高二数学知识点归纳总结5篇最新
高二数学知识点及公式总结5篇
![高二数学知识点及公式总结5篇](https://img.taocdn.com/s3/m/fc43e36d814d2b160b4e767f5acfa1c7aa0082cf.png)
高二数学知识点及公式总结5篇第一篇:高二数学必备知识点及公式总结1.函数的概念及其性质函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。
函数的三要素为定义域、值域和对应关系。
常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。
常见函数的公式:一次函数:y = kx + b二次函数:y = ax^2 + bx + c指数函数:y = a^x (a > 0, a ≠ 1)对数函数:y = loga(x) (a > 0, a ≠ 1)2.三角函数及其应用三角函数是指正弦函数、余弦函数、正切函数等。
由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。
三角函数的公式:正弦函数:y = sinx余弦函数:y = cosx正切函数:y = tanx割函数:y = secx余割函数:y = cotx3.微积分基础微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。
导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。
微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。
微积分的公式:导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx第二篇:高二数学解析几何知识点及公式总结1.向量及其运算向量是数学中的一种对象,具有大小和方向两个要素。
向量的运算包括加、减、数乘、点乘等,可以用来描述物体的运动、力的作用等。
向量运算的公式:向量加法: A + B = (Ax + Bx, Ay + By)向量减法: A - B = (Ax - Bx, Ay - By)向量数乘: kA = (kAx, kAy)向量点乘:A·B = |A||B|cosθ2.平面及直线的方程平面是空间内的一种二维图形,可以通过点和法向量来确定。
高二数学必修五知识点总结5篇
![高二数学必修五知识点总结5篇](https://img.taocdn.com/s3/m/feb9255759fafab069dc5022aaea998fcc2240b1.png)
高二数学必修五知识点总结5篇高二数学必修五知识点总结5篇了解社交媒体和在线工具对于知识管理和交流的作用和优势。
寻求和借鉴他人的成功经验和最佳实践。
下面就让小编给大家带来高二数学必修五知识点总结,希望大家喜欢!高二数学必修五知识点总结篇1一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗4.简单命题与复合命题有什么区别四种命题之间的相互关系是什么如何判断充分与必要条件5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
例如:。
10.你熟练地掌握了函数单调性的证明方法吗定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗14.解对数函数问题时,你注意到真数与底数的限制条件了吗(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次)的关系及应用掌握了吗如何利用二次函数求最值16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
2024年高二会考数学知识点归纳5篇
![2024年高二会考数学知识点归纳5篇](https://img.taocdn.com/s3/m/6e35b8b19a89680203d8ce2f0066f5335b816752.png)
高二会考数学知识点归纳5篇高二会考数学知识点归纳1第一章:三角函数。
考试必考题。
诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
第二章:平面向量。
个人觉得这一章难度较大,这也是我掌握最差的一章。
向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。
向量共线和垂直的数学表达,这是计算当中经常要用的公式。
向量的共线定理、基本定理、数量积公式。
难点在于分点坐标公式,首先要准确记忆。
向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。
有同样情况的同学建议多看有关题的图形。
第三章:三角恒等变换。
这一章公式特别多。
和差倍半角公式都是会用到的公式,所以必须要记牢。
由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。
而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。
除此之外,就是多练习。
要从多练习中找到变换的规律,比如一般都要化等等。
这一章也是考试必考,所以一定要重点掌握。
高二会考数学知识点归纳2等差数列对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
高二数学知识点归纳总结5篇最新
![高二数学知识点归纳总结5篇最新](https://img.taocdn.com/s3/m/f758d0a7a6c30c2259019ee9.png)
高二数学知识点归纳总结5篇最新直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。
另一方面通过自学主动获取知识。
能否顺利实现转变,是成绩能否突破的关键。
