一个正态总体的假设检验课件

合集下载

正态总体均值的假设检验

正态总体均值的假设检验
t 检验 用 t 分布
2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一

一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:

正态总体均值的假设检验

正态总体均值的假设检验

上一段中, H0:μ=μ0 ; H1: μ≠μ0 的对立假设为H1:μ≠μ0 ,该假设称为双边对立假设。

2. 单边检验 H0: μ=μ0; H1: μ>μ0而现在要处理的对立假设为 H1: μ>μ0, 称为右边对立假设。

类似地,H0: μ=μ0; H1: μ<μ0 中的对立假设H1: μ<μ0,假设称为左边对立假设。

右边对立假设和左边对立假设统称为单边对立假设,其检验为单边检验。

例如:工厂生产的某产品的数量指标服从正态分布,均值为μ0 ;采用新技术或新配方后,产品质量指标还服从正态分布,但均值为µ。

我们想了解“µ是否显著地大于μ”,即产品的质量指标是否显著地增加了。

8.2.2 两个正态总体N(µ1, σ12) 和N(µ2, σ22)均值的比较在应用上,经常会遇到两个正态总体均值的比较问题。

例如:比较甲、乙两厂生产的某种产品的质量。

将两厂生产的产品的质量指标分别看成正态总体N(µ1, σ12) 和N(µ2, σ22)。

比较它们的产品质量指标的问题,就变为比较这两个正态总体的均值µ1和µ2的的问题。

上面,我们假定 σ12=σ22。

当然,这是个不得已而强加上去的条件,因为如果不加此条件,就无法使用简单易行的 t 检验。

在实用中,只要我们有理由认为σ12和σ22相差不是太大,往往就可使用上述方法。

通常是:如果方差比检验未被拒绝(见下节), 就认为σ12和σ22相差不是太大。

J 说明小结本讲首先介绍假设检验的基本概念;然后讨论正态总体均值的各种假设检验问题,给出了检验的拒绝域及相关例题。

《假设检验》PPT课件

《假设检验》PPT课件
2008-2009
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计


客观



现象



数量


表现


描 述

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

《假设检验的概念》PPT课件

《假设检验的概念》PPT课件

假设检验实例及解读
• 生物统计学实例:比较两个药物治疗组的患者生存率是否存在显著差异。 • 社会调查实例:通过问卷调查数据,研究两个群体之间的收入差异是否显著。
总结与回顾
假设检验是一种重要的统计方法,帮助我们进行数据分析和科学决策。通过清晰的步骤和方法,我们可以对总体参 数进行有效推断。
3 方差分析
4 非参数检验
用于比较多个样本均值之间是否存在显著差异。
当数据不满足正态分布假设时,使用的一类假设 检验方法。
注意事项
1 假设检验的局限性
假设检验是概率性推断,结果并不能绝对确定总体参数,仅供参考。
2 防范与排除偏差
在实际研究中,要注意样本选择的随机性和可比性,以排除偏差对推断结果的影响。
p值判定
4
参数估计和假设检验。
根据计算出的统计量,计算p值,并与显著性
水平比较,判断是否拒绝原假设。
5
结论推断
根据p值的判定结果,得出对总体参数的推断 结论,并解释研究的统计显著性和实际意义。
常见假设检验方法
1 单样本t检验
2 双样本t检验
用于比较一个样本的均值与总体均值是否存在显 著差异。
用于比较两个独立样本的均值是否存在显著差异。
应用领域
假设检验广泛应用于医学、社会科学、经济学等领 域,帮助我们进行数据分析和做出科学决策。
假设检验的步骤
1
假设设立
首先,根据研究问题,明确原假设和备择假
ห้องสมุดไป่ตู้
显著性水平确定
2
设,以便进行后续统计推断。
确定假设检验的显著性水平,通常为0.05或
0.01,用于判断统计显著性。
3
统计量计算
计算适应研究问题的合适统计量,以便进行

