函数与方程练习题及答案 (1)

合集下载

二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程一、选择题1.如图2-128所示的是二次函数y =ax 2+bx +c 的图象,则一次函数y=ax -b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.在二次函数y =ax 2+bx +c 中,若a 与c 异号,则其图象与x 轴的交点个数为 ( )A .2个B .1个C .0个D .不能确定 3.根据下列表格的对应值:x 3.23 3.24 3.25 3.26 ax 2+bx +c-0.06-0.020.030.09判断方程 ax 2+bx +c=0(a ≠0,a ,b ,c 为常数)的一个解x 的取值范围是 ( )A .3<x <3.23B .3.23<x <3.24C .3.24<x <3.25D .3.25<x <3.26 4.函数cbx axy ++=2的图象如图l -2-30,那么关于x 的方程a x 2+b+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等实数根D .无实数根5.二次函数cbx ax y ++=2的图象如图l -2-31所示,则下列结论成立的是( )A .a >0,bc >0,△<0 B.a <0,bc >0,△<0 C .a >0,bc <0,△<0 D.a <0,bc <0,△>06.函数cbx ax y ++=2的图象如图 l -2-32所示,则下列结论错误的是( )A .a >0B .b 2-4ac >0C 、20ax bx c ++=的两根之和为负D 、20ax bx c ++=的两根之积为正7.不论m 为何实数,抛物线y=x 2-mx +m -2( ) A .在x 轴上方 B .与x 轴只有一个交点 C .与x 轴有两个交点 D .在x 轴下方 二、填空题8.已知二次函数y =-x 2+2x +m 的部分图象如图 2-129所示,则关于x 的一元二次方程-x 2+2x +m =0的解为 .9.若抛物线y=kx 2-2x +l 与x 轴有两个交点,则k 的取值范围是 . 10.若二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴只有一个交 点,则这个交点的坐标是 .11.已知函数y=kx 2-7x —7的图象和x 轴有交点,则k 的取值范围是 12.直线y=3x —3与抛物线y=x 2 -x+1的交点的个数是 . 三、解答题13.已知二次函数y=-x 2+4x-3,其图象与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.14..在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为B(6,5).(1)求这个二次函数的表达式;(2)该男生把铅球推出去多远?(精确到0.01米).B(6,5)A(0,2)14121086420246xCy15.如图,已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(x 1,0),B(x 2,0) , 且x 1+x 2=4,1213x x .(1)求抛物线的代数表达式; (2)设抛物线与y 轴交于C 点,求直线BC 的表达式; (3)求△ABC 的面积.16.如果一个二次函数的图象经过点A(6,10),与x 轴交于B ,C 两点,点B ,C 的横坐标分别为x 1,x 2,且x 1+x 2=6,x 1x 2=5,求这个二次函数的解析式.17.已知关于x 的方程x 2+(2m +1)x +m 2+2=0有两个不相等的实数根,试判断直线y =(2m -3)x -4m +7能否经过点A(-2,4),并说明理由.18.二次函数y=ax 2+bx +c(a ≠0)的图象如图2-130所示,根据图象解 答下列问题.(1)写出方程ax 2+bx +c =0的两个根; (2)写出不等式ax 2+bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;BxOCy A(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.如图2-131所示,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC,AC上,抛物线P上的部分点的横坐标对应的纵坐标如下.x …-3 -2 1 2 …y …-52-4 -520 …(1)求A,B,C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;(3)当矩形DEFG的面积S最大时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围;(4)若点D的坐标为(1,0),求矩形DEFG的面积.参考答案1.B[提示:a >0,-2ba<0,∴b >0.] 2.A 3.C 4.C 5.D 6.D 7.C8.x 1=-l ,x 2=3[提示:由图象可知,抛物线的对称轴为x=l ,与x 轴的交点是(3,0),根据对称性可知抛物线与x 轴的另一个交点坐标为(-l ,0),所以一元二次方程-x 2+2x +m =0的解为x 1=-1,x 2=3.故填x 1=-l ,x 2=3.]9.k <1,且k ≠0[提示:若抛物线与x 轴有两个交点,则(-2)2-4k >0.] 10.(-2ba,0) 11.略 12.113.令x=0,得y=-3,故B 点坐标为(0,-3). 解方程-x 2+4x-3=0,得x 1=1,x 2=3. 故A 、C 两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=221310+=,BC=223332+=, OB=│-3│=3. C △ABC =AB+BC+AC=21032++. S △ABC =12AC ·OB=12×2×3=3.14.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=112-. 故y=112-(x-6)2+5. (2)由 112-(x-6)2+5=0,得x 1=26215,6215x +=-.结合图象可知:C 点坐标为(6215+ 故OC=6215+13.75(米)即该男生把铅球推出约13.75米15..(1)解方程组1212413x xxx+=⎧⎪⎨=⎪⎩, 得x1=1,x2=3故2210330b cb c⎧-++=⎪⎨-++=⎪⎩,解这个方程组,得b=4,c=-3.所以,该抛物线的代数表达式为y=-x2+4x-3.(2)设直线BC的表达式为y=kx+m.由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).所以330mk m=-⎧⎨+=⎩, 解得13km=⎧⎨=-⎩∴直线BC的代数表达式为y=x-3 (3)由于AB=3-1=2,OC=│-3│=3.故S△ABC =12AB·OC=12×2×3=3.16.解:设函数为y=ax2+bx+c(a≠0),将A(6,10)代入,得10=36a+6b+c①,当y=0时,ax2+bx+c=0,又x1+x2=-ba=6②,x1x2=ca=5③,由①②③解得a=2,b=-12,c=10.所以解析式为y=2x2-12x+10.17.解:该直线不经过点A.理由如下:∵方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,∴△=(2m+1)2-4(m2+2)=4m-7>0,∴2m-72>0,∴2m-3>0.又由4m-7>0,得-4m+7<0,∴直线y=(2m-3)x-4m+7经过第一、三、四象限,而A(-2,4)在第二象限,∴该直线不经过点A.18.解:(1)由二次函数y=ax2+bx+c(a≠0)的图象可知,抛物线与x轴交于(1,0),B(3,0)两点,即x=1或x=3是方程ax2+bx+c=0的两个根.(2)不等式ax2+bx+c>0的解集,即是求y>0的解集,由图象可知l<x <3.(3)因为a<0,故在对称轴的右侧y随x的增大而减小,即当x>2时,y随x的增大而减小.(4)由图可知,22,242,43,baac baca⎧-=⎪⎪-⎪=⎨⎪⎪=⎪⎩解得2,8,6.abc=-⎧⎪=⎨⎪=-⎩代入方程得-2x2+8x-6-k=O.又因为方程有两个不相等的实数根,所以△>0,即82-4×(-2)×(-6-k)>0,解得k<2.19.解法l:(1)任取x,y的三组值代入y=ax2+bx+c(a≠0),求出解析式为y=12x2+x-4.令y=0,得x1=-4,x2=2;令x=0,得y=-4,∴A,B,C三点的坐标分别为A(2,0),B(-4,0),C(0,-4).解法2:(1)由抛物线P过点(1,-52),(-3,-52)可知,抛物线P的对称轴为x=-1.又∵抛物线P过(2,0),(-2,-4),则由抛物线的对称性可知,点A,B,C的坐标分别为A(2,0),B(-4,0),C(0,-4). (2)由题意,知AD DG AO OC=,而AO=2,OC=4,AD=2-m,故DG=4-2m.又BE EFBO OC=,EF=DG,得BE=4-2m,∴DE=3m,∴S矩形DEFG =DG·DE=(4-2m)·3m=12m-6m2(0<m<2). (3)∵S矩形DEFG=12m-6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0).设直线DF的解析式为y=kx+b,易知k=23,b=-23.∴y=23x-23.又抛物线P的解析式为y=12x2+x-4.令23x-23=12x2+x-4,解得x161-±.如图2-132所示,设射线DF与抛物线P相交于点N,则N161--.过N作x轴的垂线交x轴于H,得1612561339FN HEDF DE-----+===.∵点M不在抛物线P上,即点M不与N重合,此时k的取值范围是k561-+且k>0. (4)由(3)知S矩形DEFG=6.。

二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程练习题(含答案)

二次函数与一元二次方程一、选择题1.如图2-128所示的是二次函数y =ax 2+bx +c 的图象,则一次函数y=ax -b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限2.在二次函数y =ax 2+bx +c 中,若a 与c 异号,则其图象与x 轴的交点个数为 ( )A .2个B .1个C .0个D .不能确定 3.根据下列表格的对应值:x 3.23 3.24 3.25 3.26 ax 2+bx +c-0.06-0.020.030.09判断方程 ax 2+bx +c=0(a ≠0,a ,b ,c 为常数)的一个解x 的取值范围是 ( )A .3<x <3.23B .3.23<x <3.24C .3.24<x <3.25D .3.25<x <3.26 4.函数cbx axy ++=2的图象如图l -2-30,那么关于x 的方程a x 2+b+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等实数根D .无实数根5.二次函数cbx ax y ++=2的图象如图l -2-31所示,则下列结论成立的是( )A .a >0,bc >0,△<0 B.a <0,bc >0,△<0 C .a >0,bc <0,△<0 D.a <0,bc <0,△>06.函数cbx ax y ++=2的图象如图 l -2-32所示,则下列结论错误的是( )A .a >0B .b 2-4ac >0C 、20ax bx c ++=的两根之和为负D 、20ax bx c ++=的两根之积为正7.不论m 为何实数,抛物线y=x 2-mx +m -2( ) A .在x 轴上方 B .与x 轴只有一个交点 C .与x 轴有两个交点 D .在x 轴下方 二、填空题8.已知二次函数y =-x 2+2x +m 的部分图象如图 2-129所示,则关于x 的一元二次方程-x 2+2x +m =0的解为 .9.若抛物线y=kx 2-2x +l 与x 轴有两个交点,则k 的取值范围是 . 10.若二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴只有一个交 点,则这个交点的坐标是 .11.已知函数y=kx 2-7x —7的图象和x 轴有交点,则k 的取值范围是 12.直线y=3x —3与抛物线y=x 2 -x+1的交点的个数是 . 三、解答题13.已知二次函数y=-x 2+4x-3,其图象与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.14..在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图象的一部分(如图),若这个男生出手处A 点的坐标为(0,2),铅球路线的最高处B 点的坐标为B(6,5).(1)求这个二次函数的表达式;(2)该男生把铅球推出去多远?(精确到0.01米).B(6,5)A(0,2)14121086420246xCy15.如图,已知抛物线y=-x 2+bx+c 与x 轴的两个交点分别为A(x 1,0),B(x 2,0) , 且x 1+x 2=4,1213x x .(1)求抛物线的代数表达式; (2)设抛物线与y 轴交于C 点,求直线BC 的表达式; (3)求△ABC 的面积.16.如果一个二次函数的图象经过点A(6,10),与x 轴交于B ,C 两点,点B ,C 的横坐标分别为x 1,x 2,且x 1+x 2=6,x 1x 2=5,求这个二次函数的解析式.17.已知关于x 的方程x 2+(2m +1)x +m 2+2=0有两个不相等的实数根,试判断直线y =(2m -3)x -4m +7能否经过点A(-2,4),并说明理由.18.二次函数y=ax 2+bx +c(a ≠0)的图象如图2-130所示,根据图象解 答下列问题.(1)写出方程ax 2+bx +c =0的两个根; (2)写出不等式ax 2+bx +c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;BxOCy A(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.如图2-131所示,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC,AC上,抛物线P上的部分点的横坐标对应的纵坐标如下.x …-3 -2 1 2 …y …-52-4 -520 …(1)求A,B,C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;(3)当矩形DEFG的面积S最大时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围;(4)若点D的坐标为(1,0),求矩形DEFG的面积.参考答案1.B[提示:a >0,-2ba<0,∴b >0.] 2.A 3.C 4.C 5.D 6.D 7.C8.x 1=-l ,x 2=3[提示:由图象可知,抛物线的对称轴为x=l ,与x 轴的交点是(3,0),根据对称性可知抛物线与x 轴的另一个交点坐标为(-l ,0),所以一元二次方程-x 2+2x +m =0的解为x 1=-1,x 2=3.故填x 1=-l ,x 2=3.]9.k <1,且k ≠0[提示:若抛物线与x 轴有两个交点,则(-2)2-4k >0.] 10.(-2ba,0) 11.略 12.113.令x=0,得y=-3,故B 点坐标为(0,-3). 解方程-x 2+4x-3=0,得x 1=1,x 2=3. 故A 、C 两点的坐标为(1,0),(3,0).所以AC=3-1=2,AB=221310+=,BC=223332+=, OB=│-3│=3. C △ABC =AB+BC+AC=21032++. S △ABC =12AC ·OB=12×2×3=3.14.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=112-. 故y=112-(x-6)2+5. (2)由 112-(x-6)2+5=0,得x 1=26215,6215x +=-.结合图象可知:C 点坐标为(6215+ 故OC=6215+13.75(米)即该男生把铅球推出约13.75米15..(1)解方程组1212413x xxx+=⎧⎪⎨=⎪⎩, 得x1=1,x2=3故2210330b cb c⎧-++=⎪⎨-++=⎪⎩,解这个方程组,得b=4,c=-3.所以,该抛物线的代数表达式为y=-x2+4x-3.(2)设直线BC的表达式为y=kx+m.由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).所以330mk m=-⎧⎨+=⎩, 解得13km=⎧⎨=-⎩∴直线BC的代数表达式为y=x-3 (3)由于AB=3-1=2,OC=│-3│=3.故S△ABC =12AB·OC=12×2×3=3.16.解:设函数为y=ax2+bx+c(a≠0),将A(6,10)代入,得10=36a+6b+c①,当y=0时,ax2+bx+c=0,又x1+x2=-ba=6②,x1x2=ca=5③,由①②③解得a=2,b=-12,c=10.所以解析式为y=2x2-12x+10.17.解:该直线不经过点A.理由如下:∵方程x2+(2m+1)x+m2+2=0有两个不相等的实数根,∴△=(2m+1)2-4(m2+2)=4m-7>0,∴2m-72>0,∴2m-3>0.又由4m-7>0,得-4m+7<0,∴直线y=(2m-3)x-4m+7经过第一、三、四象限,而A(-2,4)在第二象限,∴该直线不经过点A.18.解:(1)由二次函数y=ax2+bx+c(a≠0)的图象可知,抛物线与x轴交于(1,0),B(3,0)两点,即x=1或x=3是方程ax2+bx+c=0的两个根.(2)不等式ax2+bx+c>0的解集,即是求y>0的解集,由图象可知l<x <3.(3)因为a<0,故在对称轴的右侧y随x的增大而减小,即当x>2时,y随x的增大而减小.(4)由图可知,22,242,43,baac baca⎧-=⎪⎪-⎪=⎨⎪⎪=⎪⎩解得2,8,6.abc=-⎧⎪=⎨⎪=-⎩代入方程得-2x2+8x-6-k=O.又因为方程有两个不相等的实数根,所以△>0,即82-4×(-2)×(-6-k)>0,解得k<2.19.解法l:(1)任取x,y的三组值代入y=ax2+bx+c(a≠0),求出解析式为y=12x2+x-4.令y=0,得x1=-4,x2=2;令x=0,得y=-4,∴A,B,C三点的坐标分别为A(2,0),B(-4,0),C(0,-4).解法2:(1)由抛物线P过点(1,-52),(-3,-52)可知,抛物线P的对称轴为x=-1.又∵抛物线P过(2,0),(-2,-4),则由抛物线的对称性可知,点A,B,C的坐标分别为A(2,0),B(-4,0),C(0,-4). (2)由题意,知AD DG AO OC=,而AO=2,OC=4,AD=2-m,故DG=4-2m.又BE EFBO OC=,EF=DG,得BE=4-2m,∴DE=3m,∴S矩形DEFG =DG·DE=(4-2m)·3m=12m-6m2(0<m<2). (3)∵S矩形DEFG=12m-6m2(0<m<2),∴m=1时,矩形的面积最大,且最大面积是6.当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0).设直线DF的解析式为y=kx+b,易知k=23,b=-23.∴y=23x-23.又抛物线P的解析式为y=12x2+x-4.令23x-23=12x2+x-4,解得x161-±.如图2-132所示,设射线DF与抛物线P相交于点N,则N161--.过N作x轴的垂线交x轴于H,得1612561339FN HEDF DE-----+===.∵点M不在抛物线P上,即点M不与N重合,此时k的取值范围是k561-+且k>0. (4)由(3)知S矩形DEFG=6.。

