高考数学不等式问题的题型与方法

合集下载

高考数学解决不等式恒成立问题常用5种方法.doc

高考数学解决不等式恒成立问题常用5种方法.doc

高考数学解决不等式恒成立问题常用5种方

解析:分离参数法适用的题型特征:
当不等式的参数能够与其他变量完全分离出来,
并且分离后不等式其中一边的函数的最值或范围可求时,
则将参数式放在不等式的一边,分离后的变量式放在另一边,
将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,
若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min
方法二:变换主元法(也可称一次函数型)
解析:学生通常习惯把x当成主元(未知数),
把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,
如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,
则可简便解题。

适用于变换主元法的题型特征是:
题目有两个变量,
且已知取值范围的变量只有一次项,
这时就可以将不等式转化为一次函数求解。

方法三:二次函数法
解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析
1,判断二次函数的开口方向
2,二次函数的判别式是大于0还是小于0
3,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性
方法四:判别式法
解析:不等式一边是分式,
且分式的分子和分母的最高次项都是二次项时,
利用判别式法可以快速的解题,
分离参数将会使解题变得复杂。

方法五:最值法
解析:不等式两边是两个函数,
且含有参数时,我们可以分出出参数,
构造新函数,求函数的导数来求得新函数的最值。

总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。

高考数学二轮专题——基本不等式九大题型(学生版)

高考数学二轮专题——基本不等式九大题型(学生版)

