气-汽对流传热综合实验
对流传热综合实验
六、思考题
1)实验中冷流体和蒸汽的相对流向对传热效果有何 影响?
2)在计算空气质量流量时所用到的密度值与求雷诺 数时的密度值是否一致?它们分别表示什么状态 下的密度,应在什么条件下进行计算。
3)实验过程中,冷凝水不及时排走,会产生什么影 响?如何及时排走冷凝水?如果采用不同压强的 蒸汽进行实验,对α关联式有何影响?
给热系数的因素和强化传热的途径。
二、基本原理
传热过程达到稳定时
T
Q m1c p1 T1 T2 m2c p2 t2 t1 1 A1 T TW M 2 A2 tW t m
KAtm
TW
tW
t
图 4-1 间壁式传热过程示意图
三、实验装置流程
图一 空气-水蒸气换热综合实验流程图
由实验数据作图拟合曲线,确定常数A及m的值;
3)以 ln Nu/Pr 0.4 为纵坐标, lnRe 为横坐标,
将处理后的实验数据标绘在图上,并与经验式比较
Nu/Pr 0.4 0.023 Re0.8
5)比较普通管和强化管的给热系数的大小; 6)比较列管换热器在冷热介质流量相同的情况下,
并流和逆流时的给热系数的大小。
4)通过不锈钢软管,将蒸汽发生器出气管和装置进 蒸汽接口连接好。打开水汽排空阀,排出上次实 验余留的冷凝水,在整个实验过程中也保持一定 开度并注意开度适中。
5)在通水蒸汽前,也应将蒸汽发生器到实验装置之 间管道中的冷凝水排除,否则夹带冷凝水的蒸汽 会损坏压力表及压力变送器。
6)具体排除冷凝水的方法是:关闭蒸汽进口阀门, 打开冷凝水排空阀,当听到蒸汽通过的响声时关 闭冷凝水排除阀,方可进行下一步实验。
7)开始通入蒸汽时,蒸汽进口阀的开度不可太大, 务必让蒸汽徐徐流入换热器中,使系统由“冷态”
气汽传热实验报告
气汽传热实验报告实验目的:研究气体与汽体达到热平衡时的传热现象。
实验原理:在气氛中,气体与汽体的传热过程通常是以对流传热为主要方式。
对流传热是通过流体的对流传递热量的过程,其传热速率与传导传热的速率相比较大。
在实验中,我们以空气为气体,水蒸气为汽体,通过一个实验装置将这两种介质进行传热。
实验装置包括一个加热器和一个冷却器,它们分别与制冷装置和加热装置相连。
当实验开始时,加热器中的水被加热转化为水蒸气,水蒸气进入冷却器后被冷却成为液态水。
实验装置中的流量计和温度计可以测量气体和汽体的流量和温度。
实验过程:1. 将实验装置连接好,确保每一处连接都密封可靠。
2. 打开制冷装置和加热装置,开始循环。
3. 记录下气体和汽体的流量和温度,根据实际需要调整加热和冷却的功率。
4. 每隔一段时间记录一次流量和温度,直到达到热平衡状态。
实验数据处理:根据实验记录的数据,我们可以计算出气体和汽体的传热速率。
传热速率可以用下面的公式来计算:q = m * Cp * (Tout - Tin)其中,q为传热速率,m为流量,Cp为比热容,Tout为出口温度,Tin为入口温度。
通过计算得到的传热速率数据可以绘制成传热速率随时间的曲线图。
根据曲线图的特点可以分析传热过程的规律。
实验结果和讨论:根据实验数据和曲线图可以看出,传热速率在开始时较大,随着时间的推移逐渐减小并趋于稳定。
这是因为在开始时,气体和汽体的温差较大,传热速率会比较快。
随着时间的推移,气体和汽体之间的温差减小,传热速率也会相应减小。
当气体和汽体达到热平衡时,传热速率将趋于一定的稳定值。
此外,传热速率还受到其他因素的影响,比如流体的流速、传热表面的面积和传热介质的性质等。
通过调整实验装置中的参数,我们可以研究这些因素对传热速率的影响。
实验结论:在气汽传热实验中,我们通过研究气体和汽体达到热平衡时的传热现象,发现了传热速率随时间变化的规律。
随着时间的推移,传热速率逐渐减小并趋于稳定。
实验六 气-汽对流传热实验
实验六 气-汽对流传热实验一、实验目的1. 通过对空气—水蒸汽套管换热器的实验研究,掌握对流传热系数αi 的测定方法,加深对其概念和影响因素的理解。
2.了解常用的测温方法及热电偶的基本理论。
二、 实验原理管式换热器是一种间壁是式的传热装置,冷热流体间的传热过程,是由热 流体对壁面的对流传热、间壁的固体热传导和壁面对冷流体的对流传热三个子传热过程组成。
如下图所示:以冷流体侧传热面积为基准过程的传热系数与三个子过程的关系为:hh c m cc A A A A K ελδα++=11(1) 对于已知的物系和确定的换热器,上式可以表示为:K= f ( Gn ; Gc ) (2)由此可以知道,通过分别考察冷热流体流量对传热系数的影响,从而可以达到了解某个对流传热过程的性能。
若要了解对流传热过程的定量关系,可由非线性数据处理得到。
这种研究方法是过程分解与综合实验研究方法的实例。
传热系数K 借助于传热速率方程式和热量衡算方程式求取。
热量衡算方程式,以热空气作衡算:Q h = G h C p A (T 进 –T 出) (3) 传热速率方程式:Q = K Ac ∆t m (4) 式中∆t m 对数平均温差由下式确定:)()(ln)()(进出出进进出出进逆t T t T t T t T t m -----=∆ (5)式中:K---- 传热总系数 W/m 2.k ;α---- 流体的传热膜系数 W/m 2.k ; A---- 换热器的总传热面积 m 2;G---- 流体的质量流量 Kg/s ;Q---- 总传热量J/s ;C p ---- 流体的恒压热容 J/Kg.K ; T---- --热流体的温度 ℃; t-------冷流体的温度 ℃; δ-----固体壁的厚度 mλ------固体壁的导热系数 W/m.k ;下标: h----热流体; c----冷流体; 进----进口;出----出口; 逆----逆流; m----平均值三、实验装置及流程 1.实验装置的主要特点(1) 实验操作方便,安全可靠。
实验报告-气-汽对流传热综合实验
实验报告-气-汽对流传热综合实验摘要:本实验旨在研究气汽对流传热特性,用实验数据确定理论模型参数,并分析能量守恒定律用于测定实验物体热量容量和总容量。
实验结果显示,气汽对流传热是由气流和质量流动引起的末端传热,在实验环境中表现为气汽对流传热。
由对实验数据的分析,可知通量和温度的关系,且表明了容量的大小与能量的守恒的相关性。
1、实验原理气汽对流传热是一种特殊的传热形式,发生在物体与气体或液体面之间,在其发生时,由于热量转移,而在这两表面之间发生气体或液体的运动,热流量是运动传递所引起的,从而造成介质两端的热量运动,从而形成传热。
2、实验步骤(1)实验仪器准备:实验仪器包括,气汽对流热传输实验台、调压罩、调压阀、进排气管、温度计、湿度计、压力表等设备。
(2)调试:把实验台上的调压阀打开,用手把调压罩拉落,手调温度计指针,在实验台上拉起温度拉丝,注意实验台传感器位置。
(3)启动实验:把实验装置测试面调节到预定温度,仔细测量压力、温度和湿度,即可进行实验。
