第六章 2正态总体均值的假设检验

合集下载

概率与数理统计第六章

概率与数理统计第六章

t


W {T t (n 1)}
2021/3/11
t
x 16
6.2.1 单个正态总体均值的假设检验
例6.2 正常人的脉搏平均每分钟72次,某医生测得10例四乙基铅 中毒患者的脉搏数(次/分)如下:54,67,68,78,70,66, 67,70,65,69.已知人的脉搏次数服从正态分布.试问四乙基铅
在取6份水样,测定该有害物质含量,得如下数据: 0.530‰,0.542‰,0.510‰,0.495‰,0.515‰,0.530‰
能否据此抽样结果说明有害物质含量超过了规定? 0.05
练习2 一公司声称某种类型的电池的平均使用寿命至少为21.5小 时,有一实验室检验了该公司制造的6套电池,得到如下的寿命数 据(单位:小时):19 18 22 20 16 25 设电池寿命服202从1/3/正11 态分布,试问这种类型的电池寿命是否低于该18 公
即提出假设: H0 : p 0.02 若 H0 正确,则取到次品为小概率事件.
2021/3/11
在一次试验中, 小概率事件是 几乎不可能发 生的.
小概率原理
2
6.1 假设检验的基本概念
2. 两类错误
犯了“弃真”错误 第一类错误
犯了“纳伪”错误 第二类错误
P(拒绝H0 | H0为真)
P(接受H0 | H0为假)
注意:我们总把含 有“等号”的情形 放在原假设.
在原假设 H0 为真的前提下,确定统计量
U
X 0
~
N (0,1)
n
2021/3/11
因为X
~
N
,
2
n
,
所以
X
~
N (0,1)

正态总体均值的假设检验

正态总体均值的假设检验

上一段中, H0:μ=μ0 ; H1: μ≠μ0 的对立假设为H1:μ≠μ0 ,该假设称为双边对立假设。

2. 单边检验 H0: μ=μ0; H1: μ>μ0而现在要处理的对立假设为 H1: μ>μ0, 称为右边对立假设。

类似地,H0: μ=μ0; H1: μ<μ0 中的对立假设H1: μ<μ0,假设称为左边对立假设。

右边对立假设和左边对立假设统称为单边对立假设,其检验为单边检验。

例如:工厂生产的某产品的数量指标服从正态分布,均值为μ0 ;采用新技术或新配方后,产品质量指标还服从正态分布,但均值为µ。

我们想了解“µ是否显著地大于μ”,即产品的质量指标是否显著地增加了。

8.2.2 两个正态总体N(µ1, σ12) 和N(µ2, σ22)均值的比较在应用上,经常会遇到两个正态总体均值的比较问题。

例如:比较甲、乙两厂生产的某种产品的质量。

将两厂生产的产品的质量指标分别看成正态总体N(µ1, σ12) 和N(µ2, σ22)。

比较它们的产品质量指标的问题,就变为比较这两个正态总体的均值µ1和µ2的的问题。

上面,我们假定 σ12=σ22。

当然,这是个不得已而强加上去的条件,因为如果不加此条件,就无法使用简单易行的 t 检验。

在实用中,只要我们有理由认为σ12和σ22相差不是太大,往往就可使用上述方法。

通常是:如果方差比检验未被拒绝(见下节), 就认为σ12和σ22相差不是太大。

J 说明小结本讲首先介绍假设检验的基本概念;然后讨论正态总体均值的各种假设检验问题,给出了检验的拒绝域及相关例题。

第六章假设检验

第六章假设检验

第六章假设检验第六章假设检验一、选择题1.当显著水平为0.05时,则置信度为()A.99%B.5%C.2.5%D.95%答案:D2.单个正态总体均值的假设检验,方差σ2已知时,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:A3.单个正态总体均值的假设检验,方差σ2未知,样本容量较小时,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:B4.在假设检验中,如果待检验的原假设为Ho,那么犯第二类错误的是指()A.H o成立,接受H oB.H o不成立,接受H oC.H o成立,拒绝H oD.H o不成立,拒绝H o答案:B5.配对比较两个正态总体均值的假设检验,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:B6.成组比较两个正态总体方差的假设检验,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:D7.单个正态总体方差的假设检验,应选择()A.u检验B.t检验C.2χ检验答案:C8.在假设检验的问题中,显著性水平α的意义是()A.原假设H o 成立,经检验不能拒绝的概率B.原假设H o 成立,经检验被拒绝的概率C.原假设H o 不成立,经检验不能拒绝的概率D.原假设H o 不成立,经检验被拒绝的概率答案:B9.当方差σ2已知时,单个正态总体均值μ的假设检验选择的统计量是() A.n u /σμ-= B.n S X /t μ-= C.222)1σχS n -=( D.22222121//σσS S F =答案:A10.在假设检验中,未知方差σ2,单个正态总体均值μ的假设检验采用()A.u 检验B.2χ检验C.t 检验D.F 检验答案:C11.假设检验时应注意的主要问题是()A.资料来源必须随机化B.检验方法应符合其适用条件C.不要把“显著”当作相差很大D.以上都对答案:D 12.对于单个正态总体方差σ2的假设检验,备择假设为H 1:σ2>σ20,进行了2χ单侧检验。

正态总体的假设检验

正态总体的假设检验
(Xi μ)2
n
(Xi μ)2
P { i1
σ
2 0
χ
2 1
α 2
(
n)}
P{
i 1
σ
2 0
χ
2
α
(
n)}
α
2
所以拒绝域为: W
{
χ2
χ
2 1
α 2
(
n)
,χ
2
χ
2
α
(n)
}
2
2. μ未知时,总体方差σ2的假设检验 χ2 检验法
类型 原假设 备择假设
H0
H1
检验统计量
双边 检验
σ2
σ
2 0
σ2
得s=0.007欧姆.设总体服从正态分布,参数均未知,
问在显著性水平α=0.05下,能否认为这批导线的
标准差显著地偏大?
解: s2 0.0072 0.0052
原假设 H 0 : σ 2 0.0052,备择假设 H1 : σ 2 0.0052
检验统计量: χ 2 (n 1)S 2
σ2
拒绝域:
第二节 正态总体的假设检验
一、单一正态总体均值μ的假设检验
二、单一正态总体方差σ2的假设检验 三、两个正态总体均值的假设检验 四、两个正态总体方差的假设检验
一、单一正态总体均值μ的假设检验
设总体X~N (, 2). X1 , X2 , … , Xn是取自X的样本,
样本均值 X样,本方差S2
1.已知
T t(α n 1)
例1. 设某次考试的考生的成绩服从正态分布,从中随
机地抽取36位考生的成绩,算得平均成绩为66.5分,标 准差为15分,问在显著性水平0.05下,是否可以认为在 这次考试中全体考生的平均成绩为70分?