基本不等式及其应用【九大题型】【新高考专用】【题型1基本不等式及其应用】【题型2直接法求最值】【题型3配凑法求最值】【题型4常数代换法求最值】【题型5消元法求最值】【题型6齐次化求最值】【题型7多次使用基本不等式求最值】【题型8利用基本不等式解决实际问题】【题型9与其他知识交汇的最值问题】1.基本不等式及其应用考点要求真题统计考情分析(1)了解基本不等式的推导过程(2)会用基本不等式解决最值问题(3)理解基本不等式在实际问题中的应用2020年天津卷:第14题,5分2021年乙卷:第8题,5分2022年I 卷:第12题,5分2023年新高考I 卷:第22题,12分基本不等式及其应用是每年高考的必考内容,从近几年的高考情况来看,对基本不等式的考查比较稳定,考查内容、频率、题型难度均变化不大,应适当关注利用基本不等式大小判断、求最值和求取值范围的问题;同时要注意基本不等式在立体几何、平面解析几何等内容中的运用.【知识点1基本不等式】1.两个不等式不等式内容等号成立条件重要不等式a 2+b 2≥2ab (a ,b ∈R )当且仅当“a =b ”时取“=”基本不等式ab ≤a +b2(a >0,b >0)当且仅当“a =b ”时取“=”a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.2.基本不等式与最值已知x,y都是正数,(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值2P;(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值14S2.温馨提示:从上面可以看出,利用基本不等式求最值时,必须有:(1)x、y>0,(2)和(积)为定值,(3)存在取等号的条件.3.常见的求最值模型(1)模型一:mx+nx≥2mn(m>0,n>0),当且仅当x=n m时等号成立;(2)模型二:mx+nx−a =m(x−a)+nx−a+ma≥2mn+ma(m>0,n>0),当且仅当x−a=n m时等号成立;(3)模型三:xax2+bx+c =1ax+b+cx≤12ac+b(a>0,c>0),当且仅当x=c a时等号成立;(4)模型四:x(n−mx)=mx(n−mx)m≤1m⋅mx+n−mx22=n24m m>0,n>0,0<x<n m,当且仅当x=n2m时等号成立.4.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【题型1基本不等式及其应用】1(2023·安徽蚌埠·模拟预测)已知实数a,b,c满足a<b<c且abc<0,则下列不等关系一定正确的是()A.ac<bcB.ab<acC.bc +cb>2 D.ba+ab>22(2023·湖南长沙·一模)已知2m=3n=6,则m,n不可能满足的关系是()A.m+n>4B.mn>4C.m2+n2<8D.(m-1)2+(n-1)2>23(2024·山东枣庄·一模)已知a>0,b>0,则“a+b>2”是“a2+b2>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4(2023·辽宁·二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所示图形,在等腰直角三角形△ABC中,点O为斜边AB的中点,点D为斜边AB上异于顶点的一个动点,设AD=a,BD=b,用该图形能证明的不等式为( ).A.a+b2≥ab a>0,b>0B.2aba+b≤ab a>0,b>0C.a+b2≤a2+b22a>0,b>0D.a2+b2≥2ab a>0,b>0【题型2直接法求最值】1(2023·湖南岳阳·模拟预测)已知函数f x =3-x-2x,则当x<0时,f x 有()A.最大值3+22B.最小值3+22C.最大值3-22D.最小值3-222(2023·北京东城·一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.223(22-23高三下·江西·阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+434(23-24高二下·山东潍坊·阶段练习)函数y=3-4x-x(x>0)的最大值为()A.-1B.1C.-5D.5【题型3配凑法求最值】1(2023·山西忻州·模拟预测)已知a>2,则2a+8a-2的最小值是()A.6B.8C.10D.122(2024·辽宁·一模)已知m >2n >0,则m m -2n +mn的最小值为()A.3+22B.3-22C.2+32D.32-23(2023·河南信阳·模拟预测)若-5<x <-1,则函数f x =x 2+2x +22x +2有()A.最小值1B.最大值1C.最小值-1D.