新人教A版数学选修1-1《3.1.1变化率问题》导学案
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_5
3.1变化率与导数3.1.1变化率问题教学目标:1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程,体会数学的博大精深以及学习数学的意义;2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景.教学重点:平均变化率的实际意义与数学意义教学难点:对生活现象作出数学解释教学过程:Ⅰ.问题情境,预习教材,问题导入根据以下提纲,预习教材P72~P74的内容,回答下列问题.(1)气球膨胀率①当空气容量V从0增加到1L时,气球的平均膨胀率是多少?当V从0增加到1时,气球半径增加了)rr≈-)1(dm)0(62.0(当V从1增加到2时,气球半径增加了)r-r≈)2(dm(016)1((2) 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:米)与起跳后的时间t (单位:思考:(1) 运动员在这段时间里是静止的吗?(2) 你认为用平均速度描述运动员的运动状态有什么问题吗?平均变化率的定义:数 )(x f y =从1x 到2x 的平均变化率.若设12x x x -=∆,可把x ∆看作是相对于1x 的一个“增量”,可用x x ∆+1代替2x ,类似地12y y y -=∆。
平均变化率表示为: 平均变化率的几何意义:什么?即时训练已知函数53)(2+=x x f ,求:(1)从0.1到0.2的平均变化率.(2)在区间[]x x x ∆+00,上的平均变化率.求平均变化率的方法技巧:(学生阐述,教师归纳总结)1.求函数平均变化率的三个步骤第一步,求自变量的增量12x x x -=∆.第二步,求函数值的增量12y y y -=∆.变式训练:质点运动规律32+=t s ,则在()t ∆+3,3中的平均速度为()当堂训练达标1.求 2x y =在 0x x =附近的平均速度2.过曲线 3)(x x f =上两点P (1,1)和Q(1+x ∆,1+y ∆)作曲线的割线,求出当x ∆=0.1时割线的斜率.3.已知函数x x x f +-=2)(的图象上的一点A(-1,-2)及临近一点B(-1+x ∆,-2+y ∆), 则y ∆/x ∆=( )A.3B. 3x ∆-(x ∆)2C.3-(x ∆)2D. 3-x ∆小结:1. 2.求函数的平均变化率的步骤(1)求函数的增量)()(12x f x f y -=∆。
人民教育A版选修1-1 3.1.1 变化率问题导学案
§3.1.1《变化率问题》导学案制作人 莫莉 审核 高二数学组 2016.02.26【学习目标】1.了解函数平均变化率的概念. 2.掌握函数平均变化率的求法.【预习导航】思考题:1.气球的半径从()1v r 增加到()2v r 气球的平均膨胀率应怎样求?2.高台跳水运动员的高度从()1t h 变化到()2t h 时,他的平均速度为多少?(结合物理知识)3.从刹车开始1t t =到汽车停止2t t =,汽车平均减速【预习效果监测】1.已知函数()12+==x x f y ,则当1.0,2=∆=x x 时,y ∆的值为( )A .0.40B .0.41C .0.43D .0.442.某质点沿曲线运动的方程为f(x)=-2x 2+1(x 表示时间,f(x)表示位移),则该质点从x =1到x =2的平均速度为( )A .-4B .-8C .6D .-63.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度是( )A .0.41B .2C .0.3D .0.24.一物体的运动方程是 23t s +=,则在一小段时间[2,2.1]内相应的平均速度为( )A .0.41B .3C .4D .4.15.若函数()132+=x x f 的图像上一点()11,及邻近一点()y x ∆+∆+1,1,则xy∆∆等于( )A. 4B. 4xC. 6+3x ∆D. 4+2()2x ∆【探究活动一】:1.已知函数y =f (x ),令Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则当Δx ≠0时, 比值ΔyΔx=____________,为函数f (x )从x 1到x 2的平均变化率. 2.我们知道,非匀速直线运动的物体,位移s 与所经过的时间t 的规律是s =s (t ),设Δt 为时间改变量,从t 0到t 0+Δt 这段时间内,物体的位移()()00t s t t s s -∆+=∆,那么位移改变量Δs 与时间改变量Δt 的比,就是这段时间的平均速度v ,即【探究活动二】通过探究,讨论平均变化率的几何意义观察函数()y f x =的图象,平均变化率2121()()f x f x y x x x -∆=∆-表示什么?【课后巩固练习】1.已知函数y =2x,当x 由2变为1.5时,函数的增量为( )A .1B .2 C.13D .322.在x =1附近,取Δx =0.3,在四个函数①y =x ;②y =x 2;③y =x 3;④y =1x中.平均变化率最大的是( )A .④B .③C .②D .①3.一质点运动的方程为235t s -= ,则在一段时间[]t ∆+1,1内相应的平均速度为( )A . 63+∆tB . 63+∆-tC . 63-∆tD . 63-∆-t4.y =x 2-2x +3在x =2附近的平均变化率是________.5. 物体的运动方程是s (t )=4t -0.3t 2,则从t =2到t =4的平均速度是________.【总结概括】【课后作业】求函数()2x x f =在=x 1,2,3附近的平均变化率,取x ∆都为31,在哪一点附近平均变化率最大?21()()y f x f x =-1x 2x 1()f x 2()f x xy21x x -()y f x =。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_30
教学设计普通高中课程标准实验教科书《数学》选修1-1(人教A版)函数的单调性与导数(第一课时)《函数的单调性与导数》教学设计【课题】函数的单调性与导数【教材】人教A版《数学》选修1-1【课时】1课时【教材分析】函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备.函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用.【学生学情分析】课堂学生为高二年级理科实验班的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性.【教学目标】知识点:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间.能力点:1.通过本节的学习,掌握用导数研究单调性的方法.2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想.教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯.自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法.【教学重点】利用导数研究函数的单调性,会求函数的单调区间.【教学难点】⒈探究函数的单调性与导数的关系;⒉如何用导数判断函数的单调性.【教学方法】启发式教学【课时安排】 1 课时【教学准备】多媒体课件,导学案. 【教学设计说明】根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象.本节课的教学设计也是围绕这些目标,利用多媒体和信息技术让学生自主探究,充分参与课堂,并从中体会学习的成功和快乐. 【教学过程】【问题引入】1、判断函数x e x f x -=)(在R 上的单调性.(学生:思考以前学习过的数学知识,用已有的知识来解决.)设计意图:引导学生回顾用定义法来判断函数的单调性的基本步骤. 2、函数增减性的定义是什么? (学生:思考、并举手回答.)设计意图:利用单调性的定义来解决遇到了问题从而引出导数. 【合作探究一】x y =)1( 2)2(x y = 3)3(x y = x y 1)4(=在不同坐标系下,画出函数、导函数图像,并观察函数单调性与导数正负的关系 设计意图:给学生提供充分的展示平台. 【知识总结】用导数判断函数的单调性的方法: 在某个区间),(b a 内,若0)('>x f , 则)(x f y = 在),(b a 内_______________; 若0)('<x f , 则)(x f y = 在),(b a 内_______________; 区间必须是在定义域内的某个区间. 【解决问题】例1、判断函数x e x f x -=)( 在R 上的单调性,并求出单调区间. (学生小组讨论后,四个组的学生展示.) 设计意图:给学生提供充分的展示平台 【数形验证】结合老师计算机绘出的函数x e x f x-=)(图像,观察验证其单调性及单调区间. 【方法归纳】利用导数求函数单调区间的步骤:【跟踪训练】 练习:求函数x x x f ln )(-=的单调区间. 设计意图:xxxx通过本题,让学生感受到定义域是求函数单调性的大前提.【合作探究二】【归纳总结】设计意图:让学生再次观察并总结出函数的单调性与导函数图像的关系,了解函数培养学生共同解决问题、探讨问题的能力和合作意识,从而培养学生的探究意识和探究能力.例2、水均匀的注入如图所示的容器中,则水的高度y 与x 时间的函数图象为( )设计意图:让学生切身感受到数学与生活的紧密联系,体会数学可以回归生活.【跟踪训练】已知函数)(x f y =的图象是下列四个图象之一,且其导函数)('x f y =的图象如右图所示,则该函数的图象是( )设计意图:让学生对所学知识进一步巩固和熟练掌握. 【随堂检测】OOOO1.函数)(x f 的导函数)('x f 有下列信息:①0)('>x f 时,21<<-x ;②0)('<x f 时,21>-<x x 或; ③210)('=-==x x x f 或时,. 则函数)(x f 的大致图象是()2.函数13)(3+-=x x x f 的单调增区间是( ))1,1.(-A)1,.(-∞B),1.(+∞-C ),1(),1,.(+∞--∞D3.函数),0(,cos 23)(π∈+=x x x x f 上的单调减区间为( ))32,3.(ππA )65,6.(ππB ),32(,3,0.πππ⎪⎭⎫ ⎝⎛C ),65(,6,0.πππ⎪⎭⎫ ⎝⎛D设计意图:第1题主要来源于课本,第2题是定义域为R ,求单调增区间,第3题是给定区间求单调减区间,由简单到复杂,由一般到特殊,螺旋上升. 【畅所欲言】同学们本节课你学习了什么?收获了什么? 设计意图:加深对所学知识的印象. 【体会数学】培养学生归纳概括能力,再次加深了对知识的理解.人生犹如过山车,站在人生的每个瞬间的点上,我们都能向上看,人生轨迹就会是持续上升趋势;相反,如果我们被负面情绪萦绕,我们就会走下坡路.只要饱含正能量,脚踏实地走好每一步,相信同学们的前途会一片光明!【作业布置】一、必做题:教材11P 习题A 1.1组32、题.二、选做题:结合所学知识,举几个函数实例,比较定义法、图像法、导数法求单调区间的特点.设计意图:作业采取分层次,让不同基础的学生得到不同的发展.符合学生心理发展的不平衡性和阶段性.【板书设计】【教学反思】本节课时学习过导数的概念和运算后,首次运用导数解决函数相关问题的一节课,如何激发学生去探索和运用新的工具即导数解决单调性问题是本节课的关键,利用信息技术,更好的分析这个过程,用动态的运动的思想去解决函数问题是核心,规范的解题和应用是本节课的实际教学规范和目的.。
3.1变化率与导数教案(人教版(A)选修1-1)
3.1.1变化率问题教学目标知道平均变化率的定义。
会用公式来计算函数在指定区间上的平均变化率。
教学重点:平均变化率的含义教学难点:会用公式来计算函数在指定区间上的平均变化率。
教学过程: 情景导入:展示目标: 知道平均变化率的定义。
会用公式来计算函数在指定区间上的平均变化率。
检查预习:见学案合作探究:探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2;:在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?交流展示:学生交流探究结果,并完成学案。
