苏州大学2019届高考考前指导卷
苏州大学2019届高考数学考前指导卷二
6
,
ห้องสมุดไป่ตู้
π
0
,求 sin(2
π
)
的值.
25 2
6
16.(本小题满分 14 分) 如图,在四棱锥 P ABCD 中,底面 ABCD 为平行四边 形, E 为侧棱 PA 的中点, O 为 AC 与 BD 的交点, DE CD , PD AD . (1)求证:直线 OE∥平面 PCD ; (2)求证:平面 APD 平面 PAB .
3.某公司共有 1000 名员工,下设若干部门,现采用分层抽样
开始
方法,从全体员工中抽取一个容量为 80 的样本,已知广告
部门被抽取了 4 个员工,则广告部门的员工人数为 ▲ .
4.已知 (2,0)
是双曲线 x2
y2 b2
1(b
0) 的一个焦点,则 b
的值
输入x
否 xx3 是
是▲.
5.右图是一个算法的程序框图,当输入值 x 为 8 时,则其输出 输出y
20.(本小题满分 16 分) 如果数列{cn} 满足“对任意正整数 i, j , i j ,都存在正整数 k ,使得 ck cic j ”,则 称数列{cn} 为“封闭数列”.已知等差数列{an} 的首项 a1 0 ,公差为 d .
(1)若 a1 2, d 3 ,试判断数列an 是否为“封闭数列”,并说明理由;
二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文
字说明、证明过程或演算步骤.
15.(本小题满分 14 分)
已知函数 f (x) 2sin(2x )(0 2π) 的图象过点 ( π , 2) . 2
苏州大学2023届高考考前指导卷数学试题(高频考点版)
一、单选题二、多选题三、填空题四、解答题1. 若复数(,为虚数单位)是纯虚数,则实数的值为( )A .-6B .6C .4D .32. 集合,,若,则实数( )A.B .0C.D .13.已知,设函数的零点为,的零点为,则的最大值为A.B.C.D.4. 已知复数,,则复数等于( )A.B.C .D.5. 已知直线过点(2, 1),且横截距、纵截距满足,则该直线的方程为( )A .2x +y -5=0B .x +2y -4=0C .x -2y =0或x +2y -4=0D .x -2y =0或2x +y -5=06. 已知集合,,则( )A.B.C .(1,3)D.7.若,则等于( )A .4B .5C .6D .78. 已知,若关于的方程恰好有6个不同的实数解,则的取值可以是( )A.B.C.D.9. 已知正方体ABCD -A 1B 1C 1D 1中,若点F 是侧面CD 1的中心,且,则m =________.10. 若实数a ,b满足,,则的取值范围是________.11. 已知有红绿黄蓝4个不同颜色的球及红绿黄蓝4个不同颜色的盒子,现在在每个盒子里放一个球,并且确保4个盒子与盒子里的球的颜色都不相同,则不同的放法有__种.12. 已知集合==则__________.13. 某同学在一次研究性学习中发现,以下四个式子的值都等于同一个常数.①;②;③;④(1)试从上述四个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.苏州大学2023届高考考前指导卷数学试题(高频考点版)苏州大学2023届高考考前指导卷数学试题(高频考点版)14. 炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料溶化完毕时钢水的含碳量x与冶炼时间y(从炉料溶化完毕到出钢的时间)的一组数据,如表所示:x(0.01%)104180190177147134150191204121 y/min100200210185155135170205235125(1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求回归直线方程.(3)预报当钢水含碳量为160个0.01%时,应冶炼多少分钟?参考公式: ,线性回归方程15. 某种机器在一个工作日的小时内,需要工作人员操控累计个小时才能正常运行,当机器需要操控而无人操控时,机器自动暂停运行.每台机器在某一时刻是否用人操控彼此之间相互独立.(1)若有台相同的机器,求在同一时刻需要人操控的平均台数;(2)若要求一人操控的所有机器正常运行的概率控制在不低于的水平.且该人待工而闲的概率小于.试探讨:一人操控台、台、台机器这三种工作方案中,哪种方案符合要求?并说明理由.16. 已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明:.。
江苏省苏州大学高考数学考前指导卷(1)
1 2
C1 A1
1
1
B1 F
1
E M C A
D
B
17.解: (1)如图,过 E 作 EM BC , 垂足为 M,由题意得 MEF (0 tan 故有 MF 60 tan , EF
4 ), 3
60 , AE FC 80 60 tan , cos 60 2 所以 W (80 60 tan ) 1 cos
16. (本小题满分 14 分) 在直三棱柱 ABC A1B1C1 中,AB AC AA1 3a, BC 2a,D 是 BC 的中点,E,F 分别是 A1A,C1C 上一点, 且 AE CF 2a. (1)求证:B1F⊥平面 ADF; (2)求三棱锥 B1 ADF 的体积; (3)求证:BE∥平面 ADF. A E A1
2 2 2 则 2 x1 3 y12 6c2 , 2x2 3 y2 6c2 .
2 得 2 x 3cx 0 , 解 得 x1 0 ( 舍 ) 和 x2 c , 即
MP MQ MP MQ ,则 MP PN , MQ QN , ,∴设 PN QN PN QN x x2 x x2 y y2 y y2 ,x 1 ,y 1 求得 m 1 ,n 1 , 1 1 1 1
1
C1
1
B1 F
1
C
D
B
2
17. (本小题满分 14 分) 如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线 AE 排水管 l1 , 在路南侧沿直线 CF 排水管 l2 , 现要在矩形区域 ABCD 内沿直线 EF 将 l1 与 l2 接通. 已知 AB = 60 m, BC = 80 m,公路两侧排管费用为每米 1 万元,穿过公路的 EF 部分的排管费用为每米 2 万元,设 EF 与 AB 所成角为 .矩形区域 ABCD 内的排管费用为 W. A E D (1)求 W 关于 的函数关系式; l1 (2)求 W 的最小值及相应的角 .
苏州大学2020届高考考前指导卷(附加)
苏州大学2020届高考考前指导卷数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,并在相应的.....答题区域....内作..答.,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4 2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy 中,设点(5)P x ,在矩阵M 1234对应的变换下得到点(2)Q y y ,,求1x yM .B .选修4 4:坐标系与参数方程(本小题满分10分)在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为sin()4C 的参数方程为2cos 3()sin 22x y,≤≤,求l 与曲线C 交点的直角坐标.C .选修4 5:不等式选讲(本小题满分10分)已知00x y ,,且满足2211274x y x y ,求1534x y的最小值.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在四棱锥P ABCD 中,//AB CD ,2224AB CD BC AD ,60DAB ,AE BE ,PAD △为正三角形,且平面PAD 平面ABCD .(1)求二面角P EC D 的余弦值;(2)线段PC 上是否存在一点M ,使得异面直线DM 和PE指出点M 的位置;若不存在,请说明理由.23.(本小题满分10分) 已知非空集合M 满足{012}M n ,,,,*(2)n n N ≥,.若存在非负整数 ()k k n ≤,使得当a M 时,均有2k a M ,则称集合M 具有性质P .记具有性质P 的集合M 的个数为()f n .(1)求(2)f 的值;(2)求()f n 的表达式.(第22题图)。
江苏省苏州大学高考数学考前指导卷试题(一)苏教版
苏州大学2014届高考考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A I B={x |5<x <6},则实数a 的值为 .2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()a y x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________. 7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,3,||||AC AB AC BC =+=u u u r u u u r u u u r ,则BA →·BC →|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC -的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =ca +b +b c的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面PAB ⊥平面ABCD ,PA ⊥AB . (1)求证:BD ⊥平面PAC ;(2)已知点F 在棱PD 上,且PB ∥平面FAC ,求DF :FP .17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;A B C D F P(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.18.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△PAB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x.(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S 成立,求数列{a n }的通项公式;(2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合. (ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.苏州大学2014届高考考前指导卷(1)参考答案一、填空题1.6 2.12 3.π2 4.x 220-y 25=1 5.126.07.108.(1, +∞) 9.12 10.533或- 3 11.1112.(-1,1) 13.214.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4. (2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎪⎫cos A -352+435.所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面PAB ⊥平面ABCD ,平面PAB I 平面ABCD = AB , PA ⊥AB ,PA ⊂平面PAB ,∴ PA ⊥平面ABCD .∵BD ⊂平面ABCD ,∴PA ⊥BD .连结AC BD O =I ,∵AB = 1,BC = 2,CD = 4, ∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD ,∴Rt ABC ∆∽Rt BCD ∆. ∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒. 则AC ⊥BD .∵AC PA A =I ,∴BD ⊥平面PAC .(2)∵PB //平面FAC ,PB ⊂平面PBD ,平面PBD I 平面FAC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足:当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b aP FDCBA O=1,即a =2b 2,又e =ca=32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=.(2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-4x y . 所以直线l 方程为0014x xy y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -, △PAB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩ 解得圆过定点(.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝ ⎛⎭⎪⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减,综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减.(2)由题意:e x<x -m x有解,即e x x <x -m 有解,因此只需m <x -e xx ,x ∈(0,+∞)有解即可,设h (x )=x -e xx ,h ′(x )=1-e xx -ex2x=1-e x⎝ ⎛⎭⎪⎫x +12x ,因为x +12x≥212=2>1,且x ∈(0,+∞)时e x>1, 所以1-e x⎝⎛⎭⎪⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =2a 1+d 3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1. (2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3. (ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,所以S n =⎝⎛⎭⎪⎫S 1+12·13n --12=12·3n -12.当n ≥2时,a n =S n -S n -1=12·3n -12-⎝ ⎛⎭⎪⎫12·13n --12=13n -,而a 1=1也满足a n =13n -.所以,数列{a n }的通项公式是a n =13n -.。
苏州大学2018届高考考前指导卷2(终稿)
(2)①若
,求
的最大值;
②在 x轴上是否存在一点 P,使得
为定值,若存在,求出点 P;若不存在,请说明理由.
y
B
OQ
x
A
(第 18题图)
3
19.(本小题满分 16分) 已知数列{an},{bn}满足:bn=an+1-an(n∈N*).
(1)若 a1=1,bn=n,求数列{an}的通项公式;
(2)若 bn+1bn-1=bn(n≥2),且 b1=1,b2=2.
(1)若点 M 是线段 BC的中点,
,求 b的值;
(2)若
,求△ ABC的面积.
,
.
2
17.(本小题满分 14分) 某校在圆心角为直角,半径为
的扇形区域内进行野外生存训练.如图所示,在相距
的 A,B
两个位置分别有 300,100名学生,在道路 OB上设置集合地点 D,要求所有学生沿最短路径到 D点集
S← 2I+1 I← I+2 End While Print S (第 5题图)
为▲.
8.设 Sn是等比数列{an}的前 n项和,若满足 a4+3a11=0,则
▲.
9.已知
,函数
和
存在相同的极值点,则
▲.
10.在平面直角坐标系 xOy中,已知圆 C:x2+(y-1)2=4,若等边△PAB的一边 AB为圆 C的一条弦,
所以
平面 CDE.
(2)在△ABD中,因为∠ABD=60º,BD=2AB,
所以
,即
,
因为
,所以
又
,所以
平面 ACD,
又
面 ABC,所以平面 ABC⊥平面 ACD.
16.解(1)因为点 M 是线段 来自C的中点,,设,则
江苏省苏州大学高三数学考前指导试题(含解析)
2017年江苏省苏州大学高考数学考前指导试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣1,0,2},B={2,a2},若B⊆A,则实数a的值为.2.已知(2﹣i)(m+2i)=10,i是虚数单位,则实数m的值为.3.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为.4.已知双曲线的离心率为,则b= .5.如图是一个算法流程图,则输出的k值是6.若a,b∈{0,1,2},则函数f(x)=ax2+2x+b有零点的概率为.7.设变量x,y满足约束条件,则目标函数z=2x+y的最小值为.8.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺寸,容纳谷2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为丈.9.等比数列{a n}的前n项和为S n,公比q≠1,若,则q的值为.10.已知圆C:(x﹣1)2+(y﹣a)2=16,若直线ax+y﹣2=0与圆C相交于AB两点,且CA⊥CB,则实数a的值是.11.设点A(1,2),非零向量,若对于直线3x+y﹣4=0上任意一点P,恒为定值,则= .12.若a>0,b>0,且,则a+2b的最小值为.13.已知函数,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则的取值范围为.14.在△ABC中,若3sinC=2sinB,点E,F分别是AC,AB的中点,则的取值范围为.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.已知函数f(x)=(1+tanx)cos2x.(Ⅰ)求函数f(x)的定义域和最小正周期;(Ⅱ)当x∈(0,)时,求函数f(x)的值域.16.如图,在四棱锥S﹣ABCD中,四边形ABCD为矩形,E为SA的中点,SB=2,BC=3,.(Ⅰ)求证:SC∥平面BDE;(Ⅱ)求证:平面ABCD⊥平面SAB.17.在平面直角坐标系xoy中,已知点P(2,1)在椭圆C:上且离心率为.(1)求椭圆C的方程;(2)不经过坐标原点O的直线l与椭圆C交于A,B两点(不与点P重合),且线段AB的中为D,直线OD的斜率为1,记直线PA,PB的斜率分别为k1,k2,求证:k1•k2为定值.18.如图,某地区有一块长方形植物园ABCD,AB=8(百米),BC=4(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG满足下列要求:E在CD的延长线上,H在BA的延长线上,DE=0.5(百米),AH=4(百米),N为AH的中点,FN⊥AH,EF为曲线段,它上面的任意一点到AD与AH的距离乘积为定值,FG,GH均为线段,GH⊥HA,GH=0.5(百米).(1)求四边形FGHN的面积;(2)已知音乐广场M在AB上,AM=2(百米),若计划在EFG的某一处P开一个植物园大门,在原植物园ABCD内选一点Q,为中心建一个休息区,使得QM=PM,且∠QMP=90°,问点P在何处,AQ最小.19.已知函数f(x)=,且方程f(x)﹣m=0有两个相异实数根x1,x2(x1>x2).(1)求函数f(x)的单调递增区间;(2)求实数m的取值范围;(3)证明:x12x2+x1x22>2.20.已知数列{c n}的前n项和为S n,满足2S n=n(c n+2).(1)求c1的值,并证明数列{c n}是等差数列;(2)若,且数列{a n}的最大项为.①求数列{a n}的通项公式;②若存在正整数x,使a m,a n,xa k成等差数列(m<n<k,m,n,k∈N*),则当T(x)=a m+a n+xa k 取得最大值时,求x的最小值.2017年江苏省苏州大学高考数学考前指导试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣1,0,2},B={2,a2},若B⊆A,则实数a的值为0 .【考点】18:集合的包含关系判断及应用.【分析】由B⊆A,可得a2=0,解得a.【解答】解:∵B⊆A,∴a2=0,解得a=0.故答案为:0.2.已知(2﹣i)(m+2i)=10,i是虚数单位,则实数m的值为 4 .【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:(2﹣i)(m+2i)=10,化为:2m﹣8+(4﹣m)i=0,∴2m﹣8=4﹣m=0,解得m=4.故答案为:4.3.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为120 .【考点】B3:分层抽样方法;C7:等可能事件的概率.【分析】本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以知二求一.