总体均值的假设检验

总体均值的假设检验

总体均值的假设检验一、正态总体均值的检验设n X X X ,,, 21为总体),(2σμN 的一个容量为n 的样本. 1.方差2σ已知,μ的检验——u 检验法. 当202σσ=已知时,假设检验问题:0100μμμμ≠=:;:H H . 选择检验统计量nX U /00σμ-=,当0H 成立时,)1,0(~N U .给定显著性水平α,由标准正态分布分位点的定义, 有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= ,这种利用服从正态分布的检验统计量的检验方法称为u 检验法.有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值μ是小于等于原来的均值0μ,还是大于0μ,即检验假设 0100μμμμ>≤:;:H H . 可以证明,在显著性水平α下,上述假设检验问题和检验假设0100μμμμ>=:;:H H 有相同的拒绝域,因此,遇到形如00μμ≤:H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100μμμμ<≥:;:H H 的检验问题, 可归结为检验假设 0100μμμμ<=:;:H H .这都是单边检验问题.给定显著性水平α,求得的临界值点是上α分位点或上α-1分位点.例1 某厂生产的某种钢索的断裂强度X 服从),(2σμN ,其中40=σ(kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值x 较以往正常生产的μ大20(kg/cm 2),设总体方差不变,问在1.00=α下,能否认为这批钢索质量有显著提高?解 依题意,检验假设0100μμμμ>≤:;:H H , 由于40=σ已知,选择检验统计量nX U /0σμ-=因为0H 中的μ全部都比1H 中的μ要小,从直观上看,当0H 成立时,X 的取值x 不应比μ大很多,若偏差0μ-x 过大,则拒绝0H 而接受1H .因为 0100μμμμ>=:;:H H 的拒绝域为}{αu U W >=, 故在显著性水平1.00=α下原假设的拒绝域为}{}{0nu X u U W σμαα+>=>=.本题中,9=n ,40=σ,200=-μx ,33.201.0=u , 计算U 的值33.25.1/0<=-=nx u σμ因此在显著性水平1.00=α下不能拒绝0H ,即认为这批钢索质量没有显著提高.2.方差2σ未知,μ的检验——t 检验法. 检验假设0100μμμμ≠=:;:H H .因为2σ未知,而样本方差2S 是总体方差2σ的无偏估计量,用S 代替σ. 选择检验统计量 nS X T /0μ-=,当0H 成立时,)1(~-n t T .给定显著性水平α,由t 分布分位点的定义, 有αα=->)}1(|{|2/n t T P ,故拒绝域)}1({)}1({)}1(|{|2/2/2/->--<=->=n t T n t T n t T W ααα , 这种利用服从t 分布的检验统计量的检验方法称为t 检验法.例2 某切割机工作正常时,切割每段金属棒的平均长度为10.5cm .今在某段时间随机地抽取15段进行测量,其结果如下(cm):10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7问此段时间该机工作是否正常(5.00=α)?假设金属棒长度服从正态分布.解 依题意,检验假设0100.510μμμμ≠==:;:H H , 由于2σ未知,故选择检验统计量nS X T /0μ-=.在0H 下,)1(~-n t T ,15=n .给定显著性水平5.00=α,查t 分布表, 得临界值1448.2)14()1(025.02/==-t n t α,故拒绝域)}1(|{|2/->=n t T W α.由已知条件可得48.102.15715111=⨯==∑=n i i x n x056.0784.0141)(11122=⨯=--=∑=n i ix x n s 故2366.0=s .计算统计量的值3274.015/2366.05.1048.10/0-=-=-=ns x t μ因为)1(||2/-<n t t α,所以接受0H ,认为切割机工作正常.例3 设木材的小头直径),(~2σμN X ,12≥μcm 为合格,今抽出12根测得小头直径的样本均值为2.11=x cm ,样本方差为44.12=s cm 2,问该批木材是否合格(5.00=α)?解 依题意,检验假设010012μμμμ<=≥:;:H H ,选择检验统计量nS X T /0μ-=.在假设0100μμμμ<=:;:H H 下,)1(~-n t T ,12=n .给定显著性水平5.00=α,查t 分布表,得临界值7959.1)11()1(05.0==-t n t α,故拒绝域)}1({--<=n t T W α,也是假设010012μμμμ<=≥:;:H H 的拒绝域. 由于2.11=x ,44.12=s ,计算统计量的值3094.212/44.1122.11/0-=-=-=ns x t μ因为)1(--<n t t α,故拒绝0H ,认为该批木材是不合格的. 二、正态总体方差的检验——2χ检验法设n X X X ,,, 21为来自总体),(2σμN 的一个样本,检验假设 20212020σσσσ≠=:;:H H .1.均值μ已知. 因为)1,0(~N X i σμ-,n i ,,2,1 =,则选取检验统计量∑∑==-=⎪⎪⎭⎫ ⎝⎛-=ni ini i XX 12201202)(1μσσμχ.当0H 成立时,)(~22n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=><-))}(())({(22/222/12n n P ,故得拒绝域)}({)}({22/222/12n n W ααχχχχ><=- .2.均值μ未知.因为X 是总体均值μ的无偏估计量,用X 代替μ.选择检验统计量202122)1(σσχS n XX ni i -=⎪⎪⎭⎫ ⎝⎛-=∑=. 当0H 成立时,)1(~22-n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=->-<-))}1(())1({(22/222/12n n P故得拒绝域)}1({)}1({22/222/12->-<=-n n W ααχχχχ .类似地,在μ已知和μ未知时,可以求出检验假设20212020σσσσ>≤:;:H H 和20212020σσσσ<≥:;:H H的拒绝域.例如,在μ未知时,检验假设2020σσ≤:H 的拒绝域为)}1({22->=n W αχχ.上述检验所用的检验统计量均服从2χ分布,称这种检验方法为2χ检验法例4 某无线电厂生产的一种高频管,其中一指标服从正态分布),(2σμN ,今从一批产品中抽取8只管子,测得指标数据:68 43 70 65 55 56 60 72(1) 总体均值60=μ时,检验228=σ(取5.00=α); (2) 总体均值μ未知时,检验228=σ(取5.00=α). 解 本题是在显著性水平5.00=α下,检验假设2021220208σσσσ≠==:;:H H ,这里8=n .(1) 60=μ已知时临界值35.517)8()(2025.022/==χχαn ,80.12)8()(2975.022/1==-χχαn ,而检验统计量的值359.10663641)(811222=⨯=-=∑=ni i x μχ, 由于)()(22/222/1n n ααχχχ<<-,故接受0H .