精讲精练:例1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.例2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001] 有效训练练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6.练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率. 反思总结1.函数()f x 的平均变化率是T(月)39122.求函数()f x 的平均变化率的步骤:(1)求函数值的增量 (2)计算平均变化率 当堂检测1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .02. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆-3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆C .3t +∆D .9t +∆4.已知212s gt =,从3s 到3.1s 的平均速度是_______5. 223y x x =-+在2x =附近的平均变化率是____6、已知函数12)(2-==x x f y 的图象上一点(1,1)及邻近一点(1+x ∆,+1(f x ∆)),求xy∆∆ 【板书设计】:略 【作业布置】:略3.1.2导数的概念教案【教学目标】:1、会用极限给瞬时速度下精确的定义;并能说出导数的概念。
人教A版高中数学选修1-1 3.1.1 变化率和导数的概念 教案
3.1.1 变化率和导数的概念一、教学目标:1.知识与技能:(1)通过分析实例,经历由平均变化率过渡到瞬时变化率的过程;(2)了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;(3)会求具体简单函数的平均变化率和某点的瞬时变化率;2. 过程与方法通过动手计算培养学生观察、分析、比较和抽象概括的能力,体会“逼近”的思想方法;3. 情态与价值观经历从生活中的变化率问题抽象概括出平均变化率的过程,体会数学知识来源于生活,又服务于生活。
体会数学概念形成的“归纳—演绎”的模式。
二、教学重点.难点重点:导数的概念;难点:导数的概念;三、学情分析学生已有的知识结构是,进入高中后对函数的认识有了一定的积累,在两年多的时间里从生活和与其他学科的交汇中逐步提高了这方面的能力,在物理学中已经学习过加速度的定义(是速度的变化量与发生这一变化所用时间的比值),抽象概括思想也逐步深入学生心中,转化成了学生自己的知识技能,这些为学好平均变化率奠定扎实的基础.四、教学方法通过观察.类比.思考.交流和讨论等.五、教学过程新课引入利用幻灯片展示微积分的创立与自然科学中四类问题的处理直接关系。
导数是微积分的核心概念之一。
它是研究函数增减、变化快慢、最大(小)等问题最一般、最有效的工具,也是解决运动、速度、等实际问题的最有力的工具。
引出学习本章的意义及重要性。
设计意图:利用熟悉的问题激发学生的兴趣与情感,为新课程的自然引入提供契机。
六、自主学习1、曲线上一点处的切线斜率不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,∴xx f x x f k PQ ∆-∆+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,xx f x x f k PQ ∆-∆+=)()(00无限趋近点Q 处切线斜率。
高中数学 3.1.1变化率问题学案 新人教A版选修1-1 学案
河北省唐山市开滦第二中学高中数学 3.1.1变化率问题学案 新人教A 版选修1-1【学习目标】1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率. 【重点难点】平均变化率的概念、函数在某点处附近的平均变化率. 【学习内容】 一、学习背景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等.导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具. 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二、新课学习 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?分析: (1)当V 从0增加到1时,气球半径增加了气球的平均膨胀率为(2)当V 从1增加到2时,气球半径增加了 气球的平均膨胀率为 可以看出:思考: 当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算: 5.00≤≤t 和21≤≤t 的平均速度v探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?(二)平均变化率概念1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率.2.若设12x x x -=∆, )()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量”可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆) 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考: 观察函数)(x f 的图象平均变化率=∆∆xf1212)()(x x x f x f --表示什么?三、典例分析例1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及hto临近一点)2,1(y x B ∆+-∆+-则=∆∆xy. 解:例2 求2x y =在0x x =附近的平均变化率. 解:四、课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 . 2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率.3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线,求出当1.0=∆x 时割线的斜率.五.【课堂小结与反思】【课后作业与练习】1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( ) A ()x x f ∆+0 B ()x x f ∆+0 C ()x x f ∆⋅0 D ()()00x f x x f -∆+2. 一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A -4B -8C 6D -63. 将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( ) A R R ∆π8 B ()248R R R ∆+∆ππC ()244R R R ∆+∆ππ D ()24R ∆π4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy∆∆为( ) A 21+∆+∆x x B 21-∆-∆xx C 2+∆x D xx ∆-∆+125. 在高台跳水运动中,若运动员离水面的高度h (单位:m )与起跳后时间t (单位:s )的函数关系是()105.69.42++-=t t t h ,则下列说法不正确的是( )A 在10≤≤t 这段时间里,平均速度是s m /6.1B 在49650≤≤t 这段时间里,平均速度是s m /0 C 运动员在⎥⎦⎤⎢⎣⎡4965,0时间段内,上升的速度越来越慢 D 运动员在[]2,1内的平均速度比在[]3,2的平均速度小6.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的7.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的8.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是9.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大?。
高中数学(人教A版)选修1-1教案第三章 导数及其运用 3.1.1 平均变化率
一、教学目标1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。
体会数学的博大精深以及学习数学的意义。
2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。
二、教学重点、难点重点:平均变化率的实际意义和数学意义难点:平均变化率的实际意义和数学意义三、教学过程一、问题情境1、情境:现有南京市某年3月和4月某天日最高气温记载.观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:(理解图中A、B、C点的坐标的含义)问题1:“气温陡增”是一句生活用语,它的数学意义是什么?(形与数两方面)问题2:如何量化(数学化)曲线上升的陡峭程度?二、学生活动1、曲线上BC之间一段几乎成了“直线”,由此联想如何量化直线的倾斜程度。
2、由点B上升到C点,必须考察y C—y B的大小,但仅仅注意y C—y B的大小能否精确量化BC段陡峭程度,为什么?3、在考察y C—y B的同时必须考察x C—x B,函数的本质在于一个量的改变本身就隐含着这种改变必定相对于另一个量的改变。
三、建构数学1.通过比较气温在区间[1,32]上的变化率0.5与气温[32,34]上的变化率7.4,感知曲线陡峭程度的量化。
2.一般地,给出函数f(x)在区间[x 1,x 2]上的平均变化率2121()()f x f x x x --。
3.回到气温曲线图中,从数和形两方面对平均变化率进行意义建构。
4。
平均变化率量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当x 2—x 1很小时,这种量化便有“粗糙”逼近“精确”。
四、数学运用例1、 在经营某商品中,甲挣到10万元,乙挣到2万元,如何比较和评价甲,乙两人的经营成果?变:在经营某商品中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲,乙两人的经营成果?小结:仅考虑一个变量的变化是不形的。
例2、水经过虹吸管从容器甲中流向容器乙,t s 后容甲中水的体积0.1()52t V t -=⨯ (单位:3cm ),计算第一个10s 内V 的平均变化率。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_1
3.1.1变化率问题教学设计一、教材分析本节内容选自课程标准实验教科书人教A版选修1-1第三章第一节的内容。
导数是微积分中的核心概念,它有极其丰富的实际背景和广泛的应用。
在本章的学习中,学生将学习导数的有关知识,体会其中蕴含的思想方法,感受其在解决实际问题中的作用,了解微积分的文化价值。
平均变化率是为了导数的引入做过渡性的铺垫,理解平均变化率并以此为基础再到瞬时变化率的过程,是理解导数思想的关键环节。
二、学情分析学生已有的知识结构是,进入高中后对函数的认识有了一定的积累,在物理学中已经学习过加速度的定义(是速度的变化量与发生这一变化所用时间的比值),抽象概括思想也逐步深入学生心中,转化成了学生自己的知识技能,这些为学好平均变化率奠定扎实的基础.三、教学目标知识与技能:1.理解平均变化率的概念;2.通过具体的事例,感受平均变化率广泛存在于日常生活之中,经历运用数学描述刻画现实世界的过程.过程与方法:1.通过动手计算培养学生的观察、分析、比较和归纳能力;2.通过对实际问题的探究使学生体会从特殊到一般的数学思想.情感、态度与价值观:感受数学模型在刻画客观世界的过程,体会数学在生活中的意义与作用.四、教学重点、难点重点:平均变化率概念的归纳;难点:从实际例子归纳出函数的平均变化率的过程.五、教学方法引导学生通过由特殊到一般的思想方法得到平均变化率的概念;引导学生通过积极探究、讨论,逐步理解如何求函数的平均变化率.六、教学过程(一)、合作探究探究1:问题1:2010年至2012年这2年内我国人均GDP 平均每年增加多少美元? 2010年至2017年这7年内我国人均GDP 平均每年增加多少美元?思考1:如何从数学角度刻画2010年至2017年这7年我国人均GDP“猛增”?【设计意图】通过创设情境,引导学生感受生活中数学的意义,构建模型,归纳数学知识.探究2:现某市某年3月和4月某天日最高气温记载(注:3月18日为第一天)问题2:如何表示3月18日到4月18日、4月18日到4月20日的温度变化?思考2:如何从数学角度刻画气温“陡增”?【设计意图】:从数学实际背景出发,进一步引导学生利用现有知识解决问题,让学生意识到事物变化的快慢程度.探究3:我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=如果将半径r 表示为体积V 的函数,那么343)(πV V r = 问题3:当V 从0增加到1时,气球半径增加了多少?气球的平均膨胀率为多少? 当V 从1增加到2时,气球半径增加了多少?气球的平均膨胀率为多少?思考3:如何从数学的角度描述气球的膨胀快慢?【设计意图】通过生活实例,引导学生分析和归纳,让学生在已有认知结构的基础上构建新知识,深刻体会平均变化率概念的构建.问题4:由探究得出平均变化率计算关系式,他们有什么共同特点?对于一般函数f (x ),如何计算其平均变化率?归纳出结论:平均变化率的概念【设计意图】让学生结合实例,对比、分析,抽象概括出一般形式,经历由特殊到一般的数学过程.问题5: 观察函数f (x )的平均变化率xyx x x f x f ∆∆=--1212)()( ,你能联想到什么?【设计意图】从几何角度得到平均变化率的几何意义,体现数形结合的思想.(二)、精讲释疑例1:已知函数f (x ) =2x +1、g (x ) =-2x , 分别计算在区间 [-3, -1]、[0, 5]上 f (x )及 g (x )的平均变化率.思考:一次函数y =kx +b (k ≠0)在区间[m,n ]上的平均变化率有什么特点?例2:求2x y =在0x x =附近的平均变化率.(三)、训练检测1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 .2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率.3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线,求出当1.0=∆x 时割线的斜率.(四)、课堂小结 通过节课你收获了什么? 知识层次: 思想层次:。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_11