单个正态总体的假设检验

单个正态总体的假设检验

第二节 单个正态总体的假设检验1.单个正态总体数学期望的假设检验(1) σ2已知关于μ的假设检验(Z 检验法(Z -test)) 设总体X ~N (μ,σ2),方差σ2已知,检验假设H 0:μ=μ0;H 1:μ≠μ(μ0为已知常数)由X ~N (μ,nσ)X N (0,1),我们选取ZX (8.2)作为此假设检验的统计量,显然当假设H 0为真(即μ=μ0正确)时,Z ~N (0,1),所以对于给定的显著性水平α,可求z α/2使P {|Z |>z α/2}=α,见图8-1,即P {Z <-z α/2}+P {Z >z α/2}=α.从而有P {Z >z α/2}=α/2, P {Z ≤z α/2}=1-α/2.图8-1利用概率1-α/2,反查标准正态分布函数表,得双侧α分位点(即临界值)z α/2. 另一方面,利用样本观察值x 1,x 2,…,x n 计算统计量Z 的观察值z 0x (8.3)如果:(a )|z 0|>z α/2,则在显著性水平α下,拒绝原假设H 0(接受备择假设H 1),所以|z 0|>z α/2便是H0的拒绝域.(b ) |z 0|≤z α/2,则在显著性水平α下,接受原假设H 0,认为H 0正确.这里我们是利用H0为真时服从N (0,1)分布的统计量Z 来确定拒绝域的,这种检验法称为Z 检验法(或称U 检验法).例8.1中所用的方法就是Z 检验法.为了熟悉这类假设检验的具体作法,现在我们再举一例.例8.2 根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下(单位:kg ²cm -2): 32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ²cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?解 ① 提出假设H 0:μ=μ0=32.50;H 1:μ≠μ0. ② 选取统计量Z =X ,若H 0为真,则Z ~N (0,1).③ 对给定的显著性水平α=0.05,求z α/2使P {|Z |>z α/2}=α,这里z σ/2=z 0.025=1.96.④ 计算统计量Z 的观察值:|z 0| ≈3.05.⑤ 判断:由于|z 0|=3.05>z 0.025=1.96,所以在显著性水平α=0.05下否定H 0,即不能认为这批产品的平均抗断强度是32.50 kg ²cm -2.把上面的检验过程加以概括,得到了关于方差已知的正态总体期望值μ的检验步骤: (a ) 提出待检验的假设H 0:μ=μ0;H 1:μ≠μ0. (b ) 构造统计量Z ,并计算其观察值z 0:ZX ,z 0x .(c ) 对给定的显著性水平α,根据P {|Z |>z α/2}=α,P {Z >z α/2}=α/2,P {Z ≤z α/2}=1-α/2 查标准正态分布表,得双侧α分位点z α/2. (d ) 作出判断:根据H 0的拒绝域 若|z 0|>z α/2,则拒绝H 0,接受H 1; 若|z 0|≤z α/2,则接受H 0.(2) 方差σ2未知,检验μ(t 检验法(t -test)) 设总体X ~N (μ,σ2),方差σ2未知,检验H 0:μ=μ0;H 1:μ≠μ0.由于σ2X 便不是统计量,这时我们自然想到用σ2的无偏估计量——样本方差S 2代替σ2,由于X t (n -1),故选取样本的函数tX (8.4)图8-2作为统计量,当H 0为真(μ=μ0)时t ~t (n -1),对给定的检验显著性水平α,由 P {|t |>t α/2(n -1)}=α,P {t >t α/2(n -1)}=α/2,见图8-2,直接查t 分布表,得t 分布分位点t α/2(n -1).利用样本观察值,计算统计量t 的观察值t 0x 因而原假设H0的拒绝域为|t 0|>t α/2(n -1). (8.5)所以,若|t 0|>t α/2(n -1),则拒绝H 0,接受H 1;若|t 0|≤t α/2(n -1),则接受原假设H 0.上述利用t 统计量得出的检验法称为t 检验法.在实际中,正态总体的方差常为未知,所以我们常用t 检验法来检验关于正态总体均值的问题.例8.3 用某仪器间接测量温度,重复5次,所得的数据是1250°,1265°,1245°,1260°,1275°,而用别的精确办法测得温度为1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?这里假设测量值X 服从N (μ,σ2)分布.解 问题是要检验H 0:μ=μ0=1277;H 1:μ≠μ0.由于σ2未知(即仪器的精度不知道),我们选取统计量tX .当H 0为真时,t ~t (n -1),t 的观察值为|t 0|185.399-==>3. 对于给定的检验水平α=0.05,由P {|t |>t α/2(n -1)}=α,P {t >t α/2(n -1)}=α/2, P {t >t 0.025(4)}=0.025,查t 分布表得双侧α分位点t α/2(n -1)=t 0.025(4)=2.776.因为|t 0|>3>t 0.025(4)=2.776,故应拒绝H 0,认为该仪器间接测量有系统偏差.(3) 双边检验与单边检验上面讨论的假设检验中,H 0为μ=μ0,而备择假设H 1:μ≠μ0意思是μ可能大于μ0,也可能小于μ0,称为双边备择假设,而称形如H 0:μ=μ0,H 1:μ≠μ0的假设检验为双边检验.有时我们只关心总体均值是否增大,例如,试验新工艺以提高材料的强度,这时所考虑的总体的均值应该越大越好,如果我们能判断在新工艺下总体均值较以往正常生产的大,则可考虑采用新工艺.此时,我们需要检验假设H 0:μ=μ0;H 1:μ>μ0. (8.6)(我们在这里作了不言而喻的假定,即新工艺不可能比旧的更差),形如(8.6)的假设检验,称为右边检验,类似地,有时我们需要检验假设H 0:μ=μ0;H 1:μ<μ0. (8.7)形如(8.7)的假设检验,称为左边检验,右边检验与左边检验统称为单边检验.下面来讨论单边检验的拒绝域.