函数与方程练习题练习题(基础、经典、好用)

函数与方程练习题练习题(基础、经典、好用)

函数与方程练习题一、选择题1.(2013·东莞模拟)方程log 3x +x -3=0的解所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.函数f (x )=⎩⎨⎧x 2+2x -3,x ≤0-2+ln x ,x >0的零点个数为( ) A .3 B .2 C .1 D .03.(2013·深圳调研)已知符号函数sgn(x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(ln x )-ln x 的零点个数为( )A .1B .2C .3D .44.(2013·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -x 3,x ≤0,(13)x -log 2x ,x >0,若x 0是y =f (x )的零点,且0<t <x 0,则f (t )( )A .恒小于0B .恒大于0C .等于0D .不大于05.设x 1,x 2是方程ln|x -2|=m (m 为实常数)的两根,则x 1+x 2的值为( )A .4B .2C .-4D .与m 有关二、填空题6.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.7.已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.8.(2013·肇庆模拟)若函数y =f (x )(x ∈R) 满足f (x +2)=f (x )且x ∈[-1,1]时,f (x )=1-x 2;函数g (x )=lg|x |,则函数y =f (x )与y =g (x )的图象在区间[-5,5]内的交点个数共有________个.三、解答题9.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围.并求出该零点.10.已知二次函数f (x )=x 2+(2a -1)x +1-2a .(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及(0,12)内各有一个零点,求实数a 的范围.11.(2013·深圳调研)已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围.详细答案一、选择题1.【解析】 设f (x )=log 3x +x -3,则f (1)=0+1-3=-2<0,f (2)=log 32+2-3=log 32-1<0,f (3)=log 33+3-3=1>0,∴f (2)·f (3)<0,故方程log 3x +x -3=0的解所在的区间是(2,3).【答案】 C2.【解析】 法一 令f (x )=0,得⎩⎨⎧x ≤0,x 2+2x -3=0或⎩⎨⎧x >0,ln x =2, 所以x =-3或x =e 2,应选B.法二 画出函数f (x )的图象可得,图象与x 轴有两个交点,则函数f (x )有2个零点.【答案】 B3.【解析】 sgn(ln x )=⎩⎨⎧1,x >1,0,x =1,-1,0<x <1,故函数f (x )=sgn(ln x )-ln x 的零点分别为e ,1,1e .【答案】 C4.【解析】 当x >0时,由f (x )=(13)x -log 2x =0得(13)x =log 2x ,在同一坐标系中分别作出y=(13)x,y=log2x的图象,由图象可知,当0<t<x0时,(13)t>log2t,所以此时f(t)恒大于0,选B.【答案】 B5.【解析】函数y=ln|x-2|的图象关于直线x=2对称,从而x1+x2=4.【答案】 A二、填空题6.【解析】函数f(x)的零点的个数就是函数y=a x与函数y=x+a交点的个数,由函数的图象如图所示,可知a>1时两函数图象有两个交点,0<a<1时两函数图象有唯一交点,故a>1.【答案】(1,+∞)7.【解析】∵2<a<3<b<4,当x=2时,f(2)=log a2+2-b<0;当x=3时,f(3)=log a3+3-b>0,∴f(x)的零点x0在区间(2,3)内,∴n=2.【答案】 28.【解析】函数y=f(x)以2为周期,y=g(x)是偶函数,画出图象可知有8个交点.【答案】8三、解答题9.【解】∵f(x)=4x+m·2x+1有且仅有一个零点,∴方程(2x)2+m·2x+1=0仅有一个实根.设2x=t(t>0),则t2+mt+1=0.当Δ=0时,即m2-4=0,∴m=-2时,t=1;m=2时,t=-1(舍去).∴2x =1,x =0符合题意.当Δ>0时,即m >2或m <-2时,t 2+mt +1=0有两正或两负根,即f (x )有两个零点或没有零点.∴这种情况不符合题意.综上可知当m =-2时,f (x )有唯一零点,该零点为x =0.10.【解】 (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意:f (x )=1即x 2+(2a -1)x -2a =0,∵Δ=(2a -1)2+8a =(2a +1)2≥0恒成立,∴x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及(0,12)内各有一个零点只须⎩⎪⎨⎪⎧f (-1)>0,f (0)<0,f (12)>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解之得12<a <34.11.【解】 (1)当x ∈(-∞,0)时,-x ∈(0,+∞).∵y =f (x )是奇函数,∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,∴f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)当x ∈[0,+∞)时,f (x )=x 2-2x =(x -1)2-1的最小值为-1;当x ∈(-∞,0)时,f (x )=-x 2-2x =1-(x +1)2的最大值为1.∴据此作出函数y =f (x )的图象(如图所示),根据图象得,若方程f (x )=a 恰有3个不同的解,则a 的取值范围是(-1,1).。

一次函数与方程不等式专项练习60题(有答案)15页

一次函数与方程不等式专项练习60题(有答案)15页

一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A .x>0 B.x<0 C.x>1 D.x<14.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么()A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过(﹣,1),则方程3x+9=1的解为x=_________.11.如图,已知直线y=ax+b,则方程ax+b=1的解x=_________.12.如图,一次函数y=ax+b的图象经过A,B两点,则关于x的方程ax+b=0的解是_________.13.已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是_________.14.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是_________.15.已知ax+b=0的解为x=﹣2,则函数y=ax+b与x轴的交点坐标为_________.16.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为______,当x______时,kx+b<0.17.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________的横坐标.19.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.20.一次函数y1=kx+b与y2=x+a的图象如图,则方程kx+b=x+a的解是_________.21.一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为_________.22.一次函数y=ax+b的图象过点(0,﹣2)和(3,0)两点,则方程ax+b=0的解为_________.23.方程3x+2=8的解是x=_________,则函数y=3x+2在自变量x等于_________时的函数值是8.24.一次函数y=ax+b的图象如图所示,则一元一次方程ax+b=0的解是x=_________.25.观察下表,估算方程1700+150x=2450的解是_________.x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.已知y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:(4a﹣3b)•(a﹣2b)28.我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:_________.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(m,n)在线段AB上移动,则m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,﹣1),则不等式kx+b≥0的解集是()A .x≥2 B.x≤2 C.0≤x≤2 D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0()A .x=B.x≤C.x>D.x≥﹣34.已知函数y=8x﹣11,要使y>0,那么x应取()A .x>B.x<C.x>0 D.x<035.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点(﹣4,0),则不等式ax+b≥0的解集为_________.37.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是_________.38.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是_________.39.如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d <2的解集为_________.40.如图,直线y=kx+b经过点(2,1),则不等式0≤x<2kx+2b的解集为_________.41.一次函数y=kx+b的图象如图所示,由图象可知,当x_________时,y值为正数,当x_________时,y为负数.42.如图,直线y=kx+b经过A(1,2),B(﹣2,﹣1)两点,则不等式x<kx+b<2的解集为_________.43.如果直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x≥kx+b≥﹣2的解集为:_________.44.如图,直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),则2x﹣7<kx+b≤0的解集_________.45.已知一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为_________.46.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,O),则关于x的不等式a(x﹣l)﹣b >0的解集为_________.47.如图,直线y=ax+b经过A(﹣2,﹣5)、B(3,0)两点,那么,不等式组2(ax+b)<5x<0的解集是_________.48.已知函数y1=2x+b与y2=ax﹣3的图象交于点P(﹣2,5),则不等式y1>y2的解集是_________.49.如图,直线y=kx+b经过A(2,0),B(﹣2,﹣4)两点,则不等式y>0的解集为_________.50.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象回答下列问题:(1)当﹣2≤x≤4时,求函数y的取值范围;(2)当x取什么值时,y<0,y=0,y>0;(3)当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解;(3)求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并回答下列问题:(1)当x为什么值时,y>0;(2)如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A(2,m).(1)求m、b的值;(2)在所给的平面直角坐标系中画出直线y=﹣3x+b;(3)结合图象写出不等式﹣3x+b<x+1的解集是_________.56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________;的解集是_________;的解集是_________.57.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.(1)在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;(2)根据图象可知:方程组的解为_________;(3)当x_________时,y2<0.(4)当x_________时,y2<﹣2(5)当x_________时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象回答下列问题.函数y=﹣2x+2的图象中:(1)随着x的增大,y将_________填“增大”或“减小”)(2)它的图象从左到右_________(填“上升”或“下降”)(3)图象与x轴的交点坐标是_________,与y轴的交点坐标是_________(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,y=0?(6)当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选C.2.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.故选C.6.两条直线的交点坐标为(﹣1,2),且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.故选B7.不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B8.联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B9.从图象上得出,当y1<y2时,x<2.故选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过(﹣,1),即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,则y=b,令y=0,则x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0)15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为(﹣2,0),故答案为:(﹣2,0)16.从图象上可知则关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知点P(﹣2,﹣5)在函数y=2x+b的图象上,∴﹣5=﹣4+b,解得,b=﹣1;又点P(﹣2,﹣5)在函数y=ax﹣3的图象上,∴﹣5=﹣2a﹣3,解得,a=1;∴由方程2x+b=ax﹣3,得2x﹣1=x﹣3,解得,x=﹣2;故答案是:x=﹣218.∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x轴交点的横坐标为:x=﹣2,故答案为:x轴交点.19.根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y1=kx+b与y2=x+a的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点(﹣1,0),∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点(0,﹣2)和(3,0)两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、8 24.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21(21-3x )-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a •a ﹣8ab ﹣3ab+6b •b=4a 2﹣11ab+6b 228.(1)∵长方形的面积=长×宽,∴图3的面积=(a+2b )(2a+b )=2a 2+5ab+2b 2,故图3所表示的一个等式:(a+2b )(2a+b )=2a 2+5ab+2b 2,故答案为:(a+2b )(2a+b )=2a 2+5ab+2b 2;(2)∵图形面积为:(a+b )(a+3b )=a 2+4ab+3b 2,∴长方形的面积=长×宽=(a+b )(a+3b ),由此可画出的图形为:29.函数与x 轴的交点A 坐标为(﹣2,0),与y 轴的交点的坐标为(0,1),且y 随x 的增大而增大.(1)函数经过点(﹣2,0),则方程kx+b=0的根是x=﹣2;(2)函数经过点(0,1),则当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;(3)线段AB 的自变量的取值范围是:﹣2≤x ≤2,当﹣2≤m ≤2时,函数值y 的范围是0≤y ≤2, 则0≤n ≤2.30. 函数y=﹣2x+7中,令y=﹣2,则﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3. 故:y=﹣,∵0<2x <﹣,解得:0<x <1.故选C32.由于x 的一次函数y=kx+b (k ≠0)的图象过点(2,0),且函数值y 随x 的增大而增大,∴不等式kx+b ≥0的解集是x ≥2.故选A33.函数y=3x ﹣8的值满足y >0,即3x ﹣8>0,解得:x >.故选C34.函数y=8x ﹣11,要使y >0,则8x ﹣11>0,解得:x >.故选A .35. 由图象可知,a >0,故①正确;b >0,故②正确;当x >﹣2是直线y=3x+b 在直线y=ax ﹣2的上方,即x >﹣2是不等式3x+b >ax ﹣2,故③正确.故选D .36.由图象可以看出:当x ≥﹣4时,y ≥0,∴不等式ax+b ≥0的解集为x ≥﹣4,故答案为:x ≥﹣437.∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d<2的解集为(0,2).40.由直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),根据图象即可知不等式组ax+b<cx+d<2的解集为(0,2),故答案为:(0,2).41. 一次函数y=kx+b的图象如图所示,由图象可知,当x x>﹣3时,y值为正数,当x x<﹣3时,y为负数.42.由图形知,一次函数y=kx+b经过点(﹣3,0),(0,2)故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A(2,1)和B(﹣1,﹣2)两点,可得:,解得;则不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<245.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,则不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣147.把A(﹣2,﹣5)、B(3,0)两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2(x﹣3)<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A(2,0),所以不等式y>0的解集是x>2.故答案为x>250.∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点(0,﹣4)和点(2,0),过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;(1)当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;(2)由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;(3)∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过(0,1)和(﹣,0)两点作直线即可得函数y=2x+1的图象,如图:(1)由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;(2)不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;(3)由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点(0,4)和点(﹣,0),过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点(0,10)和点(﹣5,0),过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点(0,12)和点(﹣4,0),过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;(1)函数图象经过点(﹣4,0),并且函数值y随x的增大而增大,因而当x>﹣4时y>0;(2)函数经过点(﹣6,﹣6)和点(﹣2,6)并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.(1)根据题意得:解得:(2)画出直线如图:(3)自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b(k≠0)过(1,3)和(3,1)两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A(4,0),∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如图所示:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.(1)解:如图所示:.(2)解:由图象可知:方程组的解为,故答案为:.(3)解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.(4)解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.(5)解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:(1)由图象知:随着x的增大,y将减小.(2)由图象知:图象从左向右下降.(3)由图象知:与x轴的交点坐标是(1,0),与y轴的交点坐标是(0,2).(4)由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.(5)由图象知:当x=1时,y=0.(6)由图象知:当x<1时,y>0.。