(2) μ未知时临界值13.016)7()1(2025.022/==-χχαn ,90.61)7()1(2975.022/1==--χχαn ,而125.614898111=⨯==∑=n i i x n x ,875.652)()1(122=-=-∑=ni i x x s n ,检验统计量的值2012.1075.86526412=⨯=χ, 由于)1()1(22/222/1-<<--n n ααχχχ,故接受0H .§8.3 两个正态总体参数的假设检验设121n X X X ,,, 为总体),(~112σμN X 的一个样本,221n Y Y Y ,,, 为总体),(~222σμN Y 的一个样本.∑==1111n i i X n X 和∑==2121n i iYn Y 分别是两个样本的样本均值,∑=--=112121)(11n i i X X n S 和∑=--=212222)(11n i i Y Y n S 是相应的两个样本方差.设这两个样本相互独立..一、两个正态总体均值的检验考虑检验假设 211210μμμμ≠=:;:H H . 1.方差21σ与22σ已知——u 检验法. 选取 22212121)()(n n Y X U σσμμ+---=.当0H 成立时,检验统计量)1,0(~222121N n n YX U σσ+-=.给定显著性水平α,由标准正态分布表分位点的定义,有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= .例1 设从甲乙两场所生产的钢丝总体X ,Y 中各取50束作拉力强度试验,得1208=x ,1282=y ,已知801=σ,942=σ,请问两厂钢丝的抗拉强度是否有显著差别(5.00=α)?解 本题是在显著性水平5.00=α下, 检验假设211210μμμμ≠=:;:H H , 这里5021==n n .选取检验统计量222121n n YX U σσ+-=.给定显著性水平05.0=α,查标准正态分布表,得临界值96.1025.02/==u u α,故拒绝域}|{|2/αu U W >=.由于1208=x ,1282=y ,801=σ,942=σ, 计算检验统计量的值2392.450/)(2221-=+-=σσy x u .由于2/||αu u >,故拒绝0H ,认为两厂钢丝的抗拉强度有显著差别. 2.方差21σ与22σ未知,但2221σσ=——t 检验法.选取 212111)()(n n S Y X T w+---=μμ.这里2)1()1(21222211-+-+-=n n S n S n S w .当0H 成立时,检验统计量)2(~112121-++-=n n t n n S Y X T w.给定显著性水平α,由t 分布表分位点的定义, 有αα=-+>)}2(|{|212/n n t T P ,故拒绝域)}2({)}2({212/212/-+>-+-<=n n t T n n t T W αα .例2 某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量有无显著差异?解 检验假设211210μμμμ≠=:;:H H ,这里621==n n ..525=x ,67.625=y ,7386.21=s ,3267.32=s ,0469.3=w s . 选取检验统计量2111n n S Y X T w+-=.给定显著性水平5.00=α,查t 分布表,得临界值2281.2)10()2(025.0212/==-+t n n t α,故拒绝域)}2(|{|212/-+>=n n t T W α.计算统计量的值0949.00469.33)667.255.25(1121-=⨯-=+-=n n s y x t w.由于)2(||212/-+<n n t t α,故接受0H ,认为两种香烟的尼古丁含量无显著差异. 二、两个正态总体方差的检验——F 检验法 考虑检验假设 2221122210σσσσ≠=:;:H H . 1.均值1μ与2μ已知.因为)(~)(11212121211n Xn i iχμσχ∑=-=,)(~)(12212222222n Yn i iχμσχ∑=-=,选取221222211211222121/)(1/)(1//21σμσμχχ∑∑==--==n i i n i i Y n X n n n F . 当0H 成立时,检验统计量),(~)(1)(1211222121121n n F Y n X n F n i i n i i ∑∑==--=μμ.给定显著性水平α,由F 分布分位点的定义,有ααα=><-))},(()),({(212/212/1n n F F n n F F P , 故得拒绝域)},({)},({212/212/1n n F F n n F F W αα><=- . 2.均值1μ与2μ未知.因为)1(~)1()(112212111221211--=-=∑=n S n X X n i i χσσχ,)1(~)1()(122222221222222--=-=∑=n S n Y Yn i iχσσχ,选取22222121222121//)1/()1/(σσχχS S n n F =--=.当0H 成立时,检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,由F 分布分位点的定义,有ααα=-->--<-))}1,1(())1,1({(212/212/1n n F F n n F F P , 故得拒绝域)}1,1({)}1,1({212/212/1-->--<=-n n F F n n F F W αα .例3某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量的方差是否相等? 解 考虑检验假设2221122210σσσσ≠=:;:H H . 由于两个正态总体的均值都未知,选取检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,查F 分布表,得两个临界值:15.7)5,5()1,1(025.0212/==--F n n F α1399.015.71)5,5(1)5,5()1,1(025.0975.0212/1====---F F n n F α,故得拒绝域}15.7{}1399.0{><=F F W . 计算统计量的值6777.03267.37386.2222221===s s F .由于15.71399.0<<F , 故接受0H ,认为两种香烟的尼古丁含量的方差也无显著差异.§8.4 非正态总体参数的大样本检验本节讨论一般总体参数的检验.设总体X 的均值为μ,方差为2σ, n X X X ,,, 21为总体X 的一个样本.由中心极限定理可知,当样本容量n 足够大时,nX U /σμ-=近似地服从标准正态分布.因此,我们可以用正态分布去近似.如果对均值μ进行检验,方差2σ未知时,可以用样本方差2S 代替2σ;如果对方差2σ进行检验,均值μ未知时,可以用样本均值X 代替μ.下面举两个例子.例1 设某段高速公路上汽车限速为104.6km/h ,现检验85辆汽车的样本,测出的平均车速为106.7km/h ,已知总体标准差为.413=σ km/h ,但不知总体是否服从正态分布.在显著性水平50.0=α下,试检验高速公路上的汽车是否比限制速度104.6km/h 显著地快?解 依题意,检验假设0100.6104μμμμ>=≤:;:H H , 由于.413=σ已知,n =85足够大, 选择检验统计量nX U /0σμ-=近似地服从)10(,N .其拒绝域}{αu U W >=,其中65.105.0==u u α. 计算U 的值449.4185/4.136.1047.106=-=u ,由于αu u <,因此接受0H ,没有理由认为高速公路上的汽车比限制速度104.6km/h 显著地快.