高二数学知识点总结1直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=⑷球体:①表面积:S=;②体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。
核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形;⑵直线与平面所成的角:直线与射影所成的角高二数学知识点总结2反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1],值域[-π/2,π/2]。
反函数求导方法若F(X),G(X)互为反函数,则:F(X)_(X)=1E.G.:y=arcsin=sinyy_=1(arcsinx)_siny)=1y=1/(siny)=1/(cosy)=1/根号(1-sin y)=1/根号(1-x )其余依此类推高二数学知识点总结31、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
高二数学知识点归纳(15篇)
![高二数学知识点归纳(15篇)](https://img.taocdn.com/s3/m/30d47239aa00b52acec7ca1f.png)
高二数学知识点归纳(15篇)高二数学知识点归纳1、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
选修Ⅱ(24个)概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
高二数学知识点归纳2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
高二数学知识点总结归纳【五篇】
![高二数学知识点总结归纳【五篇】](https://img.taocdn.com/s3/m/98a8fcf79fc3d5bbfd0a79563c1ec5da50e2d68f.png)
高二数学知识点总结归纳【五篇】高二数学是整个高中数学学科体系的重要部分,其涵盖的知识点和内容比高一数学更加广泛和深入。
在高二数学学习中,有许多重要的知识点需要我们理解和掌握,这些知识点不仅关乎我们学习数学的基础,也是我们未来竞争中必不可少的组成部分。
在本文中,我们将为大家总结归纳五篇高二数学知识点,帮助大家更好地进行数学学习。
一、高二数学知识点总结之初等函数初等函数是高中数学中的重要分支,也是理科生考试中不可缺少的重要知识点。
其中,包括常见的多项式函数、指数函数、对数函数、三角函数等等。
其中,多项式函数和三角函数经常出现在各类赛事和奥赛中,并且重要性非常高。
例如,多项式函数有如下例子:1、$y = x^2 + x + 1$,它的图像一定是一个开口向上的抛物线,其中顶点的横坐标为$x = -\frac{1}{2}$ ,纵坐标为$y =\frac{3}{4}$。
2、$y = x^3 - 3x$,它的图像对称于原点,其中$x =\sqrt[3]{3}$,$x = -\sqrt[3]{3}$,$x = 0$是它的零点,且$x$轴为其渐近线。
3、$y = \frac{x + 2}{2x^2 + x - 3}$,它的最简式是$y =\frac{1}{2(x-1)} - \frac{1}{2(x+3)}$,它的函数图像有两个渐近线:$x = 1$和$x = -\frac{3}{2}$,且$y$轴为其对称轴。
二、高二数学知识点总结之平面几何平面几何是高中数学的另一个重要方向,它主要研究平面上的图形、尺寸、位置等特性,包括平面中的各种三角形、四边形、圆与圆、平行四边形、相似三角形、几何变换等内容。
在此,我们可以举例如下:1、三角形内角和定理:一个三角形内角的和等于$180°$。
2、欧拉线定理:对于任何三角形,它的欧拉线、垂心和重心共线,并且欧拉线的长度等于重心到垂心距离的$2$倍。
3、圆的欧拉定理:对于任何圆,它的欧拉定理都成立,即圆心、外心、内心和互补的费马点四点共线。
2024年高二数学难点知识点总结梳理(二篇)
![2024年高二数学难点知识点总结梳理(二篇)](https://img.taocdn.com/s3/m/0cb4a827326c1eb91a37f111f18583d048640f7d.png)
2024年高二数学难点知识点总结梳理一、直线与圆的相关理论:1. 直线的倾斜角:在平面直角坐标系中,对于一条与坐标轴相交的直线,若将坐标轴绕交点逆时针旋转至与直线重合,所转过的最小正角称为直线的倾斜角。
若直线与坐标轴重合或平行,其倾斜角规定为0度。
2. 斜率的定义:已知直线的倾斜角为α,且α不等于90度,则该直线的斜率k等于tanα。
3. 直线方程的表示方法:点斜式:若直线经过某点,且斜率为k,则直线方程可表示为y y1 = k(____ ____1)。
斜截式:若直线在y轴上的截距为b,且斜率为k,则直线方程可表示为y = k____ + b。
4. 直线与直线的位置关系:平行:两条直线的斜率相等,即A1/A2 = B1/B2,需注意进行检验。
垂直:两条直线的斜率满足A1A2 + B1B2 = 0。
5. 点到直线的距离公式:两条平行线之间的距离是固定值。
6. 圆的方程表示:标准方程:(____ a)² + (y b)² = r²。
一般方程:____² + y² + D____ + Ey + F = 0,注意可以将标准方程转换为一般方程。
7. 圆外一点作圆的切线:从圆外一点向圆作切线,通常存在两条切线。
如果只求出了一条,另一条必然是与坐标轴垂直的直线。
8. 直线与圆的位置关系:通常通过比较圆心到直线的距离与半径的关系,或利用垂径定理,构造直角三角形来求解弦长问题。
直线与圆的关系分为相离、相切、相交三种。
9. 解决直线与圆的关系问题时,应充分利用圆的平面几何性质,如半径、半弦长、弦心距构成直角三角形,以求解直线与圆相交所得弦长。
二、圆锥曲线方程的相关知识:直线与圆锥曲线交点的弦长公式。
