材料力学第三章纯剪切
材料力学纯剪切互等定理
材料力学纯剪切互等定理材料力学是研究物体在受力作用下产生变形和破坏的学科。
而纯剪切互等定理是材料力学中的一个重要定理,描述了材料在受到纯剪切力作用下的变形规律。
本文将对纯剪切互等定理进行详细阐述。
纯剪切互等定理,简称剪切互等定理,是材料力学中的一项基本原理,它表明,在材料受到纯剪切力作用时,剪切变形量与切变应力之间的关系是线性的。
具体而言,剪切互等定理指出,在纯剪切作用下,材料中各点的切变应力与切变变形量之间的比值是一个常数。
剪切互等定理可以用数学公式表示为:γ = G/τ,其中γ表示切变应变,G表示材料的剪切模量,τ表示切变应力。
根据这个公式可以得出,切变应变与切变应力成正比,且比例系数为材料的剪切模量。
剪切互等定理的提出是基于实验观察和理论分析,通过大量实验数据的统计和分析,得出了剪切互等定理。
实验表明,在材料受到纯剪切力作用时,无论材料的形状和尺寸如何变化,切变应变与切变应力之间的比值始终是一个常数。
这个常数就是材料的剪切模量,它是材料的一个重要力学参数,用来描述材料的抗剪切性能。
剪切互等定理的应用非常广泛。
在实际工程中,我们经常需要计算材料在受到剪切力作用时的变形和应力分布。
剪切互等定理提供了一种简化的计算方法,可以通过测量材料的剪切模量和施加的剪切力,就可以得到材料在剪切作用下的变形和应力分布。
这对于工程设计和材料选择非常有帮助。
除了在工程中的应用,剪切互等定理还在材料科学和材料制备中起着重要作用。
通过研究材料的剪切变形规律,可以了解材料内部的微观结构和性能变化。
这对于材料的改性和优化具有重要意义。
例如,在金属材料的加工过程中,剪切互等定理可以用来预测材料的变形行为和应力分布,从而优化加工工艺,提高产品质量。
剪切互等定理是材料力学中的一个重要定理,它描述了材料在受到纯剪切力作用下的变形规律。
通过测量材料的剪切模量和施加的剪切力,可以得到材料的变形和应力分布。
剪切互等定理在工程设计和材料制备中有着广泛的应用。
材料力学第三章 扭转
n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学课件第3-4章
L M x( x) d x
0 GIP (x)
28
3.5 圆轴扭转时的变形与刚度条件
二. 刚度条件
对等直轴:
d
dx
Mx GIP
单位长度的扭转角
等直圆轴扭转
max
M x max GIP
180
[ ](o /m)
对阶梯轴: 需分段校核。
max
M x max GIP
180
[ ](ο /m)
2. 给出功率, 转速
(kw)
Me = 9549
P n
(N. m)
(r/min)
5
3.2 外力偶矩的计算 扭矩和扭矩图 二.横截面上的内力
截面法求内力: 截,取,代,平
Mx 称为截面上的扭矩
Mx 0 Mx Me 0 即 Mx Me
按右手螺旋法:
指离截面为正,
M x 指向截面为负。
6
3.2 外力偶矩的计算 扭矩和扭矩图
10
3.3 薄壁圆筒的扭转 纯剪切
一. 薄壁筒扭转实验
nm
t
实验观察 分析变形
x
r
nm l
mn没变 x = 0
x = 0
Me
nm
γ
Me
φ
x
r没变 = 0
= 0
nm
Me
nm
Mx
x
n m Mx
11
3.3 薄壁圆筒的扭转 纯剪切
Me Mx
nm
Mx
n m Mx
由于轴为薄壁,所以认
为 沿t 均布.即 =C
max
M x max Wp
31.5 103 m
M x max d 3
16
材料力学第三章剪切和扭转
T
Ⅰ
T
d1
(a)
l
T (b)
D2
Ⅱ
T
l
36
3.3 等直圆杆扭转时的应力
解:
Wp1
πd13 16
Wp2
πD23 14
16
1,maxW Mpt11
T Wp1
16T πd13
2,ma xW M pt2 2W Tp2πD 2 311T 6 4
D 2 31 4 d 1 3
螺栓连接[图(a)]中,螺栓主要受剪切及挤压(局部压
缩)。
F
3
3.1 剪切
键连接[图(b)]中,键主要受剪切及挤压。
4
3.1 剪切
剪切变形的受力和变形特点: 作用在构件两侧面上的外力的合力大小相等、方向相 反,作用线相隔很近,并使各自推动的部分沿着与合 力作用线平行的受剪面发生错动。
受剪面上的内力称为剪力; 受剪面上的应力称为切应力;
3.3 等直圆杆扭转时的应力
传动轴的外力偶矩:
已知:
T2
T1
从动轮
n 主动轮
T3 从动轮
传动轴的转速 n ;某一轮上 所传递的功率
NK (kW)
作用在该轮上的外力偶矩T 。