最大值-14(23-24高三下·河南·开学考试)已知a >0,b >0,则a +2b +4a +2b +1的最小值为()A.6B.5C.4D.3【题型4常数代换法求最值】1(2024·江苏南通·二模)设x >0,y >0,1x +2y =2,则x +1y 的最小值为()A.32B.22C.32+2 D.32(2024·黑龙江哈尔滨·二模)已知正实数x ,y 满足1x +2y=1,则2xy -3x 的最小值为()A.8B.9C.10D.113(2024·广东湛江·一模)已知ab >0,a 2+ab +2b 2=1,则a 2+2b 2的最小值为()A.8-227B.223C.34D.7-2284(2023·广东广州·模拟预测)已知正实数x ,y 满足2x +y =xy ,则2xy -2x -y 的最小值为()A.2B.4C.8D.9【题型5消元法求最值】1(2024·陕西西安·三模)已知x >0,y >0,xy +2x -y =10,则x +y 的最小值为42-1.2(2023·上海嘉定·一模)已知实数a 、b 满足ab =-6,则a 2+b 2的最小值为12.3(2024·天津河东·一模)若a >0,b >0,ab =2,则a +4b +2b 3b 2+1的最小值为.4(2024·四川德阳·模拟预测)已知正实数x ,y ,z 满足x 2+xy +yz +xz +x +z =6,则3x +2y +z 的最小值是43-2.【题型6齐次化求最值】1(23-24高一上·湖南娄底·期末)已知x >0,则x 2-x +4x 的最小值为()A.5B.3C.-5D.-5或32(23-24高一上·辽宁大连·期末)已知x ,y 为正实数,且x +y =1,则x +6y +3xy的最小值为()A.24B.25C.6+42D.62-33(23-24高二上·安徽六安·阶段练习)设a+b=1,b>0,则1|a|+9|a|b的最小值是()A.7B.6C.5D.44(23-24高三上·浙江绍兴·期末)已知x为正实数,y为非负实数,且x+2y=2,则x2+1x+2y2y+1的最小值为()A.34B.94C.32D.92【题型7多次使用基本不等式求最值】1(2023·河南·模拟预测)已知正实数a,b,满足a+b≥92a+2b,则a+b的最小值为()A.5B.52C.52 D.5222(2023·全国·模拟预测)已知a为非零实数,b,c均为正实数,则a2b+a2c4a4+b2+c2的最大值为()A.12B.24C.22D.343(2024·全国·模拟预测)已知a>0,b>0,c>1,a+2b=2,则1a+2bc+2c-1的最小值为()A.92B.2 C.6 D.2124(23-24高三下·浙江·开学考试)已知a、b、c、d均为正实数,且1a+2b=c2+d2=2,则a+bcd的最小值为()A.3B.22C.3+22D.3+222【题型8利用基本不等式解决实际问题】1(23-24高二下·北京房山·期中)某公园为了美化游园环境,计划修建一个如图所示的总面积为750m2的矩形花园.图中阴影部分是宽度为1m的小路,中间A,B,C三个矩形区域将种植牡丹、郁金香、月季(其中B,C区域的形状、大小完全相同).设矩形花园的一条边长为xm,鲜花种植的总面积为Sm2.(1)用含有x的代数式表示a;(2)当x的值为多少时,才能使鲜花种植的总面积最大?2(23-24高一上·辽宁朝阳·期末)冷链物流是指以冷冻工艺为基础、制冷技术为手段,使冷链物品从生产、流通、销售到消费者的各个环节始终处于规定的温度环境下,以减少冷链物品损耗的物流活动.随着人民食品安全意识的提高及线上消费需求的增加,冷链物流市场规模也在稳步扩大.某冷链物流企业准备扩大规模,决定在2024年初及2025年初两次共投资4百万元,经预测,每年初投资的x百万元在第m(1≤m≤8,且m∈N*)年产生的利润(单位:百万元)G m=mx,m∈N*,1≤m≤44-16-mx2,m∈N*,5≤m≤8,记这4百万元投资从2024年开始的第n年产生的利润之和为f n x .(1)比较f42 与f52 的大小;(2)求两次投资在2027年产生的利润之和的最大值.3(23-24高一上·河南开封·期末)如图,一份印刷品的排版(阴影部分)为矩形,面积为32,它的左、右两边都留有宽为2的空白,上、下两边都留有宽为1的空白.记纸张的面积为S,排版矩形的长和宽分别为x,y.(1)用x,y表示S;(2)如何选择纸张的尺寸,才能使纸张的面积最小?并求最小面积.4(23-24高一上·四川成都·期末)如图所示,一条笔直的河流l(忽略河的宽度)两侧各有一个社区A,B (忽略社区的大小),A社区距离l上最近的点A0的距离是2km,B社区距离l上最近的点B0的距离是1km,且A0B0=4km.点P是线段A0B0上一点,设A0P=akm.现规划了如下三项工程:工程1:在点P处修建一座造价0.1亿元的人行观光天桥;工程2:将直角三角形AA0P地块全部修建为面积至少1km2的文化主题公园,且每平方千米造价为1+92a2亿元;工程3:将直角三角形BB0P地块全部修建为面积至少0.25km2的湿地公园,且每平方千米造价为1亿元.记这三项工程的总造价为W 亿元.(1)求实数a 的取值范围;(2)问点P 在何处时,W 最小,并求出该最小值.【题型9与其他知识交汇的最值问题】1(23-24高三上·江苏南通·阶段练习)已知ΔABC 内接于单位圆,且1+tan A 1+tan B =2,(1)求角C(2)求△ABC 面积的最大值.2(23-24高三上·山东青岛·期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian d u );阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao )指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖膈C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.3(2024·广东珠海·一模)已知A 、B 、C 是ΔABC 的内角,a 、b 、c 分别是其对边长,向量m=a +b ,c ,n =sin B -sin A ,sin C -sin B ,且m ⊥n.