力劈裂强度抗压模量抗压模量响系数 (MPa) (MPa)1 细粒式沥青混凝土 1400 2000 1 0.42 1.42 中粒式沥青混凝土 1200 1800 1 0.3 13 粗粒式沥青混凝土 1000 1200 1 0.24 0.84 密级配沥青碎石 1200 1400 1 0.24 0.65 级配碎石 250 250 16 新建路基 36 16、路面结构层厚度确定:(1)方案1的结构厚度计算:该结构为半刚性基层,面层类型系数1,路面结构类型系数为1。
新版规范(2017)沥青混凝土路面设计(详细应用)

首先根据右表确定所在地区的冻结指数为 92℃∙d 季节性冻土地区调整系数由下表取Ka= 0.9
将此值填入软件!
疲劳试验回归参数按照下表取值
a=13.24
b=12.52
C1=14
-0.0076
-0.0076
其余参数已知,最后将前面一系列算出来的参数一齐代入算式可以分别算得方案1和方案2的Nf2:
方案1 Nf2= 30911840000 方案2 Nf2=
车型
二类
三类
四类
车辆类
TTC5
9.9
车辆当量设计轴载换算
42.3
14.8
EALFml 非满载换算系数 EALFmh 满载换算系数
PERml 非满载比例 PERmh 满载比例
车型
EALFml
沥青混合料 无机结合料 路基顶面
EALFmh
沥青混合料 无机结合料 路基顶面
EALFm
PERml PERmh
沥青混合料 无机结合料 路基顶面
-
-
由15年设计车道累大型客车、货车交通量8283336可知本次设计交通荷载等级为
交通荷载等级
极重
特重
重
设计基准期内设计车 道累大型客车、货车
交通量Ne(106)
≥50
50--19
19--8
车辆类型分布系数确定 根据下表确定本次设计公路的TTC分类 TTC5
由上表可知TTC分类为TTC5,再由下表确定确定车辆类型分布系数
其中2轴6轮及以上车辆的双向年平均日交通量AADTT= 2600(辆 /d ) 再根据初始年设计车道日平均当量轴次N1、设计使用年限等,按下式计算设计车道上的当量设计轴载累计
计算结果如下表:
沥青路面结构设计计算说明书(含电算)

沥青路面结构设计计算说明书(一)设计资料济南地区新建一级公路,设计速度为80km/h,双向四车道。
沿线土质为粘土,地下水位为1m,路基填土高度为1.2m。
公路沿线有可开采碎石、砂砾,并有粉煤灰、石灰供应。
根据工程可行性报告得知,近期交通组成与交通量、不同车型的交通参数见表1,交通量年平均增长率为6%。
【表1.1 近期交通组成与交通量、车辆交通参数】注:基本要求为车道系数、车辆类型分布系数、当量设计轴载换算系数等均按照新建沥青路面,可采用水平三选取计算。
(二)设计任务该公路拟采用沥青路面结构,沥青面层要求采用沥青混凝土,基层采用无机结合料稳定类基层,试设计沥青路面结构和厚度。
(三)设计步骤1.交通荷载参数分析依表1.1,初始年大型客车和货车双向年平均日交通量为1946辆/日,交通量年增率γ=6%.(1)设计使用年限根据《公路沥青路面设计规范》(JTGD50-2017)3.0.2,沥青路面一级公路的设计使用年限t=15(年)。
(2)方向系数及车道系数根据《公路沥青路面设计规范》(JTGD50-2017)A.2.4,方向系数DDF取0.55。
根据《公路沥青路面设计规范》(JTGD50-2017)A.2.5,车道系数LDF取0.6。
(3)各类车比例、满载比例、设计轴载换算系数整体式货车即表1.1中3类、4类、5类车,占比为62.95%;半挂式货车即表1.1中7类车,占比为16.19%。
根据《公路沥青路面设计规范》(JTGD50-2017)A.2.6,新建路面按水平三考虑,故公路TTC分类为TTC4,由此车辆类型分布系数VCDF(%)分别为如下:【表3.1.1 车辆类型分布系数】各类车型的满载车占比PERmh如下取值:【表3.1.2 各类车型满载车占比】2-11类车辆当量设计轴载换算系数EALFml (非满)和EALFmh(满)依不同计算作用,如下:【表3.1.3 2-11类车辆当量设计轴载换算系数】(4)交通荷载等级、设计使用年限内设计车道的年平均日当量轴次初始年设计车道的年平均日货车交通量Q1=AADTT×DDF×LDF=642(辆/日),设计使用年限内设计车道累计大型客车和货车交通量(辆)Qt = Q1×365×[(1+γ)t-1]/γ=5454258(辆/日),属于中等交通荷载等级;初始年设计车道的年平均当量轴次N1=Q1×Σ(VCDFm×EALFm)=1043.4(次),设计使用年限内设计车道的年平均日当量轴次Nt依表3.1.3有:①当验算沥青混合料层疲劳开裂时:设计使用年限内设计车道上的当量设计轴载累计作用次数Ne1=8864560(次);②当验算无机结合料稳定层疲劳开裂时:设计使用年限内设计车道上的当量设计轴载累计作用次数Ne2=6.146937×108(次);③当验算沥青混合料层永久变形量时:通车至首次针对车辙维修期限内设计车道的当量设计轴载累计作用次数Ne3=8864560(次);④当验算路基顶面竖向压应变时:设计使用年限内设计车道上的当量设计轴载累计作用次数Ne4=1.393465×107(次)。