例2 为比较甲乙两种小麦植株的高度(单位:cm),分别抽得甲、乙小麦各100穗,在相同条件下进行高度测定,算得甲乙小麦样本均值和样本方差分别为28=x ,8.3521=s ,26=y ,3.3222=s ,问这两种小麦的株高有无显著差异(50.0=α)?解 依题意,检验假设 211210μμμμ≠=:;:H H , 选取 22212121)()(n n Y X U σσμμ+---=,这里两个方差用样本方差代替.当0H 成立时, 检验统计量 222121n Sn S Y X U +-=近似地服从)1,0(N .给定显著性水平05.0=α,查附表3,得临界值96.1025.02/==u u α, 得拒绝域}|{|2/αu U W >=.计算U 的值4236.21003.328.352628=+-=u ,由于αu u >,因此拒绝0H ,认为这两种小麦的株高有显著差异.当总体服从(0-1)分布),1(p b 时,由于只有一个参数p ,总体均值p 和方差)1(p p -均只与p 有关,这时对参数p 进行假设检验时,检验统计量可以直接用样本和参数p 表示出来.例3 某厂有一批产品须经检验后方可出厂.按规定二级品率不得超过10%,从中随机抽取100件产品进行检查,发现有二级品14件,问这批产品是否可以出厂(50.0=α)?解 这里n =100,14.0=x .检验假设01001.0p p H p p H >=≤:;:, 选取检验统计量 np p p X U )1(000--=,U 近似地服从)1,0(N .由显著性水平50.0=α,可以得到拒绝域}{αu U W >=,其中65.105.0==u u α,计算U 的值333.31100.90.10.104.10=⨯-=u ,由于αu u <,因此接受0H ,认为这批产品二级品率没有超过10%,可以出厂.§8.5 分布的拟合检验前几节的检验都是参数的检验.实际问题中,有时需要对分布作出假设,进行检验.本节只介绍一种分布的检验方法——皮尔逊2χ检验法,它只适合于大样本的情形,一般要求样本容量50≥n .设总体X 的分布函数为)(x F ,)(0x F 为一个已知的分布函数,n X X X ,,, 21为总体X 的一个样本,我们来检验关于总体分布的假设)()()()(0100x F x F H x F x F H ≠=:;:.一、基本原理2χ检验法的基本思想是:将随机试验的所有可能结果的全体分成k 个两两互不相容的事件k A A A ,,, 21,在n 次试验中,将i A 发生的次数i f 叫做i A 发生的频数,如果0H 为真,则由大数定律,在n 次试验中(n 足够大),i A (k i ,,, 21=)出现的实际频率nf i与理论频率)(i i A P p =(可由分布函数)(0x F 算出)不应相差很大.基于这种想法,皮尔逊构造了统计量∑=-=ki i i i np np f 122)(χ或∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 其中i p ˆ是由)(ˆ0x F 计算出来的理论频率,)(ˆ0x F 是)(0x F 中未知参数估计出后的分布函数,并证明了如下定理:定理1 若n 足够大,当0H 成立时,统计量2χ总是近似地服从自由度为1--r k 的2χ分布,其中r 是已知的分布函数)(0x F 中未知参数的个数.直观上看,2χ值表示实际观测结果与理论期望结果的相对差异的总和,当它的取值大于临界值时,应拒绝0H . 二、检验步骤如果)(0x F 为不带有未知参数的已知分布,皮尔逊2χ检验法的具体步骤如下:(1) 将总体X 的值域划分成k 个不交的区间i A (k i ,,, 21=),使得每个区间包含的理论频数满足5≥i np ,否则将区间适当调整; (2) 在0H 成立时,计算各理论频率即概率i p 的值:)()()(100--==i i i i y F y F A P p ,k i ,,, 21=.这里1-i y 与i y 为区间i A 的端点,即](1i i i y y A ,-=;(3) 数出i A 中含有样本值的个数,即i A 的频数i f ,并计算统计量∑=-=ki i iinp np f 122)(χ 的值2χ;(4) 由2χ分布,对于给定的显著性水平α,找出临界值)1(2-k αχ; (5) 判断:若)1(22->k αχχ,则拒绝0H ,否则可接受0H . 如果总体X 是离散型的,则假设0H 相当于假设总体X 的概率分布00}{i i p x X P H ==:, ,,21=i .如果总体X 是连续型的,则假设0H 相当于)()(00x f x f H =:,这里)(x f 为总体的概率密度.例1 至1984年底,市开办有奖储蓄以来,13期兑奖中诸数码的频数汇总如表8.1:表8.1试检验器械或操作方法是否有问题(50.0=α).解 设抽取的数码为X ,它可能的取值为0~9,如果检验器械或操作方法没有问题,则0~9出现是等可能的,即检验假设 1010=i p H :,9210,,,, =i ,这里}{i X P p i ==. 依题意知k =10,令}{i A i =,9210,,,, =i ,n =350,则理论频数35=i np .57.61935688)(9022==-=∑=i ii i np np f χ给定显著性水平5.00=α,查2χ分布表,得临界值9.16)9()1(205.02==-χχαk .由于19.675>16.9,故拒绝0H ,即认为器械或操作方法有问题.如果)(0x F 为带有未知参数的已知分布,未知参数为r θθθ,,, 21,这时用这r 个未知参数的极大似然估计量r θθθˆˆˆ21,,, 来代替)(0x F 中的参数r θθθ,,, 21,得到分布函数)(ˆ0x F ,然后建立统计量∑=-=ki ii i p n p n f 122ˆ)ˆ(χ,这里i p ˆ是由)(ˆ0x F 计算出来的理论频率,再用以上检验步骤进行检验,但此时检验统计量2χ近似服从)1(2--r k χ分布(这里k >r +1).例2 某高校对100名新生的身高(厘米)做了检查,把测得的100个数据按由大到小的顺序排列,相同的数合并得表8.2:表8.2试问,在显著性水平5.00=α下是否可以认为学生身高X 服从正态分布? 解 这里n =100,我们来检验假设222)(021)(σμσπ--=x ex f H :,+∞<<∞-x ,这里)(x f 为正态分布),(2σμN 的概率密度,设其分布函数为)(x F ,μ与0>σ为未知参数.先求μ与2σ的极大似然估计值μˆ,2ˆσ: 33.1661ˆ1==∑=n i i x n μ, 06.28)ˆ(1ˆ212=-=∑=μσn i i x n . 设服从正态分布)ˆ,ˆ(2σμN 的随机变量为Y ,分布函数为)(ˆy F .按照分组要求,每个小区间的理论频数i pn ˆ不应小于5,因此我们将数据分成了7个组,使得每组的实际频数不小于5,各计算结果如下表8.3所示.表8.3中第3列i pˆ的计算如下: )(ˆ)(ˆ}{ˆ11---=≤<=i i i i i y F y F y Y y P p ,7210,,,, =i , 例如,}06.2833.1665.164ˆˆ06.2833.1665.161{}5.1645.161{ˆ3-≤-<-=≤<=σμY P Y P p1837.0)911.0()345.0(=-Φ--Φ=.给定显著性水平5.00=α,查2χ分布表,得临界值488.9)4()127()1(205.0205.02==--=--χχχαr k .由于1.8843<9.488,故接受0H ,即认为学生身高服从正态分布.。