三、直线、平面及简单几何体的研究:1. 学习三视图分析。
2. 斜二测画法的注意事项:在已知图形中选取互相垂直的轴O____、Oy。
在绘制直观图时,将其画成对应轴o'____'、o'y',并使∠____'o'y' = 45°(或135°)。
高二数学公式总结5篇
![高二数学公式总结5篇](https://img.taocdn.com/s3/m/e0f49742dcccda38376baf1ffc4ffe473368fdab.png)
高二数学公式总结5篇已经进入高二上学期的同学们,在我们顺利度过高中的适应期,积极参与学校社团活动,逐步形成了自我学习模式,初步拟定人生规划后,要将自我的精力集中到学习上,应将自己的学业做到一个高度的时候了。
下面就是给大家带来的高二数学公式总结,希望能帮助到大家!高二数学公式总结11.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina_osb=[sin(a+b)+sin(a-b)]/2cosa_inb=[sin(a+b)-sin(a-b)]/2cosa_osb=[cos(a+b)+cos(a-b)]/2sina_inb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]高二数学公式总结21.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差——变形——判断符号. (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 高二数学公式总结31.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a_量b=|向量a|_向量b|_osα=x1x2+y1y2Cosα=向量a_量b/|向量a|_向量b|(x1x2+y1y2)根号(x1平方+y1平方)_号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a∈向量b那么向量a_量b=0如果向量a//向量b那么向量a_量b=±|向量a|_向量b|或者x1/x2=y1/y27.|向量a±向量b|平方=|向量a|平方+|向量b|平方±2向量a_量b=(向量a±向量b)平方高二数学公式总结4直线的倾斜角:定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
最新高二数学知识点总结归纳5篇
![最新高二数学知识点总结归纳5篇](https://img.taocdn.com/s3/m/8c8fa3f6185f312b3169a45177232f60ddcce7e5.png)
最新高二数学知识点总结归纳5篇最新高二数学知识点总结归纳5篇总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,通过它可以正确认识以往学习和工作中的优缺点,让我们来为自己写一份总结吧。
总结怎么写才是正确的呢?以下是小编精心整理的最新高二数学知识点总结归纳5篇,欢迎阅读,希望大家能够喜欢。
最新高二数学知识点总结归纳5篇1第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n项和及一些性质。
这一章属于学起来很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
最新高二数学知识点总结归纳5篇21、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等、4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。
高二数学重点知识点归纳梳理【5篇】
![高二数学重点知识点归纳梳理【5篇】](https://img.taocdn.com/s3/m/922c9bdce518964bce847c65.png)
高二数学重点知识点归纳梳理【5篇】高二数学在整个高中数学中占有非常重要的地位,既是高二又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。
下面就是给大家带来的高二数学知识点总结,希望能帮助到大家!高二数学知识点总结1用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的值和最小值对标准差的影响,区间的应用;“去掉一个分,去掉一个最低分”中的科学道理两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.最小二乘法3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x 的范围来实现统计控制的目标。
如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,先作出散点图;(3)回归直线不要外延。
高二数学知识点总结2立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
数学知识点归纳总结5篇
![数学知识点归纳总结5篇](https://img.taocdn.com/s3/m/b812a09a77eeaeaad1f34693daef5ef7bb0d1269.png)
数学知识点归纳总结5篇第1篇示例:数学知识点归纳总结数学是一门抽象而深刻的学科,它涵盖了众多的知识点和原理。
数学知识点的归纳总结是我们对数学知识的理解和掌握的重要方式之一。
在这篇文章中,我们将对几个常见的数学知识点进行归纳总结,帮助大家更好地理解和掌握这些知识。
一、代数代数是数学的一个重要分支,它研究的是数与符号之间的关系。
在代数中,常见的知识点包括方程、函数、不等式等。
1. 方程:方程是代数中的基本概念之一,它描述了两个表达式之间的平衡关系。
常见的方程包括一元一次方程、一元二次方程等。
解方程的方法包括因式分解、配方法、代数法、凑平方等。
