量子力学小论文
量子力学论文
从波函数到薛定谔方程摘要:本文从波函数出发,阐述薛定谔的推导过程,并且根据哈特里福克方程,克莱因戈尔登方程完善薛定谔方程的泡利不相容原理,洛伦兹不变性。
关键词:波函数薛定谔方程哈特里福克方程克莱因戈尔登方程一.波函数:微观粒子的运动状态称为量子态,是用波函数来描述的,这个波函数所反映的微观粒子波动性,这个波函数所反映的微观粒子波动性,就是德布罗意波。
(量子力学的基本假设之一)并且,玻恩指出:德布罗意波或波函数不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。
(1)推导过程:在波动学中,描述波动过程的数学函数都是空间、时间二元函数一列沿X轴正向传播的平面单色简谐波的波动方程,即:应用欧拉公式,可以推广到复数域:再通过德布罗意公式,可以得到自由粒子的波函数:(2)波函数性质1.自由粒子的能量和动量为常量,其波函数所描述的德布罗意波是平面波。
2.对于处在外场作用下运动的非自由粒子,其能量和动量不是常量,其波函数所描述的德布罗意波就不是平面波。
3.外场不同,粒子的运动状态及描述运动状态的波函数也不相同。
(3)波函数的统计假设设描述粒子运动状态的波函数为,则1.空间某处波的强度与在该处发现粒子的概率成正比;2.在该处单位体积内发现粒子的概率(概率密度)与的模的平方成正比。
(4)波函数统计意义的具备条件1.连续- 因概率不会在某处发生突变,故波函数必须处处连续;2.单值- 因任一体积元内出现的概率只有一种,故波函数一定是单值的;3.有限- 因概率不可能为无限大,故波函数必须是有限的;二.薛定谔方程:1.1925年德国物理学家薛定谔提出的非相对论性的量子力学基本方程,质量为m的粒子,在势能函数为的势场中运动,当其运动速度远小于光速时,它的波函数所满足的方程为:这就是薛定谔方程,它反映微观粒子运动状态随时间变化的力学规律,又称含时薛定谔方程。
其中,为哈密顿算符。
2.若粒子所在的势场只是空间函数,那么对应于一个可能态有一个能量值E,即可得到定态薛定谔方程:3.定态是指波函数具有的形式。
关于量子力学发展简史论文
关于量子力学发展简史论文关于量子力学发展简史论文摘要:量子理论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。
玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。
终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。
关键词:量子力学;量子理论;矩阵力学;波动力学;测不准原理量子力学揭示了微观物质世界的基本规律,为原子物理、固体物理学、核物理学和粒子物理学奠定了基础。
它能很好地解释原子结构、原子光谱的规律性、化学元素的性质,光的吸收与辐射等等方面。
从1900年到1913年量子论的早期提出,到经过许多科学家如玻恩、海森伯、玻尔等人的努力诠释,量子力学得到了进一步发展。
后来遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。
双方展开了一场长达半个世纪的论战,至今尚未结束。
一、量子论的早期1 普朗克的能量子假设普朗克在黑体辐射的维恩公式和瑞利公式之间寻求协调统一,找到了与实际结果符合极好的内插公式,迫使他致力于从理论上推导这一新定律。
但是,他经过几个月的紧张努力也没能从力学的普遍理论直接推出新的辐射定律。
最后只好用玻尔兹曼的统计方法来试一试。
他根据黑体辐射的测量数据计算出普适常数,后来人们称这个常数为普朗克常数,也就是普朗克所谓的“作用量子”,而把能量元称为能量子。
2光电效应的研究普朗克的出能量子假说具有划时代的意义,但是,不论是他本人还是同时代人当时对这一点都没有充分认识。
爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元.1905年,爱因斯坦在其论文《关于光的产生和转化的一个试探性观点》中,发展了普朗克的量子假说,提出了光量子概念,并应用到光的发射和转化上,很好地解释了光电效应等现象。
物理学 量子力学 大学期末论文
物理学量子力学大学期末论文摘要:本文旨在探讨量子力学的基本概念、原理及其在物理学领域的应用。
首先介绍了科学家们对量子力学的研究历程,然后深入解析了量子力学的核心理论和基本原理,包括波粒二象性、不确定性原理、波函数等。
接着,阐述了著名的量子力学实验和薛定谔方程的重要性,再详细讨论了量子力学在原子物理、固态物理以及信息科学等领域的应用。
最后,总结了量子力学的局限性,并对未来发展方向提出了展望。
1. 引言在近现代物理学的发展过程中,量子力学作为一门革命性的理论,在解释微观世界的物理现象方面起到了举足轻重的作用。
量子力学的基本原理和概念对于研究原子、分子、固体和核物理等领域具有重要意义,也在信息科学和计算机科学中发挥着日益重要的作用。
2. 量子力学的历史量子力学的历史可以追溯到20世纪初。
在此期间,诸多物理学家如普朗克、爱因斯坦、德布罗意等人都对量子力学的基础概念做出了重要贡献。