一分钟内该轮所传递的功率等于其上外力偶矩所 作的功:
NK60 13 0(J)T2πn(Nm)
33
3.3 等直圆杆扭转时的应力
26
3.3 等直圆杆扭转时的应力
dj M t
d x GI pBiblioteka G djdx
GGMItp
Mt
Ip
等直圆杆扭转时横截面上切应力计算公式
Mt
O
材料力学笔记(第三章)
材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。
相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 3.1 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反3.2 扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 4.1 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=上式表示等直接圆杆横截面上任一点处的切应变随该点在横截面上的位置而变化的规律②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI Tdx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p4.2 斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理 该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料4.3 强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 5.1 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角 因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同 且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl =ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=5.2 刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 8.1 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等8.2 闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长如有侵权请联系告知删除,感谢你们的配合!。
纯 剪 切
材料力学
材料力学
纯剪切
三、切应变 剪切胡克定律
在切应力的作用下,单 元体的直角将发生微小的
G
τ
改变,这个改变量
应变。
称为切
G
—
剪切弹性模量(GN/m2)
当切应力不超过材料 的剪切比例极限时,切应
变与切应力τ成正比,这
各向同性材料, 三个弹性常数之间的 关系:
个关系称为剪切胡克定律。 G E
2(1 )
材料力学
材料力学
材料力学
材料力学 纯剪切
一、薄壁圆筒扭转时的切应力
将一薄壁圆筒表面用纵向平行线和圆 周线划分;两端施以大小相等方向相反一 对力偶矩。
观察到:
圆周线大小形状不变,各圆周线间距 离不变;纵向平行线仍然保持为直线且 相互平行,只是倾斜了一个角度。
结果说明横截面上没有正应力
材料力学
材料力学 纯剪切
采用截面法将圆筒截开,横截面 上分布有与截面平行的切应力。由于 壁很薄,可以假设切应力沿壁厚均匀 分布。
二、切应力互等定理
材料力学
由平衡方程
,得Mz 0
Me 2 r r
Me 2 r 2
'
材料力学
纯剪切
切应力互等定理:
纯剪切在相互垂直的 Nhomakorabea两个平面上,切
应力必然成对存
在,且数值相等;
两者都垂直于两
个平面的交线,
方向则共同指向
各个截面上只有切应
或共同背离这一 力没有正应力的情况称为
交线。
纯剪切
材料力学第3章 (2)
2 2
FN 2 3F A2 4 b 2d 3 80 103 N 4 0.08m 2 0.016m 0.01m 125Mpa<[]
铆钉和板的强度都符合要求。
10
材料力学
出版社 科技分社
小结 (1) 连接件的破坏形式主要有剪切和挤压破坏。
7
材料力学
出版社 科技分社