【解答】解:∵B层中每个个体被抽到的概率都为,∴总体中每个个体被抽到的概率是,∴由分层抽样是等概率抽样得总体中的个体数为10÷=120故答案为:120.4.已知双曲线的离心率为,则b= .【考点】KC:双曲线的简单性质.【分析】利用双曲线的离心率列出关系式求解即可.【解答】解:双曲线,可得a=1,e=,可得c=,则b==.故答案为:.5.如图是一个算法流程图,则输出的k值是11【考点】EF:程序框图.【分析】先判断程序框图的结构为直到型循环结构,然后按照程序框图进行循环,直到满足条件时输出k的值即可.【解答】解:根据程序框图分析,本框图为直到型循环结构第1次循环:k=2 S=4﹣5=﹣1 k=﹣1第2次循环:S=1﹣5=﹣4 k=﹣4第3次循环:S=16﹣5=11 k=11第3次循环:S=121﹣5=106 满足条件S>100,跳出循环输出k的值为11.故答案为:11.6.若a,b∈{0,1,2},则函数f(x)=ax2+2x+b有零点的概率为.【考点】CB:古典概型及其概率计算公式.【分析】当函数f(x)=ax2+2x+b没有零点时,a≠0,且△=4﹣4ab<0,即ab>1,由此利用对立事件概率计算公式能求出函数f(x)=ax2+2x+b有零点的概率.【解答】解:a,b∈{0,1,2},当函数f(x)=ax2+2x+b没有零点时,a≠0,且△=4﹣4ab<0,即ab>1,∴(a,b)有三种情况:(1,2),(2,1),(2,2),基本事件总数n=3×3=9,∴函数f(x)=ax2+2x+b有零点的概率为p=1﹣.故答案为:.7.设变量x,y满足约束条件,则目标函数z=2x+y的最小值为 3 .【考点】7C:简单线性规划.【分析】先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+y,过可行域内的点B(1,1)时的最小值,从而得到z最小值即可.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域△ABC,A(2,0),B(1,1),C(3,3),则目标函数z=2x+y的最小值为3.故答案为:3.8.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺寸,容纳谷2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为 5.4 丈.【考点】L2:棱柱的结构特征.【分析】根据圆柱的体积和高计算出圆柱的底面半径,从而求出圆周的底面周长.【解答】解:由题意得,圆柱形谷仓底面半径为r尺,谷仓高h=尺.于是谷仓的体积V==2000×1.62.解得r≈9.∴圆柱圆的周面周长为2πr≈54尺.故答案为:5.4.9.等比数列{a n}的前n项和为S n,公比q≠1,若,则q的值为﹣.【考点】89:等比数列的前n项和.【分析】根据等比数列的前n项和公式,列方程求解即可.【解答】解:等比数列{a n}中,其前n项和为S n,公比q≠1,由得=,整理得2q2﹣q﹣1=0,即(q﹣1)(2q+1)=0,解得q=﹣或q=1(不合题意,舍去),所以q的值为﹣.故答案为:﹣.10.已知圆C:(x﹣1)2+(y﹣a)2=16,若直线ax+y﹣2=0与圆C相交于AB两点,且CA⊥CB,则实数a的值是﹣1 .【考点】J9:直线与圆的位置关系.【分析】求出圆C的圆心C(1,a),半径r=4,由直线ax+y﹣2=0与圆C相交于AB两点,且CA⊥CB,得到AB=4,由此利用圆心C(1,a)到直线AB的距离d==,能求出a.【解答】解:圆C:(x﹣1)2+(y﹣a)2=16的圆心C(1,a),半径r=4,∵直线ax+y﹣2=0与圆C相交于AB两点,且CA⊥CB,∴AB==4,∴圆心C(1,a)到直线AB的距离:d==,解得a=﹣1.故答案为:﹣1.11.设点A(1,2),非零向量,若对于直线3x+y﹣4=0上任意一点P,恒为定值,则= 3 .【考点】9R:平面向量数量积的运算.【分析】设点P(x,y),由点P为直线上的任意一点,表示出向量,由•恒为定值,求出m、n的关系,再计算.【解答】解:设点P(x,y),∵点P为直线3x+y﹣4=0上的任意一点,∴y=4﹣3x,∴=(x﹣1,2﹣3x);又非零向量=(m,n),∴•=m(x﹣1)+n(2﹣3x)=(m﹣3n)x+(2n﹣m),且恒为定值,∴m﹣3n=0,即m=3n;∴==3.故答案为:3.12.若a >0,b >0,且,则a+2b 的最小值为.【考点】7F :基本不等式.【分析】把a+2b 变形为a+2b=,再利用已知可得a+2b=,利用基本不等式即可得出.【解答】解:∵a >0,b >0,且,∴a+2b===﹣==.当且仅当,a >0,b >0,且,即,a=时取等号.∴a+2b 的最小值为.故答案为.13.已知函数,若f (x 1)=f (x 2)=f (x 3)(x 1<x 2<x 3),则的取值范围为 (﹣1,0) .【考点】5B:分段函数的应用.【分析】利用导数法,分析函数的单调性及极值,可得f(x1)=f(x2)=f(x3)∈(0,),即有﹣<x1<﹣,可得==1+,计算即可得到所求范围.【解答】解:函数,∴函数f′(x)=,故当x<0时,函数为增函数,且f(x)<,当0≤x<1时,函数为增函数,且0≤f(x)<,当x≥1时,函数为减函数,且0<f(x)≤,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则f(x1)=f(x2)=f(x3)∈(0,),即﹣<x1<﹣,故==1+∈(﹣1,0),故答案为:(﹣1,0).14.在△ABC中,若3sinC=2sinB,点E,F分别是AC,AB的中点,则的取值范围为.【考点】HP:正弦定理.【分析】由已知及正弦定理得AC=AB,AE=AC,AF=,由余弦定理可求BE2=AB2﹣AB2cosA,CF2=AB2﹣AB2cosA,从而化简可得=,结合范围cosA ∈(﹣1,1),可求的取值范围.【解答】解:∵3sinC=2sinB ,可得:3AB=2AC ,即:AC=AB ,又∵点E ,F 分别是AC ,AB 的中点,∴AE=AC ,AF=,∴在△ABE 中,由余弦定理可得:BE 2=AB 2+AE 2﹣2AB•AEcosA=AB 2+(AB )2﹣2AB•AB•cosA=AB 2﹣AB 2cosA ,在△ACF 中,由余弦定理可得:CF 2=AF 2+AC 2﹣2AF•ACcosA=(AB )2+(AB )2﹣2•AB•AB•cosA=AB 2﹣AB 2cosA ,∴==,∵A ∈(0,π),∴cosA ∈(﹣1,1),可得:∈(,),∴可得: =∈.故答案为:.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.已知函数f (x )=(1+tanx )cos 2x .(Ⅰ)求函数f (x )的定义域和最小正周期;(Ⅱ)当x∈(0,)时,求函数f(x)的值域.【考点】GL:三角函数中的恒等变换应用;H1:三角函数的周期性及其求法.【分析】(1)由二倍角公式和两角和的正弦公式对函数化简,利用周期公式求得函数的最小正周期.(2)根据x的范围确定2x+的范围,进而利用正弦函数的性质求得函数的值域.【解答】解:(Ⅰ)函数f(x)的定义域为{x|x≠+kπ,k∈Z},∵f(x)=(1+tanx)cos2x=cos2x+sinxcosx,=cos2x+sin2x+=sin(2x+)+,∴f(x)的最小正周期为T=π.(Ⅱ)∵x∈(0,),∴<2x+<,∴sin(2x+)∈(﹣,1],∴f(x)∈(0,],即当x∈(0,)时,求函数f(x)的值域为(0,].16.如图,在四棱锥S﹣ABCD中,四边形ABCD为矩形,E为SA的中点,SB=2,BC=3,.(Ⅰ)求证:SC∥平面BDE;(Ⅱ)求证:平面ABCD⊥平面SAB.【考点】LY:平面与平面垂直的判定;LS:直线与平面平行的判定.【分析】(Ⅰ)连接AC交BD于F,则F为AC中点,连接EF,可得EF∥SC,即SC∥平面BDE.(Ⅱ)由SB2+BC2=SC2,得BC⊥SB,又四边形ABCD为矩形,即BC⊥平面SAB,可证平面ABCD ⊥平面SAB.【解答】证明:(Ⅰ)连接AC交BD于F,则F为AC中点,连接EF,∵E为SA的中点,F为AC中点,∴EF∥SC,又EF⊂面BDE,SC⊄面BDE,∴SC∥平面BDE.(Ⅱ)∵SB=2,BC=3,,∴SB2+BC2=SC2,∴BC⊥SB,又四边形ABCD为矩形,∴BC⊥AB,又AB、SB在平面SAB内且相交,∴BC⊥平面SAB,又BC⊂平面ABCD,∴平面ABCD⊥平面SAB.17.在平面直角坐标系xoy中,已知点P(2,1)在椭圆C:上且离心率为.(1)求椭圆C的方程;(2)不经过坐标原点O的直线l与椭圆C交于A,B两点(不与点P重合),且线段AB的中为D,直线OD的斜率为1,记直线PA,PB的斜率分别为k1,k2,求证:k1•k2为定值.【考点】KH:直线与圆锥曲线的综合问题;K4:椭圆的简单性质;KL:直线与椭圆的位置关系.【分析】(1)根据椭圆的离心率公式,将P代入椭圆方程,即可求得a和b的值,求得椭圆方程;(2)根据中点坐标公式及直线斜率公式,求得x1+x2=y1+y2,利用点差法求得直线l的斜率,将直线方程代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得k1•k2为定值.【解答】解:(1)由椭圆的离心率e===,则a2=2b2,由P(2,1)在椭圆上,则,解得:b2=3,则a2=6,∴椭圆的标准方程:;(2)证明:设A(x1,y1),B(x2,y2),则D(,),由直线的斜率为1,则x1+x2=y1+y2,由点A,B在椭圆上,则,,两式相减整理得:,x1﹣x2+2(y1﹣y2)=0,则=﹣,设直线l的方程y=﹣x+t,,整理得:3x2﹣4tx+4t2﹣12=0,则x1+x2=,x1x2=,则k1•k2==,===,∴k1•k2为定值.18.如图,某地区有一块长方形植物园ABCD,AB=8(百米),BC=4(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG满足下列要求:E在CD的延长线上,H在BA的延长线上,DE=0.5(百米),AH=4(百米),N为AH的中点,FN⊥AH,EF为曲线段,它上面的任意一点到AD与AH的距离乘积为定值,FG,GH均为线段,GH⊥HA,GH=0.5(百米).(1)求四边形FGHN的面积;(2)已知音乐广场M在AB上,AM=2(百米),若计划在EFG的某一处P开一个植物园大门,在原植物园ABCD内选一点Q,为中心建一个休息区,使得QM=PM,且∠QMP=90°,问点P在何处,AQ最小.【考点】5C:根据实际问题选择函数类型.【分析】(1)建立坐标系,根据E点坐标得出曲线EF的方程,从而得出F点坐标,代入梯形的面积公式即可;(2)设P(x,y),用x,y表示出,,根据Q点位置求出x的范围得出P在曲线EF上,利用距离公式和基本不等式的性质得出AQ最小时的x的值即可得出P点位置.【解答】解:(1)以A为原点,以AB,AD所在直线为坐标轴建立平面直角坐标系xOy,如图所示:则E(﹣,4),∴曲线EF的方程为y=﹣,∴F(﹣2,1),N(﹣2,0),H(﹣4,0),G(﹣4,),∴FN=1,GH=,HN=2,∴四边形FGHN的面积为S==(平方百米).(2)设P(x,y),则=(x﹣2,y),=(y,2﹣x),=(2+y,2﹣x),∴,解得﹣2≤x≤2,∴P点在曲线EF上,﹣2≤x≤﹣,∴y=﹣,∴|AQ|=====﹣x﹣+2≥2+2,当且仅当﹣x=即x=﹣时取等号.∴当P为(﹣,﹣)时,|AQ|最小.19.已知函数f(x)=,且方程f(x)﹣m=0有两个相异实数根x1,x2(x1>x2).(1)求函数f(x)的单调递增区间;(2)求实数m的取值范围;(3)证明:x12x2+x1x22>2.【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(2)根据函数的单调性求出f(x)的最大值,通过讨论m的范围,结合函数的单调性判断出方程f(x)﹣m=0有两个相异实数根的m的范围即可;(3)由f(x1)=f(x2),得=,令x1=x2t,∵x1>x2,∴t>1,问题转化为证明lnt﹣1>0,即证lnt﹣>0,(*),令g(t)=lnt﹣,根据函数的单调性证明即可.【解答】解:(1)函数f(x)的定义域是(0,+∞),f′(x)=,令f′(x)>0,解得:0<x<1,故f(x)在(0,1)递增;(2)由(1),令f′(x)<0,解得:x>1,故f(x)在(0,1)递增,在(1,+∞)递减,故f(x)max=f(1)=1,①m>1时,f(x)=m无解,②m=1时,f(x)=1有1个解,③m≤0,x∈(1,+∞)时,f(x)>0,f(x)=m无解,x∈(0,1)时,f(x)递增,f(x)=m至多1个解,故x∈(0,+∞)时,f(x)=m至多1个解,④0<m<1时,x∈(0,1)时,f(x)递增,f()=0,f(1)=1,f(x)的图象不间断,f()<m<f(1),f(x)=m在(,1)内有1个解,即在(0,1)内有1个解,x∈(1,+∞)时,f(x)是减函数,先证明lnx≤x,令g(x)=lnx﹣x,则g′(x)=,令g′(x)>0,解得:0<x<e,令g′(x)<0,解得:x>e,故g(x)在(0,e)递增,在(e,+∞)递减,故g(x)max=g(e)=0,故lnx≤x,x∈(1,+∞)时,f(x)=≤<<=,令=m,即x=时,f()<m,又m<f(1),f(x)在(1,+∞)递减,故f(x)=m在(1,)内有1解,即在(1,+∞)内有1解,综上,当且仅当0<m<1时,f(x)=m在(0,+∞)内有2解,实数m的范围是(0,1);(3)由f(x1)=f(x2),得=,令x1=x2t,∵x1>x2,∴t>1,=1+2lnx2,则lnx2=lnt﹣,下面证明x1x2>1,∵lnx1+lnx2=2lnx2+lnt=lnt﹣1,故只需证明lnt﹣1>0,即证lnt﹣>0,(*),令g(t)=lnt﹣,∵g′(t)=>0,∴g(t)在(1,+∞)递增,g(t)在(0,+∞)上的图象不间断,则g(t)>g(1)=0,(*)成立,故x1x2>1,由基本不等式得x1+x2>2>2,故x12x2+x1x22>2.20.已知数列{c n}的前n项和为S n,满足2S n=n(c n+2).(1)求c1的值,并证明数列{c n}是等差数列;(2)若,且数列{a n}的最大项为.①求数列{a n}的通项公式;②若存在正整数x,使a m,a n,xa k成等差数列(m<n<k,m,n,k∈N*),则当T(x)=a m+a n+xa k 取得最大值时,求x的最小值.【考点】8H:数列递推式;8E:数列的求和.【分析】(1)2S n=n(c n+2),2S1=2c1=c1+2,解得c1=2,n≥2时,2c n=2S n﹣2S n﹣1.化为:(n﹣2)c n﹣(n﹣1)c n﹣1+2=0.可得(n﹣1)c n+1﹣nc n+2=0,相减可得:2c n=c n+1+c n﹣1.即可证明.(2)①设数列{c n}的公差为d,则a n=.对d分类讨论,d≤0时舍去,d>0,a n+1﹣a n=<0,在n≥2时恒成立,可得a2为最大值.由a2==,解得d.可得a n.②存在正整数x,使a m,a n,xa k成等差数列(m<n<k,m,n,k∈N*),可得2a n=a m+xa k,T(x)=a m+a n+xa k=3a n,由①可知:a2最大,首先考察a2.此时xa k=2a2﹣a1.即=,解得x=(k≥3).利用其单调性即可得出.【解答】解:(1)∵2S n=n(c n+2),∴2S1=2c1=c1+2,解得c1=2,n≥2时,2c n=2S n﹣2S n﹣1=n(c n+2)﹣(n﹣1)(c n﹣1+2).化为:(n﹣2)c n﹣(n﹣1)c n﹣1+2=0.∴(n﹣1)c n+1﹣nc n+2=0,相减可得:2c n=c n+1+c n﹣1.∴数列{c n}是等差数列,首项为2.(2)①设数列{c n}的公差为d,则a n=.若d≤0,则a n=≤a1=1,与已知数列{a n}的最大项为矛盾.若d>0,a n+1﹣a n=﹣=<0,在n≥2时恒成立,可得a2为最大值.由a2==,解得d=3.∴a n=.②∵存在正整数x,使a m,a n,xa k成等差数列(m<n<k,m,n,k∈N*),∴2a n=a m+xa k,T(x)=a m+a n+xa k=3a n,由①可知:a2最大,首先考察a2.此时xa k=2a2﹣a1=﹣1=.即=,解得x=(k≥3).考察3k﹣1=8,11,14,17,….当k=11时,x取得最小值,x==96∈N*.∴当T(x)=a m+a n+xa k取得最大值时,x的最小值为96.- 21 -。
2019苏州大学指导卷1
S ←0 n ←0 While S ≤15 S ←S +2n n ←n +1 End While Print n苏州大学 2019 届高考数学指导卷(1)一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1. 已知集合 {1,}A a =,若2a A ∈,则a = ▲ .2. 复数z 满足11i z=+(i 为虚数单位),则复数z 的虚部为 ▲ . 3. 在平面直角坐标系xOy 中,抛物线22(0)x py p =>的焦点坐标为(0,1),则实数 p 的值为 ▲ .4. 下表是某同学五次数学附加题测试的得分情况,则这五次测试得分的方差为 ▲ .5. 运行右图所示的伪代码,则输出的结果为 ▲ .6. 设集合B 是集合{1,2,3,4}A =的子集,若记事件 M 为“集合 B 中的 元素之和为5”,则事件M 发生的概率为 ▲ .7. 设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++= 垂直,则实 数a 的值是 ▲.8. 已知等差数列{}n a 的前n 项和为n S ,且912162a a =+,24a =,则数列1{}n S 的前10项的和为 ▲ .9. 已知函数2()log ()a f x x a x b =++,若(2)(2)1f f --=-,则实数a 的值是 ▲ . 10. 某种卷筒卫生纸绕在盘上,空盘时盘芯直径是40mm ,满盘时直径是120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约是▲ m .( π取3.14,精确到1m )11. 已知函数()sin()2cos()(0)f x x x ϕϕϕπ=+-+<<的图象关于直线x π=对称,则cos 2ϕ= ▲.12. 过点 (1,1)P -作圆22:()(2)1()C x t y t t R -+-+=∈的切线,切点分别为,A B ,则PA PB ⋅u u u r u u u r的最小值为 ▲ .13. 已知函数22,0,(),0,x x x f x e x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是 ▲.次数 1 2 3 4 5得分 33 30 27 29 3114. 在ABC ∆中,角 ,,A B C 所对的边分别为,,a b c ,若,,a b c 成等差数列,则cos 2cos A C +的最大值为 ▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)将射线1(0)3y x x =≥绕着原点逆时针旋转4π后所得的射线经过点(cos ,sin )A θθ. (1)求点A 的坐标;(2)若向量(cos 2,sin 2)m x x =,(2cos ,sin )n θθ=,当[0,]2x π∈时,求函数()f x m n =⋅的最大值和最小值.16. (本小题满分14分)如图,三棱柱111ABC A B C -中,,M N 分别为11,AB B C 的中点. (1)求证://MN 平面11AAC C ;(2)若11CC CB =,CA CB =,平面11CC B B ⊥平面ABC ,求证:AB ⊥平面CMN .17. (本小题满分14分)如图,,OA OB 是两条互相垂直的笔直公路,半径2OA km =的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB 上新增一个入口P (点P 不与,A B 重合),并新建两条都与圆弧AB 相切的笔直公路,MB MN ,切点分别是,B P .设POA θ∠=,公路,MB MN的总长为()f θ.(1)求()f θ关于θ的函数关系式,并写出函数的定义域; (2)求()f θ的最小值.18. (本小题满分16分)如图,在平面直角坐标系xOy 62222:1(0)x y C a b a b +=>>过点6M . (1)求椭圆C 的标准方程;(2),A B 是椭圆的左右顶点,,P Q 是椭圆上与,A B 不重合的两点,若满足2AP QB k k =,求证:直线AP 与BQ 的交点在定直线上;(3)若直线0x y m ++=上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.19. (本小题满分16分) 已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(,1)()k k k N +∈上有零点,求k 的值; (3)若不等式()(1)()x m x f x x-->对任意正实数x 恒成立,求正整数m 的取值集合.20. (本小题满分16分)设等差数列{}n a 的公差为d ,数列{}n b 的前n 项和为n T ,满足1(1)()2n n n n T b n N +=-∈,且52d a b ==.若实数23{}(,3)k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P . (1)请判断12,b b 是否具有性质6P ,并说明理由;(2)设n S 为数列{}n a 的前n 项和,若{2}n n S a λ-是单调递增数列,求证:对任意的(,3)k k N k *∈≥,实数λ都不具有性质k P ;(3)设n H 是数列{}n T 的前n 项和,若对任意的n N *∈,21n H -都具有性质k P ,求所有满足条件的k 的值.。