其中普朗克的能量量子化假设和爱因斯坦的光电效应等实验现象的解释为量子力学的发展奠定了基础。
3. 量子力学的基本原理量子力学具有波粒二象性,即微观粒子既具有粒子性又具有波动性。
不确定性原理指出,对于某些物理量的测量存在不确定性,即无法同时确定粒子的位置和动量。
此外,波函数是量子力学中的核心概念,它描述了粒子在空间中的行为。
4. 薛定谔方程薛定谔方程是量子力学中的重要方程,描述了波函数随时间的演化。
它为量子力学的定态和非定态问题提供了解决方法,并在粒子在势能场中的运动研究中具有广泛应用。
5. 量子力学的实验验证量子力学的实验验证对于验证理论的正确性和进一步发展起着关键作用。
例如,描写电子云模型的费曼双缝实验以及描述原子的量子力学实验等都为量子力学的发展提供了重要支持。
6. 量子力学的应用领域量子力学在原子物理、固态物理和信息科学等领域具有广泛的应用。
在原子物理中,量子力学被用来解释原子光谱现象,以及描述电子在原子轨道中的运动。
在固态物理中,通过量子力学可以研究电子在晶格中的行为,解释导电性和磁性等现象。
量子力学作文
量子力学作文篇一量子力学哎呀呀,量子力学,这可真是个让人头疼又着迷的玩意儿啊!我第一次听到这个词的时候,就觉得哇,这是什么高科技啊,感觉好厉害的样子。
咱就说,量子力学里那些什么粒子啊、波啊,一会儿这样一会儿那样的,真的是让人捉摸不透。
就好像你觉得它是个粒子吧,它又能表现出波的特性,这不是玩儿我呢嘛!我觉得吧,这量子力学就像是个调皮的小孩子,你永远不知道它下一秒会搞出什么花样来。
我记得有一次上物理课,老师在讲量子力学,我听得云里雾里的,感觉自己的脑子都要变成浆糊了。
我当时就在想,这玩意儿到底和我有啥关系啊?难道我以后买菜还要用量子力学去算价格吗?但是后来我又想,也许了解了量子力学,我就能知道宇宙的奥秘了呢,那多酷啊!也许量子力学就是那把打开宇宙神秘大门的钥匙呢,谁知道呢!虽然我现在对它还不是很懂,但我就是对它有一种莫名的好奇。
说不定哪天我突然就开窍了,一下子就搞懂了呢。
嘿嘿,量子力学,你就等着我来征服你吧!篇二量子力学哇塞,量子力学啊,这可真是个玄之又玄的东西。
我有时候都怀疑,这是不是科学家们编出来忽悠我们的呀。
你想想看,什么量子纠缠,两个粒子相隔老远还能瞬间感应,这也太扯了吧!我就不信了,这比心电感应还厉害呢。
不过呢,又有那么多厉害的科学家都在研究这个,我又觉得可能真有其事。
哎呀,我这脑子都要被搞糊涂了。
我记得有一次看科幻电影,里面就提到了量子力学,那场面,老酷炫了。
什么穿越时空啊,瞬间移动啊,感觉好牛掰的样子。
我就在想,要是真的能用量子力学做到这些,那该多好玩儿啊。
也许以后我们出门都不用坐车了,直接用量子力学来个瞬移,“嗖”的一下就到目的地了,哈哈。
但这也只是我的幻想啦,现实中量子力学的应用好像还没那么夸张。
不过我觉得以后肯定会有更多神奇的事情发生的。
我就这么一说哈,也许我是错的呢,毕竟我对量子力学也只是个半吊子。
但这又有什么关系呢,我就是喜欢瞎想,量子力学,你就继续神秘下去吧,我倒要看看你能搞出什么花样来!篇三量子力学嘿,量子力学啊,这玩意儿真的是让我又爱又恨。
小论文——生活中的量子力学
小论文——生活中的量子力学众所周知,现代物理学发端于20世纪之初,它的两大支柱———相对论和量子力学都在理论上突破了经典力学的原有框架,创立了自己全新的概。
量子力学无疑改变了世界,它的发展历程在这里我们就不在累述,我们关心的是,在21世纪,量子力学能为我们的生活带来一些什么?量子力学向近代科学技术的发展提供了理论基础,原子能技术开发、纳米技术、激光、超导研究、大规模集成电路等前沿领域都离不开量子力学的理论支持。
在这里,我们选取量子力学中两个比较热门的领域进行讨论:量子计算机和量子信息学。
一、量子计算机量子力学的核心思想就是几率,这也是它被无数物理学家称为“美学、哲学与数学完美结合”的主要原因。
量子的自旋有向上和向下两种,几率各为50%;考虑我们计算机的工作原理,采用二进制,也是1和0两种几率,各为50%(即高电平和低电平)。
这让我们不禁联系到,这二者是否有什么共通之处呢?于是,将量子思想引入到通讯领域的课题被科学家们提出,以提高计算机的效率。
经典计算机的工作原理是通过经典串行处理将经典输入信号变为经典输出信号,而量子计算机的工作原理是使用量子位存储信息,通过幺正变换达到并向处理的目的,将量子叠加态输入信息转化为量子叠加态输出信息。
其具体步骤是对每一叠加分量的运算相当于一经典运算,对所有分量的运算同时完成,并按一定的几率叠加,从而给出输出结果。
通过量子运算,计算机的计算速度可提高10亿倍,1个400位长的数分解成质数乘积,采用巨型机需10亿年,用量子计算机只要一年。
但是,量子信号与外部环境发生相互作用,导致量子相关性的衰减,使相干性很难维持。
并且,当代信息系统保密依赖于RSA加密算法,RSA码用量子计算机几分钟既可破译。
量子计算机将成为黑客的天堂!这些都是正在开发的量子计算机需要克服的困难。
二、量子信息学20世纪初,以Bohr ,Planck为代表的一批物理学家在一系列实验现象的基础上,建立了一套与经典物理截然不同的用来描述微观粒子运动规律的理论体系——量子力学。
