2017高考新课标全国1卷文科数学试题和答案解析
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年全国高考文科数学试题及答案-全国1卷
、选择题: 1.已知集合A. A l2.3.4.5.2017年普通高等学校招生全国统一考试1卷文科数学本大题共12小题,A= x|x 2 , B=B= x|x -2每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
x|3 2x 0,则B. A lC . A U B x|x |D. A U B=R为评估一种农作物的种植效果,选了n块地作试验田•这n块地的亩产量(单位:kg)分别为X1, X2,…, x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A . X1, X2,…,X n的平均数C . X1, X2,…,x n的最大值F列各式的运算结果为纯虚数的是A . i(1+i)2B . i2(1-i) C. X1, X2,…,X n的标准差X1, X2,…,X n的中位数(1+i)2D. i(1+i)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称•在正方形内随机取一点,则此点取自黑色部分的概率是()已知F是双曲线nB . 一82C:x2- — =1的右焦点,3CP是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为()6.如图,在下列四个正方体中,A, B为正方体的两个顶点, Q为所在棱的中点,则在这四个正方体中,直接AB与平面平行的是7•设x, y满足约束条件x 3y 3,x y 1,则z=x+y的最大值为y 0,3C. 2sin2 x8 .函数y 的部分图像大致为(1 cosx9.已知函数f(x) Inx ln(2 x),则A . f (x)在(0,2 )单调递增B . f (x)在(0,2)单调递减C. y= f(x)的图像关于直线x=1对称D. y= f(x)的图像关于点(1,0)对称10.如图是为了求出满足3n 2n1000的最小偶数n,那么在O和匚二|两个空白框中,可以分别填入A . A>1000 和n=n+1B . A>1000 和n=n+2C. A w 100(和n=n+1 D . A< 100(和n=n+211. △ABC的内角A、B、C的对边分别为a、b、c。
2017年高考数学全国卷1文(附参考答案及详解)
!槡#!##33#!#9!
%
%
槡 槡 2$#7)#%$ 2$)7))5%$
7'!
7'!
$#!$本小题满分!$分%设 "#$ 为曲线&&)'#2$ 上 两 点#" 与$ 的 横 坐 标 之 和 为 2! $!%求直线 "$ 的斜率* $$%设 + 为曲线& 上 一 点#& 在 + 处 的 切 线 与 直 线 "$ 平 行# 且 "+0$+#求直线 "$ 的方程!
槡 经 计
算
得
#'
! !&
!&
2
7'!
#7
' 9!94#8 '
!!&72!'&!$#7)#%$ '
槡 槡 !!&$72!'&!#7$)!&#$%3 #!$!$#
!&
2$7)3!"%$ 3 !3!2(9#
7'!
!&
2$#7)#4%$7)3!"%')$!43#其 中 #7 为 抽 取 的 第7 个 零 件 的
-!#!#$ #% 的 中 位 数
(!下 列 各 式 的 运 算 结 果 为 纯 虚 数 的 是 ! !
*!0!10$
+!0$!)0
,!!10$
-!0!10
2!如图正方形 "$&' 内的图形来自中国古代的太极图!正 方 形 内
切圆中的黑色部分和白色部分关于正方形的中心成中心对称!
!!
*
+
全国卷1高考文科数学2017年试题及答案解析(图片版)
全国卷1高考文科数学2017年试题及答案
解析(图片版)
高考语文复习资料高考数学复习资料高考英语复习资料高考文综复习资料高考理综复习资料高考语文模拟试题高考数学模拟试题高考英语模拟试题高考文综模拟试题高考理综模拟试题高中学习方法高考复习方法高考状元学习方法高考饮食攻略高考励志名言忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。
高考这个关出国留学网小编陪你一起过,以下是全国卷1高考文科数学2017年试题及答案解析,以供参考。
全国卷1高考文科数学2017年试题及答案解析2017年高考全国卷1文科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
下载2017年高考全国卷1文科数学真题及答案解析(完整版)
猜你喜欢:
2017年高考热点2017年全国各省高考成绩查询入口汇总2017高考招生简章2017高考招生信息汇总2017年全国高考
加分政策汇总2017年全国各省高考答案汇总2017全国高考志愿填报时间及入口汇总2017年全国高考体检时间及通知汇总全国各省2017年高考改革方案汇总2017阳光高考网2017年高考作文题目及范文汇总2017年全国各省市高考状元名单2017年全国各省高考录取分数线出国留学网高考频道整理。
2017年高考真题全国一卷文科数学(解析版附后)
2017年高考真题全国一卷文科数学(解析版附后)2017年高考真题全国一卷文科数学(解析版附后)一、选择题1.已知集合 $A=\{x|x\}$,则 $A\cap B=$A。
$A$B。
$B$C。
$B=\{x|x<\frac{3}{2}\}$___改写:已知集合 $A$ 和 $B$,其中 $A$ 是由所有小于 2 的 $x$ 组成的集合,$B$ 是由所有满足 $3-2x>0$ 的 $x$ 组成的集合。
则 $A$ 和 $B$ 的交集为 $\{x|x<\frac{3}{2}\}$,故选C。
2.为评估一种农作物的种植效果,选了$n$ 块地作试验田。
这$n$ 块地的亩产量(单位:kg)分别为$x_1,x_2,\dots,x_n$。
下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A。
$x_1,x_2,\dots,x_n$ 的平均数B。
$x_1,x_2,\dots,x_n$ 的标准差C。
$x_1,x_2,\dots,x_n$ 的最大值D。
$x_1,x_2,\dots,x_n$ 的中位数改写:为评估一种农作物的种植效果,选了 $n$ 块地作试验田。
设这 $n$ 块地的亩产量分别为 $x_1,x_2,\dots,x_n$。
下列指标中可以用来评估这种农作物亩产量稳定程度的是标准差,故选 B。
3.下列各式的运算结果为纯虚数的是A。
$i(1+i)^2$B。
$i^2(1-i)$C。
$(1+i)^2$D。
$i(1+i)$改写:下列各式中,只有 A 和 B 的运算结果为纯虚数。
故选 AB。