(1)求角A 的大小;(2)若a =2,求ΔABC 面积的最大值.4(2024·黑龙江大庆·一模)已知椭圆x 2a 2+y 2b2=1(a >b >0),过点1,32 且离心率为12,A ,B 是椭圆上纵坐标不为零的两点,若AF =λFB λ∈R 且AF ≠FB,其中F 为椭圆的左焦点.(1)求椭圆的方程;(2)求线段AB 的垂直平分线在y 轴上的截距的取值范围.一、单选题1(2023·全国·三模)已知a >0,b >0,且a +b =1,则下列不等式不正确的是()A.ab≤14B.a2+b2≥12C.1a+1b+1>2 D.a+b≤12(2024·甘肃定西·一模)x2+7x2+7的最小值为()A.27B.37C.47D.573(2024·辽宁葫芦岛·一模)已知a>0,b>0,a+b=2,则()A.0<a≤1B.0<ab≤1C.a2+b2>2D.1<b<24(2024·浙江嘉兴·二模)若正数x,y满足x2-2xy+2=0,则x+y的最小值是() A.6 B.62C.22D.25(2024·四川成都·模拟预测)若a,b是正实数,且13a+b+12a+4b=1,则a+b的最小值为()A.45B.23C.1D.26(2024·陕西西安·模拟预测)下列说法错误的是()A.若正实数a,b满足a+b=1,则1a +1b有最小值4B.若正实数a,b满足a+2b=1,则2a+4b≥22C.y=x2+3+1x2+3的最小值为433D.若a>b>1,则ab+1<a+b7(2024·黑龙江哈尔滨·一模)已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m元和n元(m≠n),甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为a1,a2,则()A.a1=a2B.a1<a2C.a1>a2D.a1,a2的大小无法确定8(2024·四川成都·三模)设函数f x =x3-x,正实数a,b满足f a +f b =-2b,若a2+λb2≤1,则实数λ的最大值为()A.2+22B.4C.2+2D.22二、多选题9(2023·全国·模拟预测)已知实数x,y,下列结论正确的是()A.若x+y=3,xy>0,则x2x+1+y2+1y≥3B.若x>0,xy=1,则12x +12y+8x+y的最小值为4C.若x≠0且x≠-1,则yx<y+1x+1D.若x 2-y 2=1,则2x 2+xy 的最小值为1+3210(2023·重庆沙坪坝·模拟预测)某单位为了激励员工努力工作,决定提高员工待遇,给员工分两次涨工资,现拟定了三种涨工资方案,甲:第一次涨幅a %,第二次涨幅b %;乙:第一次涨幅a +b 2%,第二次涨幅a +b2%;丙:第一次涨幅ab %,第二次涨幅ab %.其中a >b >0,小明帮员工李华比较上述三种方案得到如下结论,其中正确的有()A.方案甲和方案乙工资涨得一样多B.采用方案乙工资涨得比方案丙多C.采用方案乙工资涨得比方案甲多D.采用方案丙工资涨得比方案甲多11(2024·全国·模拟预测)已知a >0,b >0且1a +4b =2,则下列说法正确的是()A.ab 有最小值4B.a +b 有最小值92C.2ab +a 有最小值25D.16a 2+b 2的最小值为42三、填空题12(2024·全国·模拟预测)已知x >1,y >0,且x +2y =2,则1x -1+y 的最小值是.13(2024·上海奉贤·二模)某商品的成本C 与产量q 之间满足关系式C =C q ,定义平均成本C=C q ,其中C =C (q )q ,假设C q =14q 2+100,当产量等于时,平均成本最少.14(2024·全国·模拟预测)记max x 1,x 2,x 3 表示x 1,x 2,x 3这3个数中最大的数.已知a ,b ,c 都是正实数,M =max a ,1a +2b c ,c b,则M 的最小值为.四、解答题15(2023·甘肃张掖·模拟预测)已知正实数x ,y 满足等式1x +3y=2.(1)求xy 的最小值;(2)求3x +y 的最小值.16(2023·全国·模拟预测)已知x,y,z∈0,+∞,且x+y+z=1.(1)求证:yx+zy+xz>1+z-z;(2)求x2+y2+z2+5xy+4yz+4xz的最大值.17(2023·陕西安康·模拟预测)已知函数f x =x+a+x-b.(1)当a=2,b=3时,求不等式f x ≥6的解集;(2)设a>0,b>1,若f x 的最小值为2,求1a +1b-1的最小值.18(23-24高一上·贵州铜仁·期末)2020年初至今,新冠肺炎疫情袭击全球,对人民生命安全和生产生活造成严重影响. 在党和政府强有力的抗疫领导下,我国控制住疫情后,一方面防止境外疫情输入,另一方面逐步复工复产,减轻经济下降对企业和民众带来的损失. 为降低疫情影响,某厂家拟在2022年举行某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=4-2m+1. 已知生产该产品的固定成本为8万元,生产成本为16万元/万件,厂家将产品的销售价格定为8+16xx万元/万件(产品年平均成本)的1.5倍.(1)将2022年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2022年的促销费用投入多少万元时,厂家的利润最大?19(2023·全国·模拟预测)已知x,y,z∈0,+∞.(1)若x+y=1,证明:4x+4y≤48;(2)若x+y+z=1,证明yx+zy+xz>1+z-z.11。