设总体X ~N (μ,σ2),σ2为已知,x 1,x 2,…,x n 是来自X 的样本观察值.给定显著性水平α,我们先求检验问题H 0:μ=μ0;H 1:μ>μ0.的拒绝域.取检验统计量ZX ,当H 0为真时,Z 不应太大,而在H 1为真时,由于X 是μ的无偏估计,当μ偏大时,X 也偏大,从而Z 往往偏大,因此拒绝域的形式为ZX ≥k ,k 待定.因为当H 0X ~N (0,1),由P {拒绝H 0|H 0为真}=PX k ⎫≥⎬⎭=α得k =z α,故拒绝域为ZX ≥z α. (8.8)类似地,左边检验问题H 0:μ=μ0;H 1:μ<μ0.的拒绝域为ZX ≤-z α. 8.9)例8.4 从甲地发送一个信号到乙地,设发送的信号值为μ,由于信号传送时有噪声迭加到信号上,这个噪声是随机的,它服从正态分布N (0,22),从而乙地接到的信号值是一个服从正态分布N (μ,22)的随机变量.设甲地发送某信号5次,乙地收到的信号值为: 8.4 10.5 9.1 9.6 9.9由以往经验,信号值为8,于是乙方猜测甲地发送的信号值为8,能否接受这种猜测?取α=0.05.解 按题意需检验假设H 0:μ=8;H 1:μ>8. 这是右边检验问题,其拒绝域如(8.8)式所示, 即 Z =X ≥z 0.05=1.645.而现在z 0=1.68>1.645,所以拒绝H 0,认为发出的信号值μ>8.2.单个正态总体方差的假设检验(2χ检验法(2χ-test)) (1) 双边检验设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2=σ02;H 1:σ2≠σ2.其中σ02为已知常数.由于样本方差S 2是σ2的无偏估计,当H 0为真时,比值22S σ一般来说应在1附近摆动,而不应过分大于1或过分小于1,由第六章知当H 0为真时2χ=22(1)n S σ-~2χ(n -1). (8.10)所以对于给定的显著性水平α有(图8-3)图8-3P {21/2αχ-(n -1)≤2χ≤2/2αχ(n -1)}=1-α. (8.11)对于给定的α,查2χ分布表可求得2χ分布分位点21/2αχ-(n -1)与2/2αχ(n -1).由(8.11)知,H 0的接受域是21/2αχ- (n -1)≤2χ≤2/2αχ (n -1); (8.12)H 0的拒绝域为2χ<21/2αχ-(n -1)或2χ>2/2αχ(n -1). (8.13)这种用服从2χ分布的统计量对个单正态总体方差进行假设检验的方法,称为2χ检验法. 例8.5 某厂生产的某种型号的电池,其寿命长期以来服从方差σ2=5000(小时2)的正态分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变,现随机抽取26只电池,测得其寿命的样本方差s 2=9200(小时2).问根据这一数据能否推断这批电池的寿命的波动性较以往有显著的变化(取α=0.02)?解 本题要求在α=0.02下检验假设H 0:σ2=5000;H 1:σ2≠5000.现在n =26,2/2αχ(n -1)=20.01(25)χ=44.314, 21/2αχ- (n -1)= 20.99(25)χ=11.524,σ02=5000.由(8.13)拒绝域为22(1)n s σ->44.314或22(1)n s σ-<11.524由观察值s 2=9200得220(1)n s σ-=46>44.314,所以拒绝H 0,认为这批电池寿命的波动性较以往有显著的变化.(2) 单边检验(右检验或左检验)设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2≤σ02;H 1:σ2>σ02.(右检验)由于X ~N (μ,σ2),故随机变量*2χ=22(1)n S σ-~2χ(n -1).当H 0为真时,统计量2χ=220(1)n S σ-≤*2χ.对于显著性水平α,有P {*2χ>2αχ(n -1)}=α图8-4(图8-4).于是有P {2χ>2αχ(n -1)}≤P {*2χ>2αχ(n -1)}=α.可见,当α很小时,{2χ>2αχ(n -1)}是小概率事件,在一次的抽样中认为不可能发生,所以H 0的拒绝域是:2χ=220(1)n S σ->2αχ(n -1)(右检验). (8.14)类似地,可得左检验假设H 0:σ2≥σ02,H 1:σ2<σ02的拒绝域为2χ<21αχ-(n -1)(左检验). (8.15) 例8.6 今进行某项工艺革新,从革新后的产品中抽取25个零件,测量其直径,计算得样本方差为s 2=0.00066,已知革新前零件直径的方差σ2=0.0012,设零件直径服从正态分布,问革新后生产的零件直径的方差是否显著减小?(α=0.05)解 (1) 提出假设H 0:σ2≥σ02=0.0012;H 1:σ2<σ02.(2) 选取统计量2χ=220(1)n S σ-.*2χ=22(1)n S σ-~2χ(n -1),且当H 0为真时,*2χ≤2χ(3) 对于显著性水平α=0.05,查2χ分布表得21αχ-(n -1)=20.95(24)χ=13.848,当H 0为真时,P {2χ<21αχ- (n -1)}≤P 2212(1)(1)n S n αχσ-⎧⎫-<-⎨⎬⎩⎭=α. 故拒绝域为2χ<21αχ- (n -1)=13.848.(4) 根据样本观察值计算2χ的观察值2χ=220(1)240.000660.0012n s σ-⨯==13.2.(5) 作判断:由于2χ=13.2<21αχ- (n -1)=13.848,即2χ落入拒绝域中,所以拒绝H 0:σ2≥σ02,即认为革新后生产的零件直径的方差小于革新前生产的零件直径的方差.最后我们指出,以上讨论的是在均值未知的情况下,对方差的假设检验,这种情况在实际问题中较多.至于均值已知的情况下,对方差的假设检验,其方法类似,只是所选的统计量为2χ=2120()nii Xμσ=-∑.当σ2=σ2为真时,2χ~2χ(n ).关于单个正态总体的假设检验可列表8-2.总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。