4.如图,正方形 $ABCD$ 内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是A。
$\frac{1}{4}$B。
$\frac{\pi}{8}$C。
$\frac{1}{2\pi}$D。
$\frac{4}{y^2}$改写:如图,正方形 $ABCD$ 内的图形来自中国古代的太极图。
2017年高考新课标I卷_文科数学答案_(精致打印版)
则 到 距离 ,其中 . P l
3cosθ + 4sinθ − 4 − a 5sin (θ + ϕ ) − 4 − a
d=
=
tanϕ = 3
17
17
4
依题意得: dmax = 17 ,解得 a = −16 或 a = 8 . .( 23 10 分)
(1)当 a =1时, f (x) = −x2 + x + 4 ,是开口向下,对称轴 x = 1 的二次函数. 2
= − 4 + (−1)n 3
2n+3
− 2n+2 3
=
2[− 2 3
+ (−1)n
2n+1 3
]
=
2Sn
故 Sn+1 , Sn , Sn+2 成等差数列.
.( 18 12 分)
解:(1)由已知∠BAP =∠CDP = 90° ,得 AB ⊥ AP ,CD ⊥ PD .
由于 AB∥CD ,故 AB ⊥ PD ,从而 AB ⊥ 平面 PAD . 又 AB ⊂ 平面 PAB ,所以平面 PAB ⊥ 平面 PAD .
x3 2
= 1 ,解得
x3
=
2
,于是
M(2,1).
设直线 AB 的方程为 y = x + m ,故线段 AB 的中点为 ( , ), . N 2 2+m |MN|=|m+1|
将 代入 得 . y = x + m
y = x2 x2 − 4x − 4m = 0
4
第2页 共4页
☆
当 ,即 时, . ∆ =16(m +1) > 0
2
2
2
2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017高考全国1卷文科数学试题和答案解析.docx
这条生产线当天生产的零件尺寸的标准差的估计值为
0.008
0.09.
20.(12分)解:
(1)设A(x1,y1),B(x2,y2),则x1
x2,y1
x1
2
,y2
x2
2
,x1+x2=4,
4
4
于是直线AB的斜率k
y1
y2
x1
x2
1 .
x1
x2
4
(2)由y
x2
,得y'
x.
4
2
设M(x3,y3),由题设知
4小题,每小题
5分,共20分。
13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.
14.曲线y
x2
1
在点(1,2)处的切线方程为_________________________.
x
15.已知a
π
,tanα,=2则cos (
π
(0,)
4
) =__________。
|,即4
2( m 1)
2( m
1),解得m
7 .
所以直线AB的方程为yx7 .
21.
(12
分 ) (1) 函 数f ( x)
的 定 义 域 为( ,
),
f (x)
2e2x
aex
a2
(2 ex
a)(ex
a),
①若a
0
,则f ( x)
e2 x,在(
,
)单调递增.
②若a
0
,则由f ( x)
0
得x
ln a
.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第
2017年高考新课标Ⅰ卷文数试题解析(正式版)(原卷版)
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1−i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 45.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,学/网点A 的坐标是(1,3),则△APF 的面积为 A .13B .12C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是A .B .C .D .7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38.函数sin21cos xy x=-的部分图像大致为A .B .C .D .9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.下面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c =2,则C =A .π12B .π6C .π4D .π312.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .(0,3][9,)+∞C .(0,1][4,)+∞D .(0,3][4,)+∞二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.16.已知三棱锥S −ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S −ABC 的体积为9,则球O 的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.18.(12分)如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的学科*程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序910111213141516零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,0.0080.09≈.20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 21.(12分)已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 23.[选修4−5:不等式选讲](10分)已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g . (1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.。
2017年全国新课标1卷高考文科数学真题及答案解析
1 在点(1,2)处的切线方程为______________. x
【 解 析 】 设 y = f ( x) , 则 f ′( x = ) 2x −
1 , 所 以 f ′(1) = 2 − 1 = 1 . 所 以 在 (1, 2) 处 的 切 线 方 程 为 x2
y − 2 =1 ⋅ ( x − 1) ,即 y= x + 1 .