2019年江苏省苏州市高考数学考前指导卷含答案解析
2019年江苏省苏州市高考数学考前指导卷一、填空题:本大题共14个小题,每小题5分,共70分.1.设全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,4},则∁U(A∪B)=.2.已知复数z1=1+ai,z2=3+2i,a∈R,i是虚数单位,若z1z2是实数,则a=.3.某班有学生60人,现将所有学生按1,2,3,…,60随机编号.若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a,28,b,52号学生在样本中,则a+b=.4.等比数列{a n}的前n项和为S n,且a3=2S2+1,a4=2S3+1,则公比q为.5.执行如图所示的流程图,输出的S的值为.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.7.双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=.8.已知函数f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值为4,最小值为2,且f(x0)=2,则f(x0+)=.9.在三棱锥S﹣ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2,则该三棱锥的体积为.10.已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为.11.已知平行四边形ABCD中.∠BAD=120°,AB=1,AD=2,点P是线段BC上的一个动点,则•的取值范围是.12.若x>0,y>0,则的最小值为.13.在钝角△ABC中,已知sin2A+sin2A=1,则sinB•cosC取得最小值时,角B等于.14.若不等式|mx3﹣lnx|≥1对∀x∈(0,1]恒成立,则实数m的取值范围是.二、解答题(每题6分,满分90分,将答案填在答题纸上)15.在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=﹣,c=,sinA=sinC.(Ⅰ)求a的值;(Ⅱ)若角A为锐角,求b的值及△ABC的面积.16.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.(1)求证:BC⊥AM;(2)若AM∥平面BDE,试求线段AM的长.17.苏州市举办“广电狂欢购物节”促销活动,某厂商拟投入适当的广告费,对所售产品进行促销,经调查测算,该促销产品在狂欢购物节的销售量p万件与广告费用x万元满足p=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品p万件还需投入成本(10+2p)万元(不含广告费用),产品的销售价格定为(4+)元/件,假定厂商生产的产品恰好能够售完.(1)将该产品的利润y万元表示为广告费用x万元的函数;(2)问广告费投入多少万元时,厂商的利润最大?18.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.19.已知数列{a n}与{b n}满足a n+1﹣qb n+1=a n﹣qb n,其中q∈R,n∈N*.(1)若{b n}是公差为2的等差数列,且a1=q=3,求数列{a n}的通项公式;(2)若{b n}是首项为2,公比为q的等比数列,a1=3q<0,且对任意m,n∈N*,a n≠0,都有∈(,6),试求q的取值范围.20.已知a∈R,函数f(x)=e x﹣1﹣ax的图象与x轴相切.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>1时,f(x)>m(x﹣1)lnx,求实数m的取值范围.2019年江苏省苏州市高考数学考前指导卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共70分.1.设全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,4},则∁U(A∪B)={5} .【考点】交、并、补集的混合运算.【分析】求出A与B的并集,找出并集的补集即可.【解答】解:∵集合A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4},∵全集U={1,2,3,4,5},∴∁U(A∪B)={5}.故答案为:{5}2.已知复数z1=1+ai,z2=3+2i,a∈R,i是虚数单位,若z1z2是实数,则a=.【考点】复数代数形式的乘除运算.【分析】利用复数定义是法则、复数为实数的充要条件即可得出.【解答】解:∵z1z2=(1+ai)(3+2i)=3﹣2a+(3a+2)i是实数,∴3a+2=0,解得a=﹣.故答案为:.3.某班有学生60人,现将所有学生按1,2,3,…,60随机编号.若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,a,28,b,52号学生在样本中,则a+b=56.【考点】系统抽样方法.【分析】求出样本间隔即可得到结论.【解答】解:∵样本容量为5,∴样本间隔为60÷5=12,∵编号为4,a,28,b,52号学生在样本中,∴a=16,b=40,∴a+b=56,故答案为:564.等比数列{a n}的前n项和为S n,且a3=2S2+1,a4=2S3+1,则公比q为3.【考点】等比数列的前n项和.【分析】a3=2S2+1,a4=2S3+1,两式相减即可得出.【解答】解:设等比数列{a n}的公比为q,∵a3=2S2+1,a4=2S3+1,∴a4﹣a3=2a3,化为=3=q.故答案为:3.5.执行如图所示的流程图,输出的S的值为2.【考点】程序框图.【分析】模拟程序框图的运行过程,即可得出该程序执行的结果是什么.【解答】解:i=0<4,s==,i=1<4,s==﹣,i=2<4,s==﹣3,i=3<4,s==2,i=4,输出s=2,故答案为:2.6.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.【考点】互斥事件的概率加法公式.【分析】利用列举法求出甲、乙两人各抽取1张的基本事件的个数和两人都中奖包含的基本事件的个数,由此能求出两人都中奖的概率.【解答】解:设一、二等奖各用A,B表示,另1张无奖用C表示,甲、乙两人各抽取1张的基本事件有AB,AC,BA,BC,CA,CB共6个,其中两人都中奖的有AB,BA共2个,故所求的概率P=.故答案为:.7.双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率e=.【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c 的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程得y=即M(c,)在△MF1F2中tan30°=即解得故答案为:8.已知函数f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值为4,最小值为2,且f(x0)=2,则f(x0+)=3.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数最值列式求得A,k的值,由f(x0)=2,得到sin(2x0+φ)=﹣1,则cos(2x0+φ)=0,写出f(x0+),结合诱导公式求值.【解答】解:由f(x)=Asin(2x+φ)+k,∵f(x)=Asin(2x+φ)+k(A>0,k>0)的最大值为4,最小值为2,∴,解得:A=1,k=3.∴f(x)=sin(2x+φ)+3.由f(x0)=2,得sin(2x0+φ)+3=2,∴sin(2x0+φ)=﹣1,则cos(2x0+φ)=0.则f(x0+)=+3=cos(2x0+φ)+3=3.故答案为:3.9.在三棱锥S﹣ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2,则该三棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】由题意画出图形,结合已知可得SC⊥平面SAB,并求出SC,解三角形求得△ASB 的面积,代入体积公式求得三棱锥的体积.【解答】解:如图,∵SA⊥SC,SB⊥SC,且SA∩SB=S,∴SC⊥平面SAB,在Rt△BSC中,由SB=2,BC=3,得SC=.在△SAB中,由取AB中点D,连接SD,则SD⊥AB,且BD=.∴.∴.故答案为:.10.已知直线l:x﹣y=1与圆M:x2+y2﹣2x+2y﹣1=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为.【考点】直线与圆的位置关系.【分析】先求出弦长|AB|的长度,然后结合圆与直线的位置关系图象,然后将ABCD的面积看成两个三角形△ABC和△ACD的面积之和,分析可得当BD为AC的垂直平分线时,四边形ABCD的面积最大.【解答】解:把圆M:x2+y2﹣2x+2y﹣1=0化为标准方程:(x﹣1)2+(y+1)2=3,圆心(1,﹣1),半径r=.直线与圆相交,由点到直线的距离公式的弦心距d==,由勾股定理的半弦长==,所以弦长|AB|=2×=.又B,D两点在圆上,并且位于直线AC的两侧,四边形ABCD的面积可以看成是两个三角形△ABC和△ACD的面积之和,如图所示,当B,D为如图所示位置,即BD为弦AC的垂直平分线时(即为直径时),两三角形的面积之和最大,即四边形ABCD的面积最大,最大面积为:S=×|AB|×|CE|+×|AB|×|DE|==.故答案为:.11.已知平行四边形ABCD中.∠BAD=120°,AB=1,AD=2,点P是线段BC上的一个动点,则•的取值范围是[﹣,2].【考点】平面向量数量积的运算.【分析】以为坐标原点,以BC所在的直线为x轴,建立如图所述的直角坐标系,作AE⊥BC,垂足为E,求出A(,),D(,),设点P(x,0),0≤x≤2,根据向量的坐标运算以及向量的数量积的运算得到•=(x﹣)2﹣,根据二次函数的性质即可求出答案.【解答】解:以为坐标原点,以BC所在的直线为x轴,建立如图所述的直角坐标系,作AE⊥BC,垂足为E,∵∠BAD=120°,AB=1,AD=2,∴∠ABC=60°,∴AE=,BE=,∴A(,),D(,),∵点P是线段BC上的一个动点,设点P(x,0),0≤x≤2,∴=(x﹣,﹣),=(x﹣,﹣),∴•=(x﹣)(x﹣)+=(x﹣)2﹣,∴当x=时,有最小值,最小值为﹣,当x=0时,有最大值,最大值为2,则•的取值范围为[﹣,2],故答案为:[﹣,2].12.若x>0,y>0,则的最小值为.【考点】基本不等式.【分析】设=t>0,变形=+t=+﹣,再利用基本不等式的性质即可得出.【解答】解:设=t>0,则=+t=+﹣≥﹣=﹣,当且仅当=时取等号.故答案为:﹣.13.在钝角△ABC中,已知sin2A+sin2A=1,则sinB•cosC取得最小值时,角B等于.【考点】三角函数的化简求值.【分析】利用三角函数恒等变换的应用化简已知等式可得sin(2A﹣)=,由A∈(0,π),可得:2A﹣∈(﹣,),从而可求A的值,又sinB•cosC=﹣sin(2B+),由题意可得sin(2B+)=1,解得B=kπ+,k∈Z,结合范围B∈(0,π),从而可求B 的值.【解答】解:∵sin2A+sin2A=1,可得: +sin2A=1,整理可得:sin2A ﹣cos2A=1,∴(sin2A﹣cos2A)=1,可得:sin(2A﹣)=1,∴解得:sin(2A﹣)=,∵A∈(0,π),可得:2A﹣∈(﹣,),∴2A﹣=,或,从而解得解得:A=或(由题意舍去),∴sinB•cosC=sinBcos(﹣B)=sinB(﹣cosB+sinB)=﹣cos2B﹣sin2B=﹣sin(2B+),∴当sin(2B+)=1时,sinB•cosC=﹣sin(2B+)取得最小值,此时,2B+=2kπ+,k∈Z,∴解得:B=kπ+,k∈Z,∵B∈(0,π),∴B=.故答案为:.14.若不等式|mx3﹣lnx|≥1对∀x∈(0,1]恒成立,则实数m的取值范围是[e2,+∞).【考点】绝对值不等式的解法.【分析】根据绝对值不等式的性质,结合不等式恒成立,利用参数分离法,构造函数,求函数的导数以及函数的最值即可.【解答】解:|mx3﹣lnx|≥1对任意x∈(0,1]都成立等价为mx3﹣lnx≥1,或mx3﹣lnx≤﹣1,即m≥,记f(x)=,或m≤,记g(x)=,f'(x)==,由f'(x)==0,解得lnx=﹣,即x=e﹣,由f(x)>0,解得0<x<e﹣,此时函数单调递增,由f(x)<0,解得x>e﹣,此时函数单调递减,即当x=e﹣时,函数f(x)取得极大值,同时也是最大值f(e﹣)===e2,此时m≥e2,若m≤,∵当x=1时,=0,∴当m>0时,不等式m≤不恒成立,综上m≥e2.故答案为:[e2,+∞).二、解答题(每题6分,满分90分,将答案填在答题纸上)15.在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=﹣,c=,sinA=sinC.(Ⅰ)求a的值;(Ⅱ)若角A为锐角,求b的值及△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)根据题意和正弦定理求出a的值;(Ⅱ)由二倍角的余弦公式变形求出sin2A,由A的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.【解答】解:(Ⅰ)在△ABC中,因为,由正弦定理,得.…(Ⅱ)由得,,由得,,则,由余弦定理a2=b2+c2﹣2bccosA,化简得,b2﹣2b﹣15=0,解得b=5或b=﹣3(舍负).所以.…16.在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是矩形,AF=a,点M在线段EF上.(1)求证:BC⊥AM;(2)若AM∥平面BDE,试求线段AM的长.【考点】直线与平面平行的性质;空间中直线与直线之间的位置关系.【分析】(1)由已知及等腰梯形的性质,勾股定理可证明AC⊥BC,又平面ACEF⊥平面ABCD,从而可证BC⊥平面ACEF,进而可证BC⊥AM.(2)设AC与BD交于点N,由AM∥平面BDE,可得四边形ANEM是平行四边形,可得AM=EN,由CD=a,CN=DN,∠DNC=120°,解得,又CE=a,从而可求EN,进而可求AM的值.【解答】证明:(1)由题意知,梯形ABCD为等腰梯形,且,由AB2+BC2=AC2,可知AC⊥BC,又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,所以BC⊥平面ACEF,又AM⊂平面ACEF,所以BC⊥AM.解:(2)设AC与BD交于点N,因为AM∥平面BDE,AM⊂平面ACEF,平面ACEF∩平面BDE=EN,所以AM∥EN,FE∥AC,故四边形ANEM是平行四边形,所以AM=EN,由CD=a,CN=DN,∠DNC=120°,所以,又CE=a,所以,所以.17.苏州市举办“广电狂欢购物节”促销活动,某厂商拟投入适当的广告费,对所售产品进行促销,经调查测算,该促销产品在狂欢购物节的销售量p万件与广告费用x万元满足p=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品p万件还需投入成本(10+2p)万元(不含广告费用),产品的销售价格定为(4+)元/件,假定厂商生产的产品恰好能够售完.(1)将该产品的利润y万元表示为广告费用x万元的函数;(2)问广告费投入多少万元时,厂商的利润最大?【考点】导数在最大值、最小值问题中的应用.【分析】(1)由题意知,,将代入化简即可得出.(2)y′=,对a分类讨论,利用导数研究函数的单调性即可得出.【解答】解:(1)由题意知,,将代入化简得:.(2).①当a≥1时,x∈(0,1)时,y'>0,所以函数在(0,1)上单调递增;x∈(1,a)时,y'<0,所以函数在(1,a)上单调递减,∴促销费用投入1万元时,厂家的利润最大.②当a<1时,因为函数在(0,1)上单调递增,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上所述,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.18.已知椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切.(Ⅰ)求椭圆C的方程;(Ⅱ)过点(1,0)的直线l与C相交于A,B两点,在x轴上是否存在点N,使得•为定值?如果有,求出点N的坐标及定值;如果没有,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)由椭圆的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,列出方程组,求出a,b,由此能求出椭圆方程.(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),直线方程与椭圆立,利用韦达定理、根的判别式、向量的数量积,结合已知条件能求出存在点满足.【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率为,焦点与短轴的两顶点的连线与圆x2+y2=相切,∴,解得c2=1,a2=4,b2=3∴椭圆方程为(Ⅱ)当直线l的斜率存在时,设其方程为y=k(x﹣1),A(x1,y1),B(x2,y2),则△>0,,若存在定点N(m,0)满足条件,则有=(x1﹣m)(x2﹣m)+y1y2=如果要上式为定值,则必须有验证当直线l斜率不存在时,也符合.故存在点满足19.已知数列{a n }与{b n }满足a n+1﹣qb n+1=a n ﹣qb n ,其中q ∈R ,n ∈N *. (1)若{b n }是公差为2的等差数列,且a 1=q=3,求数列{a n }的通项公式;(2)若{b n }是首项为2,公比为q 的等比数列,a 1=3q <0,且对任意m ,n ∈N *,a n ≠0,都有∈(,6),试求q 的取值范围.【考点】等比数列的性质;数列递推式. 【分析】(1)确定{a n }是首项为3,公差为6的等差数列,即可求数列{a n }的通项公式;(2)确定a n =2q n +q ,a n <0,由指数函数的单调性知,{a n }的最大值为,最小值为a 1=3q ,由题意,的最大值及最小值分别为和,即可求q 的取值范围. 【解答】解:(1)由a n+1﹣a n =q (b n+1﹣b n )=2q=6,所以{a n }是首项为3,公差为6的等差数列,故{a n }的通项公式为.(2)因为,所以,当n ≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1=2[(q n ﹣q n ﹣1)+(q n ﹣1﹣q n ﹣2)+…+(q 2﹣q )]+3q=2q n +q .当n=1时,a 1=3q ,符合上式,所以,因为a 1=3q <0,且对任意,故a n <0,特别地2q 2+q <0,于是,此时对任意n ∈N *,a n ≠0.当时,,由指数函数的单调性知,{a n }的最大值为,最小值为a 1=3q ,由题意,的最大值及最小值分别为和.由及,解得.综上所述,q 的取值范围为.20.已知a∈R,函数f(x)=e x﹣1﹣ax的图象与x轴相切.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>1时,f(x)>m(x﹣1)lnx,求实数m的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,根据函数图象与x轴相切,求出a的值,从而求出函数的单调区间;(Ⅱ)求出g(x)的导数,通过讨论m的范围,结合函数的单调性以及f(x)>m(x﹣1)lnx,求出m的范围即可.【解答】解:(Ⅰ)f′(x)=e x﹣1﹣a,设切点为(x0,0),依题意,,解得所以f′(x)=e x﹣1﹣1.当x<1时,f′(x)<0;当x>1时,f′(x)>0.故f(x)的单调递减区间为(﹣∞,1),单调递增区间为(1,+∞).(Ⅱ)令g(x)=f(x)﹣m(x﹣1)lnx,x>0.则g′(x)=e x﹣1﹣m(lnx+)﹣1,令h(x)=g′(x),则h′(x)=e x﹣1﹣m(+),(ⅰ)若m≤,因为当x>1时,e x﹣1>1,m(+)<1,所以h′(x)>0,所以h(x)即g′(x)在(1,+∞)上单调递增.又因为g′(1)=0,所以当x>1时,g′(x)>0,从而g(x)在[1,+∞)上单调递增,而g(1)=0,所以g(x)>0,即f(x)>m(x﹣1)lnx成立.(ⅱ)若m>,可得h′(x)在(0,+∞)上单调递增.因为h′(1)=1﹣2m<0,h′(1+ln(2m))>0,所以存在x1∈(1,1+ln(2m)),使得h′(x1)=0,且当x∈(1,x1)时,h′(x)<0,所以h(x)即g′(x)在(1,x1)上单调递减,又因为g′(1)=0,所以当x∈(1,x1)时,g′(x)<0,从而g(x)在(1,x1)上单调递减,而g(1)=0,所以当x∈(1,x1)时,g(x)<0,即f(x)>m(x﹣1)lnx不成立.纵上所述,k的取值范围是(﹣∞,].2019年8月1日。