物理学专业优秀毕业论文范本量子力学中的量子纠缠与量子通信研究
物理学专业优秀毕业论文范本量子力学中的量子纠缠与量子通信研究在物理学专业中,量子力学是一个重要的研究领域。
量子力学中的一个重要概念就是量子纠缠,它是描述微观粒子之间的相互关系和相干性的基本性质。
本文将探讨量子纠缠在量子通信中的应用,并以优秀的毕业论文范本的形式进行论述。
第一部分:引言量子力学是描述微观世界的理论框架,它在过去几十年里取得了巨大的突破,并引发了众多颠覆性的科技创新。
其中,量子纠缠是量子力学中一个重要的现象,它描述了量子系统之间的非经典相关性。
量子纠缠的应用在量子通信领域具有重要意义。
第二部分:量子纠缠的概念与原理量子纠缠是指处于某个纯态的量子系统的多粒子状态无法被分解为单个粒子态的一个重要现象。
它表征了粒子间的相互依赖关系,即使这些粒子远离彼此,它们的状态仍然是密切相关的。
量子纠缠可以通过数学形式表示,例如贝尔态、GHZ态等。
量子纠缠的原理是量子力学的基本规律之一,它为量子通信的实现提供了理论基础。
第三部分:量子纠缠在量子通信中的应用1. 量子隐形传态量子纠缠在量子通信中的一个重要应用是量子隐形传态。
量子隐形传态是指利用量子纠缠将一个未知量子态传输给另一个空间位置上的粒子,而不需要将原有粒子本身传输过去。
这种传输方式在传统通信中是不可实现的,但在量子通信中可以通过量子纠缠的特性实现。
2. 量子密钥分发量子纠缠还可以用于实现安全的量子密钥分发。
传统的密钥通信方式容易受到窃听和破解的威胁,而利用量子纠缠的量子密钥分发可以实现完全安全的信息传输。
通过量子纠缠,可以将密钥拆分成两部分,并在传输过程中进行对应的密钥检测,以确保密钥的安全性。
第四部分:量子纠缠与量子通信的实验验证为了验证量子纠缠在量子通信中的应用,科学家们进行了一系列的实验研究。
这些实验证明了量子纠缠在量子通信中的有效性和可行性。
例如,利用量子纠缠成功实现了量子隐形传态和量子密钥分发等关键技术,为后续的量子通信应用打下了坚实的基础。
量子力学作文
量子力学作文篇一《量子力学就在生活中》量子力学听起来特别高深莫测,像是那种只存在于超级科学家的实验室里或者厚厚的学术著作里的东西。
但其实啊,它就偷偷藏在咱们的日常生活里呢,就像一个调皮的小精灵,时不时出来露个脸。
我就有这么一次奇特的经历。
有天晚上我在我家的小院子里看星星,手里拿着个激光笔,就那种能射出一道细细光线的小玩意儿。
我就朝着天上黑咕隆咚的地方瞎比划,想看看这光线能照多远。
这时候啊,就突然想到了量子力学里说的光的一些特性。
咱们平常看到的这一束光啊,按量子力学的说法它有粒子性。
就好像那光是由一个个小小的光粒子组成的,这要是在平时我可理解不了,但是那时候拿着激光笔,就似乎能模模糊糊感觉到那些小粒子在我手里的笔里,然后冲到天上去。
我对着星星照啊照的,那些光粒子好像在跟天上的星星打着招呼。
而且那光线不是笔直的嘛,就感觉那些粒子排着整齐的队伍向前冲,谁也不挤谁,规规矩矩的。
我就这么在院子里玩了好一会儿,越想越觉得神奇。
量子力学啊,甭管多复杂,就像这个激光笔发出的光线一样,能实实在在的让我看到一点影子。
虽然我这理解肯定不完全对,可能科学家看到我这想法都得笑掉大牙,但是对我来说啊,通过这个小小的激光笔的光,算和量子力学有点搭上边了。
生活中有这么多像这样看似平常但是又藏着量子力学奥秘的事儿,只要咱愿意去想,就像挖掘宝藏一样有趣呢。
篇二《量子力学与我家的猫》我家有只猫,那家伙整天懒洋洋的,除了吃就是睡。
可就这么一只平常的猫,居然也能让我跟量子力学搭上点关系。
有一天我正坐在沙发上,这猫就窝在我脚边,睡得那叫一个香。
我就盯着它看,它的毛在阳光下有一点淡淡的金色。
突然我就想起量子力学里说的叠加态这个怪东西。
在量子世界里啊,一个东西可以同时处于多种状态,就像这猫,我看的时候它是睡着的,可要是按量子力学那种奇怪的思维来想,它可能同时又处于一个什么别的状态,比如说在梦里奔跑抓老鼠之类的。
虽然这听起来特别荒诞,但是我自己却越想越好玩。
有关量子力学的科普作文
有关量子力学的科普作文朋友们!今天咱们来聊聊一个超级神奇、超级酷炫的东西——量子力学。
你可别一听“力学”就觉得枯燥,这量子力学啊,就像是科学世界里的魔法。
咱们先从一个小故事开始吧。
想象一下,你有一个小盒子,盒子里装着一颗小球。
在我们日常生活的世界里,这个小球要么在盒子的左边,要么在盒子的右边,这很容易理解吧。
但是在量子的世界里,这颗小球可就调皮多啦!它可以同时在盒子的左边和右边,就好像它有了分身术一样。
这就是量子力学里非常著名的叠加态。
是不是感觉有点颠覆你的认知了?再来说说量子纠缠。
这就像是两个有心灵感应的小粒子。
不管它们在宇宙的哪个角落,相隔多么遥远,只要你对其中一个粒子做了点什么,另一个粒子马上就会有反应,就好像它们之间有一条无形的、超时空的电话线。
比如说,粒子A和粒子B纠缠在一起,如果我们改变粒子A的状态,粒子B会在同一瞬间做出相应的改变,而且这个反应的速度比光速还快!这可就违背了我们传统认知里“没有什么能比光跑得更快”的观念。