第二节 正态总体均值的假设检验

第二节 正态总体均值的假设检验
α 2 α 2
σ
~ N(0,1)
n
(σ 2 已知)
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
=0 ≠0
X 0 T= ~ T(n 1) S n
接受域
x 0 s n
≤ tα
(σ 2未知)
2
待估参数
枢轴量及其分布 置信区间
X 0 T= ~ T(n 1) S n
( x tα
2
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
U=
X 0
σ
U ≥ zα
2
n
U ≤ zα
N(0,1)
U ≥ zα
未知) T 检验法 (σ2 未知) 原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布 拒绝域
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
X 0 T= S n ~ t(n 1)
(2)关于 σ
2
χ2检验法 的检验
拒绝域
原假设 备择假设 检验统计量及其在 H1 H0为真时的分布 H0
σ
2=σ 2 0
σ
2≠σ 2 0
χ =
2
∑(X )
i=1 i
n
χ ≤ χ (n)
2 2 1α 2
2
或 χ 2 ≥ χα2 (n)
2
σ 2≥σ 02 σ 2<σ 02
σ
2 0
~ χ (n)
2
χ ≤ χ (n)
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
1 – 2 = δ 1 – 2 ≠ δ 1 – 2 ≥ δ 1 – 2 < δ 1 – 2 ≤ δ 1 – 2 > δ

正态总体均值的假设检验

正态总体均值的假设检验
t不落在拒绝域中,故接受 H 0
即认为元件的平均寿 命不大于 225小时。
二、两个正态总体均值差的检验(t 检验N)o:
Image
设X1,X2,,Xn1是 来 自 正 态 总 体 N(m1,s2)的 样 本Y;1,Y2,,Yn2是 来 自 正 态 总 体 N(m2,s2)的 样 本 , 且 设 两 样 立本 。独 又 分 别 记 它 们
1)
s
2 2
10 10 - 2
= 2.775,
t0.05 (18) = 1.7341,
故拒绝域为:
T = X -Y
Sp
11 10 10
- t 0.05 (18 ) = -1.7341 ,
可算得 T = -4.295 < -1.7341 , 故拒绝 H 0 ,
即 认为新方法能提高得率。
已知总 例体服从2正态某分布地,且区方差大高致相考同,负由抽样责获得人资料想如下:知道某年来自城市中学考生
当H0成 立 时T,~ t(n1 n2 -2), 对 于 给 定 a 的
P{|T |>ta/2(n1 n2 -2)}=a,
故 拒 绝 域 为|T |>t a/2(n1 n2 -2).
说明: 1. 对于单侧检验 “ H0 : m1 - m2 ≤ m0 ” 和 “ H0 : m1- m2 ≥ m0 ”, 可以类似地讨论。 常用的是 m0 = 0。 2. 对于两个正态总体的方差均为已知时,
的 样 本 均 值 X,Y为, 样 本 方 差 S12为 ,S22, 并 设 m1,m2,s2 均未知。
检验H: 0:m1-m2 =m0,H1:m1-m2 m0,
取统2


S2p
=
(n1
-1)S12 (n2 -1)S22 n1 n2 -2

正态总体均值的假设检验讲义PPT(39张)

正态总体均值的假设检验讲义PPT(39张)
第二节 正态总体均值的假设检验
一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验) 三、基于成对数据的检验(t 检验) 四、小结
一、单个总体 N(,2)均值 的检验
1 . 2为,关 已的 于 知 (Z 检 检 )验 验
在上节中讨论过体 正N态(总 ,2)
当 2为已 ,关 知 于 时 0的检验 : 问题
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度服从正态分布, 且标准差没有变
化, 试问该机工作是否正常? (0.05 )
解 因X 为 ~N (,2),0.15,
要检验假设
H 0:1.5 0, H 1:1.5 0,
n15, x1.04,80.0,5
(1)假设检 H0:验 0,H1:0; (2)假设检 H0:验 0,H1:0; (3)假设检 H0:验 0,H1:0.
讨论中都是H利 0 为用真时服N(从 0,1)分布
的统计Z量X0 来确定拒绝,这 域种 的 / n
检验法称 Z检 为验.法
一个有用的结论
解 设该次考试的学生为 成X绩, 0.0,5
则 X ~N (,2)样 , 本均X值 ,样为 本标准 S, 差
需检验假设: H 0 : 7 ,0 H 1 : 7 .0
因为 2未知 , 故采t用 检验,法 当H0为真, 时
统t 计 X 0 量 X 7~ 0 t(n 1 ), S /nS /n 查表 8-1 知拒绝域为 tX S/7n0 t/2(n1), 由 n 3 ,X 6 6 . 5 ,S 6 1 ,t 0 . 0 5 ( 3 2 ) 5 2 5 . 0,3
S/ n
当观察 t 值 xs/n0 过分大时 H0,就拒绝

统计学第六章假设检验

统计学第六章假设检验

10
即 z 拒绝域,没有落入接受域,所以没有足够理由接受原假设H0, 同
时,说明该类型电子元件的使用寿命确实有了显著的提高。
第六章 假设检验
1. 正态总体均值的假设检验
(2) 总体方差 2 未知的情形
双侧举例:【例 6-6】某厂用生产线上自动包装的产品重量服从正态
分布,每包标准重量为1000克。现随机抽查9包,测得样本平均重量为
100个该类型的元件,测得平均寿命为102(小时), 给定显著水平α=0.05,
问,该类型的电子元件的使用寿命是否有明显的提高?
解:该检验的假设为右单侧检验 H0: u≤100, H1: u>100
已知 z z0.05 1.645
zˆ x u0 n 100 (102 100 ) 2 1.645
986克,样本标准差是24克。问在α=0.05的显著水平下,能否认为生产线
工作正常? 解:该检验的假设为双侧检验 H0: u=0.5, H1: u≠0.5
已知 t /2 (n 1) t0.025 (9 1) 2.306, 而 tˆ x u 986 1000 1.75 可见 tˆ 1.75 2.306
设H0, 同时,说明该包装机生产正常。
其中 P( Z 1.8) 1 P( Z 1.8) 1 0.9281 0.0719 0.05。
第六章 假设检验
单侧举例:【例 6-4】某电子产品的平均寿命达到5000小时才算合格,
现从一批产品中随机抽出12件进行试验,产品的寿命分别为
5059, 3897, 3631, 5050, 7474, 5077, 4545, 6279, 3532, 2773, 7419, 5116
的显著性水平=0.05,试测算该日生产的螺丝钉的方差是否正常?