《3.1.1变化率问题》说课稿一、内容和内容解析(1)内容:本节主要包括两方面的内容:变化率和导数的概念。
从平均变化率开始,用平均变化率探求瞬时变化率,并从数学上给予各种不同变化率在数量上的精确描述,即导数。
(2)内容解析:通过实例,让学生切身体会平均变化率;再经历由平均变化率到瞬时变化率的过程,在对实际背景问题研究的基础上,抽象概括出导数的概念。
导数的概念是微积分的核心概念之一,是即将学习的导数的几何意义、导数的计算、导数的应用等知识的基础。
导数是研究事物变化快慢,研究函数单调性、极值、最值和解决生活中优化问题的有力工具。
本节内容课堂教学的主线是渗透其中蕴涵的逼近思想,教学重点是导数的概念。
二、目标和目标解析(1)目标①了解微积分的概貌及其在数学中的位置,经历运用数学描述刻画现实的过程;②理解变化率的概念,体验由平均变化率到瞬时变化率的过程;③掌握导数的概念,探究运用形象直观的“逼近”方法定义导数的过程。
(2)目标解析①了解微积分的概貌及其在数学中的位置,让学生接受数学文化的熏陶,体会数学的价值。
有关微积分起源的具体例子的列举,像计算抛物线弓形的面积(建筑物的上顶)、求速度的问题(高台跳水)等,会引发学生的求知欲,而经历运用数学描述刻画现实的过称可以通过气球膨胀率作为平均变化率的应用实现。
②理解平均变化率和瞬时变化率的概念,这一点可以用高台跳水的例子实现。
③导数的定义是在反思瞬时速度建立过程的基础上,总结思想和计算方法,有特殊到一般形成的,通过探究导数的定义,掌握利用导数定义来解决实际问题。
三、教学问题诊断分析1.微积分是有文化底蕴的数学内容,了解微积分的发展史能够激发学生的求知欲,但如果介绍过于简单,学生可能下课后就会没有任何印象;如果介绍过于详细,便会占用大量时间,影响本节课内容的完成;2.气球膨胀是学生非常熟悉的生活现象,但是从直观的生活感知(气球越来越难吹)到它的数学描述,对于学生来讲是比较困难的。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_3
平均变化率教学设计一.内容与内容解析微积分的创立是数学发展中的里程碑,它的发展和广泛应用,开创了近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段,导数概念是微积分的核心概念之一,它是研究函数增减、变化快慢、最大(小)等问题最一般、最有效的工具,也是解决运动、速度、等实际问题的最有力的工具。
以气球平均膨胀率问题和高台跳水平均速度问题为背景,引出平均变化率的概念。
设函数f(x)在上(x1,x2)有定义,则则称为函数从x1到x2的平均变化率。
记(自变量的增量),(函数的增量),则平均变化率可表示为。
本质是对应函数的增量与自变量的增量的比值;表示函数在某一范围内平均的变化趋势(增减)和快慢程度。
二.目标和目标解析1.通过实例分析、了解函数平均变化率的意义.2.会求函数f(x)在x0到x0+Δx之间的平均变化率.3.掌握求函数f(x)在x0到x0+Δx之间的平均变化率的方法与步骤.三、重难点分析1.求函数f(x)在x0到x0+Δx之间的平均变化率.(重点)2.理解实际问题中的平均变化率.(难点)四.教学问题诊断分析学生已有的知识结构是,进入高中后对函数的认识有了一定的积累,在一年多的时间里从生活和与其他学科的交汇中逐步提高了这方面的能力,在物理学中已经学习过加速度的定义(是速度的变化量与发生这一变化所用时间的比值),抽象概括思想也逐步深入学生心中,转化成了学生自己的知识技能,这些为学好平均变化率奠定扎实的基础.但是由于新教材是以模块的形式进行展开教学的,文科学生选修这一系列。
文科学生的数学一直都是弱项,他们的感性思维比较强,理性思维比较弱,如果没有掌握好概念性的问题,他们极容易在解题时钻牛角尖,因此若能让学生主动参与到平均变化率学习过程中,让学生体会到自己在学“有价值的数学”,就会激发学生的学习数学的兴趣,树立学好数学的自信心。
五.教学支持条件分析为了有效实现教学目标,可以借助计算机辅助教学,实现信息技术与课堂整合来增加课堂上知识之间的交互性,提高课堂教学效果。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_6
3.1.1 变化率问题内容和内容解析:变化率是建立数学重要概念——导数的基石,对理解导数概念及其几何意义有着重要作用。
新课标对此有明确阐述:通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵。
变化率是一个重要的过渡性概念,是“进军”导数的必经之路。
对变化率概念意义的建构直接影响导数概念的学习。
目标和目标解析:1、通过微积分发展史的认识,了解微积分在数学发展中的作用,感受数学家的精神与智慧;2、通过实例,理解平均变化率及其几何意义,初步感受以直代曲的思想;能计算函数的平均变化率;3、通过实例,培养学生将实际问题抽象成数学问题的能力。
教学问题诊断分析:微积分概念的产生、形成、建立、完善经历了一个漫长的过程,在这个过程中,极限思想的形成到数学化经过了无数数学家的努力。
两千年的形成的一个知识,学生需要在十几个课时就要接受,他们最大的困难也在对极限思想的理解。
平均变化率是理解瞬时变化率的基础,虽然平均变化率的定义很简单,运用也很简单,但是理解以直代曲的意识,极限的思想是这节课要给建立的基本意识。
另外如何用平均变化率解决实际问题,关键在于能不能把实际问题转化为数学问题,这也是学生遇到的难点。
例如温度突降,突增;吹气球时为什么越到后面膨胀越来越慢。
学生需要把生活常识与数学联系起来,并解决它,是难点。
本节课存在大量的计算,对于文科生,公式多了,计算量大了,都对他们是考验。
这也是这节课面临一个难点。
教学支持条件分析:学情分析:作为文科生,数学是他们的拦路虎。
部分文科生就是因为数学不好才选择文科,我现在班上学生就是这样的情况。
班级优势:我班一共只有31名学生,我会在上课期间用大量的时间巡视他们的书写过程,并在课堂及时个别辅导。
技术手段:本节课需要动态演示,我利用了几何画板;并且利用投影将学生书写当面批改。
教学过程设计:一、启中入在物理上,我们会遇到这样的问题:1、如图1,从图象我们可以得知:物体是匀速运动,物体在不同时刻的速度都是一样的。
高二数学 3.1.1变化率问题与导数概念导学案 新人教A版选修1-1
高中数学 3.1.1变化率问题与导数概念导学案知识梳理1.在高台跳水运动中,运动员在t 1≤t ≤t 2这段时间里的位置为s 1≤s ≤s 2,则他的平均速度为 .2.已知函数y =f(x),令Δx = ,Δy = ,则当Δx ≠0时,比值 =ΔfΔx ,称作函数f(x)从x 1到x 2的平均变化率. 3.物体在某一时刻的速度称为 .4.一般地,如果物体的运动规律是s =s (t ),那么物体在时刻t 的瞬时速度v ,就是物体在t 到t +Δt 这段时间内,当Δt →0时平均速度的极限,即v =lim Δt →0 ΔsΔt= 5.一般地,函数y =f (x )在x =x 0处的瞬时变化率是 =lim Δx →0 ΔfΔx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)= . 学习过程1.平均变化率[例1] 求函数y =x 3在x 0到x 0+Δx 之间的平均变化率,并计算当x 0=1,Δx =12时平均变化率的值.[分析] 直接利用概念求平均变化率,先求出表达式,再直接代入数据就可以得出相应的平均变化率.应用变式1某质点沿曲线运动的方程为f(x)=-2x2+1(x 表示时间,f(x)表示位移),则该质点从x =1到x =2时的平均速度为 ( )A .-4B .-8C .6D .-6 2.瞬时变化率[例2] 以初速度v 0(v 0>0)垂直上抛的物体,t 秒时的高度为s (t )=v 0t -12gt 2,求物体在时刻t 0处的瞬时速度.应用变式2一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t2,求此物体在t =2时的瞬时速度.3.利用定义求函数某点处的导数[例3] 根据导数定义求函数y =x 2+1x+5在x =2处的导数.应用变式3求y =f(x)=123++x x 在x =1处的导数.[例4] 设f (x )在x 0处可导,求lim Δx →0 f (x 0-Δx )-f (x )Δx的值.课堂巩固训练 一、选择题1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx等于( )A .4B .4xC .4+2ΔxD .4+2(Δx)22.如果质点A 按规律s =2t3运动,则在t =3秒时的瞬时速度为 ( )A .6B .18C .54D .813.当自变0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数 ( ) A .在区间[0x ,1x ]上的平均变化率 B .在0x 处的变化率 C .在1x 处的导数 D .在区间[0x ,1x ]上的导数4.已知f(x)=x x 32-,则f ′(0)= ( )A .Δx -3B .(Δx)2-3ΔxC .-3D .0 二、填空题5.已知函数f(x)=ax +4,若f ′(1)=2,则a 等于______.6.球的半径从1增加到2时,球的体积平均膨胀率为____________. 三、解答题7.枪弹在枪筒中的运动可以看作匀加速直线运动,如果它的加速度是a =5×105m/s2,枪弹从枪口射出所用的时间为1.6×10-3s.求枪弹射出枪口时的瞬时速度.课后强化作业 一、选择题1.在函数变化率的定义中,自变量的增量Δx 满足( )A .Δx <0B .Δx >0C .Δx =0D .Δx ≠0 2.函数在某一点的导数是( )A .在该点的函数的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率3.在x =1附近,取Δx =0.3,在四个函数①y =x ②y =x 2③y =x 3④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①4.质点M 的运动规律为s =4t +4t 2,则质点M 在t =t 0时的速度为( )A .4+4t 0B .0C .8t 0+4D .4t 0+4t 25.函数y =x +1x在x =1处的导数是( )A .2B.52C .1D .0 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( )A .3B .4C .5D .78.f (x )在x =x 0处可导,则lim Δx →0 f (x 0+Δx )-f (x 0)Δx( ) A .与x 0,Δx 有关 B .仅与x 0有关,而与Δx 无关 C .仅与Δx 有关,而与x 0无关 D .与x 0,Δx 均无关9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b10.f (x )在x =a 处可导,则lim h →0 f (a +3h )-f (a -h )2h等于( ) A .f ′(a ) B.12f ′(a ) C .4f ′(a ) D .2f ′(a )二、填空题11.f (x 0)=0,f ′(x 0)=4,则lim Δx →0 f (x 0+2Δx )-f (x 0)Δx=________. 12.某物体做匀速运动,其运动方程是s =vt +b ,则该物体在运动过程中其平均速度与任何时刻的瞬时速度关系是________.13.设x 0∈(a ,b ),y =f (x )在x 0处可导是y =f (x )在(a ,b )内可导的________条件.14.一球沿斜面自由滚下,其运动方程是S =t 2(S 的单位:m ,t 的单位:s),则小球在 t =5时的瞬时速度为______. 三、解答题15.一物体作自由落体运动,已知s =s (t )=12gt 2.(1)计算t 从3秒到3.1秒、3.01秒,两段内的平均速度;2)求t =3秒时的瞬时速度.16.若f ′(x )=A ,求lim h →0f (x +h )-f (x -2h )h.17.求函数y =x 在x =1处的导数.18.