3、实验结果(1)实验数据:通过实验台提供的实验数据发现,风口和吹出口的温度变化和压力变化存在一定的变化趋势,即在实验开始时,风口温度和吹出口温度都较高,压力较低;随着实验进行,它们相差越来越小,而压力也越来越增大。
(2)容量测定:借助观察实验数据,通过比较前后温度差以及定义的总容量、物体热量容量可以求得实验物体的热量容量和总容量的取值,说明实验物体的温度变化可以用叠加定律计算出来。
4、结论本实验证明,气汽对流传热是指在实验装置测试表面和空气之间形成的气体或液体流动传热。
实验结果表明,气汽对流传热对温度非常敏感,其传热。
实验6气-汽对流传热实验
实验6 气—汽对流传热实验6.1 实验目的(1) 了解套管换热器的构造及气—汽对流传热的机理。
(2) 掌握用热电偶温度计测量壁面温度的方法。
(3) 掌握传热膜系数α的测定方法,并学会传热膜系数测定实验的数据处理方法。
(4) 了解影响传热膜系数的因素和强化传热的途径。
6.2 实验原理传热膜系数α是研究传热过程及换热器性能的一个很重要的参数。
本实验所用换热器是由玻璃套管4和传热紫铜内管2构成的套管换热器。
冷流体为空气,由鼓风机11提供,并在换热器的内管中流动,其流量由旁路阀10调节,并由孔板流量计7和8(读数为R )测定,其进口和出口温度分别由温度计6和1测定。
热流体为饱和蒸汽,由电加热釜13和电加热器15等组成的蒸汽发生器提供,它在换热器的内管外流动。
由铜-康铜热电偶3、冷端温度补偿器(冰水浴保温桶)及毫伏表组成温度测量仪表,用于测量传热管的平均壁温。
由毫伏表测得热电动势E (mV ),即可得管外壁温度T (℃)值,由于紫铜管传热性能优异,可由管外壁温度代替内壁温度。
在套管换热器中,冷流体(空气)在管内作强制对流流动,热流体(水蒸汽)在管外流动。
冷、热两种流体呈逆流流动,通过间壁进行热交换。
流体在圆形管道内无相变时的准数关联式为 4.0Pr Re mA Nu =,将非线性转化为线性关系。
将实验得到的若干组Nu ,Re 和Pr 数据,由回归法确定系数m A ,值。
具体测定方法如下:对于准数关联式4.0Pr RemA Nu =(流体被加热时),将4.0Pr 移至左边,两边取对数,令()0.4lg Pr y Nu =,lg ;lg Re a A x ==,得y a mx =+,此式为一元线性式,按回归法即可得m 。
6.2.1 m 的计算:在双对数坐标系中以Re 为横坐标,以4.0Pr Nu 为纵坐标。
将测得的6组数据处理后得到6对横、纵坐标,在双对数坐标系中描出6个点,将6个点相连得一直线。
该直线的斜率即为准数关联式中的m 。
实验报告-气-汽对流传热综合实验
气—汽对流传热综合实验1. 光滑套管换热器传热系数的测定数据记录与整理表传热管内径d i =0.020 m 有效长度L i =1。
00 m 冷流体:空气(管内)热流体:蒸汽(管外)2. 强化套管换热器传热系数及强化比的测定数据记录与整理表传热管内径d i =0.020 m 有效长度L i =1。
00 m 冷流体:空气(管内)热流体:蒸汽(管外)1壁面温度T w℃99.6 99.7 99。
8 99。
9 99。
9 管内平均温度t m℃59。
9 57.6 56.8 56。
8 57.3 空气密度ρm kg/ m31。
060 1。
068 1。
071 1。
071 1.069 空气导热系数λm*100 W/ m·℃2。
895 2。
879 2.874 2.874 2。
877 空气定压比热容Cpm kJ/ kg·℃ 1.005 1.005 1.005 1。
005 1。
005空气粘度μm*10000Pa·s 2。
01 2.00 1。
99 1。
99 2。
00空气进出口温度差Δt℃61。
7 55。
0 51.7 50.3 50。
2 平均温差Δt m℃39。
7 42。
1 43.0 43。
1 42.6 20℃时空气流量V20m3/ h 8。
79 18。
58 24.34 29。
59 33.89 管内平均流量V m3/ h 9.837 20。
613 26。
902 32。
666 37.432 平均流速u m/s 8。
70 18.22 23。
78 28.88 33.09传热量Q W 179。
60 338。
02 392。
16 491。
27 560。
77 对流传热系数αi W/m2·℃71。
99 127.77 145。
13 181.39 209.48 雷诺数Re 9176 19458 25596 31086 35373 努赛尔准数Nu 49.73 88。
76 101。
0 126。
23 145。
62Nu/Pr0.457。
实验四 气汽对流传热综合实验报告
度近似相等,用 来表示。
管内换热面积:
(3)
式中, 为内管管内径, ; 为传热管测量段的实际长度, 。
由热量衡算式:
(4)
其中质量流量由右式求得: 式中, 为冷流体在套管内的平均体积流量,
流体的密度,
。
(5) ; 为冷流体的定压比热,
; 为冷
与 可根据定性温度 查得, 取一定的测量手段得到。 2、对流传热系数准数关系式的实验确定
实验外管外径 Do(mm)
测量段(紫铜内管)长度 L(m)
强化内管内插物
丝径 h(mm)
(螺旋线圈)尺寸
节距 H(mm)
加热釜
操作电压 操作电流
20、00 22、0
50 57、0 1、00
1 40 ≤200 伏 ≤10 安
2、实验的测量手段
(1)空气流量的测量 空气流量计由孔板与差压变送器与二次仪表组成。该孔板流量计在 20℃时标定的流量与压差
为冷流体进出口平均温度。
流体在管内做强制湍流,被加热状态,准数关联式的形式为:
可采
(6)
其中,
,
,
实验四 气汽对流传热综合实验报告
物性数据
可根据定性温度 查得。经计算可知,对于管内被加热的空气,普兰
特常数 变化不大,可认为就是常数,则关联式的形式简化为:
(7)
这样通过实验确定不同流量下的 与 ,然后用线性回归方法确定
3、 实验设备流程图
实验四 气汽对流传热综合实验报告
图 2 空气-水蒸气传热综合实验装置流程图 1-普通套管换热器;2-内插有螺旋线圈的强化套管换热器;3-蒸汽发生器;4-旋涡气泵;5-旁
路调节阀;6-孔板流量计;7-风机出口温度(冷流体入口温度)测试点; 8、9-空气支路控制阀;10、11-蒸汽支路控制阀;12、13-蒸汽放空口; 14-蒸汽上升主管路;15-加水口;16-放水口;17-液位计;18-冷凝液回流口
对流传热系数测定实验报告
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
气汽对流传热综合实验数据处理