那量子力学在我们的生活中有啥用呢?其实用处可大啦!比如说我们现在用的电脑芯片。
传统的芯片技术已经快要碰到发展的天花板了,而量子计算机就像是一个超级英雄来拯救世界。
量子计算机利用量子的叠加态和纠缠态,可以同时处理好多好多的信息。
普通计算机要算上好几年的复杂问题,量子计算机可能只需要几分钟就搞定了。
还有在医疗领域,量子技术也开始崭露头角。
科学家们可以利用量子的特性来研发更精准的医疗设备,对疾病进行早期检测和治疗。
说不定在不久的将来,那些现在看起来很难治愈的疾病,在量子技术的帮助下都能轻松搞定呢。
不过啊,量子力学虽然这么厉害,但它也像一个神秘的宝藏,还有很多秘密等着我们去挖掘。
很多科学家一辈子都在钻研量子力学,想要解开它更多的谜题。
因为它实在是太奇怪了,就像一个调皮的小精灵,总是做出一些我们意想不到的事情。
在量子力学的世界里,我们就像是闯入了一个全新的宇宙。
这里的规则和我们日常熟悉的规则大不相同,但正是这种不同,让我们看到了科学的无限可能。
量子力学学术论文Word版
量子力学学术论文Word版引言量子力学是现代物理学的重要分支,对于理解微观世界的行为具有关键性的意义。
本文旨在研究量子力学的基本原理和一些重要的应用。
量子力学的基本概念量子力学的核心观念是波粒二象性。
根据波动粒子二象性理论,所有粒子都具有波动性质,而波动性质则通过波函数来描述。
波函数是描述粒子状态的数学函数,通过它可以获得粒子的位置、动量以及其他性质的概率分布。
根据薛定谔方程,波函数随时间的演化可以确定粒子的运动。
量子力学的基本原理量子力学的基本原理包括波函数叠加原理、观测与测量原理、确定原理等。
根据波函数叠加原理,当多个波函数叠加时,最终得到的波函数是各个波函数的叠加结果。
观测与测量原理指出,观测过程会导致系统的状态塌缩到一个确定的状态。
确定原理则表明在某一时刻,粒子的位置和动量无法同时精确确定。
量子力学的应用量子力学的应用非常广泛,涉及到量子计算、量子通信、量子力学光学等领域。
其中,量子计算是最具有潜力的应用之一。
量子计算利用量子比特的叠加和纠缠特性,可以执行一些传统计算机无法完成的任务,例如因子分解和优化问题。
此外,量子通信利用量子纠缠的特性,可以实现安全的加密通信,抵抗量子计算的破解。
量子力学光学则将光学和量子力学结合,研究光子的量子行为,在量子计算、量子通信等领域有着重要应用。
结论量子力学是解释微观世界的理论框架,通过波函数描述了粒子的特性和行为。
其基本原理展示了核心概念,而应用则表明了量子力学在未来科技发展中的重要性。
我们相信随着量子技术的不断发展,量子力学将为人类带来更多令人兴奋的突破。
以上是对量子力学的一个简要介绍,包括基本概念、基本原理以及应用领域等。
随着科学技术的发展,我们对量子力学的理解和应用将会不断深化。
新的发现和进展将进一步推动科技的发展,带来更多的创新和突破。
有关量子力学的科普作文
有关量子力学的科普作文朋友们!今天咱们来聊聊一个超级酷、超级神秘的东西——量子力学。
这可不是什么枯燥的科学理论,它就像一个充满魔法的世界,一旦你踏入,就会被那些奇特的现象惊得下巴都掉下来。
先来说说量子是啥吧。
想象一下,世界就像由无数个超级小的积木搭成的,这些小积木就是量子。
它们可不像我们平常看到的东西那么规规矩矩的。
比如说,在我们日常生活里,一个东西要么在这儿,要么在那儿,对吧?可量子就不一样了,它可以同时在好几个地方出现呢!这就好比你找一只小猫,结果发现它同时在沙发上、桌子下、窗台上,是不是很不可思议?这就是量子的叠加态。
就好像量子是个超级大忙人,能同时干好多件事,出现在好多不同的地方。
再讲讲量子纠缠。
这可更是个神奇到让人觉得像科幻电影里才有的东西。
假设有两个量子,它们之间就像是有某种神秘的心灵感应。
不管这两个量子距离有多远,哪怕一个在地球这头,一个在宇宙的那头,只要你对其中一个量子做了点什么,另一个量子马上就会知道,并且做出相应的反应。
这就好像是一对双胞胎,不管他们相隔多远,一个打个喷嚏,另一个马上也会觉得鼻子痒痒。
科学家们还真的做了实验来验证这个现象呢,每次结果都让人惊叹不已。
那量子力学有啥用呢?用处可大了去了!现在的很多高科技产品都离不开它。
比如说,我们用的电脑,如果用量子力学来打造量子计算机,那计算速度可就不是快了一点半点了。
普通计算机遇到一些特别复杂的计算,可能要算上好几年,量子计算机说不定几秒钟就搞定了。
还有,在密码学方面,量子力学也能大展身手。
因为量子的那些奇特性质,能让密码变得超级安全,就像给你的信息上了一道谁也破解不了的魔法锁。
不过呢,量子力学虽然很厉害,但也很让人头疼。
它那些概念真的是超级难理解,连那些超级聪明的科学家有时候都被搞得晕头转向的。
比如说爱因斯坦,他可是个科学天才,但是面对量子力学里一些奇特的现象,他都觉得难以接受,还提出了很多质疑呢。
但随着越来越多的实验证明,量子力学确实是正确的,它就是这么个让人捉摸不透又不得不佩服的科学领域。
插上科学的翅膀飞作文量子力
插上科学的翅膀飞作文量子力
《神奇的量子力学》
嘿呀,今天咱就来聊聊这个量子力学!量子力学这玩意儿可太神奇啦!