一个正态总体均值和方差假设检验

一个正态总体均值和方差假设检验

0.6685
1.7531
16
故接受H0 ,即认为元件的平均寿命不大于225小时。
12
二. 未知期望,检验方差
1.双边假设检验
未知期望, H0: 2 = 02 , H1: 202
(1) 提出原假设H0: 2 = 02 ,H1: 202.
(2)
选择统计量
2
(n
1)S
2
2
(3) 在假设H0成立的条件下,确定该统计量服从的 分布:2~2(n-1),自由度为n-1.

2 0
2 (n
1)时, 则拒绝H0


2 0
2 (n
1)时,则接受H0
.
19
例5 某种导线要求其电阻的标准差不得超0.005欧. 今在生产的一批导线中取样品9根,测得s=0.007欧. 问在=0.05条件下,能认为这批导线的方差显著的 偏大吗?
解 提出原假设H0: 2 (0.005)2 ,H1: 2>(0.005)2.
选择统计量 T X
S
n
如果假设H0成立,那么
T
X
12 S
77
~
t(4)
5
9
取=0.05,得t0.025(4)=2.776,则
P{|
X
S
1277 |
2.776}
0.05
4
根据样本值计算得x =1259, s2=570/4.所以
x 1277
| t0 || 570
|
45
| 1259 1277| 3.37 2.776
1)时,
2
2
则拒绝H0 ;

2 1
(n 1)
2 0

§正态总体均值的假设检验

§正态总体均值的假设检验

1 , 2 , 2 未知,
问新操作方法是否会增加钢的得率? (α=0.05)
解:
H 0 : 1 2 0,
n1 10, n2 10,
H 1 : 1 2 0
2 s1
x 76.23,
3.325,
y 79.43,
2 s2 2.225,
2 2 ( n 1 ) s ( n 1 ) s 2 1 2 2 sw 1 2.775, n1 n2 2
H1 : 0
(2) 选取检验统计量
X 0 Z n
在 H 0 成立的条件下, Z ~ N (0,1) (3) 给定的显著性水平α ,查正态分布表得临界值 z
2
P{ Z z 2 }
(4) 计算检验统计量与临界值比较;
(5) 拒绝域
x 0 z 2 , n
(1) 提出假设
H0 : 0 ,
H1 : 0
(2) 选取检验统计量
X 0 t S n
在 H 0 成立的条件下, t ~ t ( n 1) (3) 给定的显著性水平α ,找临界值
t 2 (n 1)
使
P{ t t 2 ( n 1)}
x 0 t 2 ( n 1), 下结论. s n
解:设两种方法处理后的羊皮含脂率分别为X 和Y,
X ~ N ( 1 , 2 ), Y ~ N ( 2 , 2 )
x 16.375, y 14.857,
sw 2.945,
H 0 : 1 2 0, H1 : 1 2 0
在H0成立下,
X Y T ~ t ( n1 n2 2) 1 1 SW n1 n2