常见不等式的解法--高考数学【解析版】

常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。

高考数学利用基本不等式求最值8大题型(解析版)

高考数学利用基本不等式求最值8大题型(解析版)

利用基本不等式求最值8大题型命题趋势基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。

题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。

在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。

在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。

利用基本不等式求最值的方法1.直接法:条件和问题间存在基本不等式的关系2.配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。

3.代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ3a +4b +μa +3b =3λ+μ a +4λ+3μ b∴3λ+μ=14λ+3μ=2 ,解得:λ=15μ=254.消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5.构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

热点题型解读【题型1直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知x >0,y >0,且x +y =12,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为x >0,y >0,x +y =12≥2xy ,即xy ≤36,当且仅当x =y =6时取到等号,故xy的最大值为36.故选:C【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3x+9y=18,当x+2y取最大值时,则xy的值为( )A.2B.2C.3D.4【答案】B【解析】由已知3x+9y=18可得3x+32y=18,则18=3x+32y≥23x×32y=23x+2y,即3x+2y≤81,所以x+2y≤4,当且仅当x=2y=2时取等号,即x=2,y=1,此时xy=2.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数a,b满足a2+2b2=1,则ab2的最大值是()A.13B.33C.39D.19【答案】C【解析】解:由题知1=a2+2b2=a2+b2+b2≥33a2b2b2,∴3a2b4≤1 3,当且仅当a=b=33时取等号,所以ab2≤39.故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x>1,y>1且lg x+lg y=4,那么lg x·lg y的最大值是( )A.2B.12C.14D.4【答案】D【解析】∵x>1,y>1,∴lg x>0,lg y>0,∴lg x⋅lg y≤lg x+lg y22=42 2=4,当且仅当lg x=lg y=2,即x=y=100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数a,b满足a+5b2a+b=36,则a+2b的最小值为()A.16B.12C.8D.4【答案】D【解析】因为a+5b2a+b≤a+5b+2a+b22,所以9(a+2b)24≥36.又a>0,b>0.所以a+2b≥4,当且仅当a=83,b=23时,等号成立.故选:D【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知-3<x<0,则f x =x9-x2的最小值为________.【答案】-9 2【解析】因为-3<x<0,所以f x =x9-x2=-9-x2⋅x2≥-9-x2+x22=-92,当且仅当9-x 2=x 2,即x =-322时取等,所以f x =x 9-x 2的最小值为-92.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数f (x )=x +9x -1(x >1)的值域为______.【答案】7,+∞【解析】由题知,x >1,所以x -1>0,所以f (x )=x -1 +9x -1+1≥2x -1 ⋅9x -1+1=7,当且仅当x -1=9x -1,即x =4时取等号,所以函数f (x )=x +9x -1(x >1)的值域为7,+∞ .【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知x >0,y >0,且x +y =7,则1+x 2+y 的最大值为()A.36B.25C.16D.9【答案】B【解析】由x +y =7,得x +1 +y +2 =10,则1+x 2+y ≤1+x +2+y 2 2=25,当且仅当1+x =2+y ,即x =4,y =3时,取等号,所以1+x 2+y 的最大值为25.故选:B .