A S 0 C B
OA ⊥ SC , OB ⊥ SC .因为平面 SAC ⊥ 平面 SBC ,所以 OA ⊥ 平面 SBC .
设 OA = R, VA− SBC =
1 1 1 1 × S ∆SBC × OA = × × 2 R × R × R = R 3 = 9, 所以 R = 3 .所 3 3 2 3
y2 =1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是(1,3).则△APF 3
C.
2 3
D.
3 2
【答案】D 【解析】由 c = a + b = 4 得 c = 2 ,所以 F (2, 0) ,将 x = 2 代入 x −
2 2 2 2
y2 1 ,得 y = ±3 ,所以 PF = 3 , = 3
1 4
B.
π 8
C.
1 2
D.
π 4
【答案】B
1 2 π 【解析】不妨设正方形边长为 1,则 S圆 =π ( ) = ,黑色部分的面积为圆的一半.由几何概型公式可知, 2 4
1 π ⋅ π 选 B. 2 P= 2 4 = . 1 8
5.已知 F 是双曲线 C:x2的面积为 A.
1 3 1 B. 2
2 2
2
B.x1,x2,…,xn 的标准差 D.x1,x2,…,xn 的中位数
(精校版)2017年新课标Ⅰ文数高考真题文档版(含答案)
故四棱锥
P
ABCD 的体积VPABCD
1 3
AB
AD PE
1 3
x3 .
由题设得 1 x3 8 ,故 x 2 . 33
从而 PA PD 2, AD BC 2 2 , PB PC 2 2 .
可得四棱锥 P ABCD 的侧面积为 1 PA PD 1 PA AB 1 PD DC 1 BC2 sin 60 6 2 3 .
(2)若
PA=PD=AB=DC, APD
90
,且四棱锥
P-ABCD
的体积为 8 3
,求该四棱锥的侧面积.
19.(12 分)
为了监控某种零件的一条生产线的生产过程,检验员每隔 30 min 从该生产线上随机抽取一个零件,并
测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的 16 个零件的尺寸:
2
2
2
2
19. (12 分)【解析】(1)由样本数据得 (xi ,i)(i 1, 2, ,16) 的相关系数为
16
(xi x)(i 8.5)
r
i1
2.78
0.18 .
16
16
(xi x)2 (i 8.5)2
0.212 16 18.439
i1
i1
由于| r | 0.25 ,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.
绝密★启用前
2017 年普通高等学校招生全国统一考试
文科数学
本试卷共 5 页,满分 150 分。 考生注意:
1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的条形 码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
(精校版)2017年新课标Ⅰ文数高考试题文档版(含答案).doc
绝密★启用前2017 年普通高等学校招生全国统一考试文科数学本试卷共 5 页,满分150 分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12 小题,每小题 5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A= x|x 2 , B= x|3 2 x 0 ,则A . A B= x|x 3B.A B 2C.A B x|x 3D.A B= R 22.为评估一种农作物的种植效果,选了n 块地作试验田 .这 n 块地的亩产量(单位:kg)分别为 x1,x2,,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A . x1, x2,, x n的平均数B . x1, x2,, x n的标准差C.x1, x2,, x n的最大值 D . x1, x2,, x n的中位数3.下列各式的运算结果为纯虚数的是A . i(1+i) 2 B. i 2(1-i) C. (1+i) 2 D. i(1+i)4.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科& 网则此点取自黑色部分的概率是A .1B .πC.1D .π4 8 2 45.已知 F 是双曲线 2 y2C:x - =1 的右焦点, P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是 (1,3). 则△APF3的面积为A .1 1 2 3B .2C. D .3 3 26.如图,在下列四个正方体中,A, B 为正方体的两个顶点,M, N,Q 为所在棱的中点,则在这四个正方体中,直接 AB 与平面 MNQ 不平行的是x 3 y 3,7.设 x, y 满足约束条件x y 1, 则 z=x+y 的最大值为y 0,A . 0B . 1 C. 2 D . 3sin2 x8. .函数y的部分图像大致为1cosx9.已知函数 f (x) lnx ln(2 x) ,则A .f (x) 在(0,2)单调递增B. f (x) 在(0,2)单调递减C . y= f (x) 的图像关于直线 x=1 对称D . y= f (x) 的图像关于点( 1,0)对称10.如图是为了求出满足 3n 2n1000 的最小偶数 n ,学 |科网那么在和两个空白框中,可以分别填入A .A>1000 和 n=n+1B . A>1000 和 n=n+2C . A ≤ 1000和 n=n+1D . A ≤ 1000和 n=n+211. △ABC 的内角 A 、 B 、C 的对边分别为 a 、b 、c 。
2017年全国高考文科数学试题及答案-全国1卷
2017年全国高考文科数学试题及答案-全国1卷2017年普通高等学校招生全国统一考试1卷文科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x0},则A∩B={x|x<3/2}。
2.为评估一种农作物的种植效果,选了n块地作试验田。
这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是x1,x2,…,xn的标准差。
3.下列各式的运算结果为纯虚数的是i(1+i)2.4.如图,正方形ABCD内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是π/8.5.已知F是双曲线C:x^2/9-y^2/4=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3)。