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。

配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。

(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。

函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。

2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。

当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。

2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。

2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。

九年级数学二次函数与一元二次方程(含答案)

九年级数学二次函数与一元二次方程(含答案)

学生做题前请先回答以下问题问题1:二次函数与一元二次方程之间的关系:①一元二次方程的根是二次函数的图象与_____________;当时,二次函数图象与x轴有_____个交点;当时,二次函数图象与x轴有_____个交点;当时,二次函数图象与x轴_______交点.②方程的根是对应的________________,求两个函数交点的坐标就是求对应方程组的解.问题2:结合一次函数、反比例函数以及二次函数的性质,思考函数y值比大小,主要利用函数的________和数形结合;两函数值比大小,借助数形结合,_____________________.二次函数与一元二次方程一、单选题(共10道,每道10分)1.若关于x的二次函数的图象与x轴仅有一个公共点,则k的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数图象与方程、不等式2.如图是二次函数(a,c为常数,)与一次函数(k,b为常数,)的图象,方程的解为_______;不等式的解集为_________.( )A.;B.;C.;D.;答案:A解题思路:试题难度:三颗星知识点:数形结合思想3.已知二次函数中,函数y与自变量x的部分对应值如下表:则当时,x的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数的对称性4.若一元二次方程的两个实数根分别为,则实数的大小关系为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数图象上点的坐标特征5.已知二次函数的图象与x轴交于两点,且,则实数的大小关系为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:二次函数图象平移6.方程的根有( )个.A.0B.1C.2D.3答案:B解题思路:试题难度:三颗星知识点:数形结合思想7.方程的根的个数为( )个A.1B.2C.3D.4答案:C解题思路:试题难度:三颗星知识点:数形结合思想8.已知函数,当直线y=k与此图象有两个公共点时,k的取值范围是( )A. B.C. D.或k=-1答案:D解题思路:试题难度:三颗星知识点:数形结合思想9.关于x的一元二次方程的两个不相等的实数根都在-1和0之间(不包括-1和0),则a取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:数形结合的思想10.方程(k是实数)有两个实根,且,那么k的取值范围是( ) A. B. C. D.无解答案:C解题思路:试题难度:三颗星知识点:数形结合的思想第11页共11页。

高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。

初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择 附答案)

初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择 附答案)

初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择附答案)1.若函数y=kx﹣b的图象如图所示,则关于x的不等式kx﹣b>0的解集为()A.x<2 B.x>2 C.x<4 D.x>42.若直线l1经过点(﹣1,0),l2经过点(2,2),且l1与l2关于直线x=1对称,则l1和l2的交点坐标为()A.(1,4)B.(1,2)C.(1,0)D.(1,3)3.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3 D.x<34.在同一直角坐标系内,若直线y=2x-1与直线y=-2x+m的交点在第四象限,则m的取值范围是()A.m>—1 B.m<1 C.—1<m<1 D.—1≤m≤1 5.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.6.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()7.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是( )A .x <0B .x <1C .0<x <1D .x >18.若以二元一次方程x +2y ﹣b=0的解为坐标的点(x ,y )都在直线y=﹣12x+b ﹣l 上,则常数b=( )A .12B .2C .﹣1D .19.如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3解集为( )A .x ≤-1B .x ≥-1C .x ≤3D .x ≥310.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣311.如图所示,函数1y x =和21433y x =+的图象相交于(–1,1),(2,2)两点.当12y y >时,x 的取值范围是( )12.如图所示,函数y=2x和y=ax+4的图象相交于点A(3 2,3),则关于x的不等式2x≥ax+4的解集为()A.x≤32B.x≤3C.x≥32D.x≥313.直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是()A.x<3 B.x>3 C.x>0 D.x<014.如图,一次函数11y k x b=+,的图象1l与22y k x b=+的图象2l相交于点P,则方程组111222y k x by k x b=+⎧⎨=+⎩的解是()A.23xy=-⎧⎨=⎩B.32xy=⎧⎨=-⎩C.23xy=⎧⎨=⎩D.23xy=-⎧⎨=-⎩15.一次函数y kx b=+(0k≠)的图象如图所示,则关于x的不等式0kx b+>的解集为()A.1x>-B.1x<-C.2x>D.0x>16.如图,在平面直角坐标系xOy 中,如果一个点的坐标可以用来表示关于x ,x 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,那么这个点是A .MB .NC .ED .F17.若直线y=-2x -4与直线y=4x +b 的交点在第三象限,则b 的取值范围是( ) A .-4<b<8 B .-4<b<0 C .b<-4或b>8 D .-4≤6≤818.直线y kx b =+与y mx =在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式kx b mx +≤的解集为( )A .x >﹣2B .x <﹣2C .x ≥﹣1D .x <﹣119.如图,已知一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②关于x 的方程3kx b +=的解为0x =;③当2x >时,0y <;④当0x <时,3y <.其中正确的是( )A .①②③B .①③④C .②③④D .①②④20.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y =3x 和直线y =ax +b 交于点(1,3),根据图象分析,方程3x =ax +b 的解为( )A .x =1B .x =﹣1C .x =3D .x =﹣321.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象, 则二元一次方程组21y k x b y k x =+⎧⎨=⎩的解是( )A .20x y =-⎧⎨=⎩B .20x y =⎧⎨=⎩C .12x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩22.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <223.已知点A (-1,3),点B (-1,-4),若常数a 使得一次函数y =ax +1与线段AB 有交点,且使得关于x 的不等式组45(3)65425x x a ⎧+≥⎪⎪⎨⎪-<-⎪⎩无解,则所有满足条件的整数a 的个数为( )24.一次函数1y kx b =+与2y x a =+的图象如图所示,有下列结论:①0a >;②0k >;③当4x <时,kx b x a +>+其中正确的结论有( )A .0个B .1个C .2个D .3个25.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<26.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A .B .C .D .27.一次函数y 1=kx +b 与y 2=x +a 的图象如下图所示,则下列结论:①k <0;②a >0;③b >0;④当x <3时,y 1<y 2;其中正确的个数是( )A .1个B .2个C .3个D .4个28.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .29.已知一次函数y kx b =+的图象如图所示,当2x <时,y 的取值范围是( )A .4y <-B .40y -<<C .2y <D .0y <30.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;②函数y ax d =+ 不经过第一象限;③不等式ax b cx d ++> 的解集是3x < ;④()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .1参考答案1.A【解析】【分析】观察函数图象得到即可.【详解】由图象可得:当2x <时,函数y kx b =-的图象在x 轴的上方,所以关于x 的不等式0kx b ->的解集是2x <,故选:A .【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2.A【解析】【分析】根据对称的性质得出两个点关于直线x =1对称的对称点,再根据待定系数法确定函数关系式,求出交点坐标即可.【详解】解:∵直线l 1经过点(﹣1,0),l 2经过点(2,2),关于直线x =1对称,∴点(﹣1,0)关于直线x =1对称点为(3,0),点(2,2)关于直线x =1对称点为(0,2),∴直线l 1经过点(﹣1,0),(0,2),l 2经过点(2,2),(3,0),∴直线l 1的解析式为:y =2x+2,直线l 2的解析式为:y =﹣2x+6,解方程组2226y x y x =+⎧⎨=-+⎩得,14x y =⎧⎨=⎩∴l 1和l 2的交点坐标为(1,4),故选:A .【点睛】此题主要考查了一次函数图象与几何变换,正确得出l 1与l 2的交点坐标为l 1与l 2与y 轴的交点是解题关键.3.B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.C【解析】【分析】联立两直线的解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.【详解】解:联立方程组212y xy x m=-⎧⎨=-+⎩,解得:1412mxmy+⎧=⎪⎪⎨-⎪=⎪⎩,∵交点在第四象限,∴1412mm+⎧>⎪⎪⎨-⎪<⎪⎩,解得:11m-<<.故选:C.【点睛】本题考查了两直线的交点和一元一次不等式组的解法,属于常考题型,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活应用.5.D【解析】【分析】利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可【详解】解析根据图象得,当x<-1时,x+m<kx-1故选D【点睛】此题考查在数轴上表示不等式的解集和一次函数与ー元一次不等式,解题关键在于判定函数图象的位置关系6.D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.7.B【解析】【分析】根据两直线的交点坐标和函数的图象即可求出答案.【详解】解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),∴不等式mx<kx+2的解集是x<1,故选:B.【点睛】本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.8.B【解析】【分析】直线解析式乘以2后和方程联立解答即可.【详解】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0,所以﹣b=﹣2b+2,解得:b=2,故选B.【点睛】本题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.9.B【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x -时,3kx b +,故选:B .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.10.D【解析】∵方程ax +b =0的解是直线y =ax +b 与x 轴的交点横坐标,∴方程ax +b =0的解是x =-3.故选D.11.B【解析】试题解析:当x≥0时,y 1=x ,又21433y x =+, ∵两直线的交点为(2,2),∴当x <0时,y 1=-x ,又21433y x =+, ∵两直线的交点为(-1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <-1或x >2.故选B .12.C【解析】【分析】根据函数的图象即可写出不等式的解集.【详解】解:已知函数y=2x和y=ax+4的图象相交于点A(32,3),根据函数图象可以看出,当x=32时,2x=ax+4;当x>32时,2x>ax+4;当x<32时,2x<ax+4;故关于x的不等式2x≥ax+4的解集为32x .故选择C.【点睛】本题考查了一次函数与一元一次不等式,根据函数图像及交点坐标,判断关于x的不等式的解集是解答本题的关键.13.A【解析】【分析】由图知:一次函数与x轴的交点横坐标为3,且函数值y随自变量x的增大而减小,根据图形可判断出解集.【详解】解:直线y=kx+b(k<0)与x轴交于点(3,0),当x=3时,y=0,函数值y随x的增大而减小;根据y随x的增大而减小,因而关于x的不等式kx+b>0的解集是x<3.故选:A.【点睛】本题考查了一次函数与一元一次不等式,由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.14.A【解析】【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组111222y k x b y k x b =+⎧⎨=+⎩的解是23x y =-⎧⎨=⎩, 故选A.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.15.A【解析】【分析】直接从一次函数的图象上即可得到答案.【详解】解:由题图可知,当x >﹣1时,y=kx b +>0,则不等式0kx b +>的解集为1x >-.故选A.【点睛】本题主要考查一次函数与不等式,解此题的关键在于从一次函数的图象上获取信息. 16.C【解析】【分析】本题可以通过直线与方程的关系得到两直线都过定点E ,得到本题结论.【详解】解:两直线都过定点E ,所以点E 表示关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,故选C .【点睛】本题考查的是直线与方程的关系,还可以用解方程组的方法加以解决.【解析】【分析】联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【详解】解:由244y xy x b=--⎧⎨=+⎩解得4683bxby+⎧=-⎪⎪⎨-⎪=⎪⎩∵交点在第三象限,∴4683bb+⎧-<⎪⎪⎨-⎪<⎪⎩,解得48 bb>-⎧⎨<⎩∴-4<b<8.故选A.18.C【解析】【分析】根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx 的解集.【详解】解:由图可知,在x≥-1时,直线y=mx在直线y=kx+b上方,关于x的不等式kx+b≤mx的解是x≥-1.故选:C.本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.19.A【解析】【分析】根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.【详解】∵一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3),∴x=2时,y=0,x=0时,y=3,∴关于x 的方程0kx b +=的解为2x =;关于x 的方程3kx b +=的解为0x =, ∴①②正确,由图象可知:x>2时,y<0,故③正确,x<0时,y>3,故④错误,综上所述:正确的结论有①②③,故选A.【点睛】本题考查一次函数图象上点的坐标特征及一次函数与一元一次方程的关系,利用数形结合的思想是解题关键.20.A【解析】【分析】根据方程的解即为函数图象的交点横坐标解答.【详解】解:∵直线y =3x 和直线y =ax +b 交于点(1,3)∴方程3x =ax +b 的解为x =1.故选:A .【点睛】本题主要考查了一次函数与一元一次方程.函数图象交点坐标为两函数解析式组成的方程组21.D【解析】【分析】观察图象,直接根据两直线的交点坐标写出方程组的解,即可作答.【详解】解:由题图可知:一次函数1y k x =与2y k x b =+的图象交于(1,2),所以方程组21y k x b y k x =+⎧⎨=⎩的解是:12x y =⎧⎨=⎩; 故选:D .【点睛】函数1y k x =与2y k x b =+的交点坐标就是方程组21y k x b y k x =+⎧⎨=⎩的解,明确此知识点是解题的关键.22.D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.23.D【解析】【分析】根据一次函数y=ax+1与线段AB 有交点,求得-2≤a≤5,且a≠0,再解不等式组得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< ,由题意得a≤4,据此a 的值为-2,-1,1,2,3,4,即可得整数a 的个数.【详解】解:把点A (﹣1,3)代入y =ax +1得,3=﹣a +1,解得a =﹣2,把点B (﹣1,﹣4)代入y =ax +1得,﹣4=﹣a +1,解得a =5,∵一次函数y =ax +1与线段AB 有交点,∴﹣2≤a ≤5,且a ≠0, 解不等式组45365425x x a ⎧⎛⎫+≥ ⎪⎪⎪⎝⎭⎨⎪--⎪⎩< 得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< , ∵不等式组无解,∴a ﹣25 ≤185, 解得:a ≤4,则所有满足条件的整数a 有:﹣2,﹣1,1,2,3,4.故选D .【点睛】本题考查一次函数的图象与性质,解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.24.B【解析】【分析】利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵2y x a =+的图象与y 轴的交点在负半轴上,∴a <0,故①错误;②∵1y kx b =+的图象从左向右呈下降趋势,∴k <0,故②错误;③两函数图象的交点横坐标为4,当x <4时,1y kx b =+ 在2y x a =+的图象的上方,即y 1>y 2,故③正确;故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.25.C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.26.C【解析】【分析】【详解】解:把点(0,3)(a,0)代入,得b=3.则a=,∵,∴,解得:k≥1.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.27.B【解析】【分析】根据一次函数12,y kx b y x a =+=+的图象及性质逐一分析可得答案.【详解】解:根据图象1y kx b =+经过第一、二、四象限,∴k <0,b >0, 故①③正确;∵2y x a =+与y 轴负半轴相交,∴a <0, 故②错误;当x <3时,图象1y 在2y 的上方,所以:当x <3时,1y >2y ,故④错误.所以正确的有①③共2个.故选:B .【点睛】本题考查了一次函数图象的性质,一次函数与不等式的关系,准确识图并熟练掌握一次函数的性质是解题的关键.28.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x <1时,ax <bx+c ,推出x <1时,ax <bx+c ,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x >1时,ax >bx+c ,∴关于x 的不等式ax-bx >c 的解集为x >1.故选:D .【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.29.D【解析】观察图象得到直线与x轴的交点坐标为(2,0),且图象经过第一、三象限,y随x的增大而增大,所以当x<2时,y<0.【详解】解:∵一次函数y=kx+b与x轴的交点坐标为(2,0),且图象经过第一、三象限,∴y随x的增大而增大,∴当x<2时,y<0.故选:D.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y 随x的增大而减小.30.A【解析】【分析】仔细观察图象:①a的正负看函数y1=ax+b图象从左向右成何趋势,b的正负看函数y1=ax+b图象与y轴交点即可;②c的正负看函数y2=cx+d从左向右成何趋势,d的正负看函数y2=cx+d与y轴的交点坐标;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④看两直线都在x轴上方的自变量的取值范围.【详解】由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,由图象可得当x<3时,一次函数y1=ax+b图象在y2=cx+d的图象上方,∴ax+b>cx+d的解集是x<3,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d∴3a−3c=d−b,∴a−c=13(d−b),故④正确,【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.。