2. 函数:函数是一种特殊的关系,它描述了两个集合之间的对应关系。
函数的概念包括定义域、值域、奇偶性、单调性等。
常见的函数包括线性函数、二次函数、指数函数、对数函数等。
3. 不等式:不等式描述了两个表达式之间的大小关系。
解不等式的方法包括绘制数轴、利用性质、化简等。
二、几何几何是研究空间形状和空间关系的数学分支,它涵盖了平面几何和立体几何两个方面。
1. 平面几何:平面几何是研究二维空间中的形状和关系的数学分支,其知识点包括点、线、面、角、三角形、四边形等。
在平面几何中,我们需要掌握的知识点包括相似三角形、勾股定理、正弦定理、余弦定理等。
三、概率与统计概率与统计是研究随机现象和数据规律的数学分支,它涵盖了概率、统计、随机变量、概率分布等知识点。
1. 概率:概率是描述随机现象发生可能性的数学工具,其知识点包括事件与概率、概率的性质、条件概率、独立事件等。
2. 统计:统计是研究数据规律的数学工具,其知识点包括数据的收集、整理、描述统计、推断统计等。
3. 随机变量与概率分布:随机变量是描述随机现象的数学变量,概率分布是描述随机变量取值规律的数学工具。
常见的随机变量包括离散随机变量和连续随机变量,常见的概率分布包括均匀分布、正态分布、泊松分布等。
第2篇示例:一、基础数学知识点1. 数学符号和运算法则:加减乘除、相等于、大于小于等基本运算法则的符号表示和运用。
高二数学知识点难点总结【五篇】
![高二数学知识点难点总结【五篇】](https://img.taocdn.com/s3/m/eadd8e05a22d7375a417866fb84ae45c3a35c27e.png)
高二数学知识点难点总结【五篇】高二数学知识点总结1考点一:向量的概念向量的基本定理【内容解读】了解向量的实际背景,掌握向量零向量平行向量共线向量单位向量相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择填空题型出现,难度不大,考查重点为模和向量夹角的定义夹角公式向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.【命题规律】命题多以解答题为主,属中等偏难的试题。
高考数学知识点总结(最新11篇)
![高考数学知识点总结(最新11篇)](https://img.taocdn.com/s3/m/c142c176e3bd960590c69ec3d5bbfd0a7856d55b.png)
高考数学知识点总结(最新11篇)高考数学知识点总结篇一1.“集合”与“常用逻辑用语”:强调了集合在表述数学问题时的工具性作用,突出了“韦恩图”在表示集合之间的关系和运算中的作用。
需要特别注意能够对含有一个量词的全称命题进行否定。
2.函数:对分段函数提出了明确的要求,要求能够简单应用;反函数问题只涉及指数函数和对数函数;注意函数零点的概念及其应用。
3.立体几何:第一部分强调对各种图形的识别、理解和运用,尤其是新课标高考新增加的三视图一定会重点考查。
第二部分的位置关系侧重于利用空间向量来进行证明和计算。
4.解析几何:初步了解用代数方法处理几何问题的思想,加强对椭圆和抛物线的理解和综合应用,重点掌握椭圆和抛物线与其他知识相结合的解答题。
5.三角函数:本部分的重点是“基本三角函数关系”、“三角函数的图象和性质”和“正、余弦定理的应用”。
6.平面向量:掌握向量的四种运算及其几何意义,理解平面向量数量积的物理意义以及会用向量方法解决某些简单的平面几何问题。
我们应注意平面向量与平面几何、解析几何、三角函数等知识的综合。
7.数列:了解数列是自变量为正整数的一类函数和等差数列与一次函数、等比数列与指数函数的关系。
能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
8.不等式:要求会解一元二次不等式,用二元一次不等式组表示平面区域,会解决简单的线性规划问题。
会用基本不等式解决简单的最大(小)值问题。
9.导数:理解导数的几何意义,要求关注曲线的切线问题;能利用导数求函数的'单调性、单调区间;函数的极值;闭区间上函数的最大值、最小值。
10.算法:侧重“算法”的三种基本逻辑结构与“程序框图”的复习。
11.计数原理:强调对计数原理的“理解”,避免抽象地讨论计数原理,而且强调计数原理在实际中的应用,尤其是要注意与概率的综合。
要想成功就必须付出汗水。
12.概率与统计:高考对概率与统计的考查越来越趋向综合型、交汇型。
高二会考数学知识点总结分享【五篇】
![高二会考数学知识点总结分享【五篇】](https://img.taocdn.com/s3/m/1a8b40005b8102d276a20029bd64783e08127d71.png)
高二会考数学知识点总结分享【五篇】第一篇:高二会考数学知识点总结——函数与解析几何函数:函数是一种数学关系,将一个自变量映射到一个因变量上。
高考中常考的内容包括函数的定义,函数的图像,函数的性质,函数的值域和模型应用等。
例子:1. f(x) = x^2-2x+1 在直角坐标系内的图像是一个开口朝上的抛物线,顶点坐标为(1,0);2. 函数f(x) = cosx 在 [-π,π] 的定义域上取最大值为1,最小值为-1;3. 函数f(x) = 1/(x-2) 在定义域 (-∞,2) U (2,+∞)上具有单射性。
解析几何:解析几何是三维空间中平面与直线的研究。
高考中常考的知识点包括点、直线、平面的向量表示和相关性质,以及平面与直线之间的位置关系等。
例子:1. 直线 L1 ∶ { 3x + 4y - 5z = 0, x - y + z = 0 } 与直线 L2 ∶ { 2x + y + z = 0, 3x - y -3z = 0 } 的距离为 5/7;2. 平面α ∶ { x + y - z = 1, x - z = 0 } 与直线 L ∶ { x - y + z = 2, y - z = 1 } 的位置关系是相交;3. 向量 a = (2,4,1), b = (1,-3,2) 的点积为 -4。