例题 图示两块钢板用四个直径相同的钢铆钉连接一起。 已知载荷F = 80 KN,板宽b =80 mm,板厚 =10 mm,铆 钉 d =16 mm,许用切应力[] =100 MPa,铆钉和钢板许用 挤压应力[jy] = 300MPa,钢板的许用拉应力 [] =160Mpa 。试校核该钢板连接处的强度。
等直圆杆在扭转时,杆内各点均处于纯剪切应力状 态。最大切应力发生在最大扭矩所在横截面,即危 险截面的周边上任一点处,其强度条件是横截面最 大工作切应力不超过材料的许用切应力 。即
Tmax max Wp
根据该式可对空心或实心圆截面的轴进 行强度计算,即强度校核、选择截面或 计算许可荷载三种类型的问题。
T2 M 2 M 3 9.56kN m
材料力学
出版社 科技分社
AD段:沿3-3截面将轴截开 ,取右边分析,假设为正 值扭矩,则由平衡方程
M
x
0
T3 M 4 0
T3 M 4 6.37kN m
。
(3)作扭矩图。 根据以上计算结果 即可做出扭矩图。
Tmax 9.56kN m
材料力学
出版社 科技分社
(2)计算各段轴上的扭矩。 BC段:沿1-1截面将轴截开,取左边分析,假设 为正值扭矩,则由平衡方程得
M
材料力学复习题第三章 扭 转
第三章 扭 转一、判断题1.圆杆受扭时,杆内各点均处于纯剪切状态。
( ) 2.非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“平面假设”不能成立。
( ) 3.当剪应力超过材料的剪切比例极限时,剪应力互等定律亦成立。
( ) 4.一点处两个相交面上的剪应力大小相等,方向指向(或背离)该两个面的交线。
( ) 5.直径和长度相同,材料不同的两根轴,受相同的扭转力偶矩作用,它们的最大剪应力和最大扭转角都相同。
6. 杆件受扭时,横截面上最大切应力发生在距截面形心最远处。
( )7. 薄壁圆管和空心圆管的扭转切应力公式完全一样。
( )8. 圆杆扭转变形实质上是剪切变形。
( )9. 横截面的角点处的切应力必为零。
( ) 1.√ 2.√ 3.√ 4.× 5.× 6.×(非圆截面) 7.× 8.√ 9.× 二、单项选择题1. 图示圆轴曲面C 左、右两侧的扭矩MC+和M C-的( )。
A .大小相等,正负号相同;B .大小不等,正负号相同; C .大小不等,正负号不同;D .大小相等,正负号不同。
2. 直径为D 的实心圆轴,两端受扭转力矩作用。
轴内最大剪应力τ,若轴的直径改为D/2,则轴内的最大剪应力变为( )。
A .2τ; B .τ; C . 8τ; D .16τ。
3. 阶梯圆轴的最大切应力发生在( )。
A .扭矩最大的截面;B .直径最小的截面;C .单位长度扭转角最大的截面;D .不能确定。
4.空心圆轴的外径为D ,内径为d,α=d/D 。
其抗扭截面系数为( )。
A .()απ-=1163D W P ;B 。
()23116απ-=D W P ;C 。
()33116απ-=D W PD .()43116απ-=D WP5.扭转的切应力公式ρτρPPI M =适用于( )杆件。
A .任意截面; B .任意实心截面;C .任意材料的圆截面; D .线弹性材料的圆面。
材料力学第三章-03 纯剪切
3-3 纯剪切
刚性圆环绕轴线发生相对转动
8-2 20:00
四、剪切胡克定律
回忆:拉压胡克定律:横截面上正应力和横截面上的点沿着轴线方向线应变之间的关系;切应力和角应变之间的关系;
横截面切应力比不超过比例极限;工作在线弹性范围内
角应变和切应力之间满足胡克定律;
1、A
2、成立剪切胡克定律不成立;
3、对
4、轴的转速越高,直径越大还是越小?
总结
1、受到什么样的外力,构件发生扭转变形;
受到一组力偶矩失与杆件的轴线平行的外力偶发生扭转变形;
2、这样的外力偶在杆件的横截面上产生何种内力?
产生扭矩,其力偶矩失与杆件的轴线平行;
3、在进行扭矩大小计算的时候,要求截面法截开以后要求内
力设正,不管外力偶方向如何,力偶矩失永远远离求内力的截
面。
4、方程:以内力的方向为正,同向相加反向相减。
5、怎么来做扭矩图?
N个外力偶把杆件分成N-1段,两个力偶之间一个截面,两
个外力偶之间内力不变
6、怎么确定危险截面
扭矩偏大,截面尺寸偏小的截面;
7、轴的合理受力问题,什么情况下轴的受力最合理;
最大扭矩绝对值要最小,轴的受力最合理;
8、切应力互等定理?
互相垂直的两个面上切应力成对出现;
切应力方向:同时指向或者同时远离
9、切应力互等定理适用于什么范围?
扭转变形过程中的任何阶段;
10、切应力和产生角应变,剪切胡克定律适用范围?