就说有一次啊,我去参加一个科学展览。
在那里我看到了一个关于量子力学的展示,那可真是让我大开眼界。
展示区有很多小小的粒子模型,还有各种稀奇古怪的实验装置,我就像个好奇宝宝一样在那里东瞅瞅西看看。
工作人员开始演示一个量子隧道效应的实验,哇塞,我眼睁睁看着一个小粒子就像会魔法一样直接穿过了一个看似不可能通过的障碍!当时我都惊呆了,这是什么情况啊!就好像这个小粒子突然有了超能力,能无视那些障碍似的。
我在旁边不停地挠着头,努力去理解这神奇的现象。
然后我就一直在那琢磨啊,这量子力学咋这么神奇呢,这些小小的粒子好像有着无穷的潜力和可能性。
感觉就像进入了一个奇幻的世界,一切都充满了未知和惊喜。
越想越觉得这量子力学太有意思啦,就好像给我们的世界打开了一扇通往奇妙世界的大门。
哎呀呀,这就是我对量子力学的一点小小的真实体验啦。
真是觉得科学这翅膀带着我们飞向了好多以前想都不敢想的地方呀,量子力学好神奇好有趣啊!以后我还要多去了解了解这些神奇的科学知识呢!哈哈!。
量子信息论文(五篇范例)
量子信息论文(五篇范例)第一篇:量子信息论文量子信息——新时代科技的推进器现如今,量子信息已成为科学领域发展必不可少的要素之一,其实,在20世纪初量子就已经被发现并被人类所利用。
在19世纪后期,在科学界出现了许多难题——很多物理现象无法用经典理论解释,包括在当时科学界讨论很激烈的黑体辐射问题(由于物体辐射的电磁波在各个波段是不同的,并且受物体自身特性和温度的影响,为了研究这种规律,科学家定义了黑体来作为热辐射研究的标准物体)。
1900年,当普朗克研究黑体辐射时,提出了普朗克辐射定律,量子这一概念就此诞生。
量子假设的提出终结了经典物理学的垄断地位,使物理学进入了微观时代,也就是现代物理学的诞生。
而经过一个多世纪的发展,量子领域的一些假设仍然不是非常严密,还需在日后的研究中逐步完善,但这并不能否认量子在目前科学领域的领导地位。
量子,即某物质或物理量特性的最小单元,它以qubit为单位,而从中衍生的量子力学,量子力学中的量子通信已经成为当今科技发展的主要领域。
先讨论一下量子力学,上文提到过量子力学是描述微观物质的理论,与相对论紧密结合,成为现代物理学的支柱。
它强调微观世界的不确定性以及客观规律,而其中最著名的预测便是量子纠缠态,即使两个粒子在空间上也许会相距很远,但是其中一个粒子会时刻随着另外一个粒子的改变而改变,因此,爱因斯坦将量子纠缠称为“幽灵般的超距作用”,这种粒子的互相影响现象听起来似乎十分玄学,但是它的确是科学家在实际试验中获得的现象。
例如,我国量子卫星“墨子号”成功实现了“千公里级”的星地双向量子纠缠分发,在全世界取得领先的地位。
值得一提的是,21世纪兴起的量子计算机中的原理正源自于量子之间的纠缠,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。
相对于传统计算机,量子计算机拥有其特殊的优越性,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。
这些特殊的量子态,不仅提供了量子并行计算的可能,还做到了传统计算机几乎无法完成的工作。
量子力学论文---
量子力学论文---量子力学的矩阵力学的建立和演化量子力学的矩阵力学的建立和演化量子论和相对论是现代物理学的两大基础理论。
它们是在二十世纪头30年发生的物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量子论的诞生成了物理学革命的第一声号角。
经过许多物理学家不分民族和国籍的国际合作,在1927年它形成了一个严密的理论体系。
它不仅是人类洞察自然所取得的富有革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。
如果说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大程度改变了人们的实践,使人类对自然界的认识又一次深化。
它对人与自然之间的关系的重要修正,影响到人类对掌握自己命运的能力的看法。
量子论的创立经历了从旧量子论到量子力学的近30年的历程。
量子力学产生以前的量子论通常称旧量子论。
它的主要内容是相继出现的普朗克量子假说、爱因斯坦的光量子论和玻尔的原子理论。
旧量子论是以电子运动的古典力学和与其不相容的量子假设的不自然的结合为基础的,把玻尔的理论应用于氢原子可以算出它所发射的光的频率,并且和观察结果一致。
然而这些频率和电子环绕原子核的轨道频率以及它们的谐频都不相同,这个事实暴露了玻尔理论的内在矛盾。
人们自然要问,原子中电子的轨道运动的频率怎么能够不在发射的频率中显示出来呢?难道这意味着没有轨道运动?假如轨道运动的观念是不正确的,那么原子中的电子到底是怎样的呢?对于这些问题的思索是沿着两条道路进行的。
一条道路是玻尔指出的,对于高轨道,发射辐射的频率和轨道频率及其谐频一致这个事实,使他提出发射光谐线的强度接近于对应的谐波的强度。
这个对应原理对于近似计算谱线强度已经证明是很有用的。
另一条道路来自爱因斯坦的光的波粒二象性的启发。
电子也许是像光子一样具有波粒二象性,对应于一个电子的运动是某种物质波。
量子论是准确的数学描述就是沿这两条道路发展出来的。
沿着对应原理的道路,人们不再把力学定律写成电子的位置和速度的方程,而是写为电子轨道傅里叶展式中的频率和振幅的方程,找到同发射辐射的频率和强度相对应的那些量之间的关系,建立了矩阵形式的量子力学。
量子力学论文
量⼦⼒学论⽂量⼦⼒学是研究物质世界微观粒⼦运动规律的物理学分⽀,主要研究原⼦、分⼦、凝聚态物质,以及原⼦核和基本粒⼦的结构、性质,与相对论⼀起构成现代物理学的理论基础。