1234孔板压差ΔP(KPa)0.52 1.53 2.56 3.57空气入口温度t1(℃)25.626.126.526.8ρt1(kg/m3) 1.18 1.18 1.18 1.18空气出口温度t2(℃)72.766.166.167.5壁面温度Tw(℃)99.799.799.799.7管内平均温度t m(℃)49.1546.146.347.15ρm(kg/m3) 1.09 1.1 1.1 1.1λm(W/m·℃)0.0280.0280.0280.028 Cp m(J/kg·℃)1005100510051005μm(Pa·s)0.00001970.00001950.00001950.0000195空气进出口温差Δt(℃)47.14039.640.7平均温差Δt m (℃)50.5553.653.452.55 20℃时空气流量V20(m3/h)16.3728.0736.3142.88计量计处空气流量Vt1(m3/h)16.5228.3636.7143.38管内平均流量Vm(m3/h)17.9030.9740.0147.10平均流速um(m/s)15.8327.3835.3741.64传热量Q(W)381.29705.86908.481052.47αi(W/m2·℃)120.03209.56270.73318.71 Re17514.4030892.1839908.6146981.93Nu85.74149.69193.38227.65Pr0.710.700.700.70Pr0.40.870.870.870.87Nu/Pr0.498.49172.65223.04262.58孔板压差ΔP(KPa)0.20.7 1.2 1.7空气入口温度t1(℃)30.631.332.132.4ρt1(kg/m3) 1.165 1.161 1.158 1.158空气出口温度t2(℃)81.676.776.576壁面温度Tw(℃)100100100100管内平均温度t m(℃)56.15454.354.2ρm(kg/m3) 1.073 1.08 1.08 1.08λm(W/m·℃)0.2870.2860.2860.286 Cp m(J/kg·℃)1005100510051005μm(Pa·s) 1.94*10^-6 1.93*10^-6 1.93*10^-6 1.93*10^-6空气进出口温差Δt(℃)5145.444.443.6平均温差Δt m (℃)43.94645.745.8 20℃时空气流量V20(m3/h)10.1518.9924.8629.59管内平均流量V(m3/h)1120.4126.6731.7d i=0.02m L=1.00m 冷流体:空气(管内)流体:蒸汽(管外)平均流速u(m/s)9.7218.0423.5828.03传热量Q(W)168279.4457416.7αi(W/m2·℃)60.996.66124.3144.8 Re10752201902639031370 Nu42.4467.5986.92101.26 Pr0.6790.6780.6780.678 Nu/Pr0.449.5578.96101.54118.29 Nu036.9160.0873.9284.51 Nu/Nu0 1.15 1.13 1.18 1.21234孔板压差 ΔP(KPa)0.260.76 1.26 1.76空气入口温度t 1(℃)28.528.929.329.7ρt1(kg/m 3) 1.165 1.165 1.165 1.165空气出口温度t 2(℃)86.57873.972.6壁面温度Tw(℃)99.799.799.799.7管内平均温度t m (℃)57.553.4551.651.15ρm (kg/m 3)1.06 1.09 1.09 1.09λm (W/m ·℃)0.0290.02830.02830.0283Cp m (J/kg ·℃)1005100510051005μm (Pa ·s)0.0000201 1.96E-050.00001960.0000196空气进出口温差Δt(℃)5849.144.642.9平均温差Δt m (℃)42.246.2548.148.5520℃时空气流量V 20(m 3/h)10.1524.8633.6640.6d i =0.02m L=1.00m 冷流体:空气(管内) 流体:蒸汽(管外)计量计处空气流量10.3025.2334.1941.27Vt1(m3/h)管内平均流量Vm10.7626.6836.3243.84(m3/h)平均流速um(m/s)9.5223.5932.1138.75传热量Q(W)134.42375.55531.54647.61αi(W/m2·℃)50.69129.22175.86212.27 Re10037.0526239.6735710.2843104.86Nu34.9691.32124.28150.01Pr0.700.700.700.70Pr0.40.870.870.870.87 Nu/Pr0.440.40105.56143.66173.41 Re0.81611843.794039.355194.396056.71 Nu027.6060.4577.7490.64 Nu/Nu0 1.15 1.13 1.18 1.20。
实验三+蒸汽─空气对流传热传热系数的测定
实验三 蒸汽─空气对流传热传热系数的测定一、实验目的1. 测定套管式换热器的总传热系数K ;2. 测定圆形直管内传热膜系数α,并学会用实验方法将流体在管内对流及强制对流 时的实验数据整理成包括传热膜系数α的准数方程式;3. 了解并掌握热电偶和电位差计的使用及其温度测量。
二、基本原理1.测定传热系数K根据传热速率方程式:m T KA ∆=φ (1)mT A K ∆=φ(2)式中: φ传热速率,W ; K 总传热系数,W/(m 2·℃);A 传热面积; m T ∆两流体的平均温度差。
实验时,若能测定或确定φ、A 和,则可测定K 。
m T ∆⑴ 实验是测定蒸汽加热空气时的对流传热总传热系数,其中蒸汽通加套管环隙加热内管的空气,具体的流程如下:在不考虑热损失的条件下,有)(122211T T c q r q p −==m m φ (3)式中: q m1— 蒸汽冷凝液的质量,kg/s ; r 1 — 蒸汽冷凝潜热,J/kg ;q m2— 空气的质量流量,kg/s ; c p2 — 空气的定压比热,J/(kg ·K);T 1、T 2— 空气的进出口温度,℃; T W1、T W2— 内管外壁温度与内壁温度,℃。
实验中传热速率φ按空气的吸热速率计算。
其中空气的质量流量由孔板流量计测量其 体积流量后转化为质量流量。
即:q m =t ρq V (4)式中:t ρ—为空气进出口平均温度下的密度,kg/m 3。
q V — 为空气的体积流量,m 3/s 。
本实验中,空气的体积流量由孔板流量计测量并通过压力传感器将其差压数字在显示仪表上显示出。
20℃ 下空气流量由公式(5)计算。