则△APF的面积为3/2.6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是下图中的正方体。
7.设x,y满足约束条件{x+3y≤3.y≥0.x-y≥1},则z=x+y的最大值为2.8.函数y=sin2x/(1-cosx)的部分图像大致为下图中的红线。
9.已知函数f(x)=lnx+ln(2-x),则f(x)在(0,2)单调递减。
10.如图是为了求出满足3^n-2^n>1000的最小偶数n,那么在可以分别填入A≤1000和n=n+1.D。
A≤1000,n=n+211.已知三角形ABC的内角A、B、C 的对边分别为a、b、c。
已知sinB+sinA(sinC-cosC)=x2y2,a=2,c=2,则C=π/3.解释:首先,将文中的符号补全,使其更加易读。
然后,根据题目中给出的条件,使用三角函数公式解出C的值。
12.设A、B是椭圆C:x2/a2+y2/b2=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是(0,1]∪[9,+∞)。
2017年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷满分150分,考试时间120分钟考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考员将试题卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|2A x x =<,{}|320B x x =->,则( ) A .3|2A B x x ⎧⎫=<⎨⎬⎩⎭B .A B =∅C .3|2AB x x ⎧⎫=<⎨⎬⎩⎭D .AB =R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为1x ,2x ,……,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,……,n x 的平均数B .1x ,2x ,……,n x 的标准差C .1x ,2x ,……,n x 的最大值D .1x ,2x ,……,n x 的中位数3.下列各式的运算结果为纯虚数的是( ) A .2(1)i i +B .2(1)i i -C .2(1)i +D .(1)i i +4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π 45.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),△APF 的面积为( )A .13B .1 2C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z x y =+的最大值为( )A .0B .1C .2D .3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________数学试卷 第3页(共18页)数学试卷 第4页(共18页)8.函数sin21cos xy x=-的部分图像大致为( )A .B .C .D .9.已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称10.下面程序框图是为了求出满足321000nn->的最小偶数n ,框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,2a =,c =C =( )A .π12B .π6 C .π4 D .π3 12.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( ) A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞二、填空题:本题共4小题,每小题5分,共20分.13.已知向量)2(–1,=a ,)1(,m =b .若向量+a b 与a 垂直,则m =________.14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.已知π(0)2α∈,,tan 2α=,则πcos ()4α-=__________.16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22.23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.18.(12分)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=.数学试卷 第5页(共18页)数学试卷 第6页(共18页)(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min ,从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 21.(12分)已知函数2()()xxe ef x a a x =--. (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l a . 23.[选修4−5:不等式选讲](10分)已知函数2()4f x x ax =-++,g()|1||1|x x x =++-. (1)当1a =时,求不等式()g()f x x ≥的解集;毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页)数学试卷 第8页(共18页)(2)若不等式()g()f x x ≥的解集包含[1,1] ,求a 的取值范围.2017年普通高等学校招生全国统一考试文科数学答案解析一、选择题 1.【答案】A 【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A .2.【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.【答案】C【解析】由2(1)2i i +=为纯虚数,选C . 4.【答案】B【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积π2S =,则对应概率ππ248P ==,故选B .5.