量⼦⼒学是现代物理学的基础理论之⼀,⼴泛应⽤于量⼦化学、量⼦光学、量⼦计算、超导磁体、发光⼆极管、激光器、晶体管和半导体如微处理器等领域。
量⼦⼒学论⽂1 量⼦⼒学在本世纪⼆⼗年代就形成了其形式系统,然⽽它的物理意义,亦即对它的解释却⼀直众说纷纭,时⾄今⽇仍是物理学家和哲学家关注的⼀个中⼼问题。
虽然在其体系形成后不久,玻尔就在玻恩的⼏率诠释和海森堡的测不准原理基础上,提出了系统⼀贯的互补性诠释并成为被普遍接受的正统诠释,但互补思想的确切内容却始终没有⼈能说得清,因为玻尔总是把他深奥的思想,深深藏在晦涩冗长的深思熟虑的句⼦和事例性的说明之中,⽽没有任何现成的条条款款,这就使得⽆论接受它的还是反对它的⼈都给出了各式各样不同的理解,所以互补含义亟需澄清。
关于量⼦⼒学诠释研究的主要问题也都与互补性诠释密切相关(如因果性问题、⼏率性问题、关于测不准关系的理解问题、测量问题、完备性问题等),这些问题的澄清和解决也⾸先需要正确理解互补性诠释。
1.互补性诠释的逻辑结构 与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量⼦⼒学中的某种符号联系起来,然后将这种符号按量⼦⼒学演绎的理论结果与观察结果对照来解释量⼦现象和量⼦理论。
在这些解释中,观察结果不是作为解释的根据,⽽是作为量⼦⼒学演绎的结果。
如隐变量理论先假设有因果决定性的亚量⼦层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量⼦⼒学中的可观察量联系起来,量⼦⼒学的理论值就代表着隐变量的统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量⼦⼒学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。
统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量⼦⼒学描述中的波函数ψ的模⽅就表⽰客体的这种统计分布,波动⽅程的解的模⽅与观察结果的统计分布相⼀致,表⽰着客体的统计分布状态。
高中物理论文案例量子力学对现代科学的影响与发展
高中物理论文案例量子力学对现代科学的影响与发展量子力学是一门解释微观物质行为的物理学理论。
自20世纪初引入以来,量子力学以其独特的法则和概念,对现代科学产生了深远的影响与发展。
本文将探讨量子力学在各个领域的应用及其对现代科学的影响。
一、量子力学的基本原理量子力学的基本原理包括波粒二象性、不确定性原理以及波函数等。
首先,波粒二象性指出微观粒子既可以表现出波动性质,又可以表现出粒子性质。
其次,不确定性原理指出在某一时刻无法准确测量微观粒子的位置和动量,测量时会产生不确定性。
最后,波函数是用来描述微观粒子状态的数学函数。
二、光电效应与能级跃迁光电效应是指当光照射到金属表面时,会将光子的能量转化为电子能量,并使电子从金属表面逸出。
这一现象在量子力学中得到了解释。
根据光电效应,爱因斯坦提出了光的粒子性质,并通过引入能级跃迁的概念解释了不同波长光的吸收和发射行为,开创了量子力学的发展。
三、原子结构与化学元素周期表量子力学的发展也对原子结构和化学元素周期表的理解产生了重要影响。
通过量子力学的研究,科学家们揭示了原子核和电子的相互作用关系,提出了原子轨道和电子能级的概念,并通过量子力学方程求解得到了各种原子的电子结构。
基于这一理论,化学家能够更好地理解和预测元素的性质,推动了化学的发展。
四、量子力学在材料科学中的应用材料科学是量子力学的重要应用领域之一。
量子力学揭示了微观粒子在晶格结构中的行为规律,通过分析电子能带结构、声子振动等现象,科学家们能够设计出具有特殊性质的材料,推动了半导体、光学和导电材料等领域的发展。
五、量子力学对计算机科学的影响量子力学对计算机科学的影响体现在量子计算机的发展上。
传统计算机使用的是二进制的位来存储和处理信息,而量子计算机则利用量子比特来进行计算。
量子计算机的出现将极大地提升计算速度,并有望解决传统计算机无法解决的复杂问题,如因子分解、优化算法等。
量子计算领域的研究和发展正在引领计算机科学的未来。
作文《量子力学的奥秘》
量子力学的奥秘篇一:量子力学的奥秘最近我表弟迷上了量子力学,天天在我耳边念叨“薛定谔的猫”,“量子纠缠”之类的,听得我头都大了。
他那兴奋劲儿,就像发现了什么宇宙终极秘密一样。
其实吧,我对他说的那些玄乎玩意儿,真没啥概念,感觉就像听天书。
不过,他有一次为了解释量子叠加态,举得例子还挺有意思的,让我稍微有点理解了,不是完全一头雾水。
他当时在吃一块巧克力,那种很大块,分了好几格的那种。
他说,这巧克力没拆之前,每一格巧克力,你都可以认为它同时是“没吃完”和“吃完了”两种状态的叠加。
这就像量子叠加态,粒子可以同时存在多种状态,只有当你打开那一格巧克力,观察它的时候,它的状态才确定下来,是“没吃完”还是“吃完了”。
我当时就笑了,说:“你骗鬼呢?巧克力明明就是‘没吃完’的状态,你打开一看不就知道了吗?哪来什么叠加态?” 他一本正经地跟我解释,说这只是个类比,量子世界比这复杂多了。
不过,我承认,他吃巧克力那个过程,确实让我对量子叠加态有了点模糊的印象。
你看,他先掰开了一小块,吃掉了。
那一格巧克力,状态就确定成“吃完了”。
然后他又掰开另一格,犹豫了一会儿,看着那块巧克力,像是在思考人生一样,最后还是吃了。
状态又确定成“吃完了”。
整个过程,就像在观察一个量子系统,每一次观察都影响到系统的最终状态。
篇二:量子力学的奥秘说回我表弟,这家伙除了迷恋量子力学,还喜欢各种奇奇怪怪的实验。
有一次,他竟然用我的杯子,做了个“双缝干涉实验”的模拟实验。
他把我的马克杯,当成了“粒子发射器”。
用勺子,一勺一勺地往杯子里倒咖啡,说咖啡就像电子,杯口就是双缝。
然后咖啡流下来,落在杯底,形成类似干涉条纹的图案。