6203.000)(p C q t ∆×=V (5)其中, — 20℃ 下的体积流量,m 0t q V 3/h ;C 0— 孔板流量系数,本实验装置中其值为22.696。
p ∆—孔板两端压差,kPa 。
则实验条件下的空气流量q V (m 3/h)则需按下式计算:2732730t Tq q t t ++×=V V式中:t q V —实验条件(管内平均温度)下的空气流量,m 3/h 。
传热综合实验
其中Qi=WiCpi(t2-t1),Wi= ;Δtm= ,Δt2=tw-ti2,Δt1=tw-ti1;Si=πdiLi
式中,Wi为冷凝速率,kg/s;Vi为体积流量,m3/s;ρi为密度,kg/m3;Cpi为定压比热容,kJ/(kg·°C);t1为入口温度,°C;t2为出口温度,°C;tw为管壁温度,°C;di为管直径,m;Li为管长,m。
实验条件:装置号 内管内径/壁厚/外径=20.0/1.0/22.0mm
入口温度ti1/°C
出口温度to1/°C
壁温tW/°C
孔板流量计ΔP/kPa
管路压降 ΔP1/kPa
1
2
3
4
5
6
备注:
表2-2 2号管换热器实验数据记录表
实验条件:装置号 内管内径/壁厚/外径=20.0/1.0/22.0mm
入口温度ti2/°C
0.06644
奴塞尔数Nu×10-3
0.08762
0.08226
0.07762
0.06859
0.05902
0.04666
雷诺数Re×10-4
5.0077
4.5964
4.1329
3.5589
2.8982
1.9361
普朗特数Pr×10
6.96813
6.96936
6.97044
6.97139
6.97184
3.必须保证空气管线的畅通。即在接通风机电源之前,三个空气支路控制阀之一和旁路调节阀必须全开。在转换支路时,应先关闭风机电源,然后开启、关闭控制阀。
4.调解流量后,应至少稳定5~8分钟后读取实验数据。
5.实验中保持上升蒸汽的稳定,不应改变加热电压,且保证蒸汽放空口一直有蒸汽放出。
气汽对流传热实验报告
气汽对流传热实验报告
实验目的:
探究气汽对流传热及其影响因素。
实验器材:
热水器、玻璃管、烧瓶、水、火柴、温度计。
实验过程:
1.将瓶底烧红后浸入水中,造成热水器内部产生气汽对流。
2.分别在烧瓶上方和下方的不同位置放置温度计,测量温度。
3.利用火柴将烧瓶中的气汽点燃,观察燃烧状况。
实验结果:
实验结果表明,气汽对流传热后,温度会产生不同程度的变化。
在烧瓶上方,温度升高较快并保持较高的温度,而在下方,温度升高缓慢且较为不稳定。
同时,在烧瓶中点燃气汽后,燃烧迅速而热量释放较大,温度急剧上升。
实验结论:
气汽对流传热会影响温度变化,而气体的燃烧会释放大量热量。
因此,了解气汽对流传热的影响因素有助于合理利用能源及避免安全事故的发生。
传热综合实验
气---汽对流传热综合实验班级:化学工程与工艺姓名:韩兴云学号:033112037 组别:甲4一、实验目的:1、测定光滑圆形直管管外蒸气冷凝,管内为空气强制对流时的传热系数——K值;2、学会用实验方法,讲所测实验数据整理成准数方程式3、了解并掌握热电偶和电位差计的使用,及其温度测量。
二、基本原理概述1、测定传热系数K。
根据传热速率方程式得:其中:传热速率Q,既可以用热流体得放热速率计算,也可以用冷流体的吸收速率计算。
传热推动力Δtm可用对数平均温度差计算。
逆流时,S=лdl2、测定给热系数α在蒸汽-空气换热系统,若忽略管壁与污垢的热阻,则总传热系数与分传热系数的关系为:由于蒸汽冷凝给热系数远大于管壁对空气的给热系数,所以α1=K3、求与Re的定量关系式。
由因次分析法可知,流体在圆形管中呈强制湍流时的给热系数,符合下列准数关联式:本实验就是通过调节空气的流量,测得对应的给热系数,然后将流量整理为Re,将给热系数整理为Nu。
再将所得的一系列Nu-Re数据,通过图解法或者回归分析法,求得待定系数A、n。
进而得到给热系数α与Re的经验公式。
三、装置与流程:来自鼓风机的空气通过调节阀1转子流量计2和换热管3,经换热后排空。
热量由缠绕在换热管表面的电热丝4供给;空气流量由转子流量计2测定;进、出口空气温度由温度计读取,其进口压强由U形管液柱压差计显示;壁温由热电偶测量。
四、实验数据及处理:表一普通套管换热器原始数据表二强化套管换热器原始数据表三普通套管换热器实验数据处理表t2 /℃67.1 66.4 65.7 65.7 66.5 67.8 68.2t /℃48.8 49.6 49.6 50.4 52 54.3 54.9ρ/(kg/m3) 1.097 1.094 1.094 1.092 1.086 1.079 1.077 Cp/(J/kg·k)1005λ/(w/m·k)0.02816 0.02821 0.02821 0.02827 0.02838 0.02854 0.02858 μ/(Pa·s)19.5 19.6 19.6 19.6 19.7 19.8 19.8Pr0.4 0.866Vt0/(m3/h) 15.57 23.62 29.64 34.49 38.42 42.11 42.99 V/(m3/h) 16.51 24.92 31.2 36.21 40.23 43.94 44.81 Tw/℃109.2 109.5 109.5 109.5 109.5 109.5 109.5 Δtm/℃60.4 59.9 59.9 59.1 57.5 55.2 54.6Q/w 185.6 255.7 306.8 338.9 354.9 358.7 358.4 α/(w/m2·℃)48.9 67.9 81.5 91.3 98.2 103.4 104.5 Nu 34.7 48.1 57.8 64.6 69.2 72.5 73.1u/(m/s) 14.6 22.03 27.58 32.01 35.57 38.85 39.62 Re 16426.9 24592.7 30788.3 35668.3 39217.3 42342.6 43101.8 lnNu 3.55 3.87 4.06 4.17 4.24 4.28 4.29 lnRe 9.71 10.11 10.33 10.48 10.58 10.65 10.67由Nu=ARemPr0.4 , 可得lnNu=lnA+mlnRe+0.4lnPr所以以lnNu——lnRe作图,可得一直线,直线的斜率是m,截距是lnA+0.4lnPr作图,可得m=0.78,lnA+0.4lnPr=-3.9922,所以A=0.0195即Nu=0.0195Re0.78Pr0.4表四强化套管换热器实验数据处理表Nu 103.7 98.7 91.1 81.5 70.5 51.7u/(m/s) 35.89 32.96 29.12 25.06 20.55 13.77 Re 37854.1 35102.4 31402.8 27262.2 22397.4 15007.9 lnNu 4.64 4.59 4.51 4.40 4.25 3.95 lnRe 10.54 10.47 10.35 10.21 10.02 9.62由Nu=BRem, 可得lnNu=lnB+mlnRe所以以lnNu——lnRe作图,可得一直线,直线的斜率是m,截距是lnB.