苏州大学2020届高考考前指导卷数学试题
苏州大学2020届高考考前指导卷数学 Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合{|12}A x x =-≤≤,{|1}B x x =>,则A B =I ▲ . 2.已知纯虚数z 满足(1i)2i z a -=+,则实数a 等于 ▲ .3.某高速公路移动雷达测速检测车在某时段对某段路过往的400辆汽车的车速进行检测,根据检测的结果绘制出如图所示的频率分布直方图,根据直方图的数据估计400辆汽车中时速在区间[90110),的约有 ▲ 辆. 4.函数()12lg f x x x =-+的定义域为 ▲ . 5.在直角坐标系xOy 中,已知双曲线221 (0)y x λλ-=>的离心率为3,则λ的值为 ▲ . 6.执行如图所示的程序框图,输出的S 的值为 ▲ .7.展览会会务组安排了分别标有序号为“1号”、“2号”、“3号”的三辆车,采用等可能随机的顺序前往酒店接嘉宾.某与会嘉宾设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.则该嘉宾坐到“3号”车的概率是 ▲ . 8.已知函数()cos f x x x =,则()f x 在点(())22f ππ,处的切线的斜率为 ▲ . 9.已知n S 是等比数列{}n a 前n 项的和,若公比2q =,则1356a a a S ++的值是 ▲ . 10.已知2sin cos()4ααπ=+,则tan()4απ-的值是 ▲ .11.《九章算术》是我国古代著名数学经典.里面对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材的体积约为 ▲ (立方寸).(注:1丈10=尺100=寸,π 3.14≈)开始 输出S结束i ≤10i ←3N YS ←S +2i (第6题图)i ←i +2S ←4 墙体CDFEB A O(第11题图)12.已知函数2|log 2|01()3 1x x f x x +<⎧⎪=⎨>⎪⎩,≤,,若存在互不相等的正实数123x x x ,,,满足123x x x <<且123()()()f x f x f x ==,则31()x f x 的最大值为 ▲ .13.已知点P 为正方形ABCD 内部一点(包含边界),E F ,分别是线段BC CD ,中点.若0CP DP ⋅=u u u r u u u r,且AP AE AF λμ=+u u u r u u u r u u u r,则λμ+的取值范围是 ▲ .14.已知D 是ABC △边AC上一点,且1s 43co C B D A B D D A C ∠==,,则3AB BC +的最大值为▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)ABC △的内角A B C ,,的对边分别为a b c ,,,且1a =sin C c A =. (1)求C ;(2)若3b =,D 是AB 上的点,CD 平分ACB ∠,求ACD △的面积.16.(本小题满分14分)如图,在四棱锥P ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P C,),平面ABE与棱PD交于点F.(1)求证:AB EF∥;(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.EFA BC DP(第16题图)17.(本小题满分14分)如图,某公园内有一半圆形人工湖,O为圆心,半径为1千米.为了人民群众美好生活的需求,政府为民办实事,拟规划在OCD△区域种荷花,在OBD△区域建小型水上项目.已知AOC CODθ∠=∠=.(1)求四边形OCDB的面积(用θ表示);(2)当四边形OCDB的面积最大时,求BD的长(最终结果可保留根号).18.(本小题满分16分)如图,已知椭圆22221 (0)x ya ba b+=>>的离心率为22,短轴长为2,左、右顶点分别为A B,.设点(2) (0)M m m>,,连接MA交椭圆于点C.D C(1)求该椭圆的标准方程;(2)若OC CM,求四边形OBMC的面积.(第18题图)19.(本小题满分16分)已知函数2()2ln f x x ax x =-+(其中a 为常数). (1)求函数()f x 的单调区间;(2)设函数()f x 有两个极值点1212 ()x x x x <,,若12()f x mx >恒成立,求实数m 的取值范围.20.(本小题满分16分)对于数列{}n a ,若从第二项起的每一项均大于该项之前的所有项的和,则称{}n a 为P 数列. (1)若{}n a 的前n 项和32n n S =+,试判断{}n a 是否是P 数列,并说明理由;(2)设数列12310a a a a L ,,,,是首项为1-,公差为d 的等差数列,若该数列是P 数列,求d 的取值范围;(3)设无穷数列{}n a 是首项为a 、公比为q 的等比数列,有穷数列{}{}n n b c ,是从{}n a 中取出部分项按原来的顺序所组成的不同数列,其所有项和分别为12T T ,,求{}n a 是P 数列时a 与q 所满足的条件,并证明命题“若0a >且12T T =,则{}n a 不是P 数列”.苏州大学2020届高考考前指导卷数学Ⅰ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,并在相应的.....答题区域....内作答...,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .选修4 - 2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy 中,设点(5)P x ,在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点(2)Q y y -,,求1x y -⎡⎤⎢⎥⎣⎦M .B .选修4 - 4:坐标系与参数方程(本小题满分10分)在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为sin()4ρθπ-C 的参数方程为2cos 3()sin 22x y ααα=-+⎧ππ⎨=⎩,≤≤,求l 与曲线C 交点的直角坐标.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在四棱锥P ABCD-中,//AB CD,2224AB CD BC AD====,60DAB∠=︒,AE BE=,PAD△为正三角形,且平面PAD⊥平面ABCD.(1)求二面角P EC D--的余弦值;(2)线段PC上是否存在一点M,使得异面直线DM和PE所成的角的余弦值为6?若存在,指出点M的位置;若不存在,请说明理由.ACDPB (第22题图)23.(本小题满分10分)已知非空集合M 满足{012}M n ⊆L ,,,,*(2)n n ∈N ≥,.若存在非负整数 ()k k n ≤,使得当a M ∈时,均有2k a M -∈,则称集合M 具有性质P .记具有性质P 的集合M 的个数为()f n .(1)求(2)f 的值; (2)求()f n 的表达式.苏州大学2020届高考考前指导卷参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.{|12}x x <≤ 2.2 3.280 4.1(0]2,5.2 6.527.568.π2-9.13 10.12-11.5306612.4 13.24[1]3-, 14.165解答与提示:1.{|12}A B x x =<I ≤. 2. 2i (2i)(1i)22i 1i 222a a a az +++-+===+-.因为z 为纯虚数,所以2020a a -=⎧⎨+≠⎩,,解得2a =. 3.由图可知,时速在区间[8090)[110120),,,的频率为(0.010.02)100.3+⨯=,所以时速在区间[90110),的频率为10.3-,所以时速在区间[90,110)的车辆约为4000.7280⨯=辆.4.由1200x x -⎧⎨>⎩≥,,解得102x <≤,即函数()f x 的定义域为1(0]2,.5.离心率13c e a λ+===,所以2λ=. 6.执行第一次循环105S i ==,;执行第二次循环207S i ==,;执行第三次循环349S i ==,;执行第四次循环5211S i ==,,终止循环. 所以52S =.7.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,三辆车的出车顺序可能为:123,132,213,231,312,321.方案一坐“3号”车可能:132,213,231,所以136P =;方案二坐“3号”车可能:312,321,所以226P =.则该嘉宾坐到“3号”车的概率1256P P P =+=. 8.()cos sin f x x x x '=-,所以在π2x =处的切线的斜率为ππ()22k f '==-.9.2312135616[1()]111(1)131a q a a a q a q S q q-++-===-+-. 10.因为π2sin cos()4αα=+,解得1tan 3α=,所以11π13tan()14213α--==-+. 11.如图,10AB =(寸),则5AD =(寸),1CD =(寸),设圆O 的半径为x (寸),则(1)OD x =-(寸).在Rt ADO △,由勾股定理可得2225(1)x x +-=,解得13x =(寸),则该木材的体积约为221001316900x 100π=π⨯=π≈53066(立方寸). 12.函数()f x 的图象如右图所示,由题意,30()2f x <<,即319x <<,因为123()()()f x f x f x ==,所以3133()(3)x f x x x =-,令3(1,3)t x =∈,构造函数32()3g t t t =-+,2()36g t t t '=-+,所以当2t =时,max ()(2)4g t g ==,所以31()x f x 的最大值为4.13.设正方形ABCD 的边长为a ,以A 为原点,AB AD ,所在直线为分别为x y ,轴建立平面直角坐标系,则(00)(0)()(0)A B a C a a D a ,,,,,,,.设()P x y ,,因为0CP DP ⋅=u u u r u u u r,所以()()0x a y a x y a --⋅-=,,,即222()()24a a x y a -+-=,设cos 22sin 2a a x a y a θθ⎧=+⎪⎪⎨⎪=+⎪⎩,.又因为()()22a a E a F a ,,,,AP AE AF λμ=+u u u r u u u r u u u r ,所以()()()22a a x y a a λμ=+,,,,即22a x a a y a λμλμ⎧=+⎪⎪⎨⎪=+⎪⎩,,所以223()[(sin cos )]1)33224a a x y a a λμθθθπ+=+=++=+,由P 为正方形ABCD 内部一点(包含边界),可得[2]θ∈ππ,,所以[]444θπ5π9π+∈,,所以41)[1]43λμθπ+=+∈,. 14.法一:设AD t =,则3CD t =,4AC t =,在ABD △中,222cos ADB ∠=在BDC △中,cos BDC ∠=又cos cos ADB BDC ∠=-∠,=2221238t c a =+-,①在ABC △中,2222(4)2cos AC t a c ac B ==+-,即2221162t a c ac =+-,②由①②可得2239322a c ac ++=.所以2222333532(3)(3)(3)()(3)2228a c a c a c a c a c +=+-+-⨯=+≥,即2832(3)5a c ⨯+≤,所以3a c +,当且仅当3a c =,即a c =所以3AB BC +. 法二:因为3CD AD =,所以3CD DA =u u u r u u u r,即3()BD BC BA BD -=-u u u r u u u r u u u r u u u r ,整理得到3144BD BA BC =+u u u r u u u r u u u r ,两边平方后有22291316168BD BA BC BA BC =++⋅u u u r u u u r u u u r u u u r u u u r,DCBA所以22913216168BA BC BA BC =++⋅u u u r u u u r u u u r u u u r 即2291312||||161684BA BC BA BC =++⋅⨯u u u r u u u r u u u r u u u r , 整理得到223329||||||||2BA BC BA BC =++⋅u u u r u u u r u uu r u u u r ,设||||c BA a BC ==u u u r u u u r ,,所以22239329(3)22c a ac c a ac =++=+-, 因为293333()2222ac a c c a ⋅⋅+=≤, 所以222293532(3)(3)(3)(3)288c a ac c a c a c a =+-+-+=+≥,3c a +,当且仅当a c 所以3AB BC +. 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)解:(1)因为1a =sin C c A =cos sin C c A =, ····················· 2分在ABC △中,由正弦定理sin sin a cA C=,所以sin sin a C c A =,cos sin sin A C C A =. ·························································· 4分 因为(0)A ∈π,,所以sin 0A ≠sin C C =,因为(0)C ∈π,,所以sin 0C ≠,所以cos 0C ≠,所以tan C ············· 6分 因为(0)C ∈π,,所以3C π=. ······························································ 8分 (2)由(1)知,3ACB π∠=,因为1a =,3b =, 所以ABC △的面积13sin sin 223ABC S ab ACB π=∠==△, ························ 10分因为D 是AB 上的点,CD 平分ACB ∠,所以1sin12613sin 26BCDACDa CD S a Sb b CD π⋅⋅===π⋅⋅△△, ···················································· 12分因为ABC ACD BCD S S S =+△△△,所以3344ACD ABC S S ==△△. ············· 14分 16.(本小题满分14分)证:(1)因为四边形ABCD 是矩形,所以AB CD ∥.··································································································· 2分 又AB ⊄平面PDC ,CD ⊂平面PDC ,所以AB ∥平面PDC , ····································································· 5分 又因为AB ⊂平面ABE ,平面ABE ∩平面PDC EF =,所以AB EF ∥. ················································································· 7分 (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB EF ∥,所以AB ⊥AF , ·················································································· 9分 因为AB ⊥AD ,由点E 在棱PC 上(异于点C ), 所以F 点异于点D ,所以AF AD A =I ,又AF AD ,⊂平面P AD ,所以AB ⊥平面P AD , ······································· 12分 又AB ⊂平面ABCD ,所以平面P AD ⊥平面ABCD . ·································· 14分 17.(本小题满分14分)解:(1)由题意AOC COD θ∠=∠=,设四边形OCDB 的面积为()S θ,因为四边形OCDB 可以分为OCD △和OBD △两部分,所以11()sin sin(2)22OCD OBD S S S OC OD OB OD θθθ=+=⋅+⋅π-△△, ··············· 3分因为1OB OC OD ===,所以1()(sin sin 2)2S θθθ=+.因为020θθ>π->,,所以02θπ<<. 所以四边形OCDB 的面积1()(sin sin 2)(0)22S θθθθπ=+∈,,. ······················ 6分 (2)由(1)1()(sin sin 2)(0)22S θθθθπ=+∈,,,所以2211()(sin )(sin cos )cos cos sin 22S θθθθθθθ'''=+=+-21(4cos cos 2)2θθ=+-,令()0S θ'=,即24cos cos 20θθ+-=,解得cos θcos θ= 因为02θπ<<,所以存在唯一的0θ,使得0cos θ= ····················· 10分当00θθ<<时,()0S θ'>,()S θ在0(0)θ,单调递增; 当02θθπ<<时,()0S θ'<,()S θ在0()2θπ,单调递减, 所以0θθ=时,max 0()()S S θθ=, ·························································· 12分 此时22202cos(2)BD OB OD OB OD θ=+-⋅π-22000112cos 222(2cos 1)4cos θθθ=++=+-=,从而02cos BD θ=(千米). 答:当四边形OCDB 的面积最大时,BD·················· 14分 18.(本小题满分16分)解:(1)因为椭圆22221(0)x y a b a b+=>>,短轴长为2,所以222222b a b c c a⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩,,解得1a b ==, 所以该椭圆的标准方程为2212x y +=.···················································· 4分(2)因为点) (0)(0)M m m A >,, 所以直线AM的方程为y x =+,即y x .由2212x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,,消去y得2222(4)280m x x m +++-=. ·············· 7分 设00()C x y ,,则202284m m -=+,所以0x =,所以0244my m =+. 连接OM ,取OM 的中点R,则)2mR ,, ········································· 10分 连接CR ,因为OC CM =,所以CR OM ⊥.又30OM CRmy k k -===31=-,即42280m m +-=,因为0m >,所以m = ································································· 13分 所以四边形OBMC的面积114223ABM AOC S S S =-=⨯=△△. ····································································································· 16分 19.(本小题满分16分)解:(1)因为2()2ln f x x ax x =-+,所以222() (0)x ax f x x x-+'=>. ··············· 2分 令2()22p x x ax =-+,216a ∆=-,当0∆≤即44a -≤≤时,()0p x ≥,即()0f x '≥, 所以函数()f x 单调递增区间为(0)+∞,.