第八章 假设检验 (《统计学》PPT课件)

第八章  假设检验  (《统计学》PPT课件)
与其,为选取“适当的”的而苦恼,不如干脆 把真正的(P值)算出来。
第二节 一个正态总体的假设检验
一、正态总体
设总体X ~ N(m, 2),抽取容量为n的样本 x1, x2, xn
样本均值 X 与方差S2 计算公式分别为:
2
1 n 1
n i1
(xi
X)
我们将利用上述信息,来检验关于未知参数均值 和方差的假设。
总体参数
均值
方差
总体方差已知
z 检验
(单尾和双尾)
总体方差已知
t 检验
(单尾和双尾)
2 检验
(单尾和双尾)
第二节 一个正态总体的假设检验
二、均值m的假设检验
1.H0:m=m0
2.选择检验统计量:
2已知: Z X m0 ~ N(0,1)
/ n
2未知:
小样本: t X m0 ~ t(n 1)
这个值不像我 们应该得到的 样本均值 ...
...因此我们拒绝 原假设μ=50
... 如果这是总 体的假设均值
60
μ=80
H0
样本均值
第一节 假设检验概述
三、假设检验的程序
一个完整的假设检验过程,通常包括以下几个步骤:
首先,设立原假设H0与备选假设H1; 第二步,构造检验统计量,并根据样本观察数据
小样本:当 t t
2
,则拒绝原假设,反之则接受H0;
5.得出结论。
二、均值m的假设检验
6.例题分析
[例8.3] 某广告公司在广播电台做流行歌曲磁带广告 ,它的插播广告是针对平均年龄为21岁的年轻人的,标 准差为16。这家广告公司经理想了解其节目是否为目标 听众所接受。假定听众的年龄服从正态分布,现随机抽 取400多位听众进行调查,得出的样本结果为x 25 岁S2,18 。以0.05的显著水平判断广告公司的广告策划是否符合 实际?

一个正态总体期望与方差的假设检验

一个正态总体期望与方差的假设检验

W { 2 2.7 or 2 19.023}
而这里
2 / 2 (n
1)

2

2 1
/
2
(n
1)
即样本观测值落在拒绝域之外, 故接受原假设,认为该批金
属丝折断力的方差与64无显著差异.
以上对方差的检验属于双侧检验,另外还有单侧检验:
H0
:
2


2 0
;
H1
:
2

第八章
第二节 一个正态总体 期望与方差的假设检验
一、期望值的假设检验
二、方差的假设检验- 2检验
一、期望值的假设检验
1、方差
2


2为已知时对期望值
0

的检验—
u
检验
设样本 X1, X 2, , X n 来自正态总体 N (, 2 ), 方
差 2已知,对 的检验问题由上节中的五个步骤来进行.
u
0 t (n 1)
(c) H1 : 0
W {t t1 (n 1)}
W {t t1 (n 1)}
W {t t (n 1)}
2 (备择假设、拒绝域和显著性水平)
例3 电视台广告部称某类企业在该台黄金时段内播放 电视广告后的平均受益量(平均利润增加量)至少为15万元,
2未知, 由抽样分布定理知,若用样本标准差 s 代替 , U
统计量变为 t 统计量,

t

x 0
~ t(n 1)
s/ n
(8.2.2)
相应于上述三对假设,拒绝域见下图.
/2
/2


t
t (n 1) 0 t1 (n 1)

《统计学(第二版)》电子课件 第4章 假设检验

《统计学(第二版)》电子课件 第4章 假设检验
显著性检验中原假设与备择假设的位置是不对称 的,二者不能随意交换;
显著性检验本身对原假设起保护作用,水平越小, 检验犯第一类错误的概率就越小,换言之,越有 可能不拒绝原假设。
2021/8/7
《统计学》第4章假设检验
4-29
4.1.5 双侧检验和单侧检验
常见的三种显著性假设检验形式: (1)双侧检验 H0 : 0 H1 : 0 (2)右侧检验 H0 : 0 H1 : 0 (3)左侧检验 H0 : 0 H1 : 0
从该批产品中随机抽取了100件,发现其中有4件 次品,即样本次品率为4%,A公司认为样本次品 率4%大于1%,所以不接受B公司的这批产品,B 公司则认为虽然样本次品率为4%,但并不能说明 10万件产品的次品率大于1%,因为样本量很小;
2021/8/7
《统计学》第4章假设检验
4-3
问题
(1)A公司是否应该接受该批产品? (2)如果随机抽取了100件产品有3件次品,
H0:pp01%
2021/8/7
《统计学》第4章假设检验
4-12
记X为100件产品中次品的数目,直观上看, X越大,原假设越值得怀疑,反之, X越小, 对原假设越有利;问题是, X大到多少应 该拒绝原假设?
两种处理方法:
2021/8/7
《统计学》第4章假设检验
4-13
1. 假定H0成立,计算事件X≥4的概率
4-32
4.2 一个正态总体的检验
4.2.1 总体均值μ的检验: Z检验 考虑如下三种检验问题
H0:0 H1:0 H0:0 H1:0 H0:0 H1:0
(4.4) (4.5) (4.6)
2021/8/7
《统计学》第4章假设检验
4-33