作图得,m=0.75 , lnB=-3.30677所以B=0.0366即 Nu=0.0366Re0.75强化比的计算:同一流量下,强化管的努塞尔准数Nu与普通管的努塞尔准数Nuo之比,即Nu/Nuo.当流量等于40.60m3/h时,Nu=103.7, 当流量等于40.23m3/h时, Nuo=69.2.所以强化比=103.7/69.2=1.50实验数据处理过程:以普通管第一组数据为例孔板流量计压差ΔP=0.60kPa,进口温度t1=30.4℃,出口温度t2=67.1℃,壁面温度热电势4.59mV.已知数据及有关常数:(1)传热管内径di及流通段面积Fdi=20.0mm=0.0200mF=л(di2)/4=3.142*0.02002 /4=0.0003142m2(2)传热管有效长度L及传热面积Si L=1.00mSi=лLdi=3.142*1.00*0.0200=0.06284m2(3) t1为孔板处空气的温度,为由此值查得空气的平均密度ρ当t1=30.4℃时,ρ= kg/m3(4)传热管,测量段上空气平均物性常数的确定先算出测量段上空气的定性温度t /℃t= (t1 +t2)/2=(30.4+67.1)/2=48.8 ℃查得:测量段上空气的平均密度ρ=1.097 (kg/m3)测量段上空气的平均比热Cp=1005(J/kg·k)测量段上空气的平均导热系数λ=0.02816 (w/m·k)测量段上空气的平均黏度μ=19.5 (μPa·s)测量段上空气的平均普朗特准数的0.4 次方为:Pr0.4=0.866(5)空气流过测量段上平均体积V(m3/h)的计算:Vto=20.243*(ΔP)0.5139=15.57(m3/h)V=Vto*(273+t)/(273+ t1)=16.51(m3/h)(6) 冷热流体间的平均温度差Δtm/℃的计算:Tw=1.2705+23.518*4.59=109.2℃Δtm= Tw-t=109.2-48.8=60.4℃(7) 其余计算传热速率Q=V*ρ*Cpi*Δt/3600=15.57*1.097*1005*(67.1-30.4)/3600=185.6 wα=Q/(Δtm Si)=185.6/(60.4*0.06284)=48.9 (w/m2·℃)传热准数N u=α*di/λ=48.9*0.0200/0.0283=34.7测量段上空气的平均流速u=V/(F*3600)=16.51/(0.0003142*3600)=14.60(m/s)雷诺准数Re=di*u*ρ/μ=0.0200*14.60*1.097/0.0000195=16426.9(8)作图,回归得到准数关联式Nu=ARemPr0.4中的系数绘制两个实验的Nu—Re的关系图:。
传热实验操作步骤
气-汽对流传热综合实验装置1 实验前准备工作1.1确认储水罐和蒸汽发生器间的阀门处于打开状态。
1.2检查储水槽中水位不低于储水罐的1/2。
1.3 检查并确认两根被测管路上的阀门及空气旁路阀均处于关闭状态。
2 光滑套管传热实验2.1 打开通向光滑套管的蒸汽支路阀6,接通电源总开关。
按“<”控制数字位置,趁绿色圆点闪烁时用“∧∨”控制数字大小,设置加热电压为200 V。
启动电加热器,开始加热,注意加热电压不超过200V。
2.2 当光滑套管换热器的放空口9有水蒸气冒出时(此时壁温>99℃),全开空气流量旁路阀14和光滑套管的空气进气阀11,启动风机。
如果放空口9的水蒸气量过大,可以调节加热电压为170-180 V。
2.3用放空阀14来调节空气流量,调好某一流量稳定5分钟后,分别记录空气的流量、空气进口温度、空气出口温度及壁面温度。
一般从小流量到最大流量之间要测量6组数据。
实验过程中,注意不要被蒸汽管路烫伤。
3 强化管传热实验3.1检查储水罐中的水位是否正常,如果发现水位过低,应及时补给水量。
3.2 打开通向强化管的蒸汽支路阀5,关闭蒸汽支路阀6。
3.3 全部打开空气旁路阀14,打开强化套管的空气进气阀12,关闭空气支路阀11,进行强化管传热实验。
实验步骤同步骤2.3。
3.4 加热电压不超过200V。
4结束4.1 实验结束后,依次关闭加热电源,待光滑套管和强化管的壁面温度在50℃以下后,关闭风机和总电源。
4.2 关闭装置中两根被测管路上的阀门及空气旁路阀门。
附:补充资料20℃时空气流量,单位m3/h传热管内径d = 20.00 mm传热管有效长度L = 1.20 m实验需要计算强化比。
注意:实验说明书在第一个抽屉,用完请放回;打扫完卫生请填写打扫记录,老师在原始数据上签字后方可离开。
基础仪器实验室 2009年03月11日。
空气蒸汽对流给热系数测定实验报告及数据答案
空气蒸汽对流给热系数测定实验报告及数据答案 Final approval draft on November 22, 2020空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数图1 空气-水蒸气传热综合实验装置流程图1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;孔板流量计测量空气流空气压力蒸汽压力空气入口温度蒸汽温度 空气出口温度三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。
4气-汽对流传热实验
气—汽对流传热膜系数测定一、实验目的1. 掌握对流传热膜系数α 的测定方法,加深对其概念和影响因素的理解;2、掌握用最小二乘法确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值; 二、 实验原理对于流体在圆形直管中作强制湍流时的对流传热膜系数的准数关联式可以表示成:Nu = A Re m Pr n系数A 、指数m 和n 则需由实验加以确定。
通过实验测得不同流速下的压差,空气的进、出口温度和换热器的壁温(因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内、外壁温度与壁面的平均温度近似相等),根据所测的数据,经过查物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法(最小二乘法)确定关联式Nu = A Re m Pr n 中常数A 、m 的值。
线形回归:用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。
为了便于掌握这类方程的关联方法,可取n = 0.4(实验中流体被加热)。