当0∆>即4a <-或4a >时,12x x ==. 若4a <-,则120x x <<,所以()0p x >,即()0f x '>, 所以函数()f x 的单调递增区间为(0)+∞,.若4a >,则210x x >>,由()0f x '>即()0p x >,得10x x <<或2x x >; 由()0f x '<,即()0p x <得12x x x <<.所以函数()f x 的单调递增区间为12(0)()x x +∞,,,;单调递减区间为12()x x ,.综上,当4a ≤时,函数()f x 的单调递增区间为(0)+∞,,无减区间;当4a >时,函数()f x 的单调递增区间为12(0)()x x +∞,,,,单调递减区间为12()x x ,. ······································· 6分(2)由(1)得222() (0)x ax f x x x-+'=>,若()f x 有两个极值点12x x ,,则12x x ,是方程2220x ax -+=的两个不等正实根, 由(1)知4a >.则1212212ax x x x +=>=,,故1201x x <<<,···················· 8分 要使12()f x mx >恒成立,只需12()f x m x >恒成立. 因为222311111111111221()2ln 222ln 22ln 1f x x ax x x x x x x x x x x x -+--+===--+, ········ 10分令3()22ln (01)h t t t t t t =--+<<,则2()32ln h t t t '=-+, ·························· 12分当01t <<时,()0h t '<,()h t 为减函数,所以()(1)3h t h >=-. ·················· 14分 由题意,要使12()f x mx >恒成立,只需满足3m -≤.所以实数m 的取值范围(3]-∞-,. ······················································· 16分 20.(本小题满分16分)解:(1)由32n n S =+,可知1123n n n n a S S ++=-=⨯,故1320n n n a S +-=->对一切正整数n 都成立,故{}n a 是P 数列. ················ 3分 (2)由题意知,该数列的前n 项和为(1)2n n n S n d -=-+,11n a nd +=-+, 由数列12310a a a a L ,,,,是P 数列,可知211a S a >=,故公差0d >.213(1)1022n n d S a n d n +-=-++<对满足19n ≤≤中的每一个正整数n 都成立, 即23(1)1022d n d n -++<对于19n ≤≤都成立.······································· 6分 由2231(1)1022399(1)1022d d d d ⎧⋅-++<⎪⎪⎨⎪⋅-++<⎪⎩,,可得8027d <<,故d 的取值范围是8(0)27,. ····· 8分(3)若{}n a 是P 数列,则12a S a aq =<=,若0a >,则1q >,又由1n n a S +>对一切正整数n 都成立, 可知11n nq aq a q ->-,即12()n q q-<对一切正整数n 都成立,由1()0n q>,1()(01)n q ∈,,故20q -≤,可得2q ≥. 若0a <,则1q <,又由1n n a S +>对一切正整数n 都成立, 可知11nnq aq a q->-,即(2)1n q q -<对一切正整数n 都成立,又当(1]q ∈-∞-,时,(2)1n q q -<当2n =时不成立,故有(01)(2)1q q q ∈⎧⎨-<⎩,,,或2(10)(2)1q q q ∈-⎧⎨-<⎩,,,解得0)(01)q ∈U ,. 所以{}n a 是P 数列时,a 与q 所满足的条件为02a q >⎧⎨⎩,≥,或0(01)0)a q <⎧⎪⎨∈⎪⎩U ,,.12分 下面用反证法证明命题“若0a >且12T T =,则{}n a 不是P 数列”.假设{}n a 是P 数列,由0a >,可知2q ≥且{}n a 中每一项均为正数, 若{}n b 中的每一项都在{}n c 中,则由这两数列是不同数列,可知12T T <, 若{}n c 中的每一项都在{}n b 中,同理可得12T T >. 若{}n b 中至少有一项不在{}n c 中且{}n c 中至少有一项不在{}n b 中,设{}{}n n b c '',是将{}{}n n b c ,中的公共项去掉之后剩余项依次构成的数列,它们的所有项和分别为12T T '',, 不妨设{},{}n n b c ''中的最大项在{}n b '中,设为m a ,则2m ≥, 则21211m m T a a a a T -''+++<L ≤≤,故21T T ''<,所以21T T <,故总有12T T ≠,与12T T =矛盾.故{}n a 不是P 数列. ································· 16分数学Ⅰ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,若多做,则按作答的前两题评分. A .选修4 - 2:矩阵与变换(本小题满分10分)解:依题意1234⎡⎤⎢⎥⎣⎦5x ⎡⎤=⎢⎥⎣⎦2y y -⎡⎤⎢⎥⎣⎦,即102320 x y x y +=-⎧⎨+=⎩,,解得4 8 x y =-⎧⎨=⎩,, ···················· 3分 由逆矩阵公式知,矩阵M 1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=⎢⎥-⎣⎦M , ··················· 7分 所以1x y -⎡⎤⎢⎥⎣⎦M 213122-⎡⎤⎢⎥=⎢⎥-⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦. ··············································· 10分 B .选修4 - 4:坐标系与参数方程(本小题满分10分)解:直线)l ρθθ=:, 所以直线l 的直角坐标方程为20x y -+=. ············································· 3分 曲线C 的普通方程为22(2) 1 (32)x y x ++=--≤≤, ································· 6分 2220(2) 1 (32)x y x y x -+=⎧⎨++=-⎩,≤≤-,消去y 整理得22870x x ++=,则22x =--,所以交点坐标为(2)22---. ································· 10分 【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)解:设O 是AD 中点,PAD △为正三角形,则PO AD ⊥.因为平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,PO ⊂平面PAD ,所以PO ABCD ⊥面.又因为2AD AE ==,60DAB ∠=︒, 所以ADE △为正三角形, 所以OE AD ⊥.建立如图所示空间直角坐标系O xyz -,则(00(00)(20)(100)P E C D --,,,,,,,于是(2(0(10PC PE DP =-=-=u u u r u u u r u u u r,,,. ··················· 2分(1)设平面PEC 的法向量为1()x y z =,,n ,由110,0PC PE ⋅=⋅=u u u r u u u rn n ,得一个法向量为1(011)=,,n ,平面EDC 的一个法向量为2(001)=,,n ,所以12cos <>==,n n , 又由图可得二面角P EC D --为锐角, 所以二面角P EC D --. ················································ 4分 (2)设 (01)PM PC λλ=u u u u r u u u r ≤≤,则(2)PM λ=--u u u u r,,(12)DM DP PM λ=+=-u u u u r u u u r u u u u r,(0PE =-u u u r, ················ 6分所以|cos |||||||DM PE DM PE DM PE ⋅<>===u u u u r u u u ru u u u r u u u r u u u u r u u u r ,, ················· 8分解得13λ=或23,所以存在点M 为线段PC 的三等分点. ··························· 10分23.(本小题满分10分)解:(1)当2n =时,{0}{1}{2}{02}{012}M =,,,,,,,具有性质P ,对应的k 分别为01211,,,,,故(2)5f =. ·············································· 3分 (2)设当n t =时,具有性质P 的集合M 的个数为()f t , 则当1n t =+时,(1)()(1)f t f t g t +=++,x其中(1)g t +表示1t M +∈时也具有性质P 的集合M 的个数, 下面计算(1)g t +关于t 的表达式, 此时应有21k t +≥,即12t k +≥,故对n t =分奇偶讨论. ①当t 为偶数时,1t +为奇数,故应该有22t k +≥, 则对每一个k ,1t +和21k t --必然属于集合M , 且t 和2k t -,L ,k 和k 共有1t k +-组数, 每一组数中的两个数必然同时属于或不属于集合M ,故对每一个k ,对应具有性质P 的集合M 的个数为01111112t k t kt k t k t k C C C +-+-+-+-+-+++=L , 所以21222(1)2221221tt tg t -+=++++=⨯-L .········································· 5分 ②当t 为奇数时,1t +为偶数,故应该有12t k +≥,同理111222(1)222121t t t g t +-+=++++=-L , ···································· 7分综上,可得22()221(1)()21t tf t t f t f t t ⎧+⨯-⎪+=⎨⎪+-⎩,为偶数,,为奇数,又(2)5f =, 由累加法解得212625()425t t t t f t t t +⎧⨯--⎪=⎨⎪⨯--⎩,为偶数,,为奇数, 即212625()425nn n n f n n n +⎧⨯--⎪=⎨⎪⨯--⎩,为偶数,,为奇数. ······················································· 10分。
苏州大学2019届高考考前指导卷
2
42
在 Rt△BOM 中, OB 2 , BOM ,故 BM 2 tan( ) .
别是 B, P .设 POA ,公路 MB, MN 的总长为 f ( ) .
(1)求 f ( ) 关于 的函数关系式,并写出函数的定义域; B
M
(2)求 f ( ) 的最小值.
P
O
AN
(第 17 题图)
18.(本小题满分 16 分)
如图,在平面直角坐标系 xOy 中,离心率为 6 的椭圆 C : x2 y2 1(a b 0) 过点
(第 10 题图)
uur uur 12.过点 P(1,1) 作圆 C : (x t)2 ( y t 2)2 1(t R) 的切线,切点分别为 A, B ,则 PA PB
的最小值为 ▲ .
13.已知函数
f
(x)
2x2 ,
e
x
,
x x
≤ 0, 0,
若方程 [ f (x)]2 a 恰有两个不同的实数根 x1, x2 ,则 x1 x2
▲. 4.下表是某同学五次数学附加题测试的得分情况,则这五次测试得分的方差为 ▲ .
次数 1 2 3 4 5
得分 33 30 27 29 31
5.运行右图所示的伪代码,则输出的结果为 ▲ . 6.设集合 B 是集合 A {1, 2,3, 4} 的子集,若记事件 M 为“集合 B 中的
元素之和为 5”,则事件 M 发生的概率为 ▲ . 7.设曲线 y x 1 在点(3,2)处的切线与直线 ax y 1 0 垂直,则实
3
a2 b2
6 M (1, ) .
3 (1)求椭圆 C 的标准方程; (2) A, B 是椭圆的左右顶点, P, Q 是椭圆上与 A, B 不重合的两点,若满足 kAP 2kQB ,
数学_2010年江苏省苏州大学高考数学考前指导试卷(一)(含答案)
2010年江苏省苏州大学高考数学考前指导试卷(一)一、填空题(本大题共14小题,每小题5分,共90分.) 1. 已知i 是虚数单位,计算复数4+2i (1+i)2=________.2. 渐近线为y =±12x ,且过点(2, 2)的双曲线方程为________.3. 若样本a 1,a 2,a 3的方差是2,则样本2a 1+3,2a 2+3,2a 3+3的方差是________.4. 已知tanx −1tanx =32,则tan2x =________.5.如图,在正方体ABCD −A 1B 1C 1D 1中,E ,F ,G 分别为棱AA 1,AB ,CC 1的中点,给出下列3对线段所在直线:①D 1E 与BG ;②D 1E 与C 1F ;③A 1C 与C 1F .其中,是异面直线的对数共有________对.6. 用红、黄两种颜色随机地给正四面体的四个顶点染色,则“有同一个面上的三个顶点同色”的概率等于________.7. 右图是一个算法的流程图,最后输出的n =________.8. 设正数数列{a n }的前n 项之和为b n ,数列{b n }的前n 项之和为c n ,且b n +c n =1,则|c 100−a 100|=________. 9. 已知cos π3=12,cos π5cos2π5=14,cos π7cos2π7cos3π7=18,…,根据上述等式的规律,可猜想出一般性的结论是________.10. 已知f(x)=x 3−3x ,过A(1, m)可作曲线y =f(x)的三条切线,则m 的取值范围是________.11. 已知D 是由不等式组{x −2y ≥0x +3y ≥0所确定的平面区域,则圆x 2+y 2=4 围成的区域与区域D 的公共部分的面积为________.12. 过圆x 2+y 2=1上一点P 作圆的切线与x 轴和y 轴分别交于A ,B 两点,O 是坐标原点,则OA +8⋅OB 的最小值是________.13. 在□ABCD 中,已知AB =2,AD =1,∠DAB =60∘,点M 为AB 的中点,点P 在BC 与CD上运动(包括端点),则AP →⋅DM →的取值范围是________.14. 已知正数x ,y 满足(1+x)(1+2y)=2,则4xy +1xy 的最小值是________.二、解答题(本大题共6小题,共90分.解答题应写出文字说明、证明过程或演算步骤) 15. 已知m →=(35, −45),n →=(cosα, sinα),|3m →−2n →|=3,求:(1)|3m →+n →|的值;(2)向量a →=3m →−2n →与b →=3m →+n →的夹角θ的余弦值.16. 已知△ABC 为正三角形,EC ⊥平面ABC ,DB ⊥平面ABC ,且EC ,DB在平面ABC 的同侧,CE =CA =2BD =2. (1)求证平面CAE ⊥平面DAE ; (2)求:点B 到平面ADE 的距离.17. 如图,A ,B ,C 是三个汽车站,AC ,BE 是直线型公路.已知AB =120km ,∠BAC =75∘,∠ABC =45∘.有一辆车(称甲车)以每小时96(km)的速度往返于车站A ,C 之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B 开往另一个城市E ,途经车站C ,并在车站C 也停留10分钟.已知早上8点时甲车从车站A 、乙车从车站B 同时开出.(1)计算A ,C 两站距离,及B ,C 两站距离;(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C 处利用停留时间交换.(3)求10点时甲、乙两车的距离.(参考数据:√2≈1.4,√3≈1.7,√6≈2.4,√331≈18.2)18.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的右准线l 的方程为x =4√33,短轴长为2.(1)求椭圆C 的方程;(2)过定点B(1, 0)作直线l 与椭圆C 相交于P ,Q (异于A 1,A 2)两点,设直线PA 1与直线QA 2相交于点M(2x 0, y 0).①试用x 0,y 0表示点P ,Q 的坐标; ②求证:点M 始终在一条定直线上.19. 已知无穷数列{a n }中,a 1,a 2,…,a m 是首项为10,公差为−2的等差数列;a m+1,a m+2,…a 2m 是首项为12,公比为12的等比数列(m ≥3, m ∈N ∗),并对任意n ∈N ∗,均有a n+2m =a n 成立.(1)当m =12时,求a 2014; (2)若a 36=1256,试求m 的值;(3)判断是否存在m ,使S 128m+3≥2014成立,若存在,求出m 的值;若不存在,请说明理由.20. 设函数f(x)=a |x|+2a x(其中常数a >0,且a ≠1).(1)当a =10时,解关于x 的方程f(x)=m (其中常数m >2√2);(2)若函数f(x)在(−∞, 2]上的最小值是一个与a 无关的常数,求实数a 的取值范围.2010年江苏省苏州大学高考数学考前指导试卷(一)答案1. 1−2i2.y 23−x 212=13. 84. −43 5. 2 6. 58 7. 100 8. 19. cos π2n+1cos 2π2n+1⋯cos nπ2n+1=12n10. (−3, −2) 11. π212. 2√65 13. [−12, 12] 14. 1215. 解:(1)由题意可得|m →|=1,|n →|=1 由|3m →−2n →|=3得|3m →−2n →|2=9,∴ 9m →2−12m →⋅n →+4n →2=9.则m →⋅n →=13∴ |3m →+n →|2=9m →2+6m →⋅n →+n →2=12∴ |3m →+n →|=2√3(2)∵ a →⋅b →=(3m →−2n →)⋅(3m →+n →)=9m →2−3m →⋅n →−2n →2=6 ∴ cosθ=|a →||b →|˙=2√3×3=√3316.解:(1)证明:取AC 中点M ,取AE 中点N ,连接MN 、MB ,DN , ∵ N 是EA 的中点,∴ MN =12EC .由BD =12EC ,且BD ⊥平面ABC ,可得四边形MNBD 是矩形,于是DN // BM . ∴ DN ⊥AC∵ CE =CA =2BD =2∴ 可得DE =DA ,N 是EA 的中点, ∴ DN ⊥EA .又EA ∩MN =M , ∴ DN ⊥平面ECA ,DN ⊂平面DEA , ∴ 平面DEA ⊥平面ECA . (2):设点B 到平面ADE 的距离为ℎ ∵ △ABC 为正三角形∴ C 到AB 的距离d =√3,由BD ⊥平面ABC 可得C 到AB 的距离即为C 到面ABD 的距离, ∵ V B−ADE =V E−ADB =V C−ADB . ∴ 13×12×DN ⋅AE ⋅ℎ=13×S △ABD ⋅d .∴ ℎ=AB⋅d⋅d DN⋅AE=AB⋅d⋅d BM⋅AE =AB⋅d⋅d d⋅AE=AB⋅d AE=√3√22+22=√62. 17. 解:(1)在△ABC 中,∠ACB =60∘.∵ ABsin60∘=BCsin75∘=AC sin45∘,∴ AC =120sin45∘sin60∘=120×√22√32=40√6≈96(km),BC =120sin75∘sin60∘=120×√6+√24√32=60√2+20√6≈132(km).(2)甲车从车站A 开到车站C 约用时间为9696=1(小时)=60(分钟),即9点到C 站,至9点零10分开出.乙车从车站B 开到车站C 约用时间为132120=1.1(小时)=66(分钟),即9点零6分到站,9点零16分开出.则两名旅客可在9点零6分到10分这段时间内交换到对方汽车上. (3)10点时甲车离开C 站的距离为5060×96=80(km),乙车离开C 站的距离为4460×120=88(km),两车的距离等于√802+882−2×80×88×cos120∘=8√100+121+110=8√331≈8×18.2=145.6(km)18. 解:(1)由{a 2c=4√33b =1a 2=b 2+c 2得{a 2=4b 2=1.∴ 椭圆C 的方程为x 24+y 2=1; (2)A 1(−2, 0),A 2(2, 0),方程为MA 1的方程为:y =y02x 0+2(x +2),即x =2x 0+2y 0y −2.代入x 24+y 2=1,得(x 0+1y 0y −1)2+y 2=1,即[(x 0+1)2y 02+1]y 2−2(x 0+1)y 0y =0.∴ y P =2(x 0+1)y 0(x 0+1)2y 02+1=2(x 0+1)y 0(x0+1)2+y 02,则x P =2x 0+2y 0⋅2(x 0+1)y 0(x0+1)2+y 02−2=4(x 0+1)2(x0+1)2+y 02−2.