当然,这个模拟实验,漏洞百出,咖啡的流淌,完全不能和电子行为相比较。
杯底的咖啡花纹,也不是什么真正的干涉条纹。
但是,他却煞有介事地告诉我,这证明了微观粒子的波动性。
我当时简直哭笑不得,这哪是什么科学实验,根本就是胡闹!不过从另一方面来说,他这种对科学的热情和想象力,真的让我佩服,至少他对量子力学的兴趣,是发自内心的。
作文《量子力学入门》
量子力学入门篇一量子力学入门说起量子力学,我第一反应是:这玩意儿听着就高大上,跟我的生活八竿子打不着。
但要说完全没接触过,那也不对。
我记得小时候,我奶奶家养了一只特别神奇的猫,叫咪咪。
这只猫,彻底颠覆了我对猫的认知,也让我无意中“入门”了量子力学一些很浅显的概念。
咪咪不是那种寻常家猫,它特别喜欢玩捉迷藏。
但它玩捉迷藏的方式,绝对让你颠覆三观。
它不会躲在柜子后面,不会躲在床底下,它会……凭空消失!准确来说,是它会突然从我的视野里消失,然后在几秒钟后,又突然出现在另一个地方,仿佛凭空出现一般。
那会儿我年纪小,还以为咪咪是练了什么隐身术,或者是什么魔法猫咪。
我追着它满院子跑,观察它消失和出现的位置。
好几次,我眼睁睁看着它钻进灌木丛,可当我要伸手去抓的时候,灌木丛里什么都没有!然后,它会在离灌木丛好几米远的花盆后面“喵”地一声出现,一脸无辜地看着我。
我记得当时我特别沮丧,总觉得这猫是故意戏弄我,它就像一个不确定性本身的化身,你永远猜不透它下一步会出现在哪里。
这个“凭空消失又出现”的经历,多年后我才知道,跟量子力学的“量子叠加态”有点像。
虽然咪咪的消失并不是真的“消失”,只是它动作太快,我肉眼捕捉不到罢了,但这种不确定性,这种随时可能出现在任何地方的状态,跟量子力学里描述的粒子在观测前处于多种状态叠加,在观测后才坍缩到特定状态,是不是有点异曲同工之妙?当然,我这个比喻非常粗糙,甚至有点牵强,但它让我对量子力学这个听起来很高深的玩意儿,产生了一丝……好奇心。
篇二量子力学入门咪咪的“隐身术”让我对量子力学充满了好奇。
当然,这只猫不可能真的掌握了量子力学,它只是恰好让我对“不确定性”有了更直观的感受。
后来,我开始尝试着去学习一些量子力学的基础知识。
我知道,要真正理解量子力学,需要复杂的数学工具和物理知识,但我只想了解一些基本概念,就像了解一个全新的世界,而不是成为一个量子物理学家。
比如说,我了解到,在微观世界里,事物不像宏观世界那么确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= ������������(t1 − t0)其中������������
= ������������
2������
是动量为������������的简
谐波的相速度。由此,叠加的新的波包将相对 t0 时刻的波包在空间上存在扩展
效应。也就是说,德布罗意波的波包在经历时间的演化将在空间中逐渐扩展开,
粒子的非定域性也随时表现的越加明显。
量子力学的几率解释
对于存在电磁能量的量子—光子,我们可以将其描写为平均圆频率为
和总
能量为
的归一化波包。又因为作为描述波函数 k 和圆频率
的简谐
波的振幅的权重而引入的谱函数:
在描写光子时,则
将看做是解释光子处于波数为 k 的几率密度 P(k)的
一种度量。也即,找到光子处在波数为
之间的几率为
p(k)Δk = N|������(������)|2Δ������
这样的 一个组态称之为波包, f(k)为谱函数 对应于波函数为 k 和圆频率为 的简谐波的振幅。
考察一个简单的谱函数-----Gaussian 函数
其中 f(k)在 k=k0 处取得极大值, 和代替积分近似有:
为高斯谱函数的宽度并且通过有限项的求
对于时间的演化,在 t1>0 时刻: 由于组成波包的所有波包均以光速 c 移动了c ∗ t1,因此由这 t1 时刻叠加的新波 包较 t=0 时刻而言也仅仅表现为波包移动了c ∗ t1的距离而形状保持不变。故上 述形式的波包在任意时刻保持同样形状。
2������ 与光子的平面波类似,给出非相对论下关系:
上式即为物质波的德布罗意波。
对应的相速度
������������
=
������ = ������ 。
������ ������������
由此可见,相速度与粒子的运动速度
v
=
������ ������
是不同的。
与简谐电波一样,德布罗意波并不能局限在空间的定域内,并不适合用来描述一
N 为归一化常数。
于是
从而
由此可以看出波包所包含的能量份数是度量光子以多大的几率处在由该波包占 据的空间中。
利用普朗克-爱因斯坦公式 数场表示为
和康普顿公式
;可以将平面波的复指
物质波与波包的色散
对于有限的静质量为 m 的粒子,以 v<< c 速度运动,相应的能量和动量在非相对 论下的关系为:
E = ������2 , p = mv
动量的方差 :
Var(p)=���������2���
在由������������和������������的关系可得,在 t = 0 时刻
������������ ������������ =4ℎ������
or Δx Δp = ℎ
4������
上式即为不确定关系。这样我们就成功的由德布罗意波的波包推导出波包在随时
扩展效应更具体分析:
首先将上面ψ(x,t)式子对 p 作积分可得
ψ(x,t) = ������(������, t)������−������������(������,������)
其中
为振幅函数,并且以群速度������������ = ������������在空间进行传播.可以发现,群速度与粒子的
波函数所描述的粒子的位置和动量的期望值
对于德布罗意波包 〈������〉 = ������0 + ������0������
,
������0
=
������0 .