这样就简化成单变量方程。
两边取对数,得到直线方程:在双对数坐标系中作图,找出直线斜率,即为方程的指数m 。
在直线上任取一点的函数值代入方程中得到系数A ,即用图解法,根据实验点确定直线位置,有一定的人为性。
而用最小二0.4mP rR eN u A =0.4lglg lg R eP rN u A m =+乘法回归,可以得到最佳关联结果。
三、实验装置气—汽对流传热系数测定装置流程图设备参数;四、实验操作方法和步骤3.1 实验前准备工作1)检查装置上各部件是否齐全、完好。
熟悉装置上各个设备、仪表和部件的使用方法,了解有关注意事项。
2)连接好自来水管线,向蒸汽发生器内供水至液位计指定水位。
3)开启电源总开关和加热开关,检查各个温度值显示是否正常,记下室温值。
同时启动旋涡气泵,管线接口处(尤其是进口处)不能有漏气。
3.2实验操作1)调节加热电流,其中一组为常热电流,维持在6A,另一组为可调电流,加热时为4A。
气-汽对流传热综合实验
气-汽对流传热综合实验一、实验目的的测定方法,加深对其概念和影响因素的理解;1、掌握对流传热系数i2. 确定强制对流传热准数关联式中常数;3. 通过对强化套管换热器的实验研究,了解强化传热的基本理论和基本方式。
二、实验原理本实验采用套管换热器, 以环隙内流动的饱和水蒸汽加热管内空气,水蒸汽和空气间的传热过程由三个传热环节组成:水蒸汽在管外壁的冷凝传热,管壁的热传导以及管内空气对管内壁的对流传热。
本实验装置采用两组套管换热器,即光滑套管换热器及强化套管换热器。
强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。
强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。
螺旋线圈的结构图如图1所示,螺旋线圈由直径3mm以下的铜丝和钢丝按一定节距绕成。
将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。
在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。
由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。
螺旋线圈是以线圈节距H与管内径d图1 螺旋线圈内部结构的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。
三、实验装置实验装置如图2所示,主要结构参数如表1所示。
说明:1、蒸汽发生器为电加热釜,使用容积为5升,内装有一支2.5kw的螺电热器,与一储水釜相连(实验过程中要保持储水釜中液位不要低于釜的二分之一,防止加热器干烧);2、空气进出口温度采用电偶电阻温度计测得,由多路巡检表以数值形式显示。
壁温采用热电偶温度计测量;3、旋涡气泵型号为XGB─2,由无锡市仪表二厂生产,电机功率约0.75 KW(使用三相电源),在本实验装置上,产生的最大和最小空气流量基本满足要求,使用过程中,输出空气的温度呈上升趋势。
热力学实验:空气-水蒸气传热综合实验(套管,列管)
化工传热方式、传热系数测量综合实验目录一、实验目的: (1)二、实验内容: (1)三、实验原理: (1)1.普通套管换热器传热系数测定及准数关联式的确定: (1)2.强化套管换热器传热系数、准数关联式及强化比的测定 (2)3.列管换热器总传热系数K (3)四、实验装置的基本情况 (4)1.实验装置流程示意图 (4)2.实验设备主要技术参数 (6)五、实验操作步骤 (6)六、实验注意事项 (7)七、实验数据记录及数据处理过程 (7)1.光滑管及强化实验数据计算 (7)2.列管换热器总传热系数的测定数据计算 (9)一、实验目的:1.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。
2.通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究, 掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。
3.通过变换列管换热器换热面积实验测取数据计算总传热系数k ,加深对其概念和影响因素的理解。
4.认识套管换热器(光滑、强化)、列管换热器的结构及操作方法,测定并比较不同换热器的性能。
二、实验内容:1.测定5-6组不同流速下简单套管换热器的对流传热系数i α。
2.测定5-6组不同流速下强化套管换热器的对流传热系数i α。
3.测定5-6组不同流速下空气全流通列管换热器总传热系数k 。
4.测定5-6组不同流速下空气半流通列管换热器总传热系数k 。
三、实验原理:1.普通套管换热器传热系数测定及准数关联式的确定: (1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。
m i i i t S Q ∆⨯⨯=α (1)im ii S t Q ⨯∆=α (2)式中:i α—管内流体对流传热系数,W/(m 2·℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。
传热(空气-蒸汽)实验
传热(空气-蒸汽)实验1.实验目的掌握传热的基本原理和方式,研究空气与蒸汽之间的传热规律,分析影响传热的因素。
2.实验原理传热是指物体内部或不同物体之间的热量传递过程。
常见的传热方式有导热、对流和辐射。
在传热过程中,温度高的物体向温度低的物体传热,使两者的温度趋于平衡。
导热是指热量通过物体内部的导热传递,在固体中传热的方式以固态分子的振动导致能量的传递为主要方式,液体和气体中则以分子的移动方式为主导;对流是指热量通过流体的对流传递,热空气的密度小比冷空气的密度大,当热空气与冷空气接触时,热空气就会上升,冷空气就会下降,从而形成空气的对流;辐射是指由热源发出的电磁波辐射到周围物体上,使其受热。
本实验中,我们将研究空气和蒸汽之间的传热规律,主要通过研究空气和蒸汽之间的对流传热。
我们将通过不同的实验条件,比较传热率的不同来确定影响空气和蒸汽之间传热的因素。
3.实验器材实验装置、温度计、液氮、氢氧化钠(NaOH)。
4.实验操作1)将实验装置如图所示安装好,将液氮加入液氮箱中,使其达到-196℃,并将NaOH溶解于水中,调制成1mol/L的溶液;2)在实验装置的空气侧和蒸汽侧放置两个温度计,分别记录两侧的温度变化;3)依次开启空气侧和蒸汽侧的水龙头,控制两侧温度差不超过20℃;4)分别调节两侧的水流量来控制传热速度,记录传热速度和温度变化。
5.实验结果在实验过程中,我们通过调节不同的实验条件来研究了空气和蒸汽之间的传热规律。
我们发现,当空气和蒸汽之间温度差越大,传热速度就越快;当水流量加大时,传热速度也会加快;但当空气侧水流量较小时,传热速度变化不明显。