二次函数与一元二次方程(习题及答案)

二次函数与一元二次方程(习题及答案)

二次函数与一元二次方程(习题)1. (1)一元二次方程-x 2-4x +4=2x -3的根为_____________,直线y =2x -3与抛物线y =-x 2-4x +4的交点坐标为___________.(2)若二次函数的图象经过点A (1,0),B (-4,0),C (0,4),则该二次函数的表达式为________________.2. 已知二次函数y =x 2+4x +m 的图象C 1与x 轴有且只有一个交点,则m 的值为______;若y =-x 2+2x +m 的函数值总为负数,则图象顶点在第_____象限,m 的取值范围是_________.3. 在平面直角坐标系中,抛物线y =(x +5)(x -3)经过向右平移____个单位后得到抛物线y =(x +3)(x -5);平移后的抛物线与x 轴的交点为___________.4. 已知二次函数y =x 2+2x +m 的图象C 1与x 轴有且只有一个交点,则C 1的顶点坐标为__________.5. 若关于x 的一元二次方程x 2-x -n =0无实数根,则函数y =x 2-x -n 的图象顶点在第____象限.6. 二次函数y =x 2-2x -3的图象如图所示,当y <0时,自变量x 的取值范围是( )A .-1<x <3B .x <-1C .x >3D .x <-1或x >3第6题图 第7题图7. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若ax 2+bx +c +k =0(k ≠0)有两个不相等的实数根,则k 的取值范围是( )A .k <-3B .k >-3C .k <3D .k >38. 抛物线y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是( )A .-4<x <1B .-3<x <1C .x <-4或x >1D .x <-3或x >1第8题图 第9题图 9. 函数y =x 2-2x -2的图象如图所示,根据该图象提供的信息,可求得使y ≥1成立的x的取值范围是( ) A .-1≤x ≤3B .-1<x <3C .x <-1或x >3D .x ≤-1或x ≥3复习巩固10. 如图是二次函数y =ax 2+bx +c 的部分图象,由图象可知不等式ax 2+bx +c <0的解集是( ) A .-1<x <5B .x >5C .x <-1且x >5D .x <-1或x >5第10题图 第11题图11. 如图,若抛物线y =x 2+1与双曲线ky x=的交点A 的横坐标为1,则关于x 的不等式210xx k++<的解集是( ) A .x >1 B .x <-1 C .0<x <1 D .-1<x <012. 若二次函数的图象y =(m -2)x 2+x 与直线y =2x -1没有交点,求m 的取值范围.13. 已知P (-3,m )和Q (1,m )是抛物线y =2x 2+bx +1上的两点.(1)求b 的值;(2)将抛物线y =2x 2+bx +1的图象先向上平移2个单位,再向左平移1个单位,请判断新抛物线与x 轴的交点情况.14. 二次函数y =ax 2+bx +c 的图象如图所示,其对称轴为直线x =-1.给出下列结论:①abc >0;②2a +b =0;③a +b +c >0;④a -b +c <0.其中正确的是( ) A .②③B .①③④C .①②④D .③④15. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1);④(a +c )2<b 2;⑤a >1.其中正确的是( ) A .①⑤B .①②⑤C .②⑤D .①③④1. 对于二次函数y =ax 2+bx +c 和一元二次方程ax 2+bx +c =0的关系,尝试着进行总结:①函数与x 轴交点坐标,与方程的根:_________________________________________________. ②函数与x 轴交点个数,与方程解的个数:当Δ>0时,函数与x 轴有____个交点,方程有______根; 当Δ=0时,函数与x 轴有_____个交点,方程有_______根; 当Δ<0时,函数与x 轴______交点,方程________根.思考小结【参考答案】复习巩固1.(1)x1=1,x2=-7;(1,-1),(-7,-17);(2)y=-x2-3x+42.4;四;m<-13.2;(-3,0),(5,0)4.(-1,0)5.一6. A7. C8. B9. D10. D11. D12.m的取值范围是94m .13.(1)b的值为4;(2)新抛物线与x轴无交点.14. D15. A思考小结1.①函数与x轴交点的横坐标即为方程的根;②两;两个不相等的实数;一;两个相等的实数;无;无实数。

九年级上册数学二次函数与一元二次方程练习及答案

九年级上册数学二次函数与一元二次方程练习及答案

九年级上册数学二次函数与一元二次方程练习及答案1.抛物线y =x 2+2x -3与x 轴的交点有______个.2.若一元二次方程ax 2+bx +c =0的两个根是-3和1,那么二次函数y =ax 2+bx +c 与x 轴的交点是____________.3.根据图22-2-6填空:图22-2-6 (1)a ______0;(2)b ______0;(3)c ______0;(4)b 2-4ac ______0.4.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为( )A .k >-74B .k <-74且k ≠0 C .k ≥-74 D .k ≥-74且k ≠0 5.如图22-2-7,将二次函数y =31x 2-999x +892的图形画在平面直角坐标系上,判断方程式31x 2-999x +892=0的两根,下列叙述正确的是( )A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根图22-2-7 图22-2-86.二次函数y =x 2-2x -3的图象如图22-2-8.当y <0时,自变量x 的取值范围是( )A .-1<x <3B .x <-1C .x >3D .x <-1或x >37.利用二次函数的图象求一元二次方程x 2+2x -10=3的根.8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图22-2-9,则下列结论:图22-2-9①a ,b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能为0,其中正确的个数是( )A .1个B .2个C .3个D .4个9.已知抛物线y =12x 2+x +c 与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线y =cx +1经过的象限,并说明理由.10.已知抛物线y =x 2-2x -8.(1)试说明抛物线与x 轴一定有两个交点,并求出交点坐标;(2)若该抛物线与x 轴两个交点分别为A ,B (A 在B 的左边),且它的顶点为P ,求S △ABP 的值.答案1.2 2.(-3,0),(1,0)3.(1)> (2)< (3)> (4)> 4.B5.C 6.A7.解:方法一:将一元二次方程整理,得x 2+2x -13=0.画出函数y =x 2+2x -13的图象,其与x 轴的交点即为方程的根.方法二:分别画出函数y =x 2+2x -10的图象和直线y =3,它们的交点的横坐标即为x 2+2x -10=3的根(图象略).方程x 2+2x -10=3的近似根为x 1≈-4.7,x 2≈2.7.8.B9.解:(1)∵抛物线与x 轴没有交点,∴Δ<0,即1-2c <0.解得c >12. (2)∵c >12, ∴直线y =cx +1随x 的增大而增大.∵b =1,∴直线y =cx +1经过第一、二、三象限.10.解:(1)∵Δ=(-2)2-4×1×(-8)=4+32=36>0,∴抛物线与x 轴一定有两个交点.当y =0,即x 2-2x -8=0时,解得x 1=-2,x 2=4.故交点坐标为(-2,0),(4,0).(2)由(1),可知:|AB |=6.y =x 2-2x -8=x 2-2x +1-1-8=(x -1)2-9.∴点P 坐标为(1,-9).过点P 作PC ⊥x 轴于点C ,则|PC |=9.∴S △ABP =12|AB |·|PC |=12×6×9=27.。

高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)

高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)

高中数学必修一第二章一元二次函数方程和不等式专项训练单选题1、若a>0,b>0,则下面结论正确的有()A.2(a2+b2)≤(a+b)2B.若1a +4b=2,则a+b≥92C.若ab+b2=2,则a+b≥4D.若a+b=1,则ab有最大值12答案:B分析:对于选项ABD利用基本不等式化简整理求解即可判断,对于选项C取特值即可判断即可. 对于选项A:若a>0,b>0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B2、若不等式2x2+2mx+m4x2+6x+3<1对一切实数x均成立,则实数m的取值范围是()A .(1,3)B .(−∞,1)C .(−∞,1)∪(3,+∞)D .(3,+∞) 答案:A分析:因为4x 2+6x +3=4(x +34)2+34>0恒成立,则2x 2+2mx+m 4x 2+6x+3<1恒成立可转化为2x 2+(6−2m )x +(3−m )>0恒成立,则Δ<0,即可解得m 的取值范围 因为4x 2+6x +3=4(x +34)2+34>0恒成立 所以2x 2+2mx+m 4x 2+6x+3<1恒成立⇔2x 2+2mx +m <4x 2+6x +3恒成立 ⇔2x 2+(6−2m )x +(3−m )>0恒成立 故Δ=(6−2m )2−4×2×(3−m )<0 解之得:1<m <3 故选:A3、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A4、不等式|5x −x 2|<6的解集为( )A .{x|x <2,或x >3}B .{x|−1<x <2,或3<x <6}C .{x|−1<x <6}D .{x|2<x <3}答案:B分析:按照绝对值不等式和一元二次不等式求解即可. 解:∵|5x−x2|<6,∴−6<5x−x2<6∴{x 2−5x−6<0x2−5x+6>0⇒{−1<x<6x<2或x>3⇒−1<x<2或3<x<6则不等式的解集为:{x|−1<x<2或3<x<6}故选:B.5、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A6、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.7、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x2+(m-2)x+2m-1=0恰有一根属于(0,1),则需要满足:①f(0)⋅f(1)<0,(2m-1)(3m-2)<0,解得:12<m<23;②函数f(x)刚好经过点(0,0)或者(1,0),另一个零点属于(0,1),把点(0,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=12,此时方程为x2-32x=0,两根为0,32,而32⋅(0,1),不合题意,舍去把点(1,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=23,此时方程为3x2-4x+1=0,两根为1,13,而13⋅(0,1),故符合题意;③函数与x轴只有一个交点,Δ=(m-2)2-8m+4=0,解得m=6±2√7,经检验,当m=6-2√7时满足方程恰有一根在区间 (0,1) 内;综上:实数m的取值范围为(12,23]⋅{6-2√7}故选:D8、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<ab C.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B多选题9、若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则1a >1bB.若0<a<1,则a2<aC.若a>b>0且c>0,则b+ca+c >baD.a2+b2+1≥2(a−2b−2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A,当a<0<b时,结论不成立,故A错误;对于B,a2<a等价于a(a−1)<0,又0<a<1,故成立,故B正确;对于C,因为a>b>0且c>0,所以b+ca+c >ba等价于ab+ac>ab+bc,即(a−b)c>0,成立,故C正确;对于D,a2+b2+1≥2(a−2b−2)等价于(a−1)2+(b+2)2≥0,成立,故D正确. 故选:BCD.10、已知正实数a,b满足a+b=ab,则()A.a+b≥4B.ab≥6C.a+2b≥3+2√2D.ab2+ba2≥1答案:ACD分析:根据特殊值判断B,利用ab⩽(a+b)24判断A,利用换“1”法判断C,变形后利用基本不等式判断D. 对于B,当a=b=2时,满足a+b=ab,此时ab<6,B错误;对于A,ab⩽(a+b)24,则(a+b)24⩾a+b,变形可得a+b⩾4,当且仅当a=b=2时等号成立,A正确;对于C ,a +b =ab ,变形可得1a +1b =1,则有a +2b =(a +2b)(1a +1b )=3+2b a+ab ⩾3+2√2,当且仅当a =2b 时等号成立,C 正确; 对于D ,ab 2+ba 2=a 3+b 3a 2b 2=(a+b)(a 2+b 2−ab)a 2b 2=b a +ab −1⩾2−1=1,当且仅当a =b =2时等号成立,D 正确;故选:ACD11、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在[0,1]上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD填空题12、若不等式kx2+2kx+2<0的解集为空集,则实数k的取值范围是_____.答案:{k|0≤k≤2}分析:分k=0和k>0两种情况讨论,当k>0时需满足Δ≤0,即可得到不等式,解得即可;解:当k=0时,2<0不等式无解,满足题意;当k>0时,Δ=4k2−8k≤0,解得0<k≤2;综上,实数k的取值范围是{k|0≤k≤2}.所以答案是:{k|0≤k≤2}13、已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤b+ma+m >ba.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________. 答案:①③推出⑤(答案不唯一还可以①⑤推出③等)解析:选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.已知a,b,a+m均为大于0的实数,选择①③推出⑤.①a>b,③m>0,则b+ma+m −ba=ab+am−ab−bma(a+m)=am−bma(a+m)=(a−b)ma(a+m)>0,所以b+ma+m >ba.所以答案是:①③推出⑤小提示:此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14、已知不等式ax2+bx+c>0的解集为(2,4),则不等式cx2+bx+a<0的解集为___________.答案:{x|x>12或x<14}分析:先由不等式ax2+bx+c>0的解集为(2,4),判断出b=-6a,c=8a,把cx2+bx+a<0化为8x2−6x+ 1>0,即可解得.因为不等式ax2+bx+c>0的解集为(2,4),所以a<0且2和4是ax2+bx+c=0的两根.所以{2+4=−ba2×4=ca可得:{b=−6ac=8a,所以cx2+bx+a<0可化为:8ax2−6ax+a<0,因为a<0,所以8ax2−6ax+a<0可化为8x2−6x+1>0,即(2x−1)(4x−1)>0,解得:x>12或x<14,所以不等式cx2+bx+a<0的解集为{x|x>12或x<14}.所以答案是:{x|x>12或x<14}.解答题15、回答下列问题:(1)若a>b,且c>d,能否判断a−c与b−d的大小?举例说明.(2)若a>b,且c<d,能否判断a+c与b+d的大小?举例说明.(3)若a>b,且c>d,能否判断ac与bd的大小?举例说明.(4)若a>b,c<d,且c≠0,d≠0,能否判断ac 与bd的大小?举例说明.答案:(1)不能判断,举例见解析(2)不能判断,举例见解析(3)不能判断,举例见解析(4)不能判断,举例见解析分析:因为a,b,c,d的正负不确定,因此可举例说明每个小题中的两式的大小关系不定. (1)不能判断a−c与b−d的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时a−c>b−d;取a=5,b=4,c=3,d=0,满足条件a>b,且c>d,此时a−c<b−d;取a=5,b=4,c=3,d=2,满足条件a>b,且c>d,此时a−c=b−d;(2)不能判断a+c与b+d的大小,举例:取a=5,b=3,c=0,d=1,满足条件a>b,且c<d,此时a+c>b+d;取a=5,b=3,c=2,d=6,满足条件a>b,且c<d,此时a+c<b+d.取a=5,b=3,c=4,d=6,满足条件a>b,且c<d,此时a+c=b+d;(3)不能判断ac与bd的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时ac>bd;取a=5,b=3,c=−3,d=−5,满足条件a>b,且c>d,此时ac=bd;取a=5,b=−3,c=1,d=−2,满足条件a>b,且c>d,此时ac<bd;(4)不能判断ac 与bd的大小举例:取a=6,b=3,c=1,d=2,满足条件a>b,且c<d,此时ac >bd;取a=2,b=1,c=−1,d=2,满足条件a>b,且c<d,此时ac <bd;取a=6,b=3,c=−2,d=−1,满足条件a>b,且c<d,此时ac =bd;。