������
它相当于经典无加速度粒子的
轨道,因此可以把以德布罗意波的高斯波包看作是恒定速度运动的粒子的量子力
学描述。
相应的粒子位置的方差:Var(x)=〈(������ − 〈������〉)2〉 = ∫−∞∞ ������(������, ������)∗(������ − 〈������〉)2������(������, ������) ������������ 对于高斯波包,
叠加原理,所以任何在纯量子的世界中构造定域的元素都会是徒劳的!庆幸的是, 在费曼的有限温度路径积分中,详细的说明了,只要是在一个有限温度的系统中, 对其路径积分传播子做如下变换:积分的时间间隔变换成 ih/2πkT(就是所谓虚 的时间,k 是玻尔兹曼常数,T 是系统的温度,h 是普朗克常数),那么路径积分的 传播子就自动变成了一个高斯波包,而且是稳定的,不随时间扩散的波包,这个 波包的大小只与系统的温度 T 有关,按照费曼的计算,在室温下,这样的波包的 尺度数量级是 0.1A,比一般的原子要小得多!这很有可能是“定域性事件”的来 源。这样的话量子测量公设中的塌缩到本征态,也应该可以理解为是塌缩到一个 有限温度的费曼波包,于是便实现了在非定域的量子世界中构造出定域元素了。
Var(x)= ���������2���
=
ℎ2 16������2���������2���
(1
+
16������2���������2��� ℎ2
+
������������22)
动量的期望值
〈������〉 = ∫−∞∞ ������(������)������������(������ − ������0)������������ 积分可得 〈������〉 = ������0 .粒子的动量是守恒的。
个粒子的运动,为使其能够描述定域粒子,必须将简谐波叠加为空间的一个波包。
在此,以一维波包为例:
取谱函数
对应的德布罗意波的波包为:
与光子类似,使用一个累加取代积分表示为
其中
经历 t1 时刻后波包的演化
由于组成该波包的所有分波具有不同的相速度,因此在经历 t0 ~ t1 时间的演化
后,各分波移动了不同的距离 Δ������������
运动速度是一致的。
波包在空间定域的范围为:
���������2���
=
ℎ2 16������2���������2���
(1
+
16������2���������2��� ℎ2
+
������2 ������2)
这个公式表明波包在空间延伸范围随时间而增加,而且是对称地由中心向两端扩
展。物理上称这种现象为波的色散.本质是由于波的叠加造成的。
间的演化位置和动量的最小不确定关系,可以发现随着时间的推移这一不确定关
系将逐渐增大,波的非定域性越加凸显出来。
量子力学定观的基石是“定域事件”,它把空间和时间统 一到了明科夫斯基空间的点,但是在上述的计算过程中,物质波的非定域性对时 间的演化被逐步加强,而且在量子力学中,以波函数为代表,描述的客观实体是 非定域的,其基本特征是测量的不确定性,实例是 BELL 不等式的破坏,量子测 量悖论,时间算符不是可观测量等等。这样看来量子的世界并不能自洽的放入爱 因斯坦的时空观。 下面以量子测量进一步说明。显然,不管量子的世界有多少非定域整体性的特征, 但是,每次测量,都会得到一个“定域事件”,否则,测量就不能算完成。如果 说量子世界是非定域的,那么,如何能在量子的世界中自洽的构造出这类“定域 的事件”?首先,最小测不准态,也就是上述的一个高斯波包,应该被关注,因 为这是量子力学中,最接近定域事件的概念;但是,仅仅在量子力学理论本身的 框架内,任何波包都是要随时间迅速扩展的,正如爱因斯坦所说的,由于有波的
量子力学小论文
关于波包的讨论
波包的引入
吴海壹 PB11009007
在真实的物理情形下,波总是定域在一有限范围的空间,相反地平面波则在全部 空间中展布着。因此引入波包的概念,并且可以将它理解为有许多不同的频率和 振幅的平面波叠加形成。通过构造各平面波间复杂的“相加”,总可以把场集中在 空间的一个区域。