§8.2 正态总体参数的假设检验

§8.2  正态总体参数的假设检验



202 2>02 2 i1
2 0
202 2<02
H0的拒绝域 2 2 2 (n)
或 2
2 1
2 (n)
2 2(n)
2 12(n)
2 检验
2 2 2(n1)


2=02 202
2
(n
1)S2
02
202 2>02
或2
2 1
2(n1)
22(n1)
202 2<02
212(n1)
例2.1 用热敏电阻测温仪间接测量地热,
检验法 条件 H0 H1 检验统计量
Z检 验


=0 0
0 >0
Z
X
0
0 <0
n
T检 验


=0
0 0
0 >0
<0
T
X 0
Sn
H0的拒绝域 |Z|z/2
Zz Z–z |T|t/2(n–1) Tt(n–1) T–t(n–1)
检验法 条件 H0 H1 检验统计量
2 检验
2=02 202
n
(Xi )2
故t 11.2811.26 0.46592.4469 1.13587
所以接受原假设, 认为用热敏电阻测温仪间接测量温度无系 统偏差。
例2.2 某厂生产的某种型号的电池, 其
寿命长期以来服从方差2=5000(小时2)的
正态分布。现有一批这种电池, 从它的生 产情况来看, 寿命的波动性有所改变。现 随机取26只电池, 测出其样本方差 s2=9200(小时2), 试根据这一数据能否推 断这批电池的寿命的波动性较以往的有

正态总体下参数的假设检验

正态总体下参数的假设检验
在二维平面上,正态分布可以表示为散点图上的椭圆,其中心 为均值$mu$,轴比为$sigma$。
正态分布的性质
1 2
3
集中性
正态分布的曲线关于均值$mu$对称。
均匀性
正态分布的曲线在均值附近最密集,向两侧逐渐扩散。
稳定性
正态分布的方差$sigma^2$决定了曲线的宽度,方差越大 ,曲线越宽。
正态分布在统计学中的应用
两个总体比例的比较案例
案例描述
某项调查显示,某地区支持甲政 策的居民占60%,支持乙政策的 居民占40%。现从该地区随机抽 取200名居民进行调查,得到支持 甲政策的居民有120名,支持乙政 策的居民有80名。
检验步骤
首先计算两组的样本比例和支持 率,然后根据正态分布的性质计 算临界值,最后根据临界值判断 两组之间是否存在显著差异。
检验步骤
首先计算两组的样本均值和标准差,然后根据正态分布的性质计算临界值,最后根据临界值判断两组之间是否存在显 著差异。
结论
如果两组之间的差异超过临界值,则可以认为两种药物治疗慢性胃炎的疗效存在显著差异;否则,不能 认为两种药物治疗慢性胃炎的疗效存在显著差异。
单个总体比例的假设检验案例
案例描述
检验步骤
03
正态总体下参数的假设检验 方法
单个总体均值的假设检验
总结词
单个总体均值的假设检验是统计学中常见的一种检验方法,用于检验单个正态总体均值 的假设。
详细描述
在假设检验中,我们通常会提出一个关于总体均值的假设,然后使用样本数据来检验这 个假设是否成立。对于单个总体均值的假设检验,我们首先需要确定样本数据和总体分 布的性质,然后选择合适的统计量进行计算,最后根据统计量的分布和临界值来判断假

《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验

《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验
0
真)
P1 2
(
x y
11
k)
k t (n1 n2 2)
sw
n1 n2
2
概率统计
在显著性水平 下, H0 的拒绝域:
x y
sw
11
t (n1 n2 2)
2
n1 n2
注:

2 1
2 2
2
未知时
检验假设

H0 : 1 -2 (或1 2 ), H0 : 1 2 (或1 2 ),
2
概率统计
所以拒绝H 0 ,可认为这两种轮胎的耐磨性有显著差异。
注: ▲ 用两种不同的方法得到了两种不同的结论,那么
究竟应该采取哪一个结论比较合理呢?
显然,应该采取第二种方法得出的结论是合理的
因为数据配对的方法是针对同一架飞机的,它是 排除了因飞机之间的试验条件的不同而对数据产 生的干扰,所以它是直接反映了这两种轮胎的耐 磨性的显著差异的情况,因此,应采取第二种方 法得出的结论,即可认为这两种轮胎的耐磨性有 显著差异。
概率统计
按单个正态总体中当 2 未知时,关于 的假设检验
的计算公式,可得 H0 的拒绝域为:
C { t t t (n 1)}
2
经计算 d 320 , s2 89425 ,
t
d s
320 2.83 89425
n
8
t (n 1) t0.05 (7) 2.365
2
2
因为: t 2.83 t0.05 (7) 2.365
为已知常数,显著水平为
概率统计
Q 检验统计量
(X Y)
~ N (0,1)
2 1
2 2
n1 n2