【变式2-3】(2022春·山东济宁·高三统考期中)已知向量m =a -5,1 ,n =1,b +1 ,若a >0,b >0,且m⊥n ,则13a +2b +12a +3b 的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,m ⋅n =a -5+b +1=0,即a +b =4,则3a +2b +2a +3b =20,又a >0,b >0,故13a +2b +12a +3b =12013a +2b +12a +3b 3a +2b +2a +3b =1202+2a +3b 3a +2b +3a +2b 2a +3b≥120×2+22a +3b 3a +2b ×3a +2b 2a +3b =15,当且仅当2a +3b 3a +2b =3a +2b2a +3b,且a +b =4,即a =b =2时取得等号.故选:A .【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为()A.1B.22C.324D.2【答案】C【解析】因为x 2+y 22=1,所以y 2=2-2x 2≥0,解得:x ∈0,1 ,故x 1+y 2=x 1+2-2x 2=x 3-2x 2=222x 23-2x 2 ≤22×2x 2+3-2x 22=324,当且仅当2x 2=3-2x 2,即x =32时,等号成立,故x 1+y 2的最大值为324.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数a ,b 满足a 2-2ab +4=0,则b-a4的最小值为()A.1 B.2C.2D.22【答案】B【解析】∵a ,b >0,a 2-2ab +4=0,则有b =a 2+2a,∴b -a 4=a 2+2a -a 4=a 4+2a≥2a 4⋅2a =2,当且仅当a 4=2a ,即a =22时等号成立,此时b =322,故选:B .【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xy z的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则z =4x 2-3xy +y 2,则xy z =xy 4x 2-3xy +y 2=14x y +y x -3≤124x y ⋅y x-3=1,当且仅当y =2x >0时取等号.故xy z 的最大值为1.故选:C .【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z 的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2.∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12x y ⋅4y x-3=1,当且仅当x =2y >0时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2=-1y -1 2+1≤1,当且仅当y =1时取等号,即2x +1y -2z的最大值是1.故选:D 【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,ab +ac=2,则1a +1b +c +8a +b +c的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由ab +ac =2得:a b +c =2,即b +c =2a,所以1a +1b +c +8a +b +c =1a +a 2+8a +2a=2+a 22a +8a a 2+2,由基本不等式得:1a +1b +c +8a +b +c =2+a 22a +8a a 2+2≥22+a 22a ⋅8a a 2+2=4,当且仅当2+a 22a =8aa 2+2,即a =2±2时,等号成立.故选:ABC【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若x 21+y 21=4,x 22+y 22=4,x 1⋅y 2=-2,则x 2⋅y 1的最大值为___________.【答案】2【解析】x 2⋅y 1 2=4-y 22 4-x 21 =4-4x 214-x 21 =20-44x 21+x 21,由y 2=-2x 1,所以y 2 =-2x 1=2x 1≤2,所以1≤x 1 ≤2,所以x 2⋅y 1 2=20-44x 21+x 21≤20-4×24x 21⋅x 21=4,当且仅当|x 1|=2时,等号成立,所以x 2⋅y 1≤2,当且仅当x 2=2,y 1=2或x 2=-2,y 1=-2时取等号,所以x 2⋅y 1的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知x >0,y >0,且4x +y =1,则1x +9y的最小值是_____.【答案】25【解析】因为x >0,y >0,且4x +y =1,所以1x +9y =4x +y 1x +9y =4+36xy +y x+9≥13+236x y ⋅y x=25,当且仅当36x y =y x ,即x =110,y =35时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知a >0,b >0,a +b =2,则b a +4b的最小值为_______.【答案】22+2【解析】因为a >0,b >0,且a +b =2,所以b a +4b =b a +4b a +b 2 =b a +2a b +2≥2b a ×2a b+2=22+2,当且仅当b 2=2a 2时取等号故b a +4b 的最小值为22+2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x +y =xy ,则x +2y 的最小值为______.