路灯距地面8m ,一个身高1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影C 沿某直线离开路灯,(1)求身影的长度y 与人距路灯的距离x 之间的关系式;(2)求人离开路灯第10秒时身影的瞬时变化率.3.1.2导数的几何意义 学习目标1.知识与技能:了解导函数的概念,理解导数的几何意义.2.过程与方法:会求导函数,根据导数的几何意义,会求曲线上某点处的切线方程.学习重、难点重点:导数的几何意义.难点:对导数几何意义的理解. 知识梳理1.导数的几何意义 ①割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是ΔyΔx= 当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋近于过点A 的切线AD 的斜率k ,即k = = ②导数的几何意义函数y =f(x)在点x 0处的导数的几何意义是曲线y =f(x)在点P(x 0,f(x 0))处的切线的 .也就是说,曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率是 .相应地,切线方程为 . 2.函数的导数 学习过程1.求割线的斜率[例1] 过曲线y =f(x)=3x 上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx =0.1时割线的斜率.2.用定义求切线方程[例2] 已知曲线C :y =13x 3+43.(1)求曲线C 上的横坐标为2的点处的切线方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点?应用变式1 已知曲线y =23x 上一点A(1,2),则点A 处的切线斜率等于 ( ) A .2 B .4 C .6+6Δx2D .63.求切点坐标[例3] 抛物线y =2x 在点P 处的切线与直线2x -y +4=0平行,求P 点的坐标及切线方程.应用变式2 若抛物线y =2x 与直线2x -y +m =0相切,求m.4.导数几何意义的应用[例4] 若抛物线y =42x 上的点P 到直线y =4x -5的距离最短,求点P 的坐标.应用变式3 求抛物线y =42x 上的点到直线y =4x -5的距离的最小值.[例5] 曲线y =3x 在x 0=0处的切线是否存在,若存在,求出切线的斜率和切线方程;若不存在,请说明理由.应用变式4已知曲线y =4x在点(1,4)处的切线与直线l 平行且距离等于17,则直线l 的方程为( )A .4x -y +9=0或4x -y +25=0B .4x -y +1=0C .4x +y +9=0或4x +y -25=0D .以上都不对 [例6] 试求过点M(1,1)且与曲线y =3x +1相切的直线方程.课堂巩固训练 一、选择题1.曲线y =-22x +1在点(0,1)处的切线的斜率是( )A .-4B .0C .4D .不存在2.曲线y =12x 2-2在点(1,-32)处切线的倾斜角为( )A .1 B.π4 C.5π4 D .-π43.若曲线y =h(x)在点P(a ,h(a))处的切线方程为2x +y +1=0,那么 ( ) A .h ′(a)=0 B .h ′(a)<0 C .h ′(a)>0 D .h ′(a)不确定 4.曲线y =3x 在点P 处的切线斜率为3,则点P 的坐标为( )A .(-2,-8)B .(1,1),(-1,-1)C .(2,8)D .(-12,-18)二、填空题5.已知曲线y =1x -1上两点A (2,-12),B (2+Δx ,-12+Δy ),当Δx =1时,割线AB 的斜率为________.6.P 是抛物线y =x 2上一点,若过点P 的切线与直线y =-12x +1垂直,则过点P 的切线方程为________.三、解答题7.求曲线y =1x -x 上一点P (4,-74)处的切线方程.课后强化训练 一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( )A .9B .6C .-3D .-12.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .60°3.函数y =-1x 在点(12,-2)处的切线方程是( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线6.设f (x )为可导函数且满足lim x →0 f (1)-f (1-2x )2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-27.在曲线y =x 2上的点________处的倾斜角为π4( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角 D .钝角9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1)10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________.12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________.14.曲线y =x 3+x +1在点(1,3)处的切线是________. 三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.17.求过点(2,0)且与曲线y =1x相切的直线方程.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标.3.2导数的计算3.2.1几个常用函数的导数及基本初等函数的导数公式 学习目标1.知识与技能:了解常数函数和幂函数的求导方法和规律,会求任意y =x α(α∈Q)的导数.2.过程与方法:掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 学习重、难点重点:常数函数、幂函数的导数难点:由常见幂函数的求导公式发现规律,得到幂函数的求导公式. 知识梳理1.若f(x)=c ,则f ′(x)= .若f(x)=nx (n ∈N*),则f ′(x)= .2.若f(x)=sinx ,则f ′(x)= .若f(x)=cosx ,则f ′(x)= . 3.若f(x)=xa ,则f ′(x)=.若f(x)=xe ,则f ′(x)= .4. 若f (x )=log a x ,则f ′(x )= .若f (x )=ln x ,则f ′(x )= . 学习过程1.导数公式的直接应用[例1] 求下列函数的导数.(1)y =2a (a 为常数). (2)y =12x . (3)y =cosx.应用变式1求下列函数的导数(1)y =1x2 (2)y =3x (3)y =2x(4)y =log 2x2.求某一点处的导数 [例2] 求函数f (x )=1x在x =1处的导数.应用变式2 已知f (x )=n x1,且f ′(1)=-13,求n .3.利用导数求切线的斜率及方程 [例3] 求过曲线y =cos x 上点P ⎥⎦⎤⎢⎣⎡21,3π且与在这点的切线垂直的直线方程.应用变式3 求曲线y =32x 的斜率等于12的切线方程.课堂巩固训练 一、选择题1.函数f(x )=0的导数是 ( )A .0B .1C .不存在D .不确定2.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=03.已知函数f (x )=1x,则f ′(-2)=( )A .4B.14 C .-4 D .-144.下列结论中不正确的是 ( )A .若y =3,则y ′=0B .若y =1x,则y ′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′|x =1=3二、填空题5.曲线y =xn 在x =2处的导数为12,则n 等于________. 6.若函数y =sint ,则y ′|t =6π=________. 三、解答题7.求抛物线y =2x 上的点到直线x -y -2=0的最短距离.课后强化训练 一、选择题1.lim Δx →0 (1+Δx )2-1Δx表示( ) A .曲线y =x 2的斜率 B .曲线y =x 2在点(1,1)处的斜率C .曲线y =-x 2的斜率D .曲线y =-x 2在(1,-1)处的斜率2.若y =cos 2π3,则y ′=( )A .-32B .-12C .0D.123.下列命题中正确的是( )①若f ′(x )=cos x ,则f (x )=sin x ②若f ′(x )=0,则f (x )=1 ③若f (x )=sin x ,则f ′(x )=cos xA .①B .②C .③D .①②③ 4.若y =ln x ,则其图象在x =2处的切线斜率是( )A .1B .0C .2D.125.已知直线y =kx 是y =ln x 的切线,则k 的值为( )6.已知函数f (x )=21x ,则'⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛21f =( )7.y =1x在点A (1,1)处的切线方程是( )A .x +y -2=0B .x -y +2=0C .x +y +2=0D .x -y -2=08.下列结论中正确的个数为( )①y =ln2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2xln2 ④y =log 2x ,则y ′=1x ln2A .0B .1C .2D .3 9.下列结论中不正确的是( )A .若y =0,则y ′=0B .若y =33x ,则y ′=-1x 3xC .若y =-x ,则y ′=-12xD .若y =3x 3,则y ′=3x 210.若y =sin x ,则y ′|x =π3=( )A.12 B .-12 C.32D .-32二、填空题11.曲线y =ln x 与x 轴交点处的切线方程是 .12.质点沿直线运动的路程与时间的关系是s =5t ,则质点在t =32时的速度等于 .13.在曲线y =4x2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为 .14.y =10x在(1,10)处切线的斜率为 . 三、解答题 15.已知曲线C :y =x 3(1)求曲线C 上点(1,1)处的切线方程(2)在(1)中的切线与曲线C 是否还有其它公共点?16.求下列函数的导数(1)y =ln x (2)y =1x4 (3)y =55x17.已知点P (-1,1),点Q (2,4)是曲线y =x 2上两点,求与直线PQ 平行的曲线y =x 2的切线方程.18.求过曲线y =sin x 上的点P ⎥⎦⎤⎢⎣⎡22,4π且与在这点处的切线垂直的直线方程.3.2.2 导数的运算法则 学习目标能利用给出的基本初等函数的导数公式表和导数的四则运算法则求简单函数的导数 学习重、难点重点:导数的四则运算及其运用. 难点:导数的四则运算法则的推导. 知识梳理1.设函数f(x)、g(x)是可导函数,(f(x)±g(x))′= ;(f(x)·g(x))′= . 2.设函数f (x )、g (x )是可导函数,且g (x )≠0,()()'⎥⎦⎤⎢⎣⎡x g x f = 学习过程1.导数公式法则的直接应用 [例1] 求下列函数的导数:(1)y =()()112-+x x ;(2)y =x x sin 2;(3)y =1x +2x 2+3x 3;(4)y =x tan x -2cos x .应用变式1求下列函数的导数:(1)y =2x -2+3x -3 (2)y =(2x 2+3)(3x -2) (3)y =x -sin x 2·cos x 22.求导法则的灵活运用[例2] 求函数y =sin 4x4+cos 4x4的导数.应用变式2求函数y =-sin x2(1-2sin 2x4)的导数.3.利用导数求有关参数[例3] 偶函数f(x)=e dx cx bx ax ++++234的图象过点P(0,1),且在x =1处的切线方程为y =x -2,求y =f(x)的解析式.应用变式3已知抛物线y =72-+bx ax 通过点(1,1),过点(1,1)的切线方程为4x -y -3=0,求a 、b 的值.[例4] 给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3,其中正确的个数是 ( )A .1B .2C .3D .4 课堂巩固训练 一、选择题1.函数y =2sinxcosx 的导数为 ( )A .y ′=cosxB .y ′=2cos2xC .y ′=2(sin2x -cos2x)D .y ′=-sin2x2.函数f (x )=1x 3+2x +1的导数是( )A.1(x 3+2x +1)2B.3x 2+2(x 3+2x +1)2C.-3x 2-2(x 3+2x +1)2D.-3x2(x 3+2x +1)2 3.函数y =(x -a)(x -b)在x =a 处的导数为 ( )A .abB .-a(a -b)C .0D .a -b 4.函数y =x ·lnx 的导数是 ( )A .x B.1xC .ln x +1D .ln x +x二、填空题5.函数y =143223-+-x x x 的导数为 6.