6.实验结论通过本次实验,我们得出了以下结论:1)在空气和蒸汽之间的传热过程中,主要是通过对流传热来完成的;2)空气和蒸汽之间的传热速率与温度差以及水流量密切相关;3)传热速率与空气侧的水流量之间并没有线性关系。
7.实验评价本实验操作简单,可以有效地掌握物体之间传热的基本原理和方式,并可以针对具体的实验条件来研究不同条件下的传热规律,提高了我们的实验技能和分析能力。
气—气传热综合实验操作讲义
深对其概念和影响因素的理解,并应用线性回归分析方法,确定关联式 Nu = A * Re * Pr实验研究,测定其准数关联式 Nu = B * Re 中常数 B 、m 的值和强化比 Nu / Nu 0 ,了解强化② 对α i 的实验数据进行线性回归,求关联式 Nu=ARe Pr 中常数 A 、m 的值。
② 对α i 的实验数据进行线性回归,求关联式 Nu=BRe 中常数 B 、m 的值。
气—气传热综合实验讲义一、 实验目的:1. 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 α i 的测定方法,加m 0.4中常数 A 、m 的值;2. 通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气—水蒸气强化套管换热器的m传热的基本理论和基本方式;3. 了解套管换热器的管内压降 ∆p 和 Nu 之间的关系;二、 实验内容:实验一:① 测定 5~6 个不同流速下简单套管换热器的对流传热系数α i 。
m 0.4③ 测定 5~6 个不同流速下简单套管换热器的管内压降 ∆p 1。
实验二:① 测定 5~6 个不同流速下强化套管换热器的对流传热系数α i 。
m③ 测定 5~6 个不同流速下强化套管换热器的管内压降 ∆p 2 。
并在同一坐标系下绘制普通管∆p 1 ~Nu 与强化管 ∆p 2 ~Nu 的关系曲线。
比较实验结果。
④ 同一流量下,按实验一所得准数关联式求得 Nu 0,计算传热强化比 Nu/Nu 0。
三、 实验原理实验一 普通套管换热器传热系数及其准数关联式的测定1. 对流传热系数α i 的测定对流传热系数α i 可以根据牛顿冷却定律,用实验来测定。
式中:α i —管内流体对流传热系数,W/(m ·℃);S i —管内换热面积,m ;t i1 + t i 2V i ρ i式中:Vi —冷流体在套管内的平均体积流量,m / h ;ρi —冷流体的密度,kg /m 。
t i1 + t i 2α i =Q i∆t m ⨯ S i(2-1)2Q i —管内传热速率,W ; 2∆t mi —内管壁面温度与内管流体温度的平均温差,℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气-汽对流传热综合实验一、实验目的的测定方法,加深对其概念和影响因素的理解;1、掌握对流传热系数i2. 确定强制对流传热准数关联式中常数;3. 通过对强化套管换热器的实验研究,了解强化传热的基本理论和基本方式。
二、实验原理本实验采用套管换热器, 以环隙内流动的饱和水蒸汽加热管内空气,水蒸汽和空气间的传热过程由三个传热环节组成:水蒸汽在管外壁的冷凝传热,管壁的热传导以及管内空气对管内壁的对流传热。
本实验装置采用两组套管换热器,即光滑套管换热器及强化套管换热器。
强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。
强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。
螺旋线圈的结构图如图1所示,螺旋线圈由直径3mm以下的铜丝和钢丝按一定节距绕成。
将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。
在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。
由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。
螺旋线圈是以线圈节距H与管内径d图1 螺旋线圈内部结构的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。
三、实验装置实验装置如图2所示,主要结构参数如表1所示。
说明:1、蒸汽发生器为电加热釜,使用容积为5升,内装有一支2.5kw的螺电热器,与一储水釜相连(实验过程中要保持储水釜中液位不要低于釜的二分之一,防止加热器干烧);2、空气进出口温度采用电偶电阻温度计测得,由多路巡检表以数值形式显示。
壁温采用热电偶温度计测量;3、旋涡气泵型号为XGB─2,由无锡市仪表二厂生产,电机功率约0.75 KW(使用三相电源),在本实验装置上,产生的最大和最小空气流量基本满足要求,使用过程中,输出空气的温度呈上升趋势。
图2 空气-水蒸气传热综合实验装置流程图1-液位管;;2-储水罐;3-排水阀;4-蒸汽发生器;5-强化套管蒸汽进口阀;6-光滑套管蒸汽进口阀;7-光滑套管换热器;8-强化套管换热器;9-光滑套管蒸汽出口;10-强化套管蒸汽出口;11-光滑套管空气进口阀;12-强化套管空气进口阀;13-孔板流量计;14-空气旁路调节阀;15-旋涡气泵表1实验装置结构参数实验内管内径d i(mm)20.00实验内管外径d o(mm)22.0实验外管内径D i(mm)50实验外管外径D o(mm)57.0测量段(紫铜内管)长度L(m) 1.20强化内管内插物(螺旋线圈)尺寸丝径h(mm)1节距H(mm)40加热釜操作电压≤200伏四、实验方法及步骤1.实验前的准备,检查工作:⑴ 向储水罐中加水至液位计上端处。
⑵ 检查空气流量旁路调节阀是否全开。
⑶ 检查蒸气管支路各控制阀是否已打开,保证蒸汽和空气管线的畅通。
⑷ 接通电源总闸,设定加热电压,启动电加热器开关,开始加热。
2. 实验开始:(1)关闭通向强化套管的阀门5,打开通向光滑套管的阀门6,当光滑套管换热器的放空口9有水蒸气冒出时,可启动风机,此时要关闭阀门12,打开阀门11。
在整个实验过程中始终保持换热器出口处有水蒸气冒出。
(2)启动风机后用放空阀14来调节流量,调好某一流量后稳定3-5分钟后,分别测量空气的流量,空气进、出口的温度及壁面温度。
然后,改变流量测量下组数据。
一般从小流量到最大流量之间,要测量5~6组数据。
(3)做完光滑套管换热器的数据后,要进行强化管换热器实验。
先打开蒸汽支路阀5,全部打开空气旁路阀14,关闭蒸汽支路阀6,打开空气支路阀12,关闭空气支路阀11,进行强化管传热实验。
实验方法同步骤(2)。
(4)实验结束后,依次关闭加热电源、风机和总电源。
一切复原。
3.注意事项(1)检查蒸汽加热釜中的水位是否在正常范围内。