单个正态总体参数假设检验

单个正态总体参数假设检验
u

n
~ N (0,1)
(3)对于给定的显著水平,查正态分布双侧临界值 表,得到临界值 u / 2 ; (4)统计判断: u u / 2 , 拒绝H ,接受H ; 0 1
u u / 2,拒绝H1,接受H0。
双侧检验 (显著性水平与拒绝域 )
假设H0成立 抽样分布
拒绝域
医药数理统计方法
小概率事件还是会发生的
医药数理统计方法
2.两类错误及记号
(1)当原假设H0为真, 观察值却落入拒绝域, 而作出
了拒绝H0的判断, 称做第一类错误, 又叫弃真错 误。犯第一类错误的概率是显著性水平 。 (2)当原假设H0不真, 而观察值却落入接受域, 而作
出了接受H0的判断, 称做第二类错误, 又叫取伪
拒绝域
/2
1-
接受域
/2
临界值
临界值
样本统计量
医药数理统计方法
例6-2.某药厂正常情况下生产的某药膏含甘草酸量 X~N(4.45,0.1082).现随机抽查了5支药膏,其含 甘草酸量分别为: 4.40 4.25 4.21 4.33 4.46 若方差不变,问此时药膏的平均含甘草酸量 是否 有显著变化?(=0.05) 分析: 0 4.45, n 5, 0.108
X 64
解: 1.建立假设: H0 : 0 60 H1 : 0 60 2. 计算统计量:
u X 0

n

64 60 4 30
5.48
医药数理统计方法
3. 根据显著水平=0.01,查正态分布临界值表; 查附表4得: u0.01 2.33 4.做出统计判断
(1) X ~ N ( , / n)
2

5.4,5.5一个正态总体参数的假设检验

5.4,5.5一个正态总体参数的假设检验

提出待检验假设
H 0 : µ = 23. 取α = 0.05
X − 23 X −µ 如果 H 0成立 U0 = 2 ~ N (0,1) U= ~ N (0,1) 2 6 6 X − 23 P > uα = α 2 2 6
X = 20.5, U 0 = 3.06 > 1.96 X − 23 P > 1.96 = 0.05 2 不能接受 " µ = 23" 这一假设 6
判 等 "EX = 23"成 与 ? 断 式 立 否
例 2, 用传统工艺加工的红果 罐头 , 每瓶平均维生素 C 的含量为 19毫克 , 现改进加工工艺,抽查 16 瓶罐头,测得 VC 含量为 现改进加工工艺, 瓶罐头, 23; .5; ; ; ; .5; ; ; ; .5; .8; ; .5; ; ; .(毫克 ) 20 21 22 20 22 19 20 23 20 18 20 19 22 18 23 若假定新工艺的方差 (1)σ 2 = 4为已知 ; ( 2 )σ 2 未知 , 问新工艺下 VC 的含量是否比旧工艺下 含量高 ?
2. H 0 : µ ≤ µ 0
解 .待检验的假设是 H 0 : µ ≤ 19. 设 α = 0 .05 , σ 2 = 4
分析
U= X −µ
σ
~ N(0,1)
U0 =
X − 19
σ
. U 0的分布不能确定
当H 0 成立时
n
U ≥ U0
P {U 0 > uα } ≤ P{U > uα }
X − 19 > uα ≤ α 则P σ n
α
第二类错误 当原假设 H0 不成立时,而样本值却落入了接受域,从而 不成立时,而样本值却落入了接受域, 的结论。也就是说, 作出接受 H0的结论。也就是说,把不符合 H0 的总体当 成符合 H0 的总体加以接受 . “纳伪”的错 纳伪” 误

单个正态总体参数的假设检验

单个正态总体参数的假设检验
拒绝域为 | u | z / 2
576.2 576 x 576 0.079 其中 | U | 8 / 10 8/ n
查表 z / 2 z0.025 1.96 0.079 故未落在拒绝域之内,故接受H0 ,即可以认为 576.
综合⑴与⑵,该生跳远成绩水平与鉴定成绩无显著差异.
X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 | t | t / 2 (n 1) s/ n 计算 | t | 2.6
| t | 2.6 t0.025 (35) 2.0301
故落在拒绝域之内,拒绝H0 ,接受H1 即不能认为全体考生的平均成绩为70分。 ⑵ μ的置信水平为0.95的置信区间为
2 2 2 双边假设检验 H 0 : 2 0 , H1 : 0
拒绝域为
(n 1) s 2
2 0
12 / 2 (n 1) 或 f y