函数y =xsinx -cosx 的导数为__________________. 三、解答题7.函数f(x)=123+--x x x 的图象上有两点A(0,1)和B(1,0),在区间(0,1)内求实数a ,使得函数f(x)的图象在x =a 处的切线平行于直线AB.课后强化作业 一、选择题1.函数y =cos xx的导数是( )A .-sin x x 2B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 22.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1033.曲线运动方程为s =1-t t2+2t 2,则t =2时的速度为( )A .4B .8C .10D .124.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x 5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos x B .y =x sin x C .y =1x +2x D .y =1cos x6.函数y =sin ⎪⎭⎫⎝⎛-x 4π的导数为( ) A .-cos ⎪⎭⎫ ⎝⎛+x 4π B .cos ⎪⎭⎫ ⎝⎛-x 4π C .-sin ⎪⎭⎫ ⎝⎛-x 4π D .-sin ⎪⎭⎫⎝⎛+x 4π7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x=x 0处( )A .可导B .不可导C .不一定可导D .不能确定 8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6 D .-5x 49.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6 10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1 二、填空题11.若函数f (x )=1-sin xx,则f ′(π)= .12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是 .13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )= .14.设f (x )=ln a 2x(a >0且a ≠1),则f ′(1)= . 三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5);(2)1+x 1-x +1-x 1+x;(3)f (x )=ln x +2xx 2.16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).17.设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.18.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图象都过点 P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.3.3导数在研究函数中的应用 3.3.1函数的单调性与导数知识梳理1.设函数y =f(x)在区间(a ,b)内可导,(1)如果在区间(a ,b)内,f ′(x)≥0,则f(x)在此区间是 的;(2)如果在区间(a ,b)内,f ′(x)≤0,则f(x)在此区间内是 的.2.如果函数y =f(x)在x 的某个开区间内,总有f ′(x)>0,则f(x)在这个区间上严格增加,这时该函数在这个区间为 ;如果函数当自变量x 在某区间上,总有f ′(x)<0,则f(x)在这个区间为 . 学习过程1.用导数求函数的单调区间 [例1] 求下列函数的单调区间(1)f(x)=133+-x x (2)f (x )=x +b x(b >0)应用变式1求下列函数的单调区间:(1)f(x)=x x x 9323-+ (2)f(x)=sinx -x ,x ∈(0,π)2.利用导数证明不等式[例2] 已知x >1,求证x >lnx.应用变式2已知:x >0,求证:x >sinx.3.已知函数的单调性,确定参数的取值范围[例3] 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)内单调递减,在(6,+∞)上单调递增,试求a 的范围. 应用变式3已知f (x )=13x 3+12ax 2+ax -2(a ∈R ).若函数f (x )在(-∞,+∞)上为单调递增函数,求a 的取值范围.[例4] 已知函数f(x)=32x a x-,x ∈(0,1],a>0,若f(x)在(0,1]上单调递增,求a 的取值范围.课堂巩固训练 一、选择题1.函数f(x)=2x -sinx 在(-∞,+∞)上 ( ) A .是增函数 B .是减函数C .在(0,+∞)上增,在(-∞,0)上增D .在(0,+∞)上减,在(-∞,0)上增 2.函数y =xlnx 在区间(0,1)上是 ( )A .单调增函数B .单调减函数C .在(0,1e )上是减函数,在(1e,1)上是增函数D .在(0,1e )上是增函数,在(1e,1)上是减函数3.若在区间(a ,b)内有f ′(x)>0,且f(a) ≥0,则在(a ,b)内有 ( )A .f(x)>0B .f(x)<0C .f(x)=0D .不能确定 4.在下列函数中,在(0,+∞)内为增函数的是( ) A .sin2xB .x xeC .3x x -3D .-x +ln(1+x)二、填空题5.函数f(x)=x x -3的增区间是 和 ,减区间是 . 6.已知函数y =322++x ax 在(-1,+∞)上是减函数,则a 的取值范围是 . 三、解答题7.已知函数f(x)=83++ax x 的单调递减区间为(-5,5),求函数f(x)的递增区间.课后强化作业 一、选择题1.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为增函数的一个充分条件是( )A .b 2-4ac >0B .b >0,c >0内部C .b =0,c >0D .b 2-3ac >02.函数f (x )=2x 2-ln x 的单调递增区间是( )A .(0,12)B .(0,24)C .(12,+∞)D .(-12,0)及(0,12)3.(2009·广东文,8)函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 4.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛2,0π B.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛2,0πC.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛ππ,2 D.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛ππ,2 5.函数f (x )=ax 3-x 在R 上为减函数,则( )A .a ≤0B .a <1C .a <2D .a ≤136.已知a >0,函数f (x )=-x 3+ax 在[1,+∞)上是单调减函数,则a 的最大值为( )A .1B .2C .3D .4 7.设f (x )在(a ,b )内可导,则f ′(x )<0是f (x )在(a ,b )上单调递减的( )A .充分不必要条件你B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若函数y =x 2-2bx +6在(2,8)内是增函数,则( )A .b ≤2B .b <2C .b ≥2D .b >2 9.(2009·湖南文,7)若函数y =f (x )的导函数...在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )10.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能为( )二、填空题11.函数y =x 3-x 2-x 的单调递增区间为 .12.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是 .13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是 .14.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围 .三、解答题 15.讨论函数f (x )=bxx 2-1(-1<x <1,b ≠0)的单调性.16.已知曲线y =x 3+3x 2+6x -10,点P (x ,y )在该曲线上移动,在P 点处的切线设为l . (1)求证:此函数在R 上单调递增;(2)求l 的斜率的范围.17.已知向量a =(x 2,x +1),b =(1-x ,t ),若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.18.设函数f (x )=(ax 2-bx )e x(e 为自然对数的底数)的图象与直线ex +y =0相切于点A ,且点A 的横坐标为1.(1)求a ,b 的值;(2)求函数f (x )的单调区间,并指出在每个区间上的增减性.3.3.2函数的极值与导数,函数的最大(小)值与导数知识梳理1.已知函数y =f(x)及其定义域内一点x.对于包含x0在内的开区间内的所有点x ,如果都有,则称函数f(x)在点0x 处取得,并把0x 称为函数f(x)的一个;如果都有,则称函数f(x)在点0x 处取得 ,并把0x 称为函数f(x)的一个 .极大值与极小值统称为 ,极大值点与极小值点统称为 .2.假设函数y =f(x)在闭区间[a ,b]上的图象是一条 ,该函数在[a ,b]上一定能够取得 与 ,该函数在(a ,b)内是 ,该函数的最值必在 取得. 3.当函数f(x)在点0x 处连续时,判断f(0x )是否存在极大(小)值的方法是: (1)如果在0x 附近的左侧,右侧,那么f(0x )是极值;(2)如果在0x 附近的左侧 ,右侧 ,那么f(0x )是极 值; (3)如果f ′(x)在点0x 的左右两侧符号不变,则f(0x ) 函数f(x)的极值. 学习过程1.利用导数求函数的极值[例1] 求函数y =133+-x x 的极值.应用变式1函数y =x x x 9323--(-2<x <2)有( )A .极大值为5,极小值为-27B .极大值为5,极小值为-11C .极大值为5,无极小值D .极大值为-27,无极小值 2.利用导数求函数的最大值与最小值[例2] 求函数f(x)=1223+-x x 在区间[-1,2]上的最大值与最小值.应用变式2求函数f(x)=2824+-x x 在[-1,3]上的最大值与最小值.3.求函数极值的逆向问题[例3] 已知f(x)=cx bx ax ++23(a ≠0)在x =±1时取得极值,且f(1)=-1, (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.应用变式3设a >0,(1)证明f (x )=ax +b1+x2取得极大值和极小值的点各有1个;(2)当极大值为1,极小值为-1时,求a 和b 的值.[例4] 已知函数f(x)=c bx x ax -+44ln (x>0)在x =1处取得极值-3-c ,其中a 、b 、c 为常数.(1)试确定a ,b 的值;(2)若对任意x>0,不等式f(x)≥22c -恒成立,求c 的取值范围.[例5] 已知f(x)=2233a bx ax x +++在x =-1时有极值0,求常数a 、b 的值.课堂巩固训练 一、选择题1.若函数y =f(x)是定义在R 上的可导函数,则f ′(x)=0是x0为函数y =f(x)的极值点( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.函数f (x )=x 2-x +1在区间[-3,0]上的最值为 ( )A .最大值为13,最小值为34B .最大值为1,最小值为-17C .最大值为3,最小值为-17D .最大值为9,最小值为-19 3.函数y =3x +1 的极大值是( )A .1B .0C .2D .不存在4.y =f(x)=a x x +-2332的极大值是6,那么a 等于 ( ) A .6 B .0 C .5D .1二、填空题5.(2009·辽宁文,15)若函数f (x )=x 2+ax +1在x =1处取极值,则a = .6.函数y =x ·ex 的最小值为________. 三、解答题7.设y =f (x )为三次函数,且图象关于原点对称,当x =12时,f (x )的极小值为-1,求出函数f (x )的解析式.课后强化作业 一、选择题1.设x 0为f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=0B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为0 2.对于可导函数,有一点两侧的导数值异号是这一点为极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数y =2-x 2-x 3的极值情况是( )A .