特别是每个实验结束后,进行下一实验之前,如果发现水位过低,应及时补给水量。
(2)必须保证蒸汽上升管线的畅通。
即在给蒸汽加热釜电压之前,两蒸汽支路阀门之一必须全开。
在转换支路时,应先开启需要的支路阀,再关闭另一侧,且开启和关闭阀门必须缓慢,防止管线截断或蒸汽压力过大突然喷出。
(3)必须保证空气管线的畅通。
即在接通风机电源之前,两个空气支路控制阀之一和旁路调节阀必须全开。
在转换支路时,应先关闭风机电源,然后开启和关闭支路阀。
(4)调节流量后,应至少稳定3~8分钟后读取实验数据。
(5)实验中保持上升蒸汽量的稳定,不应改变加热电压,且保证蒸汽放空口一直有蒸汽放出。
五、实验数据记录将实验过程中所得数据记录在表2中,然后将数据整理后,记录在表3中,并说明其中一组数据的计算过程,即计算示例。
10012t t PA c V ρ∆⨯⨯⨯==⨯=⨯=0277.0/0200.040/λαi i d Nu 29=⨯=⨯=0277.0/0200.040/λαi i d Nu 29699.00277.01093.11005Pr 5=⨯⨯=⋅=-λμp C 六、 11273273t t V V mt m ++⨯=实验数据处理 (一)光滑套管换热器传热系数及其准数关联式的确定 1.对流传热系数i α的测定在该传热实验中,空气走内管,蒸气走外管。
对流传热系数i α可以根据牛顿冷却定律,用实验来测定im ii S t Q ⨯∆=α (1)式中:i α—管内流体对流传热系数,W/(m 2·℃); Q i —管内传热速率,W ;S i —管内换热面积,m 2;m t ∆—内壁面与流体间的温差,℃。
m t ∆由下式确定: 221t t t t w m +-=∆ (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃;t w —壁面平均温度,℃;因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。
管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ;L i —传热管测量段的实际长度,m 。
由热量衡算式:)(12t t Cp W Q m m i -= (4)其中质量流量由下式求得:3600mm m V W ρ=(5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg·℃); m ρ—冷流体的密度,kg /m 3。
m Cp 和m ρ可根据定性温度t m 查得,221t t t m +=为冷流体进出口平均温度。
t 1,t 2, t w , m V 可采取一定的测量手段得到。
2. 对流传热系数准数关联式的实验确定流体在管内作强制湍流,被加热状态,准数关联式的形式为n m A Nu Pr Re =. (6)其中: i i i d Nu λα=, m m i m d u μρ=Re , mmm Cp λμ=Pr物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。
经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为:4.0Pr Re m A Nu = (7)这样通过实验确定不同流量下的Re 与Nu ,然后在lg N u~lg R e 双对数坐标系中用线性回归方法确定A 和m 的值。
3. 空气流量的测量: 10012t t PA c V ρ∆⨯⨯⨯= (8)其中,c 0-孔板流量计孔流系数,c 0=0.65 A 0-孔的面积 m 2d 0-孔板孔径 , d 0 =0.014 m P ∆-孔板两端压差,Kpa1t ρ-空气入口温度(即 流量计处温度)下密度,Kg/m 3。
(9)由于换热器内温度的变化,传热管内的体积流量需进行校正: 11273273t t V V mt m ++⨯= (10)m V —传热管内平均体积流量,m 3/h ;m t —传热管内平均温度,℃。
(二) 强化套管换热器传热系数、准数关联式及强化比的测定采用和光滑套管同样的处理数据方法,确定传热系数和准数关联式。
为研究强化传热效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,其形式为:0Nu Nu ,其中Nu 是强化管的努塞尔准数,Nu 0是光滑管的努塞尔准数,显然,强化比0Nu Nu >1,而且它的值越大,强化效果越好。
七、 思考题1、比较强化管和光滑管的努塞尔准数(计算强化比),并说明强化管强化传热的原因。
2总传热速率方程为 ,其中总传热系数K 与空气对流传热系数、蒸汽对流传热系数和内管导热系数都有关(忽略污垢热阻),但在本实验中: 。
说明原因。
3、管内空气流动速度增大时,α有何变化?说明原因。
八、附录m t KA Q ∆=i K α≈实验数据的计算过程举例: 1、光滑套管数据处理孔板流量计压差计读数 P ∆=0.40 KPa ,空气进口温度1t =20.7 ℃出口温度2t =65.4 ℃,传热管壁面温度w t =99.7 ℃ (1)传热管内径i d 及流通截面积i F i d =20.00(mm),=0.0200 (m);4/2i i d F ⋅=π=3.142×(0.0200) 2/4=0.0003142(m 2).(2)传热管有效长度 L 及传热面积i SL =1.20mL d S i i ⋅⋅=π=3.142×0.02×1.20=0.07536(m 2).(3)空气平均物性常数的确定 先算出空气的定性温度m t , 221t t t m +== 43.5(℃) 在此温度下空气物性数据如下:平均密度 ρm =1.21(kg/m 3); 平均比热 Cpm =1005 (J /Kg·k); 平均导热系数 λm=0.0277(W/m·K); 平均粘度 μm=0.0000193 (s Pa ⋅); ⑷ 空气流过换热器内管时平均体积流量m V 和平均流速的计算 孔板流量计体积流量(空气入口的体积流量):10012t t PA c V ρ∆⨯⨯⨯==0.65*3.14*0.0142*3600/4*1100040.02t ρ⨯⨯=9.27(m 3/h )其中,c 0-孔板流量计孔流系数,c 0=0.65 A 0-孔的面积 m 2d 0-孔板孔径 , d 0 =0.014 m P ∆-孔板两端压差,pa1t ρ-空气入口温度(即 流量计处温度)下密度,Kg/m 3。
由于换热器内温度的变化,传热管内的体积流量需进行校正,则传热管内平均体积流量为:7.202735.4327327.927327311++⨯=++⨯=t t V V m t m =10.00(m 3/h )m V —传热管内平均体积流量,m 3/h ;m t —传热管内平均温度,℃。