(完整版)函数与方程经典例题及答案

(完整版)函数与方程经典例题及答案

函数与方程典型例题习题例1:已知二次函数()y f x =的图象经过点(0,8),(1,5),(3,7)--三点,(1)求()f x 的解析式;(2)求()f x 的零点;(3)比较(2)(4)f f ,(1)(3)f f ,(5)(1)f f -,(3)(6)f f -与0的大小关系.分析:可设函数解析式为2y ax bx c =++,将已知点的坐标代入方程解方程组求a 、b 、c .【解】(1)设函数解析式为2y ax bx c =++, 由85937c a b c a b c =-⎧⎪++=-⎨⎪++=⎩解得128a b c =⎧⎪=⎨⎪=-⎩,∴2()28f x x x =+-.(2)令()0f x =得2x =或4-,∴零点是122,4x x ==-.(3) (2)(4)0f f =,(1)(3)97630f f -=-⨯=-<,(5)(1)350f f -=-<,(3)(6)1120f f -=>.点评:当二次函数()y f x =的两个零点12,x x 12()x x ≠都在(或都不在)区间(,)m n 中时,()()0f m f n >;有且只有一个零点在区间(,)m n 中时,()()0f m f n <.例2:已知函数2()(3)1f x kx k x =+-+的图象与x 轴在原点的右侧有交点,试确定实数k 的取值范围.分析:【解】(1)当0k =时,()31f x x =-+与x 轴的交点为1(,0)3,符合题意;(2)0k ≠时,(0)1f =,0k <时,()f x 的图象是开口向下的抛物线,它与x 轴的两交点分别在原点的两侧; 0k >时,()f x 的图象是开口向上的抛物线,必须2(3)40302k k k k⎧∆=--≥⎪⎨-->⎪⎩,解得01k <≤ 综上可得k 的取值范围为(,1]-∞.追踪训练一1.函数22()log (45)f x x x =-+的图象与x 轴交点横坐标为 ( D ))A .1B .0C .2或0D .22.已知01a <<则方程0log =+x a a x 的解的个数是( A )A .1B .2C .3D .不确定3.直线23+=kx y 与曲线223y y x --+ 0=只有一个公共点,则k 的值为( A )A . 0,41,21-B .0,41- C .41,21- D .0,41,21- 4.函数265y x x =-+与x 轴交点坐标是(1,0)、(5,0),方程2650x x -+=的根为1或5.5.已知方程220x kx -+=在区间(0,3)中有且只有一解,则实数k 的取值范围为113k ≥. 6.已知函数()2x f x a =-过点(1,0),则方程()f x x =的解为 1.7-.7.求方程22850x x -+=的近似解(精确到0.1).答案:3.2和0.88.判断方程2(22)250x a x a -+++=(其中2a >)在区间(1,3)内是否有解.答案:有解. 函数与方程测试题(时间45分钟)一、填空题(共计6小题,每题10分)1、函数f(x)=122--x x 在区间(2,3)上零点的个数为 .2、已知:f(x)=b a x +的图象如图所示,则a 与b 的值分别为3、设f (x )x e +1,则f (x )= .4、建造一个容积为83m ,深为2m 的长方形无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为________元5、若不等式2x +ax+1≥0对于一切x ∈(0,21]成立,则a 的最小值是 . 6、如果y=mx x -2,[]1,1-∈x 的最小值为-4,则m 的值为 .二、解答题(共计2小题,每题20分)7、设集合P={x|224+-x x +a=0,x ∈R }.(1)若P 中仅有一个元素,求实数a 的取值集合Q ;(2)若对于任意a ∈Q ,不等式x 2-6x<a (x-2)恒成立,求x 的取值范围.8、已知函数f (x )=xa 11-(a>0,x>0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在[m ,n ]上的值域是[m ,n ](m≠n),求a 的取值范围.试题答案:1、根据求根公式得方程两根212,1±=x ,故答案为1个。

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。

《函数的零点与方程的解》同步练习及答案(共四套)

《函数的零点与方程的解》同步练习及答案(共四套)