线弹性范围
做实验;18章4节圆轴的塑性扭转。
材料力学-第三章-剪切实用计算(上交)
FQ A
材料力学
剪切实用计算
剪切强度条件:
FQ A
[ ]
名义许用剪应力
可解决三类问题: 1、选择截面尺寸; 2、确定最大许可载荷, 3、强度校核。
材料力学
在假定的前提下进行 实物或模型实验,确 定许用应力。
[例3.1 ] 图示装置常用来确定胶接处的抗剪强度,如已知 破坏时的荷载为10kN,试求胶接处的极限剪(切)应力。 F F
F / 2n [ j ] 1 A d 2 4
2F n 3 . 98 2 d [ j ]
FQ
(2)铆钉的挤压计算
jy
Fb F /n [ A jy t1 d
]
jy
]
F n t1 d [
材料力学
3 . 72
jy
剪切实用计算
因此取 n=4. I F/n F/n F/n F F/n
R
R0
t
1 t R0 10 为薄壁圆筒
材料力学
材料力学
(1)
C D A B C D
A B
横截面上存在剪应力
材料力学
纯剪切的概念
(2)其他变形现象:圆周线之间的距离保持不变,仍为圆形, 绕轴线产生相对转动。 横截面上不存在正应力,且横截面上的剪应力的 方向是沿着圆周的切线方向,并设沿壁厚方向是 均匀分布的。 T
h d F d
剪切面
h
解
FN 4 F A d 2 F Q F AQ dh
当 , 分别达到 [] , [] 时, 材料的利用最合理
材料力学
F 4F 0 .6 2 得 d : h 2 .4 dh d
材料力学剪切和扭转
F
A
许用剪应力
上式称为剪切强度条件 其中,F 为剪切力——剪切面上内力旳合力
A 为剪切面面积
受剪切螺栓剪切面面积旳计算:
d 2
A 4
受剪切单键剪切面面积计算:
取单键下半部分进行分析
假设单键长宽高分别为 l b h
则受剪切单键剪切面面积:
剪切面
A bl
剪切力
d
l h b
合力 外力
螺栓和单键剪应力及强度计算:
P/2
积单倍
结论:不论用中间段还是左右段分析,成果是一样旳。
例2-1 图示拉杆,用四个直径相同旳铆钉连接,校核铆钉和拉 杆旳剪切强度。假设拉杆与铆钉旳材料相同,已知P=80KN, b=80mm,t=10mm,d=16mm,[τ]=100MPa,[σ]=160MPa。
构件受力和变形分析:
假设下板具有足够
例3-2 已知A轮输入功率为65kW,B、C、D轮输出功率分别为 15、30、20kW,轴旳转速为300r/min,画出该轴扭矩图。
TB
TC
TA
TD
B
C
955N·m
A
477.5N·m
Tn
637N·m
计算外力偶矩
D
TA
9550
NA n
1592N
•m
TB
TC
9550
NB n
477.5N
•
m
TD
9550
ND n
挤压面为上半个圆周面
键连接
上半部分挤压面
l
h 2
下半部分挤压面
2、挤压应力及强度计算
在挤压面上,单位面积上所具有旳挤压力称为挤
压应力。
bs
工程力学材料力学(3)
§3-1 工程实际中的扭转问题
在工程实际中,尤其是在机械传动中的许多构件,其主要变形是 扭转。例如丝锥攻丝和转动轴的工作情况。
受力特点: 受力特点 : 在垂直于扭转构件轴线的平面内作用有两个大小相等, 转向相反的力偶。 变形特点: 变形特点 : 在上述两力偶的作用下,各横截面绕轴线发生相对转 动。这时任意两横截面间将有相对的角位移,这种角位移称为扭转 扭转 角。图中的φAB就是截面B相对于截面A的转角
∑M
x
= 0, T = M A
取右段为研究对象,可得相同的结果 由此可见,杆扭转时,其横截面上的内力,是一个在截面平面内 的力偶,其力偶矩称为扭矩 扭矩。 扭矩 左右两截面上的扭矩是一对作用和反作用力,它们的大小相等、转 向相反。为了使轴的同一截面上的扭矩的正负号相同,可采用右手螺 右手螺 旋法则规定其正负号。 旋法则
工程力学课件
2、静力学关系 、 圆轴扭转时,平衡外力偶矩的扭矩,是由横截面上无数的微剪力 组成的。如图所示,设距圆心ρ处的切应力为τp,如在此处取一微面 积dA,则此微面积上的微剪力为τρdA 。各微剪力对轴线之矩的总和, 即为该截面上的扭矩,即
T = ∫ ρτ ρ dA
dφ τ ρ = Gρ dx 因此 T = Gρ 2 dφ dA = G dφ ∫A dx dx
(a)
(b)
(c)
工程力学课件