【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D .6.【答案】A【解析】由B ,AB MQ ∥,则直线AB ∥平面MNQ ;由C ,AB MQ ∥,则直线AB ∥平面MNQ ;由D ,AB NQ ∥,则直线AB ∥平面MNQ .故A 不满足,选A .7.【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D .8.【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,排除D ;当1x =时,sin 201cos2y =>-,排除A ,故选C .9.【答案】C 【解答】解:函数()ln ln(2)f x x x =+-,(2)ln(2)ln f x x x ∴-=-+,即()(2)f x f x =-,即()y f x =的图象关于直线1x =对称,故选:C . 10.【答案】D【解析】由题意选择321000n n ->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D . 11.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()0C A A C A ++=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin 4=即1sin 2C =,得π6C =,故选B . 12.【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M满足120AMB ∠=,则tan 603ab ≥=≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab ≥=≥9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .二、填空题 13.【答案】7【解析】由题得(1,3)m +=-a b , 因为()0+=a b a , 所以(1)230m --+⨯= 解得7m =14.【答案】1y x =+ 【解析】设()y f x = 则21()2f x x x'=-所以(1)211f '=-=所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+.15.【解析】π(0,)2α∈,tan 2α=,sin 2cos αα∴=,22sin cos 1αα+=,解得sin αcos α=πππcos()cos cos sin sin 444ααα∴-=+=+=, 16.【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=所以球的表面积为24π36πr = 三、解答题17.【答案】(1)(2)n n a =- (2)1n S +,n S ,2n S +成等差数列.【解析】(1)设等比数列{}n a 首项为1a ,公比为q ,则332628a S S ==--=--,则31228a a q q -==,328a a q q-==, 由122a a +=,2882q q--+=,整理得2440q q ++=, 解得:2q =-, 则12a =-,1(2)(2)(2)n nn a =--=﹣-.(2)由(1)可知:11(1q )1[2(2)]13n n n a S q +-==-+--, 则211[2(2)]3n n S ++=-+-,321[2(2)]3n n S ++=-+-, 由231211[2(2)][2(2)]33n n n n S S +++++=-+--+-=12114(2)(2)[](2)(2)3n n ++-+-⨯-+-⨯- 111142(2)2(2(2)33[][)]n n ++=-+⨯-=⨯-⨯+-2n S =,即122n n n S S S +++=所以1n S +,n S ,2n S +成等差数列. 18.【答案】(1)90BAP AB PA ∠=︒⇒⊥90CDP CD PD ∠=︒⇒⊥AB CD ∥,PA PD P =,AB PAD ∴⊥平面 AB PAD ⊂平面 PAB PAD ∴平面⊥平面(2)6+【解析】(1)见答案(2)由(1)知AB PAD ⊥平面,90APB ∠=︒,PA PD AB DC ===.取AD 中点O ,所以OP ABCD ⊥底面,,OP AB AD =, 1833P ABCDV AB AB -∴=⨯= 2AB ∴=AD BC ∴==,2PA PD AB DC ====,PO =,PB PC ∴==111222PADPABPDCPBCPA PD PA PB DC S SSSS=⨯⨯+⨯⨯+⨯⨯∴=+++侧111122222222226=⨯⨯+⨯⨯+⨯⨯+⨯=+ 19.【答案】(1)0.18-(2)(i )需要对当天的生产过程进行检查. (ii )均值为10.02,标准差约为0.09. 【解析】(1)16()(8.5)0.18ixx i r --==≈-∑因为||0.25r <,所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i)39.9730.2129.334x s -=-⨯=,39.9730.21210.636x s +=+⨯=所以合格零件尺寸范围是(9.334,10.606),显然第13号零件尺寸不在此范围之内,因此需要对当天的生产过程进行检查.(ii )剔除离群值后,剩下的数据平均值为169.22169.979.2210.021515x -⨯-==, 0.09s ==.20.【答案】(1)1 (2)7y x =+【解析】(1)设()()1122,,,A x y B x y ,则2221212121214414ABx x y y x x K x x x x --+====-- (2)设20(,)4x M x ,则C 在M 处的切线斜率'00112ABy K K x x x ====- 02x ∴=,则()12,1A ,又AM BM ⊥,22121212121111442222AM BM x x y y K K x x x x ----==----()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y x m =+,代入24x y = 得2440x x m --=124x x ∴+=,124x x m =-48200m =-++7m ∴=故AB :y x =+721.【答案】(1)当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增,当0a <时,()f x 在(,ln())2a -∞-上单调递减,在(ln())2a -+∞,上单调递增, (2)34]21[,e -.