正态总体均值和方差的假设检验

正态总体均值和方差的假设检验

给定检验水平,查t(n-1)表得, t1-/2(n-1),使
得,
P{| T | t (n 1)}
即得,
1 2
P{|
x s
0
|
t 1
(n 1)}
n
2
拒绝域: 即
算出|T|与 t1比较,若 2 否则,接受H 0.
T , t1拒 绝 , H 0 2
例3 在某砖厂生产的一批砖中,随机地抽取6块进 行抗断强度试验,测得结果(单位:kg/cm2)如下: 32.56, 29.66, 31.64, 30.00, 31.87, 31.03, 设砖的抗断强度服从正态分布.问这批砖的 平均抗断强度是否为32.50 (kg/cm2)?(=0.05)。
2 0
,
H1
:
2
2 0
给定检验水平 ,查 2 n 1 分布表得
2 (n 1),
使得 P 2 2 (n 1)
根据样本值计算统计量的值.
如果 2 2 (n 1)
则拒绝 H 0 , 接受 H1.
第一类错误
弃真错误
第二类错误
取伪错误
假设检验的两类错误
所作判断 真实情况
H0 为真 H0 为假
接受 H0
拒绝 H0
正确
第二类错误 (取伪)
第一类错误 (弃真)
正确
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
P
否定H0
H
为真
0
P第一类错误
P
不否定H0
H
为假
0
P第二类错误
若 T t,1拒绝 ,H接0 受
H1
T t1 ,接受 H,0 拒绝 H。1
3,4形式的检验成为右边检验.

正态总体均值的假设检验

正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)

又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验

正态总体均值和方差的假设检验

正态总体均值和方差的假设检验
分布。要根据s的值检验假设H0: 10.00;H1: 10.00
求检验统计量为 2 (n -1)S 2 8 s2 0.08s2
σ02
100
当H0为真时,χ2服从自由度为8的χ2分布
对于α=0.05,
查表得
2 0.975
(8)
2.180,
2 0.025
(8)
17.535
则拒绝域为
W {0.08s2 2.180 U0.08s2 17.535}

W {s 5.220 Us 14.805}
每当测得s的值小于5.220或大于14.805时, 就认为机床的精度发生了变化。应引起注意, 并分析原因。
当方差σ12σ22已知时,用U检验法,构造 统计量
U (X Y)
2 1
2 2
n1 n2
取显著性水平α
P{| U | u /2}
得拒绝域为 | U | u /2
二、正态总体方差的检验
1、单个总体的情况—χ2检验
设总体N(, 2), , 2 未知,x1,L ,xn 是
来自总体X的样本,现要检验假设(显著性
(n
1)S
2 0
2
2/2 (n 1)
2
,
则p{ 2 χ12 (n 1) 2 χ2 (n 1)} α
2
2
得显著性水平为的拒绝域为
2
2 1
/
2
(n
1)或
2
2 / 2 (n 1)。
例3 由以往管理生产过程的大量资料表明某自 动机床产品的某个尺寸X服从正态分布,其标 准差为σ0=10.00毫米,并且把σ0=10.00毫米 定为机床精度的标准。为控制机床工作的稳定 性,定期对其产品的标准差进行检验:每次随 机地抽验9件产品,测量结果为x1,x2,…x9。试 制定一种规则,以便能根据样本标准差s的值 判断机床的精度(即标准差)有无变化(显著 性水平为α=0.05)? 解 依题意,所考虑的产品指标X服从正态

正态总体的均值和方差的假设检验课件PPT

正态总体的均值和方差的假设检验课件PPT
(3)拒绝域: W1={(x1, x2, ∙∙∙, xn, y1, y2, ∙∙∙, yn)||u| u /2=1.96},
(4)统 计 量 观 察 值 : u(xy)/ 1 22 21301252.5
n 1 n 2 6080 30 40
( 5 ) |u | 2 .5 1 .9 6 , 拒 绝 原 假 设 H 0 .
0.42, 0.08, 0.12, 0.30 , 0.27
处理后: 0.15, 0.13, 0.00, 0.07, 0.24,
0.19, 0.04, 0.08, 0.20, 0.12 假定处理前后含脂率都服从正态分布,且相互独立, 方差相等.问处理前后含脂率的均值有无显著差异
( = 0.05)?
解 以X表示物品在处理前的含脂率,Y表示物品在 处理后的含脂率,且 X ~ N ( μ 1 ,σ 1 2 )Y , ~ N ( μ 2 ,σ 2 2 )
1 假 H 0 : μ μ 0 设 , H 1 : μ μ 0 ; 2° 取检验统计量
T X0 ~t(n1);
Sn / n
(当H0为真)时
3° 给定显著水平 ( 0< < 1)
P |T | t /2 ( n 1 ) ,查表 t /2 ( n 1 可 ).
拒绝域: W1 = { (x1,x2,∙∙∙,xn)| |t | t /2 (n-1)};
(4) 由样本值计算U的观测值为
ux800977080032.25;
40
40
(5)判断:由 |u|2.251.9,6故拒绝原假设H0,即
不能认为这批钢索的断裂强度为 800 Mpa .
2. σ2为未知 μ的 ,检 关 t检 验 于 验 (法)
设 X 1 ,X 2 ,,X n 是来自 N (μ ,正 σ 2)的 态 一 总 其μ 中 ,σ2未知,检 α, 验检 水 μ的 验 平 步为 骤

正态总体参数的假设检验

正态总体参数的假设检验

正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。

有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。

(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。

5.判断(同前) 注:这个检验法称为u检验。

(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。

(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。

在基础上依据抽样分布特点可构造统计量作为检验之⽤。

具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。

注:关于正态标准差的假设与上述三对假设等价,不另作讨论。

(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。

续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。

某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。

③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。

⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。

[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。

已知废⽔中该有毒化学物质的含量X服从正态分布。

该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。

正态总体均值的假设检验

正态总体均值的假设检验

于是
x
0
/n
0.516
z0.05
1.645,
故接受 H0 , 认为该机工作正常.
2. 2为未知, 关于 的检验( t 检验)
设总体 X ~ N (, 2 ), 其中, 2 未知, 显著性水平为 .
求检验问题 H0 : 0 , H1 : 0 的拒绝域.
设 X1 , X2 ,, Xn 为来自总体 X 的样本,
正态总体均值的假设检验
一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验) 三、基于成对数据的检验(t 检验)
一、单个总体N(, 2)均值 的检验
1. 2 为已知, 关于 的检验( Z 检验)
在正态总体 N(, 2) 讨论中

2为已知时,
关于
的检验问题
0
:
(1) 假设检验 H0 : 0 , H1 : 0 ; (2) 假设检验 H0 : 0 , H1 : 0 ; (3) 假设检验 H0 : 0 , H1 : 0 .
设两样本独立. 注意两总体的方差相等. 又设 X ,Y 分别是总体的样本均值, S12 , S22 是样本方
差, 1, 2 , 2 均为未知,
求检验问题 H0 : 1 2 , H1 : 1 2 ( 为已知常数)的拒绝域.
取显著性水平为 .
引入 t 统计量作为检验统计量:
t
(X Sw
11 n1 n2
k
得 k t / 2 (n1 n2 2).
故拒绝域为
t
(x sw
y)
11 n1 n2
t / 2 (n1
n2
2).
关于均值差的其它两个检验问题的拒绝域见表
8.1, 常用 0 的情况.