《4.5.1 函数的零点与方程的解》分层同步练习(一)基础巩固1.函数y=4x-2的零点是( ) (A)2(B)(-2,0) (C)(,0) (D)2.下列图象表示的函数中没有零点的是( )3.函数f(x)=ln x+x 2+a-1有唯一的零点在区间(1,e)内,则实数a 的取值范围是( )(A)(-e 2,0) (B)(-e 2,1) (C)(1,e) (D)(1,e 2) 4.函数f(x)=πx+log 2x 的零点所在区间为( ) (A)[14,12] (B)[18,14] (C)[0,18] (D)[12,1]5.函数f(x)=|x-2|-ln x 在定义域内零点的个数为( ) (A)0(B)1(C)2(D)36.函数f(x)=ax 2+2ax+c(a ≠0)的一个零点为-3,则它的另一个零点是( ) (A)-1(B)1(C)-2 (D)27.方程|x 2-2x|=a 2+1(a>0)的解的个数是 .8.关于x 的方程mx 2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m 的取值范围.能力提升9.如果关于x 的方程2x+1-a=0有实数根,则a 的取值范围是( ) (A)[2,+∞) (B)(-1,2] (C)(-2,1] (D)(0,+∞)10.已知函数f(x)是奇函数,且满足f(2-x)=f(x)(x ∈R),当0<x ≤11212时,f(x)=√x -12,则函数f(x)在(-2,2]上零点的个数是( ) (A)5 (B)6(C)7(D)811.已知函数f(x)={|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m>0.若存在实数b,使得关于x 的方程f(x)=b 有三个不同的根,则m 的取值范围是 . 12.已知函数f(x)={(x -2a )(a -x ),x ≤1,√x +a -1,x >1.(1)若a=0,x ∈[0,4],求f(x)的值域; (2)若f(x)恰有三个零点,求实数a 的取值范围.素养达成13.已知函数f(x)=|x(x+3)|,若y=f(x)-x+b 有四个零点,求实数b 的取值范围是.【答案解析】基础巩固1.函数y=4x-2的零点是( ) (A)2 (B)(-2,0) (C)(,0) (D)【答案】D【解析】令y=4x-2=0,得x=.所以函数y=4x-2的零点为.故选D. 2.下列图象表示的函数中没有零点的是( )【答案】A【解析】因为B,C,D 项函数的图象均与x 轴有交点,所以函数均有零点,A 项的图12121212象与x 轴没有交点,故函数没有零点,故选A.3.函数f(x)=ln x+x 2+a-1有唯一的零点在区间(1,e)内,则实数a 的取值范围是( )(A)(-e 2,0) (B)(-e 2,1) (C)(1,e) (D)(1,e 2) 【答案】A【解析】因为f(x)在其定义域内是增函数,且f(x)有唯一的零点在(1,e)内, 所以{f (1)=a <0,f (e )=e 2+a >0,解得-e 2<a<0.故选A.4.函数f(x)=πx+log 2x 的零点所在区间为( ) (A)[14,12] (B)[18,14] (C)[0,18] (D)[12,1] 【答案】A【解析】因为f(14)=π4+log 214<0,f(12)=π2+log 212>0,所以f(14)·f(12)<0,故函数f(x)=πx+log 2x 的零点所在区间为[14,12].故选A. 5.函数f(x)=|x-2|-ln x 在定义域内零点的个数为( ) (A)0(B)1(C)2(D)3【答案】C【解析】由题意,函数f(x)的定义域为(0,+∞).由函数零点的定义,f(x)在(0,+∞)内的零点即是方程|x-2|-ln x=0的根. 令y 1=|x-2|,y 2=ln x(x>0),在一个坐标系中画出两个函数的图象.由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点. 6.函数f(x)=ax 2+2ax+c(a ≠0)的一个零点为-3,则它的另一个零点是( ) (A)-1 (B)1 (C)-2 (D)2【答案】B【解析】由根与系数的关系得方程f(x)=0的两根x 1,x 2满足x 1+x 2=-2aa =-2,所以方程的另一个根为1.故选B.7.方程|x 2-2x|=a 2+1(a>0)的解的个数是 . 【答案】2【解析】因为a>0,所以a 2+1>1.而y=|x 2-2x|的图象如图所示,所以y=|x 2-2x|的图象与y=a 2+1的图象总有两个交点. 即方程|x 2-2x|=a 2+1(a>0)有两个解.8.关于x 的方程mx 2+2(m+3)x+2m+14=0有两实根,且一个大于4,一个小于4,求m 的取值范围.【答案】m 的取值范围是(-1913,0). 【解析】令f(x)=mx 2+2(m+3)x+2m+14.依题意得{m >0,f (4)<0或{m <0,f (4)>0,即{m >0,26m +38<0或{m <0,26m +38>0,解得-1913<m<0. 即m 的取值范围是(-1913,0).能力提升9.如果关于x 的方程2x+1-a=0有实数根,则a 的取值范围是( ) (A)[2,+∞) (B)(-1,2] (C)(-2,1] (D)(0,+∞) 【答案】D【解析】由方程2x+1-a=0变形为a=2x+1,因为2x+1>0,所以a>0.10.已知函数f(x)是奇函数,且满足f(2-x)=f(x)(x ∈R),当0<x ≤1时,f(x)=√x -12,则函数f(x)在(-2,2]上零点的个数是( ) (A)5(B)6(C)7(D)8【答案】B【解析】法一 由√x -12=0,解得x=14,所以f(14)=0.因为f(2-x)=f(x),所以f(14)=f(2-14)=f(74)=0.因为f(x)是奇函数,f(-14)=-f (14)=0,f(0)=0,f(2)=f(0)=0, 所以f(x)在(-2,2]上零点为-74,-14,0,14,74,2,共6个.法二 依题意,作出函数f(x)的图象,如图所示.由图象可知,f(x)的图象在(-2,2]内与x 轴的交点有6个. 所以f(x)在(-2,2]上的零点有6个. 11.已知函数f(x)={|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m>0.若存在实数b,使得关于x 的方程f(x)=b 有三个不同的根,则m 的取值范围是 . 【答案】(3,+∞)【解析】作出f(x)的大致图象(图略). 当x>m 时,x 2-2mx+4m=(x-m)2+4m-m 2,所以要使方程f(x)=b 有三个不同的根,则4m-m 2<m,即m 2-3m>0. 又m>0,解得m>3. 12.已知函数f(x)={(x -2a )(a -x ),x ≤1,√x +a -1,x >1.(1)若a=0,x ∈[0,4],求f(x)的值域;(2)若f(x)恰有三个零点,求实数a 的取值范围. 【答案】(1) [-1,1] (2)a 的取值范围是(-∞,0). 【解析】(1)若a=0,则f(x)={-x 2,x ≤1,√x -1,x >1,当x ∈[0,1]时,f(x)=-x 2是减函数.所以-1≤f(x)≤0; 当x ∈(1,4]时,f(x)=√x -1是增函数.所以0<f(x)≤1. 于是当x ∈[0,4]时,f(x)的值域为[-1,1]. (2)由(x-2a)(a-x)=0解得x=a 或x=2a. 由√x +a-1=0解得x=(1-a)2.因为f(x)恰有三个零点,所以{a ≤1,2a ≤1,(1-a )2>0,解得a<0.所以实数a 的取值范围是(-∞,0).素养达成13.已知函数f(x)=|x(x+3)|,若y=f(x)-x+b 有四个零点,求实数b 的取值范围是.【答案】(-4,-3). 【解析】令f(x)-x+b=0, 所以b=x-|x(x+3)|, 作出y=x-|x(x+3)|的图象, 要使函数y=f(x)-x+b 有四个零点,则y=x-|x(x+3)|与y=b 的图象有四个不同的交点,所以-4<b<-3.《4.5.1 函数的零点与方程的解》同步练习(二)[合格基础练]一、选择题1.函数y =x 2-bx +1有一个零点,则b 的值为( ) A .2 B .-2 C .±2D .3C [因为函数有一个零点,所以Δ=b 2-4=0,所以b =±2.] 2.函数f (x )=2x -1x的零点所在的区间是( )A .(1,+∞) B.⎝ ⎛⎭⎪⎫12,1 C.⎝ ⎛⎭⎪⎫13,12 D.⎝ ⎛⎭⎪⎫14,13 B [由f (x )=2x -1x,得f ⎝ ⎛⎭⎪⎫12=212-2<0,f (1)=2-1=1>0, ∴f ⎝ ⎛⎭⎪⎫12·f (1)<0.∴零点所在区间为⎝ ⎛⎭⎪⎫12,1.]3.已知函数f (x )=⎩⎨⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12D .0D [当x ≤1时,由f (x )=0,得2x -1=0,所以x =0;当x >1时,由f (x )=0,得1+log 2x =0,所以x =12,不成立,所以函数的零点为0,故选D.]4.函数f (x )=ax 2+bx +c ,若f (1)>0,f (2)<0,则f (x )在(1,2)上的零点( )A .至多有一个B .有一个或两个C .有且仅有一个D .一个也没有C [若a =0,则f (x )=ax 2+bx +c 是一次函数,由已知f (1)·f (2)<0,得只有一个零点;若a ≠0,则f (x )=ax 2+bx +c 为二次函数,若有两个零点,则应有f (1)·f (2)>0,与已知矛盾.故仅有一个零点.]5.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(b ,c )和(c ,+∞)内B .(-∞,a )和(a ,b )内C .(a ,b )和(b ,c )内D .(-∞,a )和(c ,+∞)内C [∵a <b <c ,∴f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0, f (c )=(c -a )(c -b )>0,∴f (x )的零点分别位于(a ,b )和(b ,c )内.]二、填空题 6.函数f (x )=(x -1)ln xx -3的零点是________.1 [令f (x )=0,即(x -1)ln xx -3=0,即x -1=0或ln x =0,∴x =1,故函数f (x )的零点为1.]7.设x 0是方程ln x +x =4的根,且x 0∈(k ,k +1),k ∈Z ,则k =________. 2 [令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增,∵f (2)=ln 2+2-4<0,f (3)=ln 3-1>0, ∴f (x )在(2,3)内有解,∴k =2.]8.奇函数f (x ),偶函数g (x )的图象分别如图(1),(2)所示,函数f (g (x )),g (f (x ))的零点个数分别为m ,n ,则m +n =________.图(1) 图(2)10 [由题中函数图象知f (±1)=0,f (0)=0,g ⎝ ⎛⎭⎪⎫±32=0,g (0)=0,g (±2)=1,g (±1)=-1,所以f (g (±2))=f (1)=0,f (g (±1))=f (-1)=0,f ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫±32=f (0)=0,f (g (0))=f (0)=0,所以f (g (x ))有7个零点,即m =7.又g (f (0))=g (0)=0,g (f (±1))=g (0)=0,所以g (f (x ))有3个零点,即n =3.所以m +n =10.]三、解答题9.判断函数f (x )=ln x +x 2-3的零点的个数.[解] 法一(图象法):函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点,从而ln x +x 2-3=0有一个根,即函数y =ln x +x 2-3有一个零点.法二(判定定理法):由于f (1)=ln 1+12-3=-2<0,f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个.10.若函数f (x )=ax 2-x -1有且仅有一个负零点,求实数a 的取值范围. [解] ①当a =0时,由f (x )=-x -1=0得x =-1,符合题意; ②当a >0时,函数f (x )=ax 2-x -1为开口向上的抛物线,且f (0)=-1<0,对称轴x =12a>0,所以f (x )必有一个负实根,符合题意; ③当a <0时,x =12a <0,f (0)=-1<0,所以Δ=1+4a =0,即a =-14, 此时f (x )=-14x 2-x -1=-⎝ ⎛⎭⎪⎫x 2+12=0,所以x =-2,符合题意.综上所述,a 的取值范围是a ≥0或a =-14.[等级过关练]1.若函数f (x )=x 2-ax +b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是( )A .-1和16B .1和-16C.12和13D .-12和 3B [∵函数f (x )=x 2-ax +b 的两个零点是2和3, ∴⎩⎨⎧2+3=a ,2×3=b ,即⎩⎨⎧a =5,b =6,∴g (x )=6x 2-5x -1,∴g (x )的零点为1和-16,故选B.]2.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)C [函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C.]3.若方程|x 2-4x |-a =0有四个不相等的实根,则实数a 的取值范围是________.(0,4) [由|x 2-4x |-a =0,得a =|x 2-4x |,作出函数y =|x 2-4x |的图象,则由图象可知,要使方程|x 2-4x |-a =0有四个不相等的实根,则0<a <4.]4.已知函数f (x )=3x +x ,g (x )=log 3x +2,h (x )=log 3x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是________.a <b <c [画出函数y =3x ,y =log 3x ,y =-x ,y =-2的图象,如图所示, 观察图象可知,函数f (x )=3x +x ,g (x )=log 3x +2,h (x )=log 3x +x 的零点依次是点A ,B ,C 的横坐标,由图象可知a <b <c .]5.已知函数f (x )=x 2-bx +3.(1)若f (0)=f (4),求函数f (x )的零点;(2)若函数f (x )一个零点大于1,另一个零点小于1,求b 的取值范围. [解] (1)由f (0)=f (4)得3=16-4b +3,即b =4,所以f (x )=x 2-4x +3,令f (x )=0,即x 2-4x +3=0得x 1=3,x 2=1,所以f (x )的零点是1和3.(2)因为f (x )的零点一个大于1,另一个小于1,如图. 需f (1)<0,即1-b +3<0,所以b >4. 故b 的取值范围为(4,+∞).《4.5.1 函数的零点与方程的解》同步练习(三)一、选择题1.函数的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)2.函数的零点个数是( ) A .B .C .D .3.(2019·全国高一课时练)函数 f(x)=|x|-k 有两个零点,则( ) A.k =0 B.k>0 C.0≤k<1D.k<04.已知函数f (x )、g (x ):x 0 1 2 3 f (x ) 231x 0 1 2 33()5f x x x =+-22()(1)4f x x x =--1234则函数y =f (g (x )的零点是 A.0B.1C.2D.35.设函数与的图象的交点为,则所在的区间为( ) A. B. C.D.6.若函数的两个零点是2和3,则函数的零点是( )A .和B .和C .和D .二、填空题 7.已知函数的图象是连续不断的曲线,有如下的与的对应值表:那么,函数在区间上的零点至少有8.设是方程的解,且,则________. 9.已知二次函数数的图象与轴有两个交点,且只有一个交点在区间上,则实数的取值范围是 __________.10.已知函数.若g (x )存在2个零点,则a 的取值范围是 三、解答题()13xf x ⎛⎫= ⎪⎝⎭()3g x x =-()00,x y 0x ()0,1()1,2()2,3()3,4()2f x x ax b =-+()21g x bx ax =--1-16116-121312-0x ln 4x x +=()0,1,x k k k Z ∈+∈k =221y x ax =-+x ()2,2-a e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++11.函数在R 上无零点,求实数a 的取值范围.12.对于函数,若存在,使成立,则称为函数的不动点,已知.(1)若有两个不动点为,求函数的零点;(2)若时,函数没有不动点,求实数的取值范围.【答案解析】 一、选择题1.函数的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】B【解析】由函数f (x )=x 3+x –5可得f (1)=1+1–5=–3<0,f (2)=8+2–5=5>0,故有f (1)f (2)<0,根据函数零点的判定定理可得,函数f (x )的零点所在区间为(1,2),故选B .2.函数的零点个数是( ) A . B .C .D .【答案】B【解析】要使函数有意义,则x 2﹣4≥0,即x 2≥4,x ≥2或x ≤﹣2.由f (x )=0得x 2﹣4=0或x 2﹣1=0(不成立舍去).即x =2或x =﹣2,∴函数的零点个数为2个.3.函数 f(x)=|x|-k 有两个零点,则( ) A.k =0 B.k>0 C.0≤k<1 D.k<0【答案】B2()1f x ax ax =+-()f x 0x ()00f x x =0x ()f x ()2f x x bx c =++()f x 3,2-()f x 214c b =()f x b 3()5f x x x =+-2()(f x x =-1234【解析】令,变为,画出和的图像如下图所示,由图可知可以取任何的正数,故选B.4.已知函数f (x )、g (x ):则函数y =f (g (x )的零点是 A.0 B.1C.2D.3【答案】B【解析】由题意,函数的零点,令,可得,解得,选B .5.设函数与的图象的交点为,则所在的区间为( ) A. B. C. D.【答案】C()0f x =x k =y x =y k =k (())y f g x =(())0f g x =()1g x =1x =()13xf x ⎛⎫= ⎪⎝⎭()3g x x =-()00,x y 0x ()0,1()1,2()2,3()3,4【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.6.若函数的两个零点是2和3,则函数的零点是( )A .和B .和C .和D .【答案】B【解析】因为函数的两个零点是2和3,所以的两根为2和3,因此有,所以,于是或,所以函数的零点是和;二、填空题 7.已知函数的图象是连续不断的曲线,有如下的与的对应值表:那么,函数在区间上的零点至少有【答案】3【解析】观察对应值表可知,f (x )=x ,f (x )=x ,f (x )=x ,f (x )=x ,f (x )=x ,f (x )=x ,f (x )=x ,∴函数(0,1)在区间(0,1)上的零点至少有3个. 8.设是方程的解,且,则________. 【答案】【解析】令,且在上递增,()()133xh x x ⎛⎫=-- ⎪⎝⎭()()()()58102,1,2,33927g g g g =-=-=-=()h x ()2,3()2,3()2f x x ax b =-+()21g x bx ax =--1-16116-121312-()2f x x ax b =-+20=x ax b -+235,623aa b b+=⎧⇒==⎨⨯=⎩()2651g x x x =--()2165101g x x x x =--=⇒=216x =-()21g x bx ax =--116-0x ln 4x x +=()0,1,x k k k Z ∈+∈k =2()ln 4f x x x =+-()f x ()0,∞+()2ln 2240,f =+-<,在内有解,,故答案为.9.已知二次函数数的图象与轴有两个交点,且只有一个交点在区间上,则实数的取值范围是 __________.【答案】【解析】由函数图象与轴只有一个交点在区间上,所以当时和当时函数值异号,得,即,解得或;10.(已知函数.若g (x )存在2个零点,则a 的取值范围是 【答案】[–1,+∞)【解析】:画出函数的图像,在y 轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,三、解答题()3ln310f =->()f x ∴()2,32k ∴=2221y x ax =-+x ()2,2-a 55,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭x ()2,2-2x =-2x =()()4414410a a ++-+<()()54540a a +-<54a <-54a >e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++()f x x y e =y x =-()f x x a =--()g x 1a -≤1a ≥-11.函数在R 上无零点,求实数a 的取值范围. 【答案】(–4,0]【解析】(1)当a =0时,f (x )=–1,符合题意;(2)若a ≠0,则f (x )为二次函数,∴=a 2+4a <0,解得–4<a <0.故a 的范围是(–4,0]. 12.对于函数,若存在,使成立,则称为函数的不动点,已知.(1)若有两个不动点为,求函数的零点;(2)若时,函数没有不动点,求实数的取值范围.【答案】(1);(2). 【解析】 (1)由题意知:f(x)=x ,即x2+(b -1)x +c =0有两根,分别为-3,2.所以,所以,从而f(x)=x2+2x -6,由f(x)=0得x1=-1,x2=-1. 故f(x).(2)若c =,则f(x)=x2+bx +,又f(x)无不动点,即方程+bx +=x 无解,所以 即-2b +1<0,所以b>.故b 的取值范围是b>.《4.5.1 函数的零点与方程的解》同步练习(四)2()1f x ax ax =+-∆()f x 0x ()00f x x =0x ()f x ()2f x x bx c =++()f x 3,2-()f x 214c b =()f x b 1-12b >()32132b c ⎧-+=--⎨-⨯=⎩26b c =⎧⎨=-⎩24b 24b 2x 24b 22(1)0b b --<1212一.选择题4.函数在区间内有零点,则( )A .B .C .在区间内,存在使D .以上说法都不正确()f x ()0,2()()00,20f f ><()()020f f <()0,212,x x ()()120f x f x <7.根据表格中数据,可以断定方程 的一个根所在的区间( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)8.一元二次方程的两根均大于,则实数的取值范围是( )A .B .C .D .二.填空题9.已知函数在区间上有零点,则a 的取值范围为______.10.函数零点的个数为________.三.解答题【参考答案】 一.选择题()()240 2.7x e x e -+=≈2510x x m -+-=2m 21,4⎡⎫-+∞⎪⎢⎣⎭(),5-∞-21,54⎡⎫--⎪⎢⎣⎭21,54⎛⎫-- ⎪⎝⎭()()20f x x x a a =++<()0,1()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩1.函数的零点个数是( )A .0B .1C .2D .3 【答案】D【答案】B【答案】D4.函数在区间内有零点,则( ) A . B .C .在区间内,存在使D .以上说法都不正确 【答案】D()3f x x x =-()f x ()0,2()()00,20f f ><()()020f f <()0,212,x x ()()120f x f x <【答案】C【答案】A7.根据表格中的数据,可以断定方程的一个根所在的区间为( )A.(-1,0) B.(0,1)C.(1,2) D.(2,3)【答案】D8.一元二次方程的两根均大于,则实数的取值范围是()A.B.C.D.【答案】C二.填空题9.已知函数在区间上有零点,则a的取值范围为______.【答案】(-2,0)10.函数零点的个数为________.【答案】2()()240 2.7xe x e-+=≈2510x x m-+-=2m21,4⎡⎫-+∞⎪⎢⎣⎭(),5-∞-21,54⎡⎫--⎪⎢⎣⎭21,54⎛⎫--⎪⎝⎭()()20f x x x a a=++<()0,1()223,02ln,0x x xf xx x⎧+-≤=⎨-+>⎩三.解答题11.判断函数的零点个数,并判断该零点所在区间.【答案】令f (x )=x -3+ln x =0,则ln x =-x +3,在同一平面直角坐标系内画出函数y =ln x 与y =-x +3的图象,如图所示:由图可知函数y =ln x ,y =-x +3的图象只有一个交点,即函数f (x )=x -3+ln x 只有一个零点.12. 已知关于的方程,求方程实数根的个数?【答案】如图,根据图像可得跟的个数()3ln f x x x =-+x ()243f x x x =-+()f x a =。