第二篇:高二会考数学知识点总结——数系与函数初步数系:数系是指不同类型的数的集合。
高考中涉及到的数系包括自然数、整数、有理数、无理数、实数和复数等。
例子:1. 0.2是一个有理数;2. √2是一个无理数;3. 1+i 是一个复数。
函数初步:函数初步是指初中所学习的函数概念的拓展与进一步应用。
高考中常考的知识点包括函数的基本性质、反函数、初等函数、复合函数和二次函数等。
例子:1. 函数f(x) = x^2-2x+1 的值域为[0.25, ∞);2. 函数f(x) = 1/(x-2) 的反函数为 f^-1(x) = 1/x + 2;3. 函数f(x) = sin2x 的图像是关于y轴对称的。
高二数学必考知识点总结分享【5篇】
![高二数学必考知识点总结分享【5篇】](https://img.taocdn.com/s3/m/d8939a75d4d8d15abf234e83.png)
高二数学知识点1一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
高二数学知识点总结15篇
![高二数学知识点总结15篇](https://img.taocdn.com/s3/m/8afd44e2a76e58fafbb00304.png)
高二数学知识点总结15篇高二数学知识点总结1等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
面积公式若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:S=ab/2。
且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:S=ch/2=c2/4。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。
反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1],值域[-π/2,π/2]。
反函数求导方法若F(X),G(X)互为反函数,则:F'(X)_'(X)=1E.G.:y=arcsin_sinyy'_'=1(arcsinx)'_siny)'=1y'=1/(siny)'=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-x^2)其余依此类推高二数学知识点总结2反正弦函数的导数:正弦函数y=sinx在[—π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[—π/2,π/2]区间内。
定义域[—1,1],值域[—π/2,π/2]。
反函数求导方法若F(X),G(X)互为反函数,则:F'(X)_'(X)=1E。
G。
:y=arcsin=sinyy'_'=1(arcsinx)'_siny)'=1y'=1/(siny)'=1/(cosy)=1/根号(1—sin^2y)=1/根号(1—x^2)其余依此类推高二数学知识点总结3反正弦函数的导数:正弦函数y=sin_在[-π/2,π/2]上的反函数,叫做反正弦函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学知识点归纳总结5篇最新
直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。
另一方面通过自学主动获取高二数学知识点总结1
直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°);
(2)平行于x轴的线段长不变,平行于y轴的线段长减半.
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S 底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S 底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。
核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
高二数学知识点总结2
反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1],值域[-π/2,π/2]。
反函数求导方法
若F(X),G(X)互为反函数,
则:F(X)_(X)=1
E.G.:y=arcsin=siny
y_=1(arcsinx)_siny)=1
y=1/(siny)=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-x^2)
其余依此类推
高二数学知识点总结3
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。
核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
高二数学知识点总结4
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
高二数学知识点总结5
第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n 项和及一些性质。
这一章属于学起来很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
高二数学知识点归纳总结5篇最新相关*:
1.2020最新高二数学知识点归纳总结5篇精选
2.2020最新高二数学知识点总结5篇
3.高二数学必背知识点归纳最新5篇
4.高二数学必背知识点归纳最新5篇最新
5.高二数学知识点归纳整理分享五篇
6.高二数学必背知识点归纳总结最新5篇分享
7.最新高二数学知识点总结归纳分享五篇
8.最新高二数学重点复习知识点精选5篇
9.2020高二数学最新复习知识点归纳5篇
10.最新高二数学知识点整理梳理最新五篇分享。