由图可知:当切应力不超过材料的 剪切比例极限 (τp)时,切应力与切应变 之间成正比关系,这个关系称为剪切 剪切 胡克定律,可用下式表示: 胡克定律
τ = G ⋅γ
式中,G为材料的剪切弹性模量 剪切弹性模量,单位与弹性模量E相同,其 剪切弹性模量 数值可通过试验确定,钢材的G值约为80 GPa。 理论与试验表明:剪切弹性模量、弹性模量和泊松比是表明材料 弹性性质的三个常数。对各向同性材料,这三个弹性常数之间存在如 下关系:
材料力学第3章
dϕ T = dx GIP
dϕ T = dx GIP
T dx ϕ = ∫ dϕ = ∫ 0 GI P l
l
当等直圆杆仅在两端受一对外力偶作用时
TL ϕ= GIP
当等直圆杆有两个以上的外力偶作用时,需要先画出 扭矩图,然后分段计算各段的变形,各段变形的代数和 即为杆的总变形。
Ti Li ϕ =∑ i (GIP )i
)
2
D
δ = 3.7mm
空心圆轴设计
τ max
T = ≤ [τ ] WP
WP =
(D 16 D
π
4
−d4
)
D = d + 2δ
16 DT ≤ [τ ] 4 4 π D −d
(
π × 80 × 106 Pa × D 4 − 16 × 5 × 103 N • m × D − π × (0.1m )4 × (8 × 106
2
2
τ′
τ
τ′
γ
dW = dVε 1 τγdxdydz 1 dVε = 2τγ vε = 应变能密度 2 dxdydz dV
τ
等直圆杆扭转时的应变能
x
dx
2
2
Vε = ∫ vε dV= ∫∫ vε dAdx
V
1 = τγ γ 2
Tρ = IP
l A
=
τ
G
l T τ Vε = ∫∫ dAdx = 2G IP 2G l A
第三章
§1 扭转的概念和实例
扭 转
ϕ
受力特征: 受力特征:在杆的两端垂直于杆轴的平面内, 作用着一对力偶,其力偶矩相等、方向相反。 变形特征: 变形特征:杆件的各横截面环绕轴线发生相对 的转动。 扭转角:任意两横截面间相对转过的角度。
材料力学第三章知识点总结
直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e
⋅
=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。
倾斜了同一个角度,小方格变成了平行四边形。
τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。
有关,见教材P93 之表3.2。
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
材料力学 材料的剪切力
110106 110MPa [ ]
3.板和铆钉的挤压强度
bs
Fbs Abs
F
2d
50103 2 0.017 0.01
147106 147MPa [ bs ]
结论:强度足够。
12
§3-2 纯剪切 切应力互等定理 剪切胡克定律
一、纯剪切
单元体截面上只有切应力而无正应力作用, 这种应力状态叫做纯剪切应力状态。
料相同,试校核其强度。
解:1.板的拉伸强度
FN F A (b 2d )
50 103
(0.15 2 0.017) 0.01
43.1106 43.1MPa [ ]
11
§3-1 连接件的强度计算
d
b
a
2.铆钉的剪切强度
Fs A
4F 2πd 2
2F πd 2
2 50103 π 0.0172
3.挤压的实用计算
F
Fbs
假设应力在挤压面上是均
匀分布的
F
得实用挤压应力公式
bs
Fbs Abs
*注意挤压面面积的计算
Fbs
Abs d
挤压强度条件: bs
Fbs Abs
bs
bs 常由实验方法确定
7
§3-1 连接件的强度计算
切应力强度条件: Fs
A
挤压强度条件:
bs
Fbs Abs
G E
2(1 )
表明3个常数只有2个是独立的
17
小结
1. 剪切变形的特点 2. 剪切实用计算 3. 挤压实用计算 4. 纯剪切的概念 5. 切应力应力应满足
bs 2
F dh
2
4F
d 2
d 8h
递进变形 对变形现象的解释 纯剪切和简单剪切
递进变形对变形现象的解释纯剪切和简单剪切递进变形是固体材料在外力作用下,随着形变程度的增加而逐渐发生的变形现象。
它是材料力学中的一种基本现象,具有广泛的应用和重要的研究价值。
纯剪切是指材料在外力作用下,发生沿切变面平行的形变,而其他方向上没有形变的情况。