有极大值,没有极小值B .有极小值,没有极大值C .既无极大值也无极小值D .既有极大值也有极小值4.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个5.下列命题:①一个函数的极大值总比极小值大;②可导函数导数为0的点不一定是极值点;③一个函数的极大值可以比最大值大;④一个函数的极值点可在其不可导点处达到,其中正确命题的序号是( )A .①④B .②④C .①②D .③④ 6.函数y =|x -1|,下列结论中正确的是( )A .y 有极小值0,且0也是最小值B .y 有最小值0,但0不是极小值C .y 有极小值0,但不是最小值D .因为y 在x =1处不可导,所以0既非最小值也非极值7.函数f (x )=x (1-x 2)在[0,1]上的最大值为( )A.239B.229C.329D.388.已知函数f (x )=x 3-px 2-qx 的图像与x 轴切于(1,0)点,则函数f (x )的极值是( )A .极大值为427,极小值为0B .极大值为0,极小值为427C .极大值为0,极小值为-427D .极大值为-427,极小值为09.已知函数y =|x 2-3x +2|,则( )A .y 有极小值,但无极大值B .y 有极小值0,但无极大值C .y 有极小值0,极大值14D .y 有极大值14,但无极大值10.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c ) 二、填空题11.函数y =2xx 2+1的极大值为____________,极小值为____________.12.函数y =x 3-6x +a 的极大值为____________,极小值为____________.13.函数y =x -x 3(x ∈[0,2])的最小值是________.14.已知函数f (x )=x (x -c )2在x =2处取极大值,则常数c 的值为________. 三、解答题15.已知函数f (x )=x 3-3x 2-9x +11.(1)写出函数的递减区间;(2)讨论函数的极大值或极小值,如有试写出极值.16.求下列函数的最值(1)f (x )=3x -x 3(-3≤x ≤3); (2)f (x )=sin2x -x ⎪⎭⎫ ⎝⎛≤≤-22ππx .17.已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数.18.(2010·江西理,19)设函数f (x )=ln x +ln(2-x )-ax (a >0).(提示:[ln(2-x )]′=-12-x)(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.3.4生活中的优化问题举例学习过程1.面积、容积最大问题[例1] 在边长为60cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?应用变式1已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的长和宽.2.利用导数解决几何中的问题[例2]将一段长为100cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截法使正方形与圆面积之和最小?应用变式2已知圆柱的表面积为定值S,求当圆柱的容积V最大时圆柱的高h的值.3.获利最大[例3]某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆,本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.应用变式3某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=3x4x+32(x∈N+).[例4] 甲、乙两地相距s 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b ;固定部分为a 元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?课堂巩固训练一、选择题1.三次函数当x =1时,有极大值4;当x =3时,有极小值0,且函数过原点,则此函数是( )A .y =x x x 9623++B .y =x x x 9623+-C .y =x x x 9623--D .y =x x x 9623-+2.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( )A .0<b <1B .b <1C .b >0D .b <123.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80000 (x >400),则总利润最大时,每年生产的产品是 ( ) A .100 B .150 C .200 D .300 4.设底为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为 ( ) A.3V B.32V C.34VD .23V二、填空题5.面积为S 的一切矩形中,其周长最小的是________.6.函数f(x)=)2(2x x -的单调递减区间是________.三、解答题7.用边长为120cm 的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?课后强化作业一、选择题1.将8分解为两个非负数之和,使其立方之和为最小,则分法为( )A .2和6B .4和4C .3和5D .以上都不对2.某箱子的容积与底面边长的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的容积最大时,箱子底面边长为( )A .30B .40C .50D .以上都不正确3.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( ) A .6 B .8 C .10 D .124.内接于半径为R 的球且体积最大的圆锥的高为( )A .RB .2R C.43R D.34R 5.要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积为最大,则高为( )A.33cmB.1033cmC.1633cmD.2033cm 6.圆柱形金属饮料罐的容积一定时,为了使所用材料最省,它的高与底半径应为( )A .h =2RB .h =RC .h =2RD .h =2R7.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .508.设圆柱的体积为V ,那么其表面积最小时,底面半径为( )A.3V B.3V π C.34V D .23V 2π9.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203C .-1D .-8 10.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大为( )A .2πr 2B .πr 2C .4πr 2 D.12πr 2 二、填空题11.把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.12.将长为l 的铁丝剪成2段,各围成长与宽之比为21及32的矩形,则面积之和的最小值为________.13.做一个容积为256的方底无盖水箱,它的高为________时最省料.14.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为___.三、解答题15.某公司规定:对于小于或等于150件的订购合同,每件售价为200元,对于多于150件的订购合同,每超过一件,则每件的售价比原来减少1元,试问订购多少件的合同将会使公司的收益最大?16.如图,水渠横断面为等腰梯形,水的横断面面积为S ,水面的高为h ,问侧面与地面成多大角度时,才能使横断面被水浸湿的长度最小?17.某厂生产某种产品的固定成本(固定投入)为2500元,已知每生产x件这样的产品需要再增加可变成本C(x)=200x+136x3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?18.用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为21,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_6
石林民族中学高二数学选修1—1第3章导数及其应用3.1.1 变化率问题教学设计学习目标知识与能力:理解利用平均变化率来刻画变量变化得快与慢的原理,会求函数在某点处附近的平均变化率;过程与方法:通过从实际生活背景中引出数学模型的过程来引入平均变化率,学会数学抽象思维,注重数形结合的思想方法;情感态度价值观:培养学生分析问题、归纳综合的能力,培养创新的能力。
学习重点:会求函数在某点处附近的平均变化率.学习难点:用平均变化率来刻画变量变化的快与慢学习过程:一、【创设情境导入新课】:介绍牛顿、莱布尼茨引出微积分,简单分析引言:微积分的创立主要与自然科学中四类问题处理有关,导数是微积分的核心概念之一引出全章课题,介绍章节内容引出《变化率问题》。
二、问题导学问题 气球膨胀率吹气球活动:随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π= 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 气球的半径随体积变化的函数统计表:(1)形:建立坐标系、描点画出函数图像(2)数:①当空气容量V 从0增加到1时:气球的体积(自变量)增加了:1-0=1(L )气球的半径(函数值)增加了: 气球的平均(膨胀率)为:)L dm 0.62(r(0)r(1)≈-)L dm 0.62(10.620-1r(0)-r(1)≈≈V 从0增加到1时, ②当空气容量V 从1增加到2时,③当空气容量V 从2增加到3时, ④当空气容量V 从3增加到4时,当空气容量v 从1v 增加到2v 时,气球的膨胀率 。
随着气球体积逐渐增大,它的平均膨胀率逐渐变小。
三、抽象概括 1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率. 2.若设12x x x -=∆, )()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量” 可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆) 则平均变化率为=∆∆=∆∆xf x y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 四、合作交流: (1) .式子中Δy 、Δx 的取值情况? (2).xy ∆∆实质表示什么? (3).代数意义表示什么? (4) . 观察函数f(x )的图象平均变化率=∆∆x y 1212)()(x x x f x f --的几何意义? 五、巩固应用(一)例题:例1.在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2++-=t t t h .求(1)5.00≤≤t 这段时间里的平均速度 (2)49650≤≤t 这段时间里的平均速度 例2 求函数f (x ) = 2x +1在区间[0x ,0x +Δx]上的平均变化率,并求当0x =1,Δx=0.1时平均变化率的值。
3.1.1_变化率问题_3.1.2导数的概念_教案(人教A版选修1-1)