初中数学:二次函数与一元二次方程练习(含答案)

初中数学:二次函数与一元二次方程练习(含答案)

初中数学:二次函数与一元二次方程练习(含答案)知识点1 二次函数与一元二次方程之间的对应关系图1-4-151.二次函数y=-x2+2x+k的部分图象如图1-4-15所示,且关于x的一元二次方程-x2+2x+k=0的一个根x1=3,则另一个根x2=( ) A.1 B.-1 C.-2 D.02.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个根x的范围是( )A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.20图1-4-163.如图1-4-16是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是( )A.-1≤x≤3B.x≤-1C.x≥1D.x≤-1或x≥34.(1)请在如图1-4-17所示的平面直角坐标系中画出二次函数y=x2-2x 的大致图象;(2)观察图象,试写出方程x2-2x=1的根(精确到0.1).图1-4-17知识点2 二次函数在抛物线型问题中的应用5.某公园有一个圆形喷水池,喷出的水流呈抛物线,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数表达式为h=30t-5t2,那么水流从喷出至回落到地面所需要的时间是( )A.6 s B.4 s C.3 s D.2 s6.廊桥是我国古老的文化遗产.如图1-4-18是某座抛物线型廊桥示意图.已知抛物线的函数表达式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF 是________米.图1-4-187.如图1-4-19,一名男生推铅球,铅球行进的高度y(m)与水平距离x(m)之间的关系是二次函数的关系.铅球行进起点的高度为53m,行进到水平距离为4 m时达到最高处,最大高度为3 m.(1)求二次函数的表达式(化成一般形式);(2)求铅球推出的最大距离.图1-4-198.若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c =0的解为( )A.x1=-3,x2=-1 B.x1=1,x2=3C.x1=-1,x2=3 D.x1=-3,x2=1图1-4-209.二次函数y=ax2+bx的图象如图1-4-20所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3C.-6 D.910.二次函数y=ax2+bx+c(a≠0)的图象如图1-4-21所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0(a≠0)的两个根;(2)写出不等式ax2+bx+c>0(a≠0)的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.图1-4-2111.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图1-4-22,甲在O 点上正方1 m 的P 处发出一球,羽毛球飞行的高度y (m)与水平距离x (m)之间满足函数表达式y =a (x -4)2+h .已知点O 与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a =-124时,①求h 的值;②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7 m,离地面的高度为125m 的点Q 处时,乙扣球成功,求a 的值.图1-4-2212.若x 1,x 2是关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-ba,x1·x2=ca,我们把它们称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用一元二次方程根与系数关系定理可以得到A,B两个交点间的距离:AB=|x1-x2|=(x1+x2)2-4x1x2=⎝⎛⎭⎪⎫-ba2-4ca=b2-4aca2=b2-4ac|a|.参考以上定理和结论,解答下列问题:如图1-4-23,设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,求b2-4ac的值;(2)当△ABC为等边三角形时,求b2-4ac的值.图1-4-23详解详析1.B 2.C 3.D 4.解:(1)如图.(2)方程x 2-2x =1的根为x 1≈-0.4,x 2≈2.4.5.A [解析] 水流从喷出至回落到地面时高度h 为0,把h =0代入h =30t -5t 2,得5t 2-30t =0,解得t 1=0(舍去),t 2=6.故水流从喷出至回落到地面所需要的时间为6 s .故选A.6.8 5 [解析] 把y =8代入y =-140x 2+10,得8=-140x 2+10,解得x =±4 5,∴EF =8 5米.7.解:(1)设二次函数的表达式为y =a (x -4)2+3, 把⎝⎛⎭⎪⎫0,53代入y =a (x -4)2+3,解得a =-112, 则二次函数的表达式为y =-112(x -4)2+3,即y =-112x 2+23x +53.(2)由-112x 2+23x +53=0,解得x 1=-2(舍去),x 2=10, 则铅球推出的最大距离为10 m.8.C [解析] ∵二次函数y =ax 2-2ax +c 的图象经过点(-1,0), ∴方程ax 2-2ax +c =0一定有一个解为x =-1. 又∵二次函数图象的对称轴为直线x =1,∴二次函数y =ax 2-2ax +c 的图象与x 轴的另一个交点为(3,0), ∴方程ax 2-2ax +c =0的解为x 1=-1,x 2=3.故选C. 9.B10.(1)x 1=1,x 2=3(2)1<x <3 (3)x >2(或x ≥2) (4)k <211.解:(1)①把(0,1),a =-124代入y =a (x -4)2+h ,得1=-124×16+h ,解得h =53.②把x =5代入y =-124(x -4)2+53,得y =-124×(5-4)2+53=1.625. ∵1.625>1.55,∴此球能过网.(2)把(0,1),⎝ ⎛⎭⎪⎫7,125代入y =a (x -4)2+h ,得⎩⎨⎧16a +h =1,9a +h =125,解得⎩⎪⎨⎪⎧a =-15,h =215,故a 的值为-15.12.解:(1)当△ABC 为等腰直角三角形时,过点C 作CD ⊥AB 于点D ,则AB =2CD .由题意,得AB =b 2-4ac ||a =b 2-4aca .又∵抛物线与x 轴有两个交点, ∴b 2-4ac >0,则||4ac -b 2=b 2-4ac ,∴CD =⎪⎪⎪⎪⎪⎪4ac -b 24a =b 2-4ac4a , ∴b 2-4ac a =2×b 2-4ac4a∴b 2-4ac =b 2-4ac 2,∴b 2-4ac =(b 2-4ac )24.∵b 2-4ac >0, ∴b 2-4ac =4.(2)当△ABC 为等边三角形时,CD =32AB ,∴b 2-4ac 4a =32×b 2-4aca .∵b 2-4ac >0, ∴b 2-4ac =12.。

(word完整版)高中数学必修一3.1函数与方程练习题及答案

(word完整版)高中数学必修一3.1函数与方程练习题及答案

高中数学必修一 3.1函数与方程练习题及答案上述函数是幕函数的个数是 ( A. 0个 B.1个 C.2个 D.3个A. 有且仅有一个根B. 至多有一个根C. 至少有一个根D.以上结论都不对A.14400亩B . 172800亩C .17280 亩D . 20736亩8. 若函数f x 既是幕函数又是反比例函数 ,则这个函数是f X = ________9. 幕函数f(x)的图象过点⑶丿27),则f (x)的解析式是 ______________________2.已知f(x)唯一的零点在区间(1,3)、(1,4)、 (1,5)内,那么下面命题错误的(A.函数 f(x)在(1,2)或 2,3内有零点 B.函数 f(x)在(3,5)内无零点 C 屈数 f (X )在(2,5)内有零点 D.函数 f(x)在(2,4)内不一定有零点 3.若a0,b 0, ab 1 2 ,则l(log a b log 1 alog a blog 1 a A .2B. 2log a b log 1 alog a b log 1 aC . 2D.24. 求函数 f(x) 2x33x 1零点的个数为 D. 4C. 3( )ab与A. 1B. 2 log 1 a ln 2 log 】a2的关系是5.已知函数yf(x)有反函数,则方程f(x) 0(26.如果二次函数y x mx (m3)有两个不同的零点,则 m 的取值范围是(A. 2,6B. 2,6C.2,6D. , 2 U 6 ,7.某林场计划第一年造林10000亩,以后每年比前一年多造林 20%,则第四年造林(1.若y x2八八心i,y(x 1)2,y x,y a x (a 1)10. 用二分法”求方程X 3 2x 5 °在区间23]内的实根,取区间中点为 X 。

2.5,那么下一个有根的区间是 __________________11. 函数f (x ) lnx X 2的零点个数为 _________________ 12.设函数y f (x )的图象在a,b 上连续,若满足 ________________ ,方程f (x ) °在a,b 上有实根.1f (x ) x — x 113.用定义证明:函数x在减少1个,为了获得最大利润,则此商品的最佳售价应为多少?上是增函数14.设x1与x 2分别是实系数方程ax 2 bx c ° 禾a 2OX 0,求证:方程畀bx C°有仅有一根介于x1和x2之间.15.函数f(x)x 22ax 1 a在区间°」上有最大值2,求实数a 的值16.某商品进货单价为 4°元,若销售5°元,可卖出5°个,如果销售单价每涨1元,销售量就17.函数y xA.是奇函数,且在R 上是单调增函数B. 是奇函数,且在R 上是单调减函数C.是偶函数,且在R 上是单调增函数D. 是偶函数,且在R 上是单调减函数18.已知a log2 °.3,b2,c 0.2 ,则a,b,c 的大小关系是(22. 一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图) ,根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭 ___________ 万盒.A . a b cB . cC.a c bD.b19.函数f(x) x 5x 3的实数解落在的区间是(20.函数 根的和为C 」2,3]D .【3,4]f(x )对一切实数x ),并且方程f (x )有三个实根,则这三个实21.若函数f(x) 4x x 2a的零点个数为3,则a126. 函数y = x +1的单调区间为 _____________ .27. 函数f (x )= 2X 2— 3 | x |的单调减区间是 ____________x log 2 x23.已知 2x 256且2 ,求函数住) x 仮 log22 g’T 的最大值和最小值.224.函数y = = x - 6x + 10在区间( 2, 4)上是(A.递减函数B .递增函数 C. 先递减再递增D. 选递增再递减.25.函数 f (x )=- x 2 + 2 (a - 1) x + 2在(―汽 4) 上是增函数,则a 的范围是( A. a >5B . a > 3C. a w 3D. a w- 528. 确定函数y = x + x(x >0)的单调区间,并用定义证明.29. 快艇和轮船分别从A地和C地同时开出,如右图,各沿箭头方向航行,快艇和轮船的速度分别是45千米/时和15千米/时,已知AO 150千米,经过多少时间后,快艇和轮船之间的距离最短?30. 设f (x)是定义在R上的增函数,f (xy)= f (x) + f(y), f (3)= 1,求解不等式f (x) + f(x- 2)> 1.2答案1. C. y x ,y X 是幕函数 2. C •唯一的零点必须在区间(1,3),而不在3,5log 1 a ln 2 0,得0 a 1,b1log a b 0,log 1 a 03. A. 224 C f (x) 2x 33x 1 2x 32x x21 2x(x 1) (x 1)(x 1)(2x 2 2x 1), 2x 2 2x1 0显然有两个实数根,共二个;5. B.可以有一个实数根,例如 y X 1,也可以没有实数根,例如y2X6. D. 2m 4(m 3)0,m 6或 m 237 C 10000(1 0.2)1728018. x 设 f (x) x ,则 139f(x)仮3 f (x) x ,图象过点(3,^27),3丁27 3,3310. [2,2.5)令 f (x) x 2x 5, f(2) 1 0, f (2.5) 2.5 1011. 2分别作出f(x) ln x , g(x) x 2的图象;12. f (a )f (b )0见课本的定理内容1 f(X 2)(捲 X 2)(1 )x-|x 2即 f(x 1) f (X 2)1 x-i13.证明:设X 2, f (xj2f(x) X —• ••函数X在上是增函数xa 14.解:令 f(x) -X2bx c,由题意可知2ax1bx 1 c 2 0, ax 2bx2c 0ax 22, f(x 1) a 2bx 1 ca 2 2a 2bx 1 c ax 12, bx 2 c尹2X1ax 1尹f(X 2)a 2 ,a 223a 2x 2 bxcx 2 ax 2 2~2 X2,因为a0,X 1 0,X 215.解:对称轴x a ,所以a40x 50017. A. 18. C. 19. B.当x 20时,y取得最大值,所以应定价为f( x) ( x)3a log 2 0.3 0,b f (0) 3 0, f(1) 70元X 3 f (x)为奇函数且为增函数2°11,c 1 0, f(2)0.21.3 131 0, f(1)f(2)320. 2对称轴为1x _2,可见 2是个实根,另两个根关于1 2对称21. 4 作出函数x 2 4x与函数y 4的图象,发现它们恰有3个交点.f (X 1)f(X 2)0,即方程 2-x 2 bx有仅有一根介于X 2之间.当a 0, 0,1是f(x)的递减区间,f (x)max f(0) 当a 1, 0,1是f (X )的递增区间,f(x)maxf(1) a 2f (x)max f (a) aa 1 2,a1矛盾;16•解: 设最佳售价为(50 x)元,最大利润为y 元,y (50x)(50 x)(50 x) 4022. 85 2000年 30 1.0 30 (万) ; 2001 年 45 2.0 90 (万);-30 90 135 x ------------------- 2002年:90 匸5 135 (万) ;31 23.解:由 2x 256 得 x 8 , log 2x 3 即 2f(x) (log 2 x 1)(log 2X 2) (log 2 x 3)222 _____________________24. C 解析:本题可以作出函数 y = x - 6x + 10的图象,根据图象可知函数在(2, 4) 上是先递减再递 增. 25. A 解析:本题作出函数 f ( x )=- x 2 + 2 ( a - 1) x + 2的图象,可知此函数图象的对称轴是x = a—1,由图象可知,当 a -1 >4,即当 a >5时,函数 f (x )=- x 2 + 2 (a - 1) x + 2在(一^, 4)上 是增函数.26. ( — 8, — 1) , (- 1 ,+◎3327. :0,4L (-m ,- 4 )28. 解:本题可利用计算机作出该函数的图象,通过图象求得单调区间,最后用单调性的定义证明. 答案:增区间(1,+8),减区间(0, 1).29. 解:设经过x 小时后快艇和轮船之间的距离最短,距离设为 y ,y = .. (150-45x)2 + (15x)2 (0<x3 ,可求得当x = 3时,y 有最小值.答案:3小时.30. 解:由条件可得 f (x )+ f (x - 2)= f : x (x - 2)], 1 = f (3).所以 f [ x (x - 2) > f (3), 又f ( x )是定义在R 上的增函数,所以有x ( x - 2) > 3,可解得x > 3或x <- 1. 答案:x > 3或x <- 1.当log2x3f (x ) imil 2min14 当 log 2 x 3, f (X )max285 (万)log 2x 3。