第6章 假设检验(教学)

第6章  假设检验(教学)

(三)显著性水平
/ 2
1. 原假设为真时,拒绝原假设的概率
2. 表示为 (alpha)
/ 2
–常用的 值有0.01, 0.05, 0.10
被称为抽样分布的拒绝域
拒绝 域
拒绝域
3. 由研究者事先确定
临界值-z a/2
H 0值
Z
临界值z a/2
4. 根据给定的显著性水平,查表得出相应的 临界值z或z/2, t或t/2
比较: z z

2
1.96
拒绝 H0
1.96
决策:在 = 0.05的水平上拒绝H0
结论:每晚长途电话通话平均
-1.96 -4
0
1.96
Z
时间发生了变化。
统计学 假设检验的应用 (例题分析p值方法)

H0: = 16


H1: 16
= 0.05 n = 100
检验统计量: x 14 16 z 4 n 5 100

(1)使用其他服务的客户如果超过30%,证明该银行
的研究结论是正确的。

(2)而研究者往往倾向于支持自己的研究结论。
H0 : 30%
H1 : 30%
右侧检验
回上级目录
回本节目录
统计学 (二)识别检验统计量及其分布

1.用于假设检验决策的统计量 2.检验统计量的基本形式为
点估计量 假设值 检验统计量 点估计量的抽样标准差
临界值
H0值
临界值
样本统计量
统计学 双侧检验 (显著性水平与拒绝域)
抽样分布
拒绝域 /2 1-
置信水平 拒绝域 /2
临界值 样本统计量

第六章 假设检验

第六章 假设检验
2 2 , 1 2 已知,或大样本情况 6.3.1 2 2 两个总体均服从正态分布、两个总体的方差 1 , 2 已知;或两 个总体分布及方差未知,但大样本情况下,样本均值之差 X 1 X 2 的抽样分布服从或近似服从正态分布,即可采用检验 统计量:
第六章 假设检验 6.2 总体均值的假设检验
【例6-7】某厂采用自动包装机分装产品,假定每包产 品的重量服从正态分布,每包标准重量为1000克。某 日随机抽查9包,测得样本平均重量为986克,样本标 准差为24克。试问在0.05的显著性水平上,能否认为 这天自动包装机工作正常?
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.2
假设检验的步骤
(三)选取显著性水平,确定原假设的拒绝域和接受域 显著性水平表示原假设为真时拒绝原假设 H 0 的最大概率, 即拒绝原假设所冒的风险,用 表示。 通常取 0.05 或 0.01
6.1
第六章 假设检验 假设检验的原理
第六章 假设检验 6.2 总体均值的假设检验
6.2.3 2未知时小样本情况下总体均值的假设检验
设总体服从正态分布 X ~ N (, 2 ) ,在小样本抽样情况下,利用 t检验法对总体均值的检验,其检验统计量及分布为:
t X ~ t (n 1) s/ n
第六章 假设检验 6.2 总体均值的假设检验
6.1
第六章 假设检验 假设检验的原理
6.1.4
假设检验中的P值
H1 : 0
(2)左侧检验:H 0 : 0
P值= P(Z zc 0 )
H 0 : 0
(3)右侧检验:
H1 : 0

第六章 假设检验

第六章 假设检验

第一步:建立假设 第一步:
H0 : µ = 8000; H1 : µ > 8000
原假设的选取原则: 原假设的选取原则:没有充分理由 不能轻易否定的命题。 不能轻易否定的命题。
对立假设的选取原则:没有把握不 对立假设的选取原则: 能轻易肯定的命题。 能轻易肯定的命题。
第二步:寻找检验统计量 第二步:
2
第三步:给定显著性水平和临界值 第三步:
• 在原假设 H0 为真时,X 应该接近8000。 为真时, 如果 X 远离8000 ,就有理由怀疑原 假设为真。 假设为真。 • 例中,8300与8000之间算近还是算远? 例中, 之间算近还是算远? • 需要定一个界限,记此界限为c。 需要定一个界限,记此界限为c
假设检验是要根据样本的观测值对原假作 出判断,接受原假设或者拒绝。 出判断,接受原假设或者拒绝。 由于样本的随机性,客观情况未知, 由于样本的随机性,客观情况未知,有可 能犯错误。 能犯错误。 例:产品验收,有时面对的整批产品是合 产品验收, 格的,有时面对的整批产品是不合格的。 格的,有时面对的整批产品是不合格的。 拒收了合格率高的产品或者接受了合格率 低的产品都是犯了错误。 低的产品都是犯了错误。
例:餐厅的营业额问题: 餐厅的营业额问题:
H0 : µ = 8000; H1 : µ பைடு நூலகம் 8000
N(µ0 ,σ )
2 0
N(µ,σ )
2
在原假设成立的条件下,新菜单挂出后, 在原假设成立的条件下,新菜单挂出后, 每天营业额仍然服从正态分布
N(8000,640 )
如今获得了一个容量为9的样本, 如今获得了一个容量为9的样本,此时样 服从: 本均值 X 服从: 1 2 N(8000, ×640 ) 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,Xn1取自正态总体X
~
N
(u1,
2 1
);
Y1,
,Yn2 取自正态总体Y
~
N
(u2,
2 2
),
两样本独立,给定检验水平,由观测值x1, ,xn1;
y1, ,yn2检验假设 H0:1 2;H1:1 2
1o
假定
2 1
,
2已知
2
由于X─ , Y─ 分别是1, 2的无偏估计量,
,
Sw Sw2 .
由 P{H0 为真, 拒绝 H0}



P1 2


(X Sw
Y 1 n1
)
1 n2

k




可得 k t / 2(n1 n2 2). 故得拒绝域为
(x y)
t
sw
11 n1 n2
t / 2(n1 n2 2).
一、 单个正态总体的假设检验
设 X1, …, Xn 是总体 X ~ N( , 2)的样本,