3.1 变化率与导数3.1.1变化率问题3.1.2导数的概念●三维目标1.知识与技能通过大量的实例的分析,让学生经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数.2.过程与方法通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法.●重点、难点重点:了解导数概念的形成,理解导数有内涵.难点:在平均变化率的基础上探求瞬时变化率,深刻理解导数的内涵.通过列举大量实例增强学生对导数概念形成的理解,以化解重点;通过逼近的方法,引导学生观察来突破难点.实例:(1)当你吹气球时会发现随着气球内空气容量的增加,气球的半径增加的会越来越慢.(2)从高空放下一件物体,随着时间的变化,物体下降的速度会越来越快.1.如何用数学的观点刻画物体运动的快慢?【提示】可以运用平均变化率来刻画.2.实例(2)中,当t1≈t2时刻时,平均变化率有什么样的特点?【提示】平均变化率接近t1或t2时刻的速度.1.函数y=f(x)从x1到x2的平均变化率(1)定义式:Δy Δx =f (x 2)-f (x 1)x 2-x 1.(2)实质:函数值的改变量与自变量的改变量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢. 2.函数y =f (x )在x =x 0处的瞬时变化率 (1)定义式:lim Δx →ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)实质:瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值. (3)作用:刻画函数在某一点处变化的快慢.函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.求函数f (x )=x 2在x =1,2,3附近的平均变化率,取Δx 都为13,在哪一点附近平均变化率最大?【思路探究】 (1)Δx 、Δy 分别为多少?(2)平均变化率怎么求?(3)哪一点附近的平均变化率大?【自主解答】 在x =1附近的平均变化率为 k 1=f (1+Δx )-f (1)=(1+Δx )2-1=2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)=(2+Δx )2-22=4+Δx ;在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx=6+Δx .若Δx =13,则k 1=2+13=73,k 2=4+13=133,k 3=6+13=193.由于k 1<k 2<k 3,故在x =3附近的平均变化率最大.1.解答本题的关键是弄清在某点处自变量的增量Δx 与函数值的增量Δy .2.求函数y =f (x )从x 1到x 2的平均变化率的三个步骤 (1)求自变量的增量:Δx =x 2-x 1. (2)求函数值的增量:Δy =f (x 2)-f (x 1). (3)作商求函数的平均变化率:Δy Δx =f (x 2)-f (x 1)x 2-x 1.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.【解】 函数y =sin x 在0到π6之间的平均变化率为sin π6-sin 0π6-0=3π,在π3到π2之间的平均变化率为sin π2-sin π3π2-π3=3(2-3)π. ∵2-3<1,∴3π>3(2-3)π.∴函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为3(2-3)π,且在0到π6之间的平均变化率较大.s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3)29+3(t -3)2(0≤t <3) 求(1)物体在t ∈[3,5]内的平均速度. (2)物体的初速度v 0.【思路探究】 (1)求物体在[3,5]内的平均速度应选择哪一段函数的解析式?(2)物体的初速度v 0的含义是什么?如何去求?【自主解答】 (1)∵物体在t ∈[3,5]内时,s =3t 2+2,且时间增量Δt =5-3=2, 物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48, ∴物体在t ∈[3,5]上的平均速度为Δs Δt =482=24(m/s).(2)求物体的初速度v 0,即求物体在t =0时的瞬时速度. ∵物体在t =0附近的平均变化率为Δs =f (0+Δt )-f (0)=29+3[(0+Δt )-3]2-29-3(0-3)2=3Δt -18,∴物体在t =0处的瞬时变化率为li m Δt →0 ΔsΔt=li mΔt →0 (3Δt -18)=-18, 即物体的初速度为-18 m/s.1.解答本例首先要弄清第(1)问是求平均变化率,而第(2)问实际上是求t =0时的瞬时速度(即瞬时变化率).2.求瞬时速度应先求平均速度v =Δs Δt ,再用公式v =li mΔt →0 ΔsΔt,求得瞬时速度. 3.如果物体的运动方程是s =s (t ),那么函数s =s (t ),在t =t 0处的导数,就是物体在t =t 0时的瞬时速度.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m).【解】 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt )2,Δs Δt =8+2Δt ,当Δx 趋于0时,平均变化率ΔsΔt 趋于8. 所以,这辆车在t =2时的瞬时速度为8 m/s.【思路探究】 求Δy →求ΔyΔx→取极限→得f ′(1) 【自主解答】 Δy =f (1+Δx )-f (1)=[3(1+Δx )2+a (1+Δx )+b ]-(3+a +b )=3(Δx )2+(6+a )Δx .Δy Δx =3(Δx )2+(6+a )Δx Δx=3Δx +6+a . li mΔx →0 ΔyΔx=li mΔx →0 (3Δx +6+a )=6+a . ∴f ′(1)=6+a .1.求函数f (x )在某点处导数的步骤与求瞬时变化率的步骤相同,简称:一差、二比、三极限.2.利用定义求函数y =f (x )在点x 0处的导数的两个注意点(1)在求平均变化率Δy Δx 时,要注意对Δy Δx 的变形与约分,变形不彻底可能导致li mΔx →0 ΔyΔx 不存在.(2)当对Δy Δx 取极限时,一定要把ΔyΔx变形到当Δx →0时,分母是一个非零常数的形式.已知函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值.【解】 ∵Δy =f (1+Δx )-f (1)=a (1+Δx )2+c -(a +c )=2a ·Δx +(Δx )2,∴Δy Δx =2a ·Δx +(Δx )2Δx=2a +Δx . 因此f ′(1)=lim Δx →ΔyΔx =lim Δx →0(2a +Δx )=2a .∴2a =2,a =1.求物体的瞬时速度、初速度时要注意步骤的规范性(12分)(2013·长沙高二检测)一做直线运动的物体,其位移s 与时间t 的关系是s (t )=3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时的平均速度.【思路点拨】 本题已知函数解析式,求初速度即t =0时的瞬时速度,t =2时的瞬时速度和t ∈[0,2]时的平均速度,可以用一差、二比、三极限的方法.【规范解答】 (1)当t =0时的速度为初速度. 在0时刻取一时间段[0,0+Δt ],即[0,Δt ],∴Δs =s (Δt )-s (0)=[3Δt -(Δt )2]-(3×0-02)=3Δt -(Δt )2,2分 Δs Δt =3Δt -(Δt )2Δt=3-Δt ,3分 lim Δt →ΔsΔt =lim Δt →0(3-Δt )=3.4分 ∴物体的初速度为3. (2)取一时间段[2,2+Δt ],∴Δs =s (2+Δt )-s (2)=[3(2+Δt )-(2+Δt )2]-(3×2-22)=-Δt -(Δt )2,6分 Δs Δt =-Δt -(Δt )2Δt=-1-Δt ,7分 lim Δt →ΔsΔt =lim Δt →0(-1-Δt )=-1,8分 ∴当t =2时,物体的瞬时速度为-1. (3)当t ∈[0,2]时,Δt =2-0=2.Δs =s (2)-s (0)=(3×2-22)-(3×0-02)=2 10分 v =Δs Δt =22=1.∴在0到2之间,物体的平均速度为1.12分解答此类问题首先要理解概念与公式的内涵,其次在解题过程中要严格按规定步骤解答,切忌跨步,以免出错.1.平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ,当Δx 趋于0时,它所趋于的一个常数就是函数在x 0处的瞬时变化率,即求函数的瞬时变化率是利用平均变化率“逐渐逼近”的方法求解.另外,它们都是用来刻画函数变化快慢的,它们的绝对值越大,函数变化得越快.2.函数在一点处的导数,就是在该点函数值的改变量与自变量的改变量的比值的极限,它是一个定值,不是变数.1.已知物体位移公式s =s (t ),从t 0到t 0+Δt 这段时间内,下列说法错误的是( ) A .Δs =s (t 0+Δt )-s (t 0)叫做位移增量B.Δs Δt =s (t 0+Δt )-s (t 0)Δt 叫做这段时间内物体的平均速度 C.ΔsΔt 不一定与Δt 有关 D.lim Δt →ΔsΔt叫做这段时间内物体的平均速度 【解析】 D 错误,应为t =t 0时的瞬时速度. 【答案】 D2.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43D .0.44【解析】 ∵x =2,Δx =0.1,∴Δy =f (2+0.1)-f (2)=2.12-22=0.41. 【答案】 B3.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b【解析】Δy Δx =f (x 0+Δx )-f (x 0)Δx =a +b ·Δx ,f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0(a +b ·Δx )=a . 【答案】 C4.一物体运动的方程是s =3+t 2,求物体在t =2时的瞬时速度.【解】 Δs =(2+Δt )2-4=4Δt +(Δt )2.∴ΔsΔt=4+Δt .∴当Δt →0时,瞬时速度为4.一、选择题1.已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则ΔyΔx 等于( )A .2B .2xC .2+ΔxD .2+(Δx )2【解析】 Δy =(1+Δx )2+1-(12+1)=2Δx +(Δx )2.∴Δy Δx =2Δx +(Δx )2Δx=2+Δx . 【答案】 C2.自由落体运动的公式为s =s (t )=12gt 2(g =10 m/s 2),若v =s (1+Δt )-s (1)Δt ,则下列说法正确的是( )A .v 是在0~1 s 这段时间内的速度B .v 是1 s 到(1+Δt )s 这段时间内的速度C .5Δt +10是物体在t =1 s 这一时刻的速度D .5Δt +10是物体从1 s 到(1+Δt )s 这段时间内的平均速度【解析】 由平均速度的概念知:v =s (1+Δt )-s (1)Δt =5Δt +10.故应选D.【答案】 D3.(2013·惠州高二检测)某物体做直线运动,其运动规律是s =t 2+3t (t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为( )A.12316米/秒B.12516米/秒 C .8米/秒 D.674米/秒【解析】 ∵ΔsΔt=(4+Δt )2+34+Δt -16-34Δt =(Δt )2+8Δt +-3Δt 4(4+Δt )Δt=Δt +8-316+4Δt ,∴lim Δt →0 Δs Δt =8-316=12516.【答案】 B4.函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1,k 2的大小关系是( )A .k 1<k 2B .k 1>k 2C .k 1=k 2D .无法确定【解析】 k 1=f (x 0+Δx )-f (x 0)Δx =2x 0+Δx ,k 2=f (x 0)-f (x 0-Δx )Δx =2x 0-Δx ,而Δx 可正可负,故k 1、k 2大小关系不确定.【答案】 D5.已知点P (x 0,y 0)是抛物线y =3x 2+6x +1上一点,且f ′(x 0)=0,则点P 的坐标为( ) A .(1,10) B .(-1,-2) C .(1,-2)D .(-1,10)【解析】 Δy =3(x 0+Δx )2+6(x 0+Δx )-3x 20-6x 0=6x 0·Δx +3(Δx )2+6Δx ,∴lim Δx →ΔyΔx =lim Δx →0(6x 0+3Δx +6)=6x 0+6=0. ∴x 0=-1,y 0=-2. 【答案】 B 二、填空题6.(2013·洛阳高二检测)一小球沿斜面自由滚下,其运动方程是s (t )=t 2, (s 的单位:米,t 的单位:秒),则小球在t =5时的瞬时速度为________.【解析】 v ′(5)=lim Δt →s (5+Δt )-s (5)Δt =lim Δt →0(10+Δt )=10【答案】 10米/秒7.已知函数f (x )=ax +4,若f ′(1)=2,则a =________. 【解析】 f ′(1)=lim Δx →a (1+Δx )+4-a -4Δx =lim Δx →0 a ΔxΔx=2,∴a =2.【答案】 28.若函数f (x )在x =a 处的导数为m ,那么lim Δx →f (a +Δx )-f (a -Δx )Δx=________.【解析】 ∵lim Δx →f (a +Δx )-f (a )Δx =m ,则lim Δx →0 f (a -Δx )-f (a )-Δx=m .∴lim Δx →f (a +Δx )-f (a -Δx )=lim Δx →0 f (a +Δx )-f (a )+f (a )-f (a -Δx )=lim Δx →f (a +Δx )-f (a )Δx +lim Δx →0 f (a -Δx )-f (a )-Δx=m +m =2m .【答案】 2m 三、解答题9.已知f (x )=(x -1)2,求f ′(x 0),f ′(0).【解】 ∵Δf =(x 0+Δx -1)2-(x 0-1)2=2x 0·Δx -2Δx +(Δx )2 ,∴Δf Δx =2x 0Δx -2Δx +(Δx )2Δx=2x 0-2+Δx , f ′(x 0)=lim Δx →ΔfΔx =lim Δx →0(2x 0-2+Δx )=2x 0-2, 把x 0=0代入上式,得f ′(0)=2×0-2==-2. 10.设质点做直线运动,已知路程s 是时间t 的函数: s =3t 2+2t +1.(1)求从t =2到t =2+Δt 的平均速度,并求当Δt =1,Δt =0.1时的平均速度; (2)求当t =2时的瞬时速度.【解】 (1)从t =2到t =2+Δt 内的平均速度为:Δs Δt =s (2+Δt )-s (2)Δt =3(2+Δt )2+2(2+Δt )+1-3×4-2×2-1Δt=14Δt +3(Δt )2Δt=14+3Δt .当Δt =1时,平均速度为14+3×1=17; 当Δt =0.1时,平均速度为14+3×0.1=14.3. (2)t =2时的瞬时速度为: v =lim Δt →ΔsΔt =lim Δt →0(14+3Δt )=14. 11.(2013·黄冈高二检测)枪弹在枪筒中运动可以看作匀加速运动,如果枪弹的加速度是a =5×105 m/s 2,它从枪口射出所用的时间为t 1=1.6×10-3 s ,求枪弹射出枪口时的瞬时速度.【解】 ∵s (t )=12at 2,∴Δs =s (t 1+Δt )-s (t 1)=12a (t 1+Δt )2-12at 21=at 1Δt +12a (Δt )2, Δs Δt =at 1Δt +12a (Δt )2Δt =at 1+12a Δt . ∴枪弹射出枪口时的瞬时速度为 v =lim Δt →Δs Δt =lim Δt →0 (at 1+12a Δt )=at 1. 由题意a =5×105 m/s 2,t 1=1.6×10-3s , ∴v =at 1=5×105×1.6×10-3=800(m/s),即枪弹射出枪口时的瞬时速度为800 m/s.。