【解析】(1)222()x x x x f x e e a a x e e a a x =-=-()--, 222(2)()x x x x f x e ae a e a e a ∴'==-+-()﹣,①当0a =时,()0f x '>恒成立,()f x ∴在R 上单调递增.②当0a >时,20x e a +>,令()0f x '=,解得ln x a =, 当ln x a <时,()0f x '<,函数()f x 单调递减, 当ln x a >时,()0f x '>,函数()f x 单调递增,③当0a <时,0x e a -<,令()0f x '=,解得ln()2ax =-,当ln()2a x -<时,()0f x '<,函数()f x 单调递减,当ln()2ax ->时,()0f x '>,函数()f x 单调递增.综上所述,当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增,当0a <时,()f x 在(,ln())2a-∞-上单调递减,在(ln())2a -+∞,上单调递增,(2)①当0a =时,2()0x f x e =>恒成立,②当0a >时,由(1)可得2()()ln 0min f x f lna a a ==-≥,ln 0a ∴≤, 01a ∴≤<.③当0a <时,由(1)可得:223()(ln(-))ln(-)0242mina a af x f a ==-≥,3ln(-)24a ∴≤,3420e a ∴≤﹣<,综上所述a 的取值范围为34]21[,e -. 22.【答案】(1)(3,0)和(,2125)4225- (2)16a =-或8a =【解析】(1)当1a =-时,14,:1,x t L y t =-+⎧⎨=-⎩(t 为参数),L 消参后的方程为430x y +-=,曲线C 消参后为221x y y +=,与直线联立方程221,430,x y y x y ⎧+=⎪⎨⎪+-=⎩解得3,0,x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩椭圆C 和直线L 的交点为(3,0)和(,2125)4225-.(2)L 的普通方程为440x y a +--=, 设曲线C 上任一点为()3cos,sin P θθ, 由点到直线的距离公式,d =,d =max d =∴()max5sin 417aθϕ+--=,当()sin 1θϕ+=时最大,即5417a --=时,16a =-, 当()sin1θϕ+=-时最大,即917a +=时,8a =,综上:16a =-或8a =. 23.【答案】(1)(1. (2)a 的取值范围是[]1,1-.【解析】(1)当1a =时,21()4a f x x x ==-++时,,是开口向下,对称轴为12x =的二次函数, 2,1,()112|,1,|12,1,x x g x x x x x x ⎧⎪=++-=-⎨⎪--⎩>≤≤<当(1)x ∈+∞,时,令242x x x ++=-,解得x =,()g x 在(1)+∞,上单调递增,()f x 在(1)+∞,上单调递减,此时()()f x g x ≥的解集为(1; 当,1[]1x ∈-时,()2g x =,()(1)2f x f ≥-=.当(1)x ∈-∞,-时,()g x 单调递减,()f x 单调递增,且(1)(1)2g f -=-=.综上所述,()()f x g x ≥的解集为(1; (2)依题意得:242x ax -++≥在[]1,1-恒成立,即220x ax -≤-在[]1,1-恒成立,则只需221120,(1)(1)20,a a ⎧--⎨----⎩≤≤解得11a -≤≤, 故a 的取值范围是[]1,1-.数学试卷第17页(共18页)数学试卷第18页(共18页)。
2017年高考新课标全国1卷文科数学试题和答案解析
2017年高考新课标全国1卷文科数学试题和答案解析2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:1.已知集合A={x|x0},则 B={x|x<3/2}。
2.为评估一种农作物的种植效果,选了n块地作试验田。
这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是B。
x1,x2,…,xn的标准差。
3.下列各式的运算结果为纯虚数的是 A。
i(1+i)2.4.如图,正方形ABCD内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是 D。
4/y^2.5.已知F是双曲线C:x^2/3-y^2/2=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3)。
则△APF的面积为 C。
3/3.6.已知函数f(x)=2x^3-3x^2-12x+5,g(x)=x^2+3x+1,则f(g(x))=2x^6+3x^5-25x^4-51x^3-33x^2+19x+7.7.设x,y满足约束条件{x+3y≤3.y≥0},则z=x+y的最大值为 1.8.函数y=ln(x+1)的图像经过点(0,0),且在点(0,0)处的切线方程为y=x,则x=e-1.BP=3,DP=4,PC=6,AP=8,求四棱锥P-ABCD的体积。
19.(12分)已知函数f(x)=x3-3x2+3x-1,g(x)=f(x-1),h(x)=f(x+1),求函数g(x)和h(x)的零点个数,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017 年普通高等学校招生全国统一考试文科数学本试卷共 5 页,满分 150 分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共 12小题,每小题 5 分,共 60分。
在每小题给出的四个选项中,只有 一项是符合题目要求的。