即P(4(x 0+1)2(x 0+1)2+y 02−2, 2(x 0+1)y 0(x 0+1)2+y 02).同理MA 2的方程为y =y 02x 0−2(x −2),即x =2x 0−2y 0y +2.代入x 24+y 2=1,得(x 0−1y 0y +1)2+y 2=1,即[(x 0−1)2y 02+1]y 2+2(x 0−1)y 0y =0.∴ y Q =−2(x 0−1)y 0(x 0−1)2y 02+1=−2(x 0−1)y 0(x0−1)2+y 02.则x Q =2x 0−2y 0⋅−2(x 0−1)y 0(x−1)2+y 02+2=−4(x 0−1)2(x0−1)2+y 02+2.即Q(−4(x 0−1)2(x−1)2+y 02+2, −2(x 0−1)y 0(x0−1)2+y 02).∵ P ,Q ,B 三点共线, ∴ k PB =k QB ,即y Px P−1=y QxQ −1.∴2(x 0+1)y 0(x 0+1)2+y 024(x 0+1)2(x 0+1)2+y 02−2−1=−2(x 0−1)y 0(x 0−1)2+y 02−4(x 0−1)2(x 0−1)2+y 02+2−1.即(x 0+1)y 0(x 0+1)2−3y 02=−(x 0−1)y 0−3(x 0−1)2+y 02.由题意,y 0≠0, ∴x 0+1(x 0+1)2−3y 02=x 0−13(x 0−1)2−y 02.3(x 0+1)(x 0−1)2−(x 0+1)y 02=(x 0−1)(x 0+1)2−3(x 0−1)y 02.∴ (2x 0−4)(x 02+y 02−1)=0.则2x 0−4=0或x 02+y 02=1. 若x 02+y 02=1,即(2x 0)24+y 02=1,则P ,Q ,M 为同一点,不合题意.∴ 2x 0−4=0,点M 始终在定直线x =2上.19. 解:(1)a n+24=a n ;所以a 2014=a 22 a 18是以12为首项,以12为公比的等比数列的第10项,所以a 2014=11024(2)1128=(12)7,所以m ≥7 因为a 52=1128,所以2km +m +7=(2k +1)m +7=52,其中m ≥7,m ∈N ,k ∈N(2k +1)m =45,当k =0时,m =45,成立. 当k =1时,m =15,成立; 当k =2时,m =9成立 当k ≥3时,m ≤457<7;所以m 可取9、15、45(3)S 128m+3=64S 2m +a 1+a 2+a 3=64(10m +m(m−1)2(−2)+12(1−(12)m )1−12)+10+8+6S 128m+3=704m −64m 2+88−64(12)m ≥2010704m −64m 2≥2010−88+64(12)m =1922+64(12)m设f(m)=704m −64m 2,g(m)=1922+64(12)m g(m)>1922;f(m)=−64(m 2−11m),对称轴m =112∉N ∗,所以f(m)在m =5或6时取最大f(x)max =f(5)=f(6)=1920, 因为1922>1920,所以不存在这样的m 20. 解:(1)f(x)={10x +210x x ≥0310x x <0. ①当x <0时,f(x)=310x>3.因为m >2√2.则当2√2<m ≤3时,方程f(x)=m 无解; 当m >3,由10x =3m ,得x =lg 3m . ②当x ≥0时,10x ≥1.由f(x)=m 得10x +210x=m ,∴ (10x )2−m10x +2=0.因为m >2√2,判别式△=m 2−8>0,解得10x =m±√m 2−82.因为m >2√2,所以m+√m 2−82>√2>1.所以由10x=m+√m 2−82,解得x =lg m+√m 2−82.令m−√m 2−82=1,得m =3.所以当m >3时,m−√m 2−82=m+√m 2−8<3+√32−8=1,当2√2<m ≤3时,m−√m 2−82=m+√m 2−8>3+√32−8=1,解得x =lgm−√m 2−82.综上,当m >3时,方程f(x)=m 有两解x =lg 3m 和x =lg m+√m 2−82;当2√2<m ≤3时,方程f(x)=m 有两解x =lg m±√m 2−82.(2)①若0<a <1, 当x <0时,0<f(x)=3a x<3;当0≤x ≤2时,f(x)=a x +2a x.令t =a x ,则t ∈[a 2, 1],g(t)=t +2t在[a 2, 1]上单调递减, 所以当t =1,即x =0时f(x)取得最小值为3. 当t =a 2时,f(x)取得最大值为a 2+2a 2.此时f(x)在(−∞, 2]上的值域是(0, a 2+2a 2],没有最小值. ②若a >1,当x <0时,f(x)=3a x >3;当0≤x≤2时f(x)=a x+2.a x,则t∈[1, a2].令t=a x,g(t)=t+2t①若a2≤√2,g(t)=t+2在[1, a2]上单调递减,t,最小值与a有关;所以当t=a2即x=2时f(x)取最小值a2+2a2②a2>√2,g(t)=t+2在[1, √2]上单调递减,在[√2, a2]上单调递增,t所以当t=√2即x=log a√2时f(x)取最小值2√2,最小值与a无关.4时,f(x)在(−∞, 2]上的最小值与a无关.综上所述,当a≥√2。
苏州大学2020届高考考前指导卷(答案)
苏州大学2020届高考考前指导卷参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.{|12}x x <≤ 2.2 3.280 4.1(0]2,5.2 6.52 7.56 8.π2- 9.1310.12-11.5306612.413.4[1]3-, 14解答与提示:1.{|12}A B x x =<I ≤. 2. 2i (2i)(1i)22i 1i 222a a a az +++-+===+-.因为z 为纯虚数,所以2020a a -=⎧⎨+≠⎩,,解得2a =. 3.由图可知,时速在区间[8090)[110120),,,的频率为(0.010.02)100.3+⨯=,所以时速在区间[90110),的频率为10.3-,所以时速在区间[90,110)的车辆约为4000.7280⨯=辆. 4.由1200x x -⎧⎨>⎩≥,,解得102x <≤,即函数()f x 的定义域为1(0]2,.5.离心率c e a ==2λ=. 6.执行第一次循环105S i ==,;执行第二次循环207S i ==,;执行第三次循环349S i ==,;执行第四次循环5211S i ==,,终止循环.所以52S =.7.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,三辆车的出车顺序可能为:123,132,213,231,312,321.方案一坐“3号”车可能:132,213,231,所以136P =;方案二坐“3号”车可能:312,321,所以226P =.则该嘉宾坐到“3号”车的概率1256P P P =+=. 8.()cos sin f x x x x '=-,所以在π2x =处的切线的斜率为ππ()22k f '==-.9.2312135616[1()]111(1)131a q a a a q a q S q q-++-===-+-.10.因为π2sin cos()4αα=+,解得1tan 3α=,所以11π13tan()14213α--==-+. 11.如图,10AB =(寸),则5AD =(寸),1CD =(寸),设圆O的半径为x (寸),则(1)OD x =-(寸).在Rt ADO △,由勾股定理可得2225(1)x x +-=,解得13x =(寸),则该木材的体积约为221001316900x 100π=π⨯=π≈53066(立方寸). 12.函数()f x 的图象如右图所示,由题意,30()2f x <<,即319x <<,因为123()()()f x f x f x ==,所以3133()(3)x f x x x =-,令3(1,3)t x =∈,构造函数32()3g t t t =-+,2()36g t t t '=-+,所以当2t =时,max ()(2)4g t g ==,所以31()x f x 的最大值为4.13.设正方形ABCD 的边长为a ,以A 为原点,AB AD ,所在直线为分别为x y ,轴建立平面直角坐标系,则(00)(0)()(0)A B a C a a D a ,,,,,,,.设()P x y ,,因为0CP DP ⋅=u u u r u u u r,所以()()0x a y a x y a --⋅-=,,,即222()()24a a x y a -+-=,设cos 22sin 2a a x a y a θθ⎧=+⎪⎪⎨⎪=+⎪⎩,.又因为()()22a a E a F a ,,,,AP AE AF λμ=+u u u r u u u r u u u r ,所以()()()22a ax y a a λμ=+,,,,即22a x a a y a λμλμ⎧=+⎪⎪⎨⎪=+⎪⎩,,所以2232()[(sin cos )]1sin()33224a a x y a a λμθθθπ+=+=++=++,由P 为正方形ABCD 内部一点(包含边界),可得[2]θ∈ππ,,所以[]444θπ5π9π+∈,,所以2241sin()[1]3433λμθπ+=++∈-,. 14.法一:设AD t =,则3CD t =,4AC t =,在ABD △中,222(2)cos 22t c ADB t +-∠=, 在BDC △中,222(3)(2)cos 223t a BDC t+-∠=⋅,又cos cos ADB BDC ∠=-∠,所以222222(2)(3)(2)22223t c t a tt+-+-=-⋅,解得2221238t c a =+-,①DCBA在ABC △中,2222(4)2cos AC t a c ac B ==+-,即2221162t a c ac =+-,②由①②可得2239322a c ac ++=.所以2222333532(3)(3)(3)()(3)2228a c a c a c a c a c +=+-+-⨯=+≥,即2832(3)5a c ⨯+≤,所以3a c +当且仅当3a c =,即a c =所以3AB BC +. 法二:因为3CD AD =,所以3CD DA =u u u r u u u r,即3()BD BC BA BD -=-u u u r u u u r u u u r u u u r ,整理得到3144BD BA BC =+u u u r u u u r u u u r ,两边平方后有22291316168BD BA BC BA BC =++⋅u u u r u u u r u u u r u u u r u u u r,所以22913216168BA BC BA BC =++⋅u u u r u u u r u u u r u u u r 即2291312||||161684BA BC BA BC =++⋅⨯u uu r u u u r u u u r u u u r ,整理得到223329||||||||2BA BC BA BC =++⋅u u u r u u u r u uu r u u u r ,设||||c BA a BC ==u u u r u u u r ,,所以22239329(3)22c a ac c a ac =++=+-, 因为293333()2222ac a c c a ⋅⋅+=≤,所以222293532(3)(3)(3)(3)288c a ac c a c a c a =+-+-+=+≥,3c a +a c所以3AB BC +. 二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)解:(1)因为1a =sin C c A =cos sin C c A =, ······················ 2分在ABC △中,由正弦定理sin sin a cA C=,所以sin sin a C c A =,cos sin sin A C C A =. ·························································· 4分因为(0)A ∈π,,所以sin 0A ≠sin C C =,因为(0)C ∈π,,所以sin 0C ≠,所以cos 0C ≠,所以tan C = ············· 6分因为(0)C ∈π,,所以3C π=. ······························································ 8分 (2)由(1)知,3ACB π∠=,因为1a =,3b =,所以ABC △的面积13sin sin 223ABC S ab ACB π=∠==△, ························ 10分因为D 是AB 上的点,CD 平分ACB ∠,所以1sin12613sin 26BCD ACD a CD S a S b b CD π⋅⋅===π⋅⋅△△, ···················································· 12分 因为ABC ACD BCD S S S =+△△△,所以3344ACD ABC S S ==△△. ············· 14分 16.(本小题满分14分)证:(1)因为四边形ABCD 是矩形,所以AB CD ∥. ································································· 2分又AB ⊄平面PDC ,CD ⊂平面PDC , 所以AB ∥平面PDC , ··································· 5分 又因为AB ⊂平面ABE ,平面ABE ∩平面PDC EF =, 所以AB EF ∥. ············································ 7分 (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB EF ∥,所以AB ⊥AF , ·················································································· 9分 因为AB ⊥AD ,由点E 在棱PC 上(异于点C ), 所以F 点异于点D ,所以AF AD A =I ,又AF AD ,⊂平面P AD ,所以AB ⊥平面P AD , ······································· 12分 又AB ⊂平面ABCD ,所以平面P AD ⊥平面ABCD . ·································· 14分 17.(本小题满分14分) 解:(1)由题意AOC COD θ∠=∠=,设四边形OCDB 的面积为()S θ,因为四边形OCDB 可以分为OCD △和OBD △两部分,所以11()sin sin(2)22OCD OBD S S S OC OD OB OD θθθ=+=⋅+⋅π-△△, ··············· 3分因为1OB OC OD ===,所以1()(sin sin 2)2S θθθ=+.因为020θθ>π->,,所以02θπ<<.所以四边形OCDB 的面积1()(sin sin 2)(0)22S θθθθπ=+∈,,. ······················ 6分(2)由(1)1()(sin sin 2)(0)22S θθθθπ=+∈,,,所以2211()(sin )(sin cos )cos cos sin 22S θθθθθθθ'''=+=+-21(4cos cos 2)2θθ=+-,令()0S θ'=,即24cos cos 20θθ+-=,解得cos θ=或cos θ= 因为02θπ<<,所以存在唯一的0θ,使得0cos θ= ····················· 10分当00θθ<<时,()0S θ'>,()S θ在0(0)θ,单调递增;当02θθπ<<时,()0S θ'<,()S θ在0()2θπ,单调递减, 所以0θθ=时,max 0()()S S θθ=, ·························································· 12分 此时22202cos(2)BD OB OD OB OD θ=+-⋅π-22000112cos 222(2cos 1)4cos θθθ=++=+-=,从而02cos BD θ=(千米). 答:当四边形OCDB 的面积最大时,BD·················· 14分 18.(本小题满分16分)解:(1)因为椭圆22221(0)x y a b a b+=>>的离心率为2,短轴长为2,所以22222b a b c c a⎧⎪=⎪⎪=+⎨⎪⎪=⎪⎩,,解得1a b ==, 所以该椭圆的标准方程为2212x y +=. ···················································· 4分(2)因为点) (0)(0)M m m A >,, 所以直线AM的方程为y x =+,即(4y x =.由2212(4x y y x ⎧+=⎪⎪⎨⎪=⎪⎩,,消去y得2222(4)280m x x m +++-=. ··············· 7分 设00()C x y ,,则202284m m -=+,所以0x =,所以0244my m =+.连接OM ,取OM 的中点R,则)2mR ,, ········································· 10分 连接CR ,因为OC CM =,所以CR OM ⊥.又30OM CR m y k k -==31=-,即42280m m +-=, 因为0m >,所以m = ································································· 13分 所以四边形OBMC的面积114223ABM AOC S S S =-=⨯=△△. ····································································································· 16分19.(本小题满分16分)解:(1)因为2()2ln f x x ax x =-+,所以222() (0)x ax f x x x-+'=>. ··············· 2分 令2()22p x x ax =-+,216a ∆=-,当0∆≤即44a -≤≤时,()0p x ≥,即()0f x '≥, 所以函数()f x 单调递增区间为(0)+∞,.当0∆>即4a <-或4a >时,12x x ==若4a <-,则120x x <<,所以()0p x >,即()0f x '>,所以函数()f x 的单调递增区间为(0)+∞,.若4a >,则210x x >>,由()0f x '>即()0p x >,得10x x <<或2x x >; 由()0f x '<,即()0p x <得12x x x <<.所以函数()f x 的单调递增区间为12(0)()x x +∞,,,;单调递减区间为12()x x ,. 综上,当4a ≤时,函数()f x 的单调递增区间为(0)+∞,,无减区间;当4a >时,函数()f x 的单调递增区间为12(0)()x x +∞,,,,单调递减区间为12()x x ,. ····· 6分 (2)由(1)得222() (0)x ax f x x x-+'=>,若()f x 有两个极值点12x x ,,则12x x ,是方程2220x ax -+=的两个不等正实根, 由(1)知4a >.则1212212ax x x x +=>=,,故1201x x <<<, ···················· 8分 要使12()f x mx >恒成立,只需12()f x m x >恒成立.因为222311111111111221()2ln 222ln 22ln 1f x x ax x x x x x x x x x x x -+--+===--+, ········ 10分令3()22ln (01)h t t t t t t =--+<<,则2()32ln h t t t '=-+, ·························· 12分 当01t <<时,()0h t '<,()h t 为减函数,所以()(1)3h t h >=-. ·················· 14分 由题意,要使12()f x mx >恒成立,只需满足3m -≤.所以实数m 的取值范围(3]-∞-,. ······················································· 16分 20.(本小题满分16分)解:(1)由32n n S =+,可知1123n n n n a S S ++=-=⨯,故1320n n n a S +-=->对一切正整数n 都成立,故{}n a 是P 数列. ················ 3分 (2)由题意知,该数列的前n 项和为(1)2n n n S n d -=-+,11n a nd +=-+, 由数列12310a a a a L ,,,,是P 数列,可知211a S a >=,故公差0d >. 