高考数学(理科)-函数与方程-专题练习(含答案与解析)

高考数学(理科)-函数与方程-专题练习(含答案与解析)

)()2,+∞)()2,+∞(名师押题)已知函数,x0<() g x)4,3⎛⎫+∞ ⎪⎝⎭)4,23⎛⎫ ⎪⎝⎭17-1(1)17-1(2)B.12D.8()=有两个不同的零点y f x0,1,).}(∞+ )()g x x =+等号成立的条件是因而只需2,m e g ≥()21,f x e =--+其最大值为m -即m e >-()故函数f(x)有两个零点.]=-2(正根舍去),B.y=b的图象,如图所示从而函数f(x)=|2x-2|-b的图象,如图所示,当直线g 有两个不相等的实根时,k 的范围为所以函数f (x )的图象关于直线⎭⎫12|x |在[-3,3]上的图象,由图可知上的奇函数,所以当-1≤x <0时,的图象的对称轴为x =2k 与函数f (x )的图象在(0,6)内的零点之和为2×1+2×5==1或a >2,即0<a <x =0不是y =f (x )-g (x )的零点.内的零点个数即方程f (x )=g (x )(-+2x ;即k =4cos πx .⎧2上有且仅有三个零点, ∞)上只有三个交点, ⎩⎪⎨⎪⎧-x 2+-x -1-x-1,1-x >0⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,-x -x ≥1时,函数g (.D [当>0时x -x 2,x )的图象,结合函数图象可知⎪⎪x -2-由题意知方程a =f (x )在[-3,4]上有由图可知a ∈⎝⎛⎭⎫0,12.]7.10 [问题可转化为y =⎝⎛⎭⎫12|x -⎦⎤n n -2×9和(n ,+∞)内都恰有一个零点=1f x +-1⎩⎪⎨⎪⎧1x +1--1<,xx ,由图象可知0<m ≤k AB =13.] 是周期等于3的周期函数f (x )与函数y =1|x |的交点的个数⎩⎪⎨-x ,f x +x <的图象如图所示,l ,观察可得函数y =f (x )的图象与直线l :有且只有两个不相等的实数根时,a <1,故选C .] ))=0,个交点,从小到大依次设为x1,x2,x3,x4,x5,=f(-x),所以log4(4-1+e2,其最大值为m-1 ,。

高中 函数与方程知识点+例题+练习 含答案

高中 函数与方程知识点+例题+练习 含答案

教学过程(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.【训练1】(1)(2014·合肥模拟)函数f(x)=-1x+log2x的一个零点落在区间________.①(0,1);②(1,2);③(2,3);④(3,4).(2)(2012·北京卷改编)函数f(x)=-⎝⎛⎭⎪⎫12x的零点个数为________.考点二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2e x+m-1,g(x)=x+e2x(x>0).(1)若y=g(x)-m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.教学效果分析教学过程1.函数零点的判定常用的方法有:(1)零点存在性定理;(2)数形结合;(3)解方程f(x)=0.2.研究方程f(x)=g(x)的解,实质就是研究G(x)=f(x)-g(x)的零点.3.转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.创新突破2——函数的零点与函数极值点的交汇【典例】(2013·安徽卷改编)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2.若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为________.[反思感悟] (1)强化函数零点的求法,函数与方程的转化技巧,本题的突破点是方程3(f(x))2+2af(x)+b=0的不同实根个数转化为f(x)=x1与f(x)=x2的根的个数之和.(2)本题把函数的零点与函数的极值点交汇在一起考查,体现了新课标高考的指导思想.【自主体验】(2014·广州测试)已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则f(a),f(1),f(b)的大小关系为________.教学效果分析能力提升题组一、填空题1.(2014·烟台模拟)如图是函数f (x )=x 2+ax +b 的图象,则函数g (x )=ln x +f ′(x )的零点所在区间是________. ①⎝ ⎛⎭⎪⎫14,12; ②(1,2) ③⎝ ⎛⎭⎪⎫12,1; ④(2,3). 2.(2013·连云港检测)已知函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且当x ∈[-1,1]时,f (x )=|x |,函数g (x )=⎩⎪⎨⎪⎧sin (πx ),x >0,-1x,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为________. 3.(2013·天津卷改编)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则g (a ),0,f (b )的大小关系为________. 二、解答题4.(2014·深圳调研)已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x -4ln x 的零点个数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程1.函数的零点(1)函数零点的定义一般地,如果函数y=f(x)在实数α处的值等于零,即__________,则α叫做这个函数的________.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与_______有交点⇔函数y=f(x)有_____.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系3.对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.[难点正本疑点清源]1.函数的零点不是点函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.2.零点存在性定理的条件是充分而不必要条件若函数y=f(x)在闭区间[a,b]上的图象是连续不间断的,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使f(c)=0,这个c就是方程f(x)=0的根.这就是零点存在性定理.满足这些条件一定有零点,不满足这些条件也不能说就没有零点.如图,f(a)·f(b)>0,f(x)在区间(a,b)上照样存在零点,而且有两个.所以我们说零点存在性定理的条件是充分条件,但并不必要.1.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间________.2.若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是_____.3.已知函数f(x)=ln x-x+2有一个零点所在的区间为(k,k+1) (k∈N*),则k的值为________.4.若函数f(x)=a x-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是________.5.已知函数f(x)=x2+x+a在区间(0,1)上有零点,则实数a的取值范围是________.题型一判断函数在给定区间上零点的存在性例1函数的零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.(1)函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)(2)设函数f (x )=13x -ln x (x >0),则y =f (x ) ( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 题型二 二次函数的零点分布问题例3 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围; (2)若方程两根均在区间(0,1)内,求m 的范围.数形结合思想在函数零点问题中的应用试题:(12分)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).若y =g (x )-m 有零点,求m 的取值范围;A 组 专项基础训练题组一、选择题1.已知函数f (x )=log 2x -⎝⎛⎭⎫13x,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为 A .恒为负 B .等于零 C .恒为正 D .不小于零2.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则 ( ) A .a <b <c B .a <c <b C .b <a <c D .c <a <b3.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为 ( )A .3B .2C .1D .0 二、填空题4.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 012x +log 2 012x ,则在R 上,函数f (x )零点的个数为________. 三、解答题5.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围;若不存在,说明理由.6.已知函数f (x )=4x +m ·2x +1有且仅有一个零点,求m 的取值范围,并求出该零点.B 组 专项能力提升题组一、选择题1.已知函数y =f (x )和y =g (x )在[-2,2]上的图象如图所示,给出下列四个选项,其中不正确的是()A .函数f [g (x )]的零点有且仅有6个B .函数g [f (x )]的零点有且仅有3个C .函数f [f (x )]的零点有且仅有5个D .函数g [g (x )]的零点有且仅有4个二、填空题4.已知函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则实数k 的取值范围是________.三、解答题 8.m 为何值时,f (x )=x 2+2mx +3m +4.有且仅有一个零点;②有两个零点且均比-1大;答案 要点梳理1.(1)f (α)=0 零点 (2)x 轴 零点 2.(x 1,0),(x 2,0) (x 1,0) 两个 一个 无 基础自测1.(1.25,1.5) 2.-12,-133.3 4.a >1 5.(-2,0) 题型分类·深度剖析例1 解 (1)方法一 ∵f (1)=12-3×1-18=-20<0, f (8)=82-3×8-18=22>0, ∴f (1)·f (8)<0,故f (x )=x 2-3x -18,x ∈[1,8]存在零点.方法二 令f (x )=0,得x 2-3x -18=0,x ∈[1,8]. ∴(x -6)(x +3)=0,∵x =6∈[1,8], x =-3∉[1,8],∴f (x )=x 2-3x -18,x ∈[1,8]存在零点.(2)方法一 ∵f (1)=log 23-1>log 22-1=0,f (3)=log 25-3<log 28-3=0, ∴f (1)·f (3)<0,故f (x )=log 2(x +2)-x ,x ∈[1,3]存在零点.方法二 设y =log 2(x +2),y =x ,在同一直角坐标系中画出它们的图象,从图象中可以看出当1≤x ≤3时,两图象有一个交点, 因此f (x )=log 2(x +2)-x ,x ∈[1,3]存在零点. 变式训练1 (1)B (2)D 例2 4变式训练2 B例3 解 (1)由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图(1)所示,得⎩⎪⎨⎪⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0.⇒⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.即-56<m <-12.(2)抛物线与x 轴交点均落在区间(0,1)内,如图(2)所示 列不等式组⎩⎪⎨⎪⎧f (0)>0,f (1)>0,Δ≥0,0<-m <1.⇒⎩⎪⎨⎪⎧m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0.即-12<m ≤1- 2.变式训练3 解 方法一 若a =0,则f (x )=2x -3,f (x )=0⇒x =32∉[-1,1],不合题意,故a ≠0.下面就a ≠0分两种情况讨论:(1)当f (-1)·f (1)≤0时,f (x )在[-1,1]上至少有一个零点,即(2a -5)(2a -1)≤0,解得12≤a ≤52.(2)当f (-1)·f (1)>0时,f (x )在[-1,1]上有零点的条件是⎩⎪⎨⎪⎧f ⎝⎛⎭⎫-12a f (1)≤0,-1<-12a<1,f (-1)·f (1)>0,解得a >52.综上,实数a 的取值范围为⎣⎡⎭⎫12,+∞. 方法二 函数y =f (x )在区间[-1,1]上有零点等价于方程2ax 2+2x -3=0在区间[-1,1]上有实根.显然0不是y =f (x )的零点,由题意转化为x ∈[-1,1]时求a =32·1x 2-1x 的值域.∵1x ∈(-∞,-1]∪[1,+∞),∴a =32⎝⎛⎭⎫1x -132-16在1x =1时取得最小值12. ∴实数a 的取值范围为⎣⎡⎭⎫12,+∞. 课时规范训练 A 组1.C 2.B 3.B 4.35.解 ∵Δ=(3a -2)2-4(a -1)>0, ∴若存在实数a 满足条件, 则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0. 所以a ≤-15或a ≥1.检验:①当f (-1)=0时,a =1. 所以f (x )=x 2+x . 令f (x )=0,即x 2+x =0. 得x =0或x =-1.方程在[-1,3]上有两根,不合题意, 故a ≠1.②当f (3)=0时,a =-15,此时f (x )=x 2-135x -65,令f (x )=0,即x 2-135x -65=0,解之得x =-25或x =3.方程在[-1,3]上有两根,不合题意, 故a ≠-15.综上所述,a <-15或a >1.6.解 ∵f (x )=4x +m ·2x +1有且仅有一个零点, 即方程(2x )2+m ·2x +1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0. 当Δ=0时,即m 2-4=0,∴m =-2时,t =1;m =2时,t =-1(不合题意,舍去),∴2x =1,x =0符合题意. 当Δ>0时,即m >2或m <-2时, t 2+mt +1=0有两正或两负根, 即f (x )有两个零点或没有零点. ∴这种情况不符合题意.综上可知:m =-2时,f (x )有唯一零点,该零点为x =0. B 组1.B 4.(2,3)8.解 ①f (x )=x 2+2mx +3m +4有且仅有一个零点⇔方程f (x )=0有两个相等实根⇔Δ=0,即4m 2-4(3m +4)=0,即m 2-3m -4=0,∴m =4或m =-1.②方法一 设f (x )的两个零点分别为x 1,x 2,则x 1+x 2=-2m ,x 1·x 2=3m +4. 由题意,知⎩⎪⎨⎪⎧Δ=4m 2-4(3m +4)>0(x 1+1)(x 2+1)>0(x 1+1)+(x 2+1)>0⇔⎩⎪⎨⎪⎧m 2-3m -4>03m +4-2m +1>0-2m +2>0⇔⎩⎪⎨⎪⎧m >4或m <-1,m >-5,m <1,∴-5<m <-1.故m 的取值范围为(-5,-1). 方法二 由题意, 知⎩⎪⎨⎪⎧Δ>0,-m >-1,f (-1)>0,即⎩⎪⎨⎪⎧m 2-3m -4>0,m <1,1-2m +3m +4>0.∴-5<m <-1.∴m 的取值范围为(-5,-1).。

相关文档
最新文档