简单剪切则是指材料在外力作用下,不仅沿切变面平行发生形变,其他方向上也同时发生形变。
在递进变形过程中,纯剪切和简单剪切的作用往往同时存在。
纯剪切主要表现为切变面的平行位移和旋转,而简单剪切则体现为切变面上的拉伸和压缩形变。
这种复杂的变形机制使得材料的变形过程更加复杂,也为研究递进变形提供了更多的可能。
递进变形的发生可以通过材料的应力-应变曲线来解释。
在材料的线弹性阶段,应力和应变呈线性关系,而在递进变形阶段,应力与应变之间的关系不再是简单的线性关系。
材料的应力-应变曲线上出现了应力饱和和应变饱和的现象,这表明材料的强度和韧性在递进变形过程中发生了明显的变化。
递进变形不仅对材料的力学性能产生重要影响,还对材料的微观结构和物理性质产生深远的影响。
递进变形的发生会引起材料内部晶粒的旋转和滑移,使晶体结构发生变化,导致材料的力学性能发生显著变化。
同时,递进变形还可能引发材料的塑性不均匀性和局部失稳现象,进一步影响材料的强度和韧性。
在材料工程和结构设计中,充分理解和控制递进变形是十分重要的。
合理选择材料和加工工艺,可以有效减缓递进变形的发生,提高材料的强度和韧性。
此外,还可以通过调节材料的晶体结构和组织性能,改善材料的递进变形特性。
总之,递进变形是材料力学中的重要现象,它包括纯剪切和简单剪切两种变形方式,并对材料的力学性能、微观结构和物理性质产生深远影响。
理解和控制递进变形对于材料工程和结构设计具有重要意义,有助于提高材料的强度和韧性,推动材料科学的发展。
纯剪切状态名词解释
纯剪切状态名词解释
嘿,你知道啥是纯剪切状态不?纯剪切状态啊,就好比是一场力量的较量,但不是那种拳拳到肉的打架哦!比如说,想象一下有一块橡皮,你从两个相对的方向同时用力去拉扯它,这时候橡皮就处于一种被拉伸的状态。
而纯剪切状态呢,就像是你从另外两个相对的方向同时去扭动这块橡皮,让它的形状发生变化,但又不是简单的拉伸或压缩。
咱再举个例子啊,你看那揉面团的时候,你的双手是不是在不同的方向上用力揉啊搓啊的,面团就在这种作用下不断变形,这其实就有点类似纯剪切状态啦!纯剪切状态在很多地方都很重要呢,比如在材料力学里。
就好像建房子,那些钢材啊什么的,它们在受力的时候可能就会处于纯剪切状态。
要是不了解这个,那房子建起来能安全吗?肯定不行呀!在工程领域,这可是个相当关键的概念呢!
纯剪切状态听起来好像很复杂,但其实只要你用心去想,就会发现它也没那么难理解嘛!它就像是生活中的很多事情一样,乍一看很神秘,但一旦你搞懂了,就会觉得“哎呀,原来这么简单啊”!所以啊,别被那些专业名词给吓住啦,勇敢地去探索、去理解,你就能掌握它啦!
我的观点就是,纯剪切状态虽然是个专业术语,但通过形象的例子和简单的解释,我们都能很好地理解它,它并不是遥不可及的知识,而是与我们生活息息相关的一部分呢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-3 纯剪切
刚性圆环绕轴线发生相对转动
8-2 20:00
四、剪切胡克定律
回忆:拉压胡克定律:横截面上正应力和横截面上的点沿着轴线方向线应变之间的关系;切应力和角应变之间的关系;
横截面切应力比不超过比例极限;工作在线弹性范围内
角应变和切应力之间满足胡克定律;
1、A
2、成立剪切胡克定律不成立;
3、对
4、轴的转速越高,直径越大还是越小?
总结
1、受到什么样的外力,构件发生扭转变形;
受到一组力偶矩失与杆件的轴线平行的外力偶发生扭转变形;
2、这样的外力偶在杆件的横截面上产生何种内力?
产生扭矩,其力偶矩失与杆件的轴线平行;
3、在进行扭矩大小计算的时候,要求截面法截开以后要求内
力设正,不管外力偶方向如何,力偶矩失永远远离求内力的截
面。
4、方程:以内力的方向为正,同向相加反向相减。
5、怎么来做扭矩图?
N个外力偶把杆件分成N-1段,两个力偶之间一个截面,两
个外力偶之间内力不变
6、怎么确定危险截面
扭矩偏大,截面尺寸偏小的截面;
7、轴的合理受力问题,什么情况下轴的受力最合理;
最大扭矩绝对值要最小,轴的受力最合理;
8、切应力互等定理?
互相垂直的两个面上切应力成对出现;
切应力方向:同时指向或者同时远离
9、切应力互等定理适用于什么范围?
扭转变形过程中的任何阶段;
10、切应力和产生角应变,剪切胡克定律适用范围?
线弹性范围
做实验;18章4节圆轴的塑性扭转。