X,
S 2,S *2
分别是其样本均值、样本方差和修正的样本方差.
1.已知方差 2 时均值 的假设检验
① 提出假设
H0 : = 0 , H1: ≠0 ; ② 构造 的检验统计量
U
X 0 / n
发生 .
得否定域 W: |t |>4.0322 第四步:
将样本值代入算出统计量 t 的实测值,
| t |=2.997<4.0322 故不能拒绝H0 .
没有落入 拒绝域
这并不意味着H0一定对,只是差异 还不够显著, 不足以否定H0 .
2、两个总体
N
(1
,
2 1
),
N
(
2
,
2 2
)
的情况
利用t 检验法检验具有相同方差的两正态总
称为T检验
例5 某工厂生产的一种螺钉,标准要求长度 是32.5毫米. 实际生产的产品,其长度X假定服
从正态分布 N (, 2 ), 2 未知,现从该厂生
产的一批产品中抽取6件, 得尺寸数据如下:
32.56, 29.66, 31.64, 30.00, 31.87, 31.03
问这批产品是否合格?
关于均值差的其他两个检验问题的拒绝域
例10 比较甲,乙两种安眠药的疗效。将20名患者分 成两组,每组10人.其中10人服用甲药后延长睡眠的 时数分别为1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4; 另10人服用乙药后延长睡眠的时数分别为0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0.若服用两种安眠 药后增加的睡眠时数服从方差相同的正态分布.试问 两种安眠药的疗效有无显著性差异?(=0.10)
要特别注意的是,这里假设两总体的方差相等.
现在来求检验问题 :
H0 : 1 2 , H1 : 1 2 ( 为已知常数)的拒绝域 . 取显著性水平为 .
引入 下述t 统计量作为检验统计量 :
t (X Y ) ,
Sw
11 n1 n2
其中
S
2 w

n1S1*2 n2 S2*2 n1 n2 2
~ N(0,1),
并确定其函数的分布
对给定的水平 ,求分位数 u / 2 ,
使得 P ( |U| u /2 ) ,
③ 由 确定拒绝域
由|U|>u/2可得 H0 的拒绝域: W (, u/2) (u/2 , ),
数值 u / 2 是确认小概率事件是否已经发生的数量
分析:这批产品(螺钉长度)
的全体组成问题的总体X.
现在要检验E(X)是否为32.5.

已知 X~N (, 2 ), 2 未知.
第一步: 提出原假设和备择假设
H0 : 32.5 H1 : 32.5
第二步: 取一检验统计量,在H0成立下 求出它的分布
t X 32.5 ~ t(5)
界限,称为临界值
/2
(x) / 2
拒绝域| O |拒绝域 x
在这个检验问题中,我们都是利用统计量 U X 0 来确定拒绝域的 , 这种检验法称为
/ n U检验法.
例2 某化学日用品厂用包装机包装洗衣粉. 包装机正常工作时, 包装量 X ~ N(500, 22),
每天开工后须先检查包装机工作是否正常.某天开工后, 在装好的洗衣粉中任取了 9 袋,称得重量的平均值
解:设X

1
,X100取自正态总体X
~
N (u1,952 );
Y1, ,Y75取自正态总体Y ~ N (u2,1202 ),
X ~ N (1,190502 ),Y ~ N (2,172502 )
X
Y
~
N (1

2,190502

1202 75
),
X
Y
~
N (1
2,190502

P( |T| t(n 1) ) ,
由|T|> t(n-1), 可得 H0 的拒绝域: W ( , t) (t, ),
由样本观测值算出 T 的值
T0
x 0 S* / n
,
检验:若 T0 落入拒绝域 W 内, 则拒绝 H0 ,
/2
f (x) / 2
拒绝域| O |拒绝域 x10 75二、 未知方差 2 时的均值检验(T检验)
1. 单个正态总体的假设检验
H0 : = 0 , H1: ≠0 ; 应用 2 的无偏估计量 S* 2 去估计 2,
T X 0 ~ t(n -1),
S* / n 对给定的水平 ,求分位数 t (n-1), 使得
1202 ), 75
若原假设成立 H0 : 1 2 则 =0.1
X Y ~ N (0,1), 952 1202 100 75
查标准正态分布表得临界值
U 1.65 拒绝域:W ( , 1.65) (1.65, ),
2
1180 1220
U0
952 1202
U0
XY
12
m

22
n
,
检验:若 T0 落入拒绝域 W 内, 则拒绝 H0 ,
例10 比较甲,乙两厂生产的灯泡使用寿命。已知甲 厂生产的灯泡的使用寿命X服从正态分布, 且方差 为95 2, 乙厂生产的灯泡的使用寿命Y服从正态分 布,且方差为120 2, 在两厂分别抽取了100只和75 只样本,测得平均寿命分别为1180小时和1220小时, 问两厂灯泡的平均寿命有无显著性差异(=0.10)
能衡量差异
S* 6
大小且分布
已知
第三步:
对给定的显著性水平 =0.01,查表确
定临界值 t (5) t0.01(5) 4.032 ,使
P{| t | t (5)}
即“| t | t (5)”是一个小概率事件 .
得否定域 W: |t |>4.0322
小概率事件在一次 试验中基本上不会
U X Y (12)

2 1
m


2 2
n
~ N(0, 1),
对给定的水平 ,求分位数 使得
P ( |U | U 2 ) ,
由|U|>U/ 2可得 H0 的拒绝域:
U XY
12
m


2 2
n
W

(

,
U

)
2
(U 2, ),
由样本观测值算出 U 的值
体均值差的假设.
设 X1, X2 ,, X n1 为来自正态总体N (1, 2 ) 的样本, Y1,Y2 ,,Yn2 为来自正态总体N (2 , 2 )的 样本 , 且设两样本独立 .又设 X ,Y 分别是总体的
样本均值, S1*2 , S2*2是修正样本方差 , 1 , 2 , 2均为未知,
Sw
10S12 10S22 18
1.898
| t | | x y | 1.86 1.7341
sw 1 10 1 10
拒绝H0 认为两种安眠药的疗效有显著性差异
返回
解: H0 : 1 2 ; H1 : 1 2
T
X Y
~ t(18)
Sw 1 10 1 10
由P{ T t0.1(18)} 0.1,即得拒绝域 T t0.1(18) 1.734.
即拒绝域 W=, 1.734 1.734,
x 2.33, s1 2.002 y 0.75, s2 1.789
─x = 502 (g) . 设总体方差不变, 问包装机工作是否正常.
由题意可设这天包装重量 X ~ N( , 2). 如果工作
正常, 则 X 服从的分布应与平常的一样, 即 X ~ N(500, 22).
为此, 我们提出假设
H0: = 0 = 500 和 H1: ≠ 0

H0: = 0 = 500 和, H1: ≠ 0
② U

X 0 / n
~ N(0, 1),
对小概率 =0. 05 , 令
③ 查表得 u0. 025 = 1. 96 ,
P( |U| u/2 ) 0.05 ,


| U0
| |
502500 2/ 9
|
3
1.96,

拒绝 H0 成立.
2 两个正态总体均值差的假设检验
设X1,
相关文档
最新文档