完整版2017沥青路面计算书

三长线 新建路面设计1.项目概况与交通荷载参数该项目位于江西省,属于一级公路,起点桩号为K0+000,终点桩号为K44+086, 设计使用年限为15.0年,根据交通量0D 调查分析,断面大型客车和货车交通量 为3855辆/日,交通量年增长率为5.0%,方向系数取55.0%,车道系数取60.0舟。
根据交通历史数据,按表A. 2.6-1确定该设计公路为TTC3类,根据表A.2.6-2 得到车辆类型分布系数如表1所示。
表车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非 满载与满载比例,如表2所示。
表2.非满载车与满载车所占比例(粉根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机 结合料层疲劳开裂。
根据附表A.3.1-3,可得到在不同设计指标下,各车型对应 的非满载车和满载车当量设计轴载换算系数,如表3所示。
表3.非满载车与满载车当量设计轴载换算系数乍辆类型非满载不满载车非满毂乍满载乍35. 5 0. 5 类2, 8 0. 8 2314. 2 类 3 4, 1 L 3 0. 4137. 6 4.2 4 类0. 7 0. 372・ 9 6 3 0. 6 类 5 0 61505. 7 7.9 6 类L 3 10. 2553. 0 类77. 8 6. 0 1.4713.516.46.71.4类 8. II II II 9 类L 5 5. I 0. 7201. 3126. 8 7,0 类10 37.8 2.4985.42.512. 11.511类根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为22,351,024,对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为1,670, 542, 389o本公路设计使用年限内设计车道累计大型客车和货车交通量为10,019,677,交通等级属于重交通。
2.初拟路面结构方案初拟路面结构如表4所示。
沥青路面结构计算书

新建路面设计1. 项目概况与交通荷载参数该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为%, 方向系数取表1. 车辆类型分布系数根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。
表2. 非满载车与满载车所占比例(%)表3. 非满载车与满载车当量设计轴载换算系数本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。
2. 初拟路面结构方案初拟路面结构如表4所示。
表4. 初拟路面结构路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取,干湿与冻融循环作用折减系数Kη取,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。
3. 路面结构验算沥青混合料层永久变形验算根据表,基准等效温度Tξ层分为kRiRai)。
各计算结果汇总于表5中。
各层永久变形累加得到沥青混合料层总永久变形表5. 沥青层永久变形计算结果无机结合料层疲劳开裂验算根据弹性层状体系理论,计算得到无机结合料层层底拉应力为。
根据气象资料,工程所在地区冻结指数F为℃?日,按照表,季节性冻土地区调整系数ka层材料无机结合料层底疲劳寿命为678,769,556。
贯入强度验算公路所在地区月平均气温大于0℃的月份数为11个月,由此得到对应于贯入度要求。
4. 路基顶面和路表验收弯沉值根据附录节,确定路基顶面和路表验收弯沉值时,采用落锤式弯沉仪,荷载盘半径为150mm,荷载为50kN。
采用拟定的路面结构以及各层结构模量值,路基顶面回弹模量采用平衡湿度状态下的回弹模型乘以模量调整系数kl(kl=,为25MPa,根据弹性层状体系理论计算得到路表验收弯沉值la为()。