人教版高中数学选修1-1教案学案:3.1.1变化率问题
变化率问题课前预习学案一、预习目标了解平均变化率的定义。
二、预习内容[问题1] 在吹气球问题中,当空气容量V 从0增加到1L 时,气球的平均膨胀率为__________当空气容量V 从1L 增加到2L 时,气球的平均膨胀率为__________________ 当空气容量从V 1增加到V 2时,气球的平均膨胀率为_______________ [问题2]在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态? 在5.00≤≤t 这段时间里,v =_________________ 在21≤≤t 这段时间里,v =_________________ 在21t t t ≤≤这段时间里,v =_________________[问题3]对于公式,应注意:(1)平均变化率公式中,分子是区间两端点间的函数值的差,分母是区间两端点间的_______的差。
(2)平均变化率公式中,分子、分母中同为被减数的是右端点,减数是左端点,一定要同步。
[问题4] 平均变化率=∆∆x f 12)()(x x x f x f --表示什么?三、提出疑惑疑惑点疑惑内容课内探究学案h tof (x 1)△y =f (x 2)-f (x 1)△x = x 2-x 1f (x 2x 1x 2AB一、学习目标知道平均变化率的定义。
会用公式来计算函数在指定区间上的平均变化率。
二、学习过程学习探究 探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2:高台跳水,求平均速度新知:平均变化率:2121()()f x f x fx x x-∆=-∆试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,即x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值yx∆∆,则上式就表示为 ,此比值就称为平均变化率.反思:所谓平均变化率也就是 的增量与 的增量的比值.典型例题例 1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.例2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]有效训练练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6.练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.反思总结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量 (2)计算平均变化率当堂检测1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .02. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆C .0()f x x ∆D .00()()f x x f x +∆-3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )T(月)W(kg) 63912 11A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆4.已知212s gt =,从3s 到3.1s 的平均速度是_______5. 223y x x =-+在2x =附近的平均变化率是____6、已知函数12)(2-==x x f y 的图象上一点(1,1)及邻近一点(1+x ∆,+1(f x ∆)),求xy∆∆课后练习与提高1、 已知一次函数)(x f y =在区间[-2,6]上的平均变化率为2,且函数图象过点(0,2),试求此一次函数的表达式。
人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.1 变化率问题》优质课教案_13
3.1.1变化率问题教学设计(人教A选修1-1)教材内容分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修1-1第三章第一节的《变化率与导数》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。
本节课是该内容的第一课时导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。
平均变化率和瞬时变化率是为了导数的引入做过渡性的铺垫,要避免学生把过多的注意力放在“平均变化率”这个概念和它的求解方法上,而是把目光更多的放在体会知识的形成过程上。
学生学情分析学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.而在本课时变化率问题的学习中,课本给出了一个思考,观察函数的图像,平均变化表示什么?这个思考为研究导数的几何意义埋下了伏笔。
因此,在将瞬时变化率定义为导数之后,立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。
教学目标1、知识与技能目标通过分析实例,经历由平均变化率过渡到瞬时变化率的过程,了解平均变化率与瞬时变化率概念的实际背景,会求具体简单函数的平均变化率;2、过程与方法目标通过动手计算培养学生观察、分析、比较和抽象概括的能力,体会“逼近”的思想方法;3、情感态度与价值观经历从生活中的变化率问题抽象概括出平均变化率的过程,体会数学知识来源于生活,又服务于生活。
体会数学概念形成的“归纳—演绎”的模式。
教学重点:理解平均变化率的概念和几何意义教学难点:理解气球平均变化率问题和“逼近”的思想方法的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省唐山市开滦第二中学高中数学 3.1.1变化率问题学案
新人教A 版选修1-1
【学习目标】
1.理解平均变化率的概念;
2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率.
【重点难点】
平均变化率的概念、函数在某点处附近的平均变化率.
【学习内容】
一、学习背景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;
二、求曲线的切线;
三、求已知函数的最大值与最小值;
四、求长度、面积、体积和重心等.
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.
二、新课学习
(一)问题提出
问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
分析: (1)当V 从0增加到1时,气球半径增加了
气球的平均膨胀率为
(2)当V 从1增加到2时,气球半径增加了 气球的平均膨胀率为
可以看出:
思考: 当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2
++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?
思考计算: 5.00≤≤t 和21≤≤t 的平均速度v
探究: 计算运动员在49
650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内是静止的吗?
(2)你认为用平均速度描述运动员的运动状态有什么问题吗?
(二)平均变化率概念
1.上述问题中的变化率可用式子1
212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率.
2.若设12x x x -=∆, )()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量”可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆) 则平均变化率为=∆∆=∆∆x f x y x
x f x x f x x x f x f ∆-∆+=--)()()()(111212
思考: 观察函数)(x f 的图象 平均变化率
=∆∆x f 1212)()(x x x f x f --表示什么?
三、典例分析
例1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及
临近一点)2,1(y x B ∆+-∆+-则
=∆∆x
y . 解: h t o
例2 求2x y =在0x x =附近的平均变化率.
解:
四、课堂练习
1.质点运动规律为32
+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 .
2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率.
3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线,求出当1.0=∆x 时割线的斜率.
五.【课堂小结与反思】
【课后作业与练习】
1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( ) A ()x x f ∆+0 B ()x x f ∆+0
C ()x x f ∆⋅0
D ()()00x f x x f -∆+
2. 一质点运动的方程为2
21t s -=,则在一段时间[]2,1内的平均速度为( ) A -4 B -8 C 6 D -6
3. 将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( )
A R R ∆π8
B ()2
48R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()2
4R ∆π 4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则x
y ∆∆为( ) A 21+∆+
∆x x B 21-∆-∆x
x C 2+∆x D x x ∆-∆+12 5. 在高台跳水运动中,若运动员离水面的高度h (单位:m )与起跳后时间t (单位:s )
的函数关系是()105.69.42++-=t t t h ,则下列说法不正确的是( )
A 在10≤≤t 这段时间里,平均速度是s m /6.1
B 在49
650≤≤t 这段时间里,平均速度是s m /0 C 运动员在⎥⎦
⎤⎢⎣⎡4965,0时间段内,上升的速度越来越慢 D 运动员在[]2,1内的平均速度比在[]3,2的平均速度小
6.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的
7.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的
8.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变
化率是
9.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦
⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大?。