1.已知集合 A = x|x 2 , B = x|3 2x 0 ,则别为 x 1, x 2,⋯, x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A . x 1, x ,⋯ , x n 的平均数B . x 1, x 2,⋯, x n 的标准差C .x 1,x 2,⋯, x n 的最大值 D . x 1, x 2,⋯, x n 的中位数 3.下列各式的运算结果为纯虚数的是2A . i(1+i) 2 2B . i 2(1-i)2C . (1+i) 2D .i(1+i)4.如图,正方形 ABCD 内的图形来自中国古代的太极图 . 正方形内切圆中的黑色部分和白色 部分关于正方形的中心成中心对称 . 在正方形内随机取一点, 学 科 &网则此点取自黑色部分的概率是绝密★启用前3A .AB = x|x 32C . A B x|x2.为评估一种农作物的种植效果,选了 B . A B D . A B=Rn 块地作试验田 . 这 n 块地的亩产量(单位: kg )分是(1,3). 则△ APF 的面积为在这四个正方体中,直接 AB 与平面 MNQ 不平行的是x 3y 3,7.设 x , y 满足约束条件 x y 1, 则 z =x +y 的最大值为y 0,A . 0B .1C .2sin2x8.. 函数 y的部分图像大致为1 cosxA .B .C .D .25.已知 F 是双曲线 C : x 2- y =1 的右焦点, 3P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标A .B .C .23D .326.如图,在下列四个正方体中, A ,B 为正方体的两个顶点, M ,N ,Q 为所在棱的中点,则D .34C .y = f (x) 的图像关于直线 x =1对称D .y = f (x)的图像关于点( 1,0 )对称10.如图是为了求出满足 3n 2n 1000的最小偶数 n ,学| 科网那么在和 两个空白框中,可以分别填入a =2, c = 2 ,则 C = ππA .B .12 6A . f (x) 在( 0,2 )单调递增B . f(x) 在( 0,2 )单调递减A .A >1000 和 n =n +1C . A ≤1000 和 n =n +1B . A >1000和 n =n +2D .A ≤1000和 n =n +211.△ ABC 的内角 A 、B 、C 的对边分别为a 、b 、c 。
已知 sin B sin A(sin C cosC) 0 , C . D .2212.设 A 、 B 是椭圆 C : x y 1长轴的两个端点,若 C 上存在点 M 满足∠ AMB =120°, 3m则 m 的取值范围是A . (0,1] [9, )B . (0, 3] [9, )C . (0,1] [4, )D . (0, 3] [4,)二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.已知向量 a =(–1,2),b =(m ,1).若向量 a +b 与 a 垂直,则 m = ____________ .2114.曲线 y x 2在点( 1, 2)处的切线方程为 _______________________ .x ππ15.已知a (0, ) ,tan α =2,则 cos () = ________ 。
16.已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上, SC 是球 O 的直径。
若平面 SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥 S-ABC 的体积为 9,则球 O 的表面积为 __ 。
三、解答题: 共 70 分。
解答应写出文字说明、 证明过程或演算步骤。
第 17~21 题为必考题,每个试题考生都必须作答。
第 22、23 题为选考题,考生根据要求作答。
一)必考题: 60 分。
记 S n 为等比数列 a n 的前 n 项和,已知 S 2=2, S 3=-6.1)求 a n 的通项公式;2)求 S n ,并判断 S n+1,S n ,S n+2 是否成等差数列 。
82)若 PA =PD =AB =DC , APD 90 , 且四棱锥 P-ABCD 的体积为 ,求该四棱锥的侧面 3积.17. 12 分)18. 12 分)如图,在四棱锥901)证明:平面19.( 12 分)为了监控某种零件的一条生产线的生产过程,检验员每隔取一个零件,并测量其尺寸(单位: cm ).下面是检验员在一天内依次抽取的 16 个零件的 尺寸:1 16 1 16 1 16 经计算得 x 116 i 1 x i 9.97,s 116i 1(x i x)2 116( i 1 x i 216x 2) 0.212,1618.439,(x i x)(i 8.5) 2.78,其中x i为抽取的第 i1i 1,2, ,16 .(1)求(x i , i ) (i 1,2, ,16) 的相关系数 r ,并回答是否可以认为这一天生产的零件尺 寸不随生产过程的进行而系统地变大或变小(若 |r | 0.25 ,则可以认为零件的尺寸不随生 产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在 (x 3s,x 3s ) 之外的零件,就认为这条 生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学 . 科网是否需对当天的生产过程进行检查?(ⅱ) 在 (x 3s,x 3s ) 之外的数据称为离群值, 试剔除离群值, 估计这条生产线当天 生产的零件尺寸的均值与标准差.(精确到 0.01 )n(x i x )(y i y )附 : 样本 (x i ,y i ) (i 1,2, ,n ) 的 相 关 系 数 r0.008 0.09 .20.( 12 分)x 2设 A ,B 为曲线 C :y = 上两点, A 与 B 的横坐标之和为 4.30 min 从该生产线上随机抽(i 8.5)2i1i 个零件的尺寸,i1(x i x)2(y i y)24(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM BM,求直线AB的方程.21.(12 分)已知函数f (x)=e x(e x﹣a)﹣a2x.(1)讨论f (x)的单调性;(2)若f (x) 0,求 a 的取值范围.(二)选考题:共10分。