2 2
(n 1) s 2

2 0
2 / 2 ( n 1)
2 12 / 2 (n 1) / 2 ( n 1)
观测5台压缩机的冷却用水的升高温的平均值为 x 5.34,
样本方差为 s 2 0.631. ⑴ 在显著水平α=0.05下是否可以
认为冷却用水升高温度的平均值不多于5°?(2)求σ2的
置信水平为0.95的置信区间。
解: ⑴ 先提出假设 H 0 : 0 5, H1 : 0
H1 : 0 ,拒绝域为
| x -0 | | u | z / 2 / n
2. σ2未知,检验μ (t 检验法)
n 1 2 可用样本方差 S 2 ( X X ) 代替σ2 k n 1 k 1

一个正态总体期望与方差的假设检验

一个正态总体期望与方差的假设检验
第八章
第二节 一个正态总体 期望与方差的假设检验
一、期望值的假设检验
检验 二、方差的假设检验-
2
一、期望值的假设检验
2 2 1、方差 0 为已知时对期望值 的检验— u 检验
设样本 X 1 , X 2 ,
, X n 来自正态总体 N ( , 2 ), 方
差 2已知,对 的检验问题由上节中的五个步骤来进行. ①建立假设 关于正态均值 常用的三对假设 (a) H0 : 0 ,H1 : 0 ; (双边假设检验问题) (b) H0 : 0 ,H1 : 0 ; (单边假设检验问题) } (c) H0 : 0 ,H1 : 0 . 选择哪一种假设应根据问题的需要.
② 检验统计量都选择 U 统计量
U
X 0
/ n
~ N (0,1)
(8.2.1)
③ 确定显著性水平
显著性水平 的大小应根据研究问题的需要而定,
一般为0.05. ④ 确定临界值,给出拒绝域 对于三种不同的假设,其拒绝域如图所示,其中u1 / 2 是标准正态分布的 1 分位数, 其他意义相同. 2
即样本观测值落在拒绝域之外, 故接受原假设, 认为该批金 属丝折断力的方差与64无显著差异.
以上对方差的检验属于双侧检验,另外还有单侧检验:
2 2 H0 : 2 0 ;H1 : 2 0
(8.2.8)
2 2 H0 : 2 0 ;H1 : 2 0 (8.2.9) 关于假设检验问题 2 2 (8.2.10) H0 : 2 0 ;H1 : 2 0 它与假设检验问题式(8.2.8)在同一显著性水平α下的检验 方法是一样的,其他的单侧检验也类同. 例4 某车间生产一种保险丝,规定保险丝熔化时间的 方差不得超过400.今从一批产品中抽处25个,测得其熔化时 间的方差为388.58, 试根据所给数据, 检验这批产品的方差 是否符合要求(α=0.05). 已知保险丝的熔化时间服从正态 分布.

单个正态总体均值的假设检验

单个正态总体均值的假设检验
得否定域W: |t |>4.0322
使 P t t 2 5
(4) 将样本值代入算出统计量 t 的实测值, 没有落入 | t |=2.997<4.0322 拒绝域 故不能拒绝H0 .
这并不意味着H0一定对,只是差异还不够显
著, 不足以否定H0 .
练习 生产葡萄糖的重量X ~ N 5, 2 , 观察 25个样本 的重量,得X 5.5, S 1, 问生产机器是否正常? 取 0.05
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%? 双侧检验
H 0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, பைடு நூலகம்抽取某个班的平均 分,看该成绩是否显著高于全校整体水平? 单侧检验
H 0 : 0 65, H1 : 65
解 提出假设 H 0 : 5 H1 : 5 X 5 确定统计量 T ~ t 24 S 25 确定临界值 t 2 24 t0.025 24 2.0639 得否定域W : T 2.0639
由样本值计算T 2.5 t0.025 24
=0.01下, 新生产织物比过去的织物强力是否有提高
? 解 提出假设, H 0 : 21 H1 : 21
X 21 取统计量 U ~ N (0,1) n
否定域为W : U u0.01 =2.33
单侧检验
{U > u0.01}是 小概率事件
解 提出假设, H 0 : 21 H1 : 21
假设强力指标服从假设强力指标服从n2且??12公斤问在显著性水平??001下新生产织物比过去的织物强力是否有提高新生产织物比过去的织物强力是否有提高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档