213(1)1022n n d S a n d n +-=-++<对满足19n ≤≤中的每一个正整数n 都成立, 即23(1)1022d n d n -++<对于19n ≤≤都成立. ······································· 6分 由2231(1)1022399(1)1022d d d d ⎧⋅-++<⎪⎪⎨⎪⋅-++<⎪⎩,,可得8027d <<,故d 的取值范围是8(0)27,. ····· 8分(3)若{}n a 是P 数列,则12a S a aq =<=,若0a >,则1q >,又由1n n a S +>对一切正整数n 都成立, 可知11n nq aq a q ->-,即12()n q q-<对一切正整数n 都成立,由1()0n q>,1()(01)n q ∈,,故20q -≤,可得2q ≥.若0a <,则1q <,又由1n n a S +>对一切正整数n 都成立, 可知11nnq aq a q->-,即(2)1n q q -<对一切正整数n 都成立,又当(1]q ∈-∞-,时,(2)1n q q -<当2n =时不成立,故有(01)(2)1q q q ∈⎧⎨-<⎩,,,或2(10)(2)1q q q ∈-⎧⎨-<⎩,,,解得0)(01)q ∈U ,. 所以{}n a 是P 数列时,a 与q 所满足的条件为02a q >⎧⎨⎩,≥,或0(01)0)a q <⎧⎪⎨∈⎪⎩U ,,.12分下面用反证法证明命题“若0a >且12T T =,则{}n a 不是P 数列”. 假设{}n a 是P 数列,由0a >,可知2q ≥且{}n a 中每一项均为正数, 若{}n b 中的每一项都在{}n c 中,则由这两数列是不同数列,可知12T T <, 若{}n c 中的每一项都在{}n b 中,同理可得12T T >. 若{}n b 中至少有一项不在{}n c 中且{}n c 中至少有一项不在{}n b 中,设{}{}n n b c '',是将{}{}n n b c ,中的公共项去掉之后剩余项依次构成的数列,它们的所有项和分别为12T T '',, 不妨设{},{}n n b c ''中的最大项在{}n b '中,设为m a ,则2m ≥, 则21211m m T a a a a T -''+++<L ≤≤,故21T T ''<,所以21T T <,故总有12T T ≠,与12T T =矛盾.故{}n a 不是P 数列. ································· 16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,若多做,则按作答的前两题评分.A .选修4 - 2:矩阵与变换(本小题满分10分) 解:依题意1234⎡⎤⎢⎥⎣⎦5x ⎡⎤=⎢⎥⎣⎦2y y -⎡⎤⎢⎥⎣⎦,即102320 x y x y +=-⎧⎨+=⎩,,解得4 8 x y =-⎧⎨=⎩,, ···················· 3分 由逆矩阵公式知,矩阵M 1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=⎢⎥-⎣⎦M , ···················· 7分 所以1x y -⎡⎤⎢⎥⎣⎦M 213122-⎡⎤⎢⎥=⎢⎥-⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦. ··············································· 10分 B .选修4 - 4:坐标系与参数方程(本小题满分10分)解:直线)l ρθθ=:, 所以直线l 的直角坐标方程为20x y -+=. ············································· 3分曲线C 的普通方程为22(2) 1 (32)x y x ++=--≤≤, ································· 6分 2220(2) 1 (32)x y x y x -+=⎧⎨++=-⎩,≤≤-,消去y 整理得22870x x ++=,则22x =--,所以交点坐标为(2)22---. ································· 10分 C .选修4 - 5:不等式选讲(本小题满分10分)解:由00x y >>,,2211274x y x y +++=, 得2215316127444x y x y x y -=+++-27327126444=+-=≥. ································· 6分当且仅当22818x x y y ⎧=⎪⎪⎨⎪=⎪⎩,,即122x y ==,时等号成立.故1534x y-的最小值为6. ··································································· 10分 【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分) 解:设O 是AD 中点,PAD △为正三角形,则PO AD ⊥.因为平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,PO ⊂平面PAD , 所以PO ABCD ⊥面.又因为2AD AE ==,60DAB ∠=︒, 所以ADE △为正三角形, 所以OE AD ⊥.建立如图所示空间直角坐标系O xyz -,则(00(00)(20)(100)P E C D --,,,,,,,于是(2(0(10PC PE DP =-=-=u u u r u u u r u u u r,,,. ··················· 2分(1)设平面PEC 的法向量为1()x y z =,,n , 由110,0PC PE ⋅=⋅=u u u r u u u rn n ,得一个法向量为1(011)=,,n ,平面EDC 的一个法向量为2(001)=,,n ,所以12cos <>==,n n , 又由图可得二面角P EC D --为锐角,所以二面角P EC D --. ················································ 4分 (2)设 (01)PM PC λλ=u u u u r u u u r ≤≤,则(2)PM λ=--u u u u r,,(12)DM DP PM λ=+=-u u u u r u u u r u u u u r,(0PE =-u u , ················ 6分x所以|cos|||||||DM PEDM PEDM PE⋅<>===u u u u r u u u ru u u u r u u u ru u u u r u u u r,,·················8分解得13λ=或23,所以存在点M为线段PC的三等分点. ···························10分23.(本小题满分10分)解:(1)当2n=时,{0}{1}{2}{02}{012}M=,,,,,,,具有性质P,对应的k分别为01211,,,,,故(2)5f=. ··············································3分(2)设当n t=时,具有性质P的集合M的个数为()f t,则当1n t=+时,(1)()(1)f t f tg t+=++,其中(1)g t+表示1t M+∈时也具有性质P的集合M的个数,下面计算(1)g t+关于t的表达式,此时应有21k t+≥,即12tk+≥,故对n t=分奇偶讨论.①当t为偶数时,1t+为奇数,故应该有22tk+≥,则对每一个k,1t+和21k t--必然属于集合M,且t和2k t-,L,k和k共有1t k+-组数,每一组数中的两个数必然同时属于或不属于集合M,故对每一个k,对应具有性质P的集合M的个数为01111112t k t kt k t k t kC C C+-+-+-+-+-+++=L,所以21222(1)2221221t t tg t-+=++++=⨯-L.·········································5分②当t为奇数时,1t+为偶数,故应该有12tk+≥,同理111222(1)222121t t tg t+-+=++++=-L, ····································7分综上,可得22()221(1)()21ttf t tf tf t t⎧+⨯-⎪+=⎨⎪+-⎩,为偶数,,为奇数,又(2)5f=,由累加法解得212625()425ttt tf tt t+⎧⨯--⎪=⎨⎪⨯--⎩,为偶数,,为奇数,即212625()425nnn nf nn n+⎧⨯--⎪=⎨⎪⨯--⎩,为偶数,,为奇数.·······················································10分。
2019届江苏省苏州大学高考考前指导卷1数学试卷【含答案及解析】
2019届江苏省苏州大学高考考前指导卷1数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 已知集合,,且,则实数a的值为________ .2. i是虚数单位,复数z满足,则=________ .3. 对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,右图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则样本中三等品的件数为________ .4. 某学校高三有A,B两个自习教室,甲、乙、丙三名同学随机选择其中一个教室自习,则他们在同一自习教室上自习的概率为________ .5. 执行如图所示的流程图,会输出一列数,则这列数中的第3个数是________ .6. 已知双曲线的一条渐近线平行于直线l:y=2x+10,且它的一个焦点在直线l上,则双曲线 C 的方程为________ .7. 已知等差数列{a n }的前n项和为S n ,且2S 3 -3S 2 =1 2 ,则数列{a n }的公差是________ .8. 已知一个圆锥的底面积为2 ,侧面积为4 ,则该圆锥的体积为________ .9. 已知直线是函数的图象在点处的切线,则________ .10. 若cos( -θ)=,则cos( +θ)-sin 2 (θ- )=________ .11. 在等腰直角△ABC 中,,,M,N 为 AC 边上的两个动点,且满足,则的取值范围为________ .12. 已知圆C:x 2 +y 2 - 2 x- 2 y+ 1 =0,直线l :.若在直线l上任取一点 M 作圆C的切线 M A ,M B,切点分别为 A, B,则AB的长度取最小值时直线AB的方程为________ .13. 已知函数,若方程有两个不同的实根,则实数k的取值范围是________ .14. 已知不等式对任意恒成立,其中是整数,则的取值的集合为________ .二、解答题15. 已知函数的最小值是-2,其图象经过点.(1)求的解析式;(2)已知,且,,求的值.16. 如图,在四棱锥中,底面是菱形,侧面是直角三角形, , 点是的中点,且平面平面.证明:(1)平面;(2)平面平面.17. 如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q .(1)求水上旅游线AB的长;(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h 时的半径为(a为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.18. 椭圆 M :的焦距为,点关于直线的对称点在椭圆上.(1)求椭圆M的方程;(2)如图,椭圆 M的上、下顶点分别为A , B,过点P的直线与椭圆M相交于两个不同的点C , D.① 求的取值范围;② 当与相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.19. 已知是等差数列,是等比数列,其中.(1)若,,,试分别求数列和的通项公式;(2)设,当数列的公比时,求集合的元素个数的最大值.20. 已知函数,其中 R ,是自然对数的底数 .(1)若曲线在的切线方程为,求实数,的值;(2)① 若时,函数既有极大值,又有极小值,求实数的取值范围;② 若,,若对一切正实数恒成立,求实数的最大值(用表示) .参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】。
江苏省苏州大学高三数学考前指导试题(2)苏教版
苏州大学2013届高考考前指导卷(2)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知i 是虚数单位,复数7i=3iz -+,则z = .2.在平面直角坐标系xOy 中,抛物线y 2= 4x 的焦点到其准线的距离为 .3.甲、乙两名同学在五次考试中数学成绩统计用茎叶图表示 如图所示,则甲、乙两名同学成绩较稳定(方差较小)的 是______.4.“| x | + | y |≤1”是“x 2 + y 2≤1”的 条件.(请在“充要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选择一个 合适的填空)5.在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别 等于线段,AC CB 的长,则该矩形面积小于32cm 2的概率为 .6.按如图所示的流程图运算,若输出的b = 3,则输入的a 的取值范围是________.7.如图边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,已知△A 'DE 是△ADE 绕DE 旋转过程中的一个图形(点A '∉平面ABC ),则下列命题中正确的是 .①动点A ' 在平面ABC 上的射影在线段AF 上; ②BC ∥平面A 'DE ;③三棱锥A '-FED 的体积有最大值.8.在△ABC 中,(3)0AB AC CB -⋅=u u u r u u u r u u u r,则角A 的最大值为_________.9.已知函数22()log 4xf x x=-,若()()2f a x f a x b ++-=对于满足||x ∈(- a ,4 - a )的一切x 恒成立,则(a ,b )为___________.10.已知π(0,)2α∈,π(,π)2β∈,1cos 3α=,4cos()5αβ+=-,则cos β=________. 结束开始 b ←1a ←3a +1b ←b +1 NY 输入a a > 58 输出b11.设数列}{n a 的首项231=a ,前n 项和为S n , 且满足321=++n n S a ( n *∈N ) .则满足7817182<<n n S S 的所有n 的和为 .12.如图,1F ,2F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线C 的两支分别交于点A ,B ,若2ABF ∆为等边三角形,则双曲线的离心率为 .13.如图,有一矩形地块ABCD ,其相邻边长为20m 和50m ,现要在它的短边与长边上各取一点P 与Q ,用周长为80m 的篱笆围出一块直角三角形的花园,则围出部分的最大面积为__________2m .14.已知函数 421()421x x x xk f x +⋅+=++,若对任意的实数123,,x x x ,不等式123()()()f x f x f x +>恒成立,则实数k 的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,A = 2B ,1sin 3B =,AB = 23.(1)求sin A ,sin C ;(2)求CA CB ⋅u u u r u u u r的值. 16.(本小题满分14分)如图,长方体1111ABCD A B C D -中,底面1111A B C D 是正方形,E 是棱1AA 上任意一点,F 是CD 的中点.(1)证明:BD 1EC ⊥; (2)若AF ∥平面C 1DE ,求1AEA A的值. 17.(本小题满分14分)D 1C 1B 1A 1FEDCBAA BCQ PD CBA如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设AB = y km ,并在公路同侧建造边长为x km 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知AB = AC + 1,且∠ABC = 60o.(1)求y 关于x 的函数解析式;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:x 取何值时,该公司建中转站围墙和两条道路总造价M 最低?18.(本小题满分16分)已知点M 是圆C :22(1)8x y ++=上的动点,定点D (1,0),点P 在直线DM 上,点N在直线CM 上,且满足2DM DP =u u u u r u u u r ,NP DM ⋅u u ur u u u u r =0,动点N 的轨迹为曲线E . (1)求曲线E 的方程;(2)若AB 是曲线E 的长为2的动弦,O 为坐标原点,求△AOB 面积S 的最大值.公 路HG F E D C B A19.(本小题满分16分)设数列}{n a 的前n 项和为n S ,已知λ+=+n n S S 12(*N ∈n ,λ为常数),21=a ,12=a .(1)求数列}{n a 的通项公式; (2)求所有满足等式111+=--+m n n a m S m S 成立的正整数m ,n .20.(本小题满分16分)设函数32()(,,,0)3a f x x bx cx abc a =++∈≠R . (1)若函数()f x 为奇函数,求b 的值;(2)在(1)的条件下,若3a =-,函数()f x 在[2,2]-的值域为[2,2]-,求()f x 的零点;(3)若不等式()()1axf x f x '≤+对一切x ∈R 恒成立,求a b c ++的取值范围.苏州大学2013届高考考前指导卷(2)参考答案1.2i + 2.2 3.乙 4.充分不必要 5.236.(6,19] 7.①②③ 8.π69.(2,1) 10..712.2800m 3 14.1[,4]2-15.解:1)1sin 3B =,B为锐角,∴cos B =.1sin sin 22sin cos 23A B B B ===⨯.222217cos cos2cos sin (()339A B B B ==-=-=.7123sin sin()sin cos cos sin 9327C A B A B A B =+=+=⨯=. (2)∵sin sin sin AB AC BCC B A==,AB = 23,∴AC = 9,BC71cos cos()cos cos sin sin 93C A B A B A B =-+=-+=-=∴cos 9(80CA CB CA CB C ⋅=⨯⨯=⨯=-u u u r u u u r .16.解:(1)连接AC ,11//,,,AE CC E A C C ⇒共面.长方体1111ABCD A B C D -中,底面1111A B C D 是正方形,所以,,AC BD EA BD AC EA A ⊥⊥=I . 所以BD ⊥面1EACC ,所以1BD EC ⊥. (2)取11C D 的中点G ,连接FG 交1C D 于点O , 易知FG ∥DD 1,FG = DD 1,且点O 为FG 的中点, 所以1,,,A A G F 四点共面,所以平面11C DE AAGF OE =I 平面. 因为AF ∥平面C 1DE ,AF ∥OE . 又点O 为FG 的中点,所以1AE A A =12. 17.解:(1)∵AB = y ,AB = AC + 1,∴AC = y - 1. 在直角三角形BCF 中,∵CF = x ,∠ABC = 60︒,OG D 1C 1B 1A 1FEDCB A∴∠CBF = 30︒,BC = 2x . 由于2x + y - 1 > y ,得12x >. 在△ABC 中,∵2222cos60AC AB BC AB BC =+-⋅︒, ∴222(1)42y y x xy -=+-.则2412(1)x y x -=-.由y > 0,及12x >,得x > 1.即y 关于x 的函数解析式为2412(1)x y x -=-(x > 1).(2)21233(21)4341x M y x x x -=-+=-+-.令x - 1 = t ,则212(1)3934(1)162549t M t t t t+-=-++=++≥,在34t =,即74x =,152y =时,总造价M 最低.答:74x =时,该公司建中转站围墙和道路总造价M 最低.18.解:(1)因为DM 2=,0=⋅DM ,所以NP 为DM 的垂直平分线,所以||||ND NM =,又因为22||||=+NM CN ,所以||||2CN ND +=> ,所以动点N 的轨迹是以点(1,0),(1,0)C D -为焦点的长轴为所以轨迹E 的方程为1222=+y x . (2)因为线段AB 的长等于椭圆短轴的长,要使三点,,A O B 能构成三角形, 则弦AB 不能与x 轴垂直,故可设直线AB 的方程为y kx m =+,由22,1.2y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,并整理,得 222(12)4220k x kmx m +++-=.