5. 结果汇总各项验算结果汇总如下表所示:表6. 分析结果汇总由上表可知,所选路面结构和材料能满足各项验算内容的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三长线
新建路面设计
1. 项目概况与交通荷载参数
该项目位于江西省,属于一级公路,起点桩号为K0+000,终点桩号为K44+086,设计使用年限为15.0年,根据交通量OD调查分析,断面大型客车和货车交通量为3855辆/日, 交通量年增长率为5.0%, 方向系数取55.0%, 车道系数取60.0%。
根据交通历史数据,按表A.2.6-1确定该设计公路为TTC3类,根据表A.2.6-2得到车辆类型分布系数如表1所示。
表1. 车辆类型分布系数
根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。
表2. 非满载车与满载车所占比例(%)
根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。
根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。
表3. 非满载车与满载车当量设计轴载换算系数
根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为22,351,024, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为1,670,542,389。
本公路设计使用年限内设计车道累计大型客车和货车交通量为10,019,677,交通等级属于重交通。
2. 初拟路面结构方案
初拟路面结构如表4所示。
表4. 初拟路面结构
路基标准状态下回弹模量取90MPa,回弹模量湿度调整系数Ks取0.80,干湿与冻融循环作用折减系数Kη取0.85,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为61MPa。
3. 路面结构验算
3.1 沥青混合料层永久变形验算
根据表G.1.2,基准等效温度Tξ为23.8℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为25.4℃。
可靠度系数为1.28。
根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。
利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。
根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-7.67,d2=0.76。
把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。
各计
算结果汇总于表5中。
各层永久变形累加得到沥青混合料层总永久变形量Ra=14.1(mm),根据表3.0.6-1,沥青层容许永久变形为15.0(mm),拟定的路面结构满足要求。
表5. 沥青层永久变形计算结果
3.2 无机结合料层疲劳开裂验算
根据弹性层状体系理论,计算得到无机结合料层层底拉应力为0.264MPa。
根据气象资料,工程所在地区冻结指数F为25.0℃•日,按照表B.1.1,季节性冻土地区调整系数ka取1.00。
根据式(B.2.1-2),现场综合修正系数为-1.105 根据工程所在地区,查表G.1.2得到基准路面结构温度调整系数为1.45,根据初拟路面结构和路面结构层材料参数,按式(G.1.3-1)计算得到温度调整系数kT2为1.27。
由表B.2.1-1,对于无机结合料稳定粒料,疲劳开裂模型参数a=13.24,b=12.52。
弯拉强度为1.6MPa。
根据以上参数,按式(B.2.1-1)计算得到无机结合料层底疲劳寿命为1,723,094,488。
4. 路基顶面和路表验收弯沉值
根据附录B.7节,确定路基顶面和路表验收弯沉值时,采用落锤式弯沉仪,荷载盘半径为150mm,荷载为50kN。
路基标准状态下回弹模量取90MPa,回弹模量湿度调整系数Ks取0.80,则平衡湿度状态下的回弹模量为72MPa,采用公式(B.7.1)计算得到路基顶面验收弯沉值为259.4(0.01mm)。
采用拟定的路面结构以及各层结构模量值,路基顶面回弹模量采用平衡湿度状态下的回弹模型乘以模量调整系数kl(kl=0.5),为36MPa,根据弹性层状体系
理论计算得到路表验收弯沉值la为26.0(0.01mm)。
5. 结果汇总
各项验算结果汇总如下表所示:
表6. 分析结果汇总
由上表可知,所选路面结构和材料能满足各项验算内容的要求。