请考生在第22、23 题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程] (10分)x 3cos ,在直角坐标系xOy中,曲线C的参数方程为(θ 为参数),直线l 的参数y sin ,x a 4t,方程为(t为参数).y 1 t,(1)若a=- 1,求C与l 的交点坐标;(2)若C上的点到l 的距离的最大值为17 ,求a.23.[选修4—5:不等式选讲](10 分)已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│ x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式 f (x)≥g(x)的解集包含[ –1,1] ,求a的取值范围.2017年高考新课标 1 文数答案1. A2. B3. C4. B5. D6. A7. D16. 36π17.(12分)【解析】(1)设{ a n }的公比为 q.由题设可得 a1(1 q ) 22,解得 q 2,na 1(1 q q 2)6a 12故{a n } 的通项公式为 a n ( 2)n .故 S n 1 , S n , S n 2 成等差数列18. ( 12分)【解析】( 1)由已知 ∠BAP ∠CDP 90 ,得 AB AP , CD PD . 由于8.C 9.C 10.D 11.B 12.A 13.7 14.15.3 10 102)由( 1)可得 S na1(1 q )1qn123 ( 1)n234n 2n 3由于S n 2 S n 13 ( 1)n32n 2 2 n 2n 1 32 2[ 23 ( 1)n23 ] 2S n ,AB∥CD ,故AB PD,从而AB 平面PAD. 又AB 平面PAB ,所以平面PAB 平面PAD .2)在平面PAD 内作PE AD ,垂足为E .由( 1)知, AB 平面 PAD ,故 AB PE ,可得 PE 平面 ABCD . 设AB x ,则由已知可得 AD2x ,PE2x . 211 故四棱锥 P ABCD 的体积 V P ABCD 1AB AD PE 1x 3.33 由题设得 1x 3 8 ,故 x 2.33从而 PA PD 2, AD BC 2 2, PB PC 2 2.16(x i x)(i 8.5)i1 16 16(x i x)2(i 8.5)2i 1 i 1由于 |r | 0.25 ,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或 变小. (2)(i )由于 x 9.97, s 0.212,由样本数据可以看出抽取的第13 个零件的尺寸在(x 3s,x 3s )以外,因此需对当天的生产过程进行检查 .(ii )剔除离群值,即第 13 个数据,剩下数据的平均数为 1 (16 9.97 9.22) 10.02 ,15 这条生产线当天生产的零件尺寸的均值的估计值为 10.02.16 x i 2 16 0.2122 16 9.972 1591.134 ,i11 2 2剔除第 13 个数据,剩下数据的样本方差为 (1591.134 9.222 15 10.022) 0.008 ,15 这条生产线当天生产的零件尺寸的标准差的估计值为 0.008 0.09.20. (12 分)解:22(1)设 A (x 1,y 1),B (x 2,y 2),则 x 1 x 2 , y 1 x1 , y 2 x2 ,x 1+x 2=4, 于是直线 AB 的斜率k y1 y2 x1 x21.x 1 x 242(2)由 y x ,得 y' x .42设 M (x 3,y 3),由题设知 x3 1,解得 x 3 2,于是 M (2, 1).19.P 可11P12分)【解析】( 1)由样本数据得 (xi ,i)(i 1,2, ,16) 的相关系数为 2.780.212 16 18.4390.18.2设直线AB的方程为y x m,故线段AB的中点为N(2,2+m),| MN|=| m+1|.2 x 2将y x m 代入y 得x2 4x 4m 0 .4当16(m 1) 0,即m 1时,x1,2 2 2 m 1.从而|AB|= 2|x1 x2 | 4 2(m 1).由题设知| AB| 2|MN |,即 4 2(m 1) 2(m 1),解得m 7.所以直线AB的方程为y x 7.21.( 12 分) ( 1 ) 函数f(x) 的定义域为( , ,f (x) 2e2x ae x a2 (2e x a)(e x a) ,①若a 0,则f(x) e2x,在( , )单调递增.②若a 0,则由f (x) 0得x lna.当x ( ,ln a)时,f (x) 0;当x (ln a, )时,f (x) 0,所以f(x)在( ,ln a)单调递减,在(ln a, ) 单调递增.③若a 0 ,则由f (x) 0 得x ln( a) .2 aa当x ( ,ln( ))时,f (x) 0;当x (ln( ), )时,f (x) 0,故f(x) 在22aa( ,ln( )) 单调递减,在(ln( ), ) 单调递增.22(2)①若a 0,则f (x) e2 x,所以f (x) 0.②若a 0 ,则由( 1)得,当x lna时,f ( x)取得最小值,最小值为f (lna) a2ln a.从而当且仅当a2 ln a 0 ,即a 1时,f(x) 0.a③若a 0 ,则由(1)得,当x ln( )时,f(x) 取得最小值,最小值为2a 2 3 a 2 3 a f(ln( )) a 2[ ln( )] . 从 而 当 且 仅 当 a 2[ ln( )] 0 , 2 4 2 4 2 3 即 a 2e 4 时f(x) 0. 3综上, a 的取值范围为 [ 2 e 4 ,1] .22.[ 选修 4-4 :坐标系与参数方程 ] (10分)2 解:(1)曲线 C 的普通方程为 x y 2 1.9当 a 1时,直线 l 的普通方程为 x 4y 3 0.x x 2 4y 2 3 0解得 x 3或 x 9 y 2 1 y 0 21 y 2425 y 25 从而C 与l 的交点坐标为 (3,0) , 21,24 25,25 2)直线 l 的普通方程为 x 4y a 4 0 ,故C 上的点 (3cos ,sin )到l 的距离为 |3cos 4sin a 4| 17 a 4 时, d 的最大值为 a 9 .由题设得 a 9 17,所以 a 8; 17 17a 4 时, d 的最大值为 a 1 a 1 . 由题设得 17 ,所以 a 16.17 17综上, a 8 或 a 16. 、 23.[ 选修 4-5 :不等式选讲 ] (10分) 解:(1)当 a 1时,不等式 f (x) g(x)等价于 x 2 x |x 1| |x 1| 4 0. ① 当 x 1时,①式化为 x 2 3x 4 0 ,无解;当 1 x 1时,①式化为 x 2 x 2 0,从而 1 x 1;当 x 1 时,①式化为 x 4 0,从而1 x 1 17所以f (x) g( x)的解集为{x| 1 x 1 17} .2(2)当x [ 1,1]时,g(x) 2.所以f (x) g( x)的解集包含[ 1,1],等价于当x [ 1,1]时f(x) 2.又f(x)在[ 1,1]的学科&网最小值必为f( 1)与f (1)之一,所以f( 1) 2且f(1) 2,得1 a 1. 所以a 的取值范围为[ 1,1].。