设),(11y x A ,),(22y x B ,又2222164(12)(22)0k m k m ∆=-+->,所以122412kmx x k +=-+,21222(1)12m x x k -=+ ,因为2||=AB ,所以2))(1(2122=-+x x k ,即4]4))[(1(212122=-++x x x x k所以2222248(1)(1)41212km m k k k ⎡⎤-⎛⎫+--=⎢⎥ ⎪++⎝⎭⎢⎥⎣⎦,即2212(1)1m k =-+, 因为211k +≥,所以2112m ≤<.又点O 到直线AB的距离h =因为1||2S AB h =⋅h =,所以22S h =222(1)m m =-22112()22m =--+. 所以2102S <≤,即S的最大值为2.19.解:(1)由题意,得212S S λ=+,求得4λ=. 所以,421+=+n n S S ①当2≥n 时,421+=-n n S S ②①-②,得n n a a 211=+(2≥n ),又1221a a =, 所以数列}{n a 是首项为2,公比为21的等比数列.所以}{n a 的通项公式为221-⎪⎭⎫ ⎝⎛=n n a (*N ∈n ).(2)由(1),得⎪⎭⎫ ⎝⎛-=n n S 2114,由111+=--+m n n a m S m S ,得111n m n a a S m ++=+-,化简得24(4)242n mm =--, 即1(4)242nm m ---=,即1(4)242n m m --=+.(*)因为0421>+-m ,所以02)4(>⋅-n m ,所以4<m ,因为*N ∈m ,所以1=m 或2或3.当1=m 时,由(*)得523=⨯n,所以无正整数解; 当2=m 时,由(*)得622=⨯n ,所以无正整数解; 当3=m 时,由(*)得82=n,所以3=n . 综上可知,存在符合条件的正整数3==n m .20.解:(1)()()f x f x -=-恒成立,则b =0; (2)32(),()3f x x cx f x x c '=-+=-+① 若0c ≤,则()0f x '≤恒成立,则()f x 单调递减,又函数()f x 在[2,2]-的值域为[2,2]-,(2)2(2)2f f -=⎧∴⎨=-⎩,此方程无解.② 若0c >,则()0,f x x '=∴= (i2>,即12c >时,函数()f x 在[2,2]-单调递增,(2)2(2)2f f =⎧∴⎨-=-⎩,此方程组无解;(ii2≤312c ≤≤时,2(2f f ⎧=⎪⎪∴⎨⎪=-⎪⎩,所以c =3;(iii)2,即3c <时,(2)2(2)2f f -=⎧∴⎨=-⎩,此方程无解.综上,所以c =3.3()3f x x x ∴=-+的零点为:1230,x x x ===.(3)由题意可得232()(2)()103aa xb ab xc ac x -+-+-+≥恒成立.记232()()(2)()103aF x a x b ab x c ax =-+-+-+≥.若203aa -≠,则三次函数()F x 至少有一个零点0x ,且在0x 左右两侧异号, 所以原不等式不能恒成立;所以210=33a a a -=∴,此时22()=++1033b cF x x x ≥恒成立等价于: 1)b =c =0或者2)2>0,30b c b ∆⎧∴⎨⎩≤≤. 在1)中,13a b c ++=, 在2)中13a b c b c t ++=++=, 所以2331c t c ≤--,即2331t c c ≥++恒成立.2min 53(31)4t c c ∴≥++=-.综上:a b c ++的取值范围是5[,)12-+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第5题图)苏州大学2019届高考数学指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合{1,}A a =,若2a A ∈,则a = ▲ . 2.复数z 满足11i z=+(i 为虚数单位),则复数z 的虚部为 ▲ . 3.在平面直角坐标系xOy 中,抛物线22(0)x py p =>的焦点坐标为(0,1),则实数p 的值为 ▲ .4.下表是某同学五次数学附加题测试的得分情况,则这五次测试得分的方差为 ▲ .5.运行右图所示的伪代码,则输出的结果为 ▲ .6.设集合B 是集合{1,2,3,4}A =的子集,若记事件M 为“集合B 中的元素之和为5”,则事件M 发生的概率为 ▲ . 7.设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则实数a 的值是 ▲ .8.已知等差数列{}n a 的前n 项和为n S ,且912216, 42a a a =+=,则数列1{}nS 的前10项的和为 ▲ . 9.已知函数()log )a f x x b =+,若(2)(2)1f f --=-,则实数a 的值是 ▲ . 10.某种卷筒卫生纸绕在盘上,空盘时盘芯直径是40mm ,满盘时直径是120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约是 ▲ m .(π取3.14,精确到1m )11.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x =π对称,则cos2ϕ= ▲ .12.过点(1,1)P -作圆22:()(2)1()C x t y t t -+-+=∈R 的切线,切点分别为, A B ,则PA PB⋅uu r uu r 的最小值为 ▲ .13.已知函数22, 0,()e , 0,x x x f x x ⎧⎪=⎨>⎪⎩≤ 若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是 ▲ .14.在△ABC 中,角, , A B C 所对的边分别为, , a b c ,若, ,a b c 成等差数列,则cos 2cos A C +(第10题图)的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)将射线1(0)3y x x =≥绕着原点逆时针旋转4π后所得的射线经过点(cos ,sin )A θθ.(1)求点A 的坐标;(2)若向量(cos2,sin 2)x x =m ,(2cos ,sin )θθ=n ,当[0,]2x π∈时,求函数()f x =⋅m n的最大值和最小值.16.(本小题满分14分)如图,三棱柱111ABC A B C -中,, M N 分别为11, AB B C 的中点. (1)求证:MN ∥平面11AA C C ;(2)若11, C CC C C B A B ==,平面11CC B B ⊥平面ABC ,求证:AB ⊥平面CMN .A 1ABC B 1C 1MN(第16题图)如图,, OA OB 是两条互相垂直的笔直公路,半径2OA =km 的扇形AOB 是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB 上新增一个入口P (点P 不与, A B 重合),并新建两条都与圆弧AB 相切的笔直公路, MB MN ,切点分别是, B P .设POA θ∠=,公路, MB MN 的总长为()f θ. (1)求()f θ关于θ的函数关系式,并写出函数的定义域; (2)求()f θ的最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy的椭圆2222:1(0)x y C a b a b +=>>过点M . (1)求椭圆C 的标准方程;(2), A B 是椭圆的左右顶点,, P Q 是椭圆上与, A B 不重合的两点,若满足2AP QB k k =,求证:直线AP 与BQ 的交点在定直线上;(3)若直线0x y m ++=上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(,1)()k k k +∈N 上有零点,求k 的值; (3)若不等式()(1)()x m x f x x-->对任意正实数x 恒成立,求正整数m 的取值集合.20.(本小题满分16分)设等差数列{}n a 的公差为d ,数列{}n b 的前n 项和为n T ,满足*1(1)()2n n n n T b n +=-∈N ,且52d a b ==.若实数*23{|}(,3)k k k m P x a x a k k -+∈=<<∈N ≥,则称m 具有性质k P . (1)请判断12,b b 是否具有性质6P ,并说明理由;(2)设n S 为数列{}n a 的前n 项和,若{2}n n S a λ-是单调递增数列,求证:对任意的*(,3)k k k ∈N ≥,实数λ都不具有性质k P ;(3)设n H 是数列{}n T 的前n 项和,若对任意的*n ∈N ,21n H -都具有性质k P ,求所有满足条件的k 的值.苏州大学2019届高考考前指导卷(1)参考答案一、填空题1.1-或0 2.12 3.2 4.4 5.5 6.18 7.2- 8.1011 9.5 10.100 11.3512.214 13.3ln22- 14.154解答与提示:1.由2a A ∈知,21a =或2a a =,解得1a =-或0a =. 2.由11i z =+得11i 1+i 2z -==,所以1i 2z +=,虚部为12. 3.因为抛物线焦点坐标为(0,)2p,所以2p =.4.30x =,222221[3(3)(1)1]45s =+-+-+=.5.当012342+2+2+2+215S =>,所以5n =.6.集合A 的子集个数共有4216=个,满足条件的子集{1,4}B =和{2,3},所以概率为18.7.由22(1)y x -'=-,所以曲线在点(3,2)处的切线的斜率为12-,所以2a -=,得2a =-. 8.2217(10)6222n a d a d d a n +=++⇒=⇒=,(22)(1)2n n nS n n +==+.1111(1)1n S n n n n ==-++,1210111111111110()+()()1122310111111S S S +++=--++-=-=L L . 9.510.总长22(6020)32000321000.1l mm m m π-==π=π≈.11.由()f x 图象关于直线x =π对称,所以()()f f ϕϕπ+=π-,所以sin 22cos22ϕϕ-+=,所以22(sin 2)4(1cos2)ϕϕ-=-, 因为22sin 2cos 21ϕϕ+=,所以25cos 28cos230ϕϕ-+=, 得3cos25ϕ=或cos21ϕ=,因为022ϕ<<π,所以3cos25ϕ=. .12.如图,设∠APC =θ,则1sin PCθ=, 22222||||cos 2||cos 22(1)(12sin )(1)(1)PA PB PA PB PA PC PC PC θθθ⋅=⋅⋅=⋅=--=--uu r uu r uu r uu r uu r =2223PC PC +-,由于2222(1)(3)24102(1)88PC t t t t t =--+-=-+=-+≥,所以PA PB ⋅uu r uu r 的最小值为214.13.函数()f x 的值域为[0,+)∞,所以由方程2[()]f x a =得()f x =(1)a >,由2212e x x =得21ln 22ln()x x =+-, 所以1211ln 22ln()x x x x +=++-, 令221x =,得x =,所以1x <1t x =-,则t > 则12ln 22ln (()x x t t t h t +=-++>= 则2'()1h t t=-+,易知函数()h t 在(2上递增,在(2,)+∞上递减, 所以()h t 的最大值为(2)3ln 22h =-. 14.由, , a b c 成等差数列知,2a cb +=, 所以22253cos 24b c a c a A bc c +--==,22253cos 24b a c a cC ab a+--==, 所以535315331515cos 2cos ()4244244c a a c a c A C c a c a --+=+=-+--≤ 当且仅当222a c =即a =时取等号. 二、解答题15.解:(1)设射线1(0)3y x x =≥与x 轴的非负半轴所成的锐角为α,则1tan 3α=,因为1tan 1tan 34απ=<=,所以(0,)4απ∈, 所以11tan 13tan tan()2141tan 13αθαα+π+=+===--且(,)42θππ∈,由22sin cos 1,sin 2,cos θθθθ⎧+=⎪⎨=⎪⎩得sin cos θθ⎧=⎪⎪⎨⎪=⎪⎩所以点A的坐标为. (2)()cos2sin 2)4f x x x x π=⋅==+m n , 因为[0,]2x π∈,所以当8x π=时,()f x当2x π=时,()f x的最小值为16.证明:(1)取A 1C 1的中点P ,连接AP ,NP .因为C 1N =NB 1,C 1P =P A 1,所以NP ∥A 1B 1,NP =12A 1B 1. 在三棱柱ABC -A 1B 1C 1中,A 1B 1∥AB ,A 1B 1=AB ,故NP ∥AB ,且NP =12AB .因为M 为AB 的中点,所以AM =12AB .所以NP =AM ,且NP ∥AM . 所以四边形AMNP 为平行四边形. 所以MN ∥AP .因为AP ⊂平面AA 1C 1C ,MN ⊄平面AA 1C 1C ,所以MN ∥平面AA 1C 1C . (2)因为CA =CB ,M 为AB 的中点,所以CM ⊥AB . 因为CC 1=CB 1,N 为B 1C 1的中点,所以CN ⊥B 1C 1. 在三棱柱ABC -A 1B 1C 1中,BC ∥B 1C 1,所以CN ⊥BC .因为平面CC 1B 1B ⊥平面ABC ,平面CC 1B 1B ∩平面ABC =BC .CN ⊂平面CC 1B 1B , 所以CN ⊥平面ABC .因为AB ⊂平面ABC ,所以CN ⊥AB .因为CM ⊂平面CMN ,CN ⊂平面CMN ,CM ∩CN =C ,所以AB ⊥平面CMN . 17.解:(1)连结OM .在Rt OPN △中,2OP =,POA θ∠=,故2tan PN θ=.据平面几何知识可知,MB MP =,1242BOM BOP πθ∠=∠=-,在Rt BOM △中,2OB =,42BOM πθ∠=-,故2tan()42BM θπ=-. A 1ABCB 1C 1MN(第16题图)P所以()22tan 4tan()42f PN BM θθθπ=+=+-.显然(0,)2θπ∈,所以函数()f θ的定义域为(0,)2π.(2)令42θαπ=-,则22θαπ=-,且(0)4απ∈,. 所以2sin(2)2()2tan(2)4tan 4tan 2cos(2)2f αθααααπ-π=-+=+π- 2cos24tan sin 2ααα=+24tan tan 2αα=+21tan 4tan tan ααα-=+ 13tan tan αα=+=≥, 当且仅当13tan tan αα=,即tan α=此时tan (0,)4ααπ=∈,故, 66αθππ==. 答:当6θπ=时,()f θ的最小值为 18.解:(1)由题意,222,c a a b c ⎧=⎪⎨⎪=+⎩解得223a b =,又221213a b +=,解得223,1,a b ⎧=⎪⎨=⎪⎩ 所以椭圆C 的标准方程为2213x y +=.(2)设BQ k k =,则2(0)AP k k k =≠,由2((y k x y k x ⎧=+⎪⎨=⎪⎩得2(x x -+,所以x =- 所以直线AP 与BQ的交点在定直线x =-(3)①当过点G 的椭圆C 的一条切线的斜率不存在时,另一条切线必垂直于y 轴,易得(1)G ±;②当过点G 的椭圆C的切线的斜率均存在时,设000(,), G x y x ≠ 切线方程为00()y k x x y =-+,代入椭圆方程得2220000(31)6()3()30k x k kx y x kx y +--+--=,2220000[6()]4(31)[3()3]0k kx y k kx y ∆=--+--=,化简得:2200()(31)0kx y k --+=, 由此得2220000(3)210x k x y k y --+-=,设过点G 的椭圆C 的切线的斜率分别为12,k k ,所以20122013y k k x -=-.因为两条切线相互垂直,所以2020113y x -=--,即220004(x y x +=≠,由①②知G 在圆22004x y +=上,又点G 在直线0x y m ++=上, 所以直线0x y m ++=与圆224x y +=有公共点,2≤,所以m -≤综上所述,m的取值范围为[-. 19.解:(1)1()1f x x'=-,所以切线斜率为(1)0f '=, 又(1)1f =-,切点为(1,1)-,所以切线方程为1y =-. (2)令1()10f x x'=-=,得1x =, 当01x <<时,()0f x '<,函数()f x 单调递减; 当1x >时,()0f x '>,函数()f x 单调递增, 所以()f x 的极小值为(1)10f =-<,又22221111()ln 20e e e e f =--=>, 所以()f x 在区间(0,1)上存在一个零点1x ,此时0k =;因为(3)3ln321ln30f =--=-<,(4)4ln 4222ln 22(1ln 2)0f =--=-=->, 所以()f x 在区间(3,4)上存在一个零点2x ,此时3k =.综上,k 的值为0或3. (3)当1x =时,不等式为(1)10g =>.显然恒成立,此时m ∈R ; 当01x <<时,不等式()(1)()x m x f x x -->可化为ln 1x x xm x +>-, 令ln ()1x x xg x x +=-,则22ln 2()()(1)(1)x x f x g x x x --'==--,由(2)可知,函数()f x 在(0,1)上单调递减,且存在一个零点1x , 此时111()ln 20f x x x =--=,即11ln 2x x =-所以当10x x <<时,()0f x >,即()0g x '>,函数()g x 单调递增; 当11x x <<时,()0f x <,即()0g x '<,函数()g x 单调递减.所以()g x 有极大值即最大值1111111111ln (2)()11x x x x x x g x x x x +-+===--,于是1m x >.当1x >时,不等式()(1)()x m x f x x -->可化为ln 1x x xm x +<-, 由(2)可知,函数()f x 在(3,4)上单调递增,且存在一个零点2x ,同理可得2m x <. 综上可知12x m x <<.又因为12(0,1), (3,4)x x ∈∈,所以正整数m 的取值集合为{1,2,3}. 20.解:(1)由1111122T b b +=+=-得114b =-, 又3123341234411,8811,1616T b b b b T b b b b b ⎧+=+++=-⎪⎪⎨⎪+=++++=⎪⎩得3116b =-,214b =,可得5114(5)(5)444n n a a n d n -=+-=+-=,从而65{|0}4P x x =<<. 故1b 不具有性质6P ,2b 具有性质6P .(2)23(1)14(74)162()242448n n n n n n n S a n λλλλ---++-=-+⋅-=,因为数列{2}n n S a λ-单调递增,所以74322λ+<,即1λ<-, 又数列{}n a 单调递增,则数列{}n a 的最小项为1314a =->-, 则对任意*(,3)k k k ∈N ≥,都有2314k a λ-<-<-≤,故实数λ都不具有性质k P . (3)因为1(1)2n n n n T b +=-,所以1*1111(1)(2,)2n n n n T b n n ----+=-∈N ≥, 两式相减得111111(1)(1)22n n n n n n n n T T b b -----+-=---*(2,)n n ∈N ≥, 即11(1)(1)2n n n n n n b b b --=-+-*(2,)n n ∈N ≥, 当n 为偶数时,112n n n n b b b --=+,即112n nb -=-,此时1n -为奇数; 当n 为奇数时,112n n n n b b b --=--,则1112n n b --=,此时1n -为偶数;11则11(),21 (),2n n n n b n +⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数 11(),20 (),n n n T n +⎧-⎪=⎨⎪⎩为奇数为奇数故2112342221n n n H T T T T T T ---=++++++L2246822211(1)1111111124(1)12222223414n n n n --=-------=-=---L , 因为114n -对于一切*n ∈N 递增,所以311144n-<≤,所以211134n H --<-≤. 若对任意的*n ∈N ,21n H -都具有性质k P ,则1161(,]{|}3444k k x x ----⊆<<, 即61,4311,44k k -⎧-⎪⎪⎨-⎪>-⎪⎩≤ 解得1403k <≤,又*3,k k ∈N ≥,则3k =或4, 即所有满足条件的正整数k 的值为3和4.。