【答案】9【解析】由2x +y =xy 得2y +1x=1,又因为x >0,y >0,所以x +2y =x +2y 2y +1x =2xy +2y x +5≥22x y ⋅2y x +5=9,当且仅当x =y =3时等号成立,故x +2y 的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知x >-2,y >0,2x +y =3,则x +2y +2x +2+7y的最小值为()A.4B.6C.8D.10【答案】B【解析】因为x >-2,y >0,2x +y =3,所以2x +2 +y =7,x +2>0,所以x +2y +2x +2+7y =x +2y +2x +2+2x +2 +y y =2+2y x +2+2x +2 y≥2+22yx +2⋅2x +2 y=6,当且仅当x +2=y ,即x =13,y =73时等号成立,即x +2y +2x +2+7y 的最小值为6,故选:B .【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且AG=2GM ,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,AB =xAP (x >0),AC =yAQ (y >0),则1x+1y +1的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则AM =12AB +12AC又AG =2GM ,所以AM =32AG ,又AB =xAP (x >0),AC =yAQ (y >0)所以32AG=x 2AP +y 2AQ ,则AG =x 3AP +y 3AQ因为G ,P ,Q 三点共线,则x3+y 3=1,化得x +y +1 =4由1x +1y +1=14x +y +1 1x +1y +1 =14x y +1+y +1x+2 ≥142x y +1⋅y +1x+2=1当且仅当x y +1=y +1x 时,即x =2,y =1时,等号成立,1x +1y +1的最小值为1故选:B 【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设x >-1,y >-2,且x +y =4,则x 2x +1+y 2y +2的最小值是__________.【答案】167【解析】令x +1=a (a >0),y +2=b (b >0),则x =a -1,y =b -2,因为x +y =4,则有a +b =7,所以x 2x +1+y 2y +2=(a -1)2a +(b -2)2b =a +1a -2+b +4b -4=7-2-4+1a +4b=1+17(a +b )1a +4b =1+171+4+b a +4a b≥1+17×5+2b a ×4a b =167当且仅当b =2a ,即a =73,b =143时取等号,则x ,y 分别等于43,83时,x 2x +1+y 2y +2的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足3x +2y y +83x +2y x=1,则xy 的最小值是()A.54B.83C.43D.52【答案】D 【解析】xy =xy 3x +2y y +83x +2y x=3x x +2y +8y 3x +2y ,令x +2y =m ,3x +2y =n ,则x =n -m 2,y =3m -n4,xy =3x x +2y +8y 3x +2y =3n 2m +6m n -72≥23n 2m ⋅6m n -72=52,当且仅当3n 2m =6m n 且3x +2y y +83x +2y x =1,即x =5,y =52时,等号成立,所以xy ≥52,故xy 有最小值52.故选:D .【变式5-2】(2022·全国·高三专题练习)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥m 恒成立,则m 的最大值为()A.8 B.16C.22D.42【答案】A【解析】设y -1=b ,2x -1=a ,则y =b +1b >0 ,x =12a +1 a >0 所以4x 2y -1+y 22x -1=a +1 2b +b +1 2a ≥2a +1b +1 ab =2ab +a +b +1ab=2ab +1ab +a +b ab ≥22ab ⋅1ab +2ab ab=2⋅2+2 =8当且仅当a =b =1即x =2,y =1时取等号所以4x 2y -1+y 22x -1的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知x >0,y >0,若x +y =1,则33x +2y+11+3y的最小值是___________.【答案】85【解析】设x +y +k =λ3x +2y +μ1+3y ,由对应系数相等得1=3λ1=2λ+3μk =μ,得λ=13k =μ=19所以x +y +19=133x +2y +191+3y整理得1=3103x +2y +1101+3y 即1=1109x +6y +1+3y所以33x +2y +11+3y =1109x +6y +1+3y 33x +2y +11+3y=1+11031+3y 3x +2y +9x +6y 1+3y≥85.经验证当x =y =12时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知a ,b 都是负实数,则a a +2b +ba +b的最小值是____________ .【答案】22-2【解析】a a +2b +b a +b =a 2+2ab +2b 2a 2+3ab +2b 2=1-ab a 2+3ab +2b2=1-1a b+2b a +3,因为a ,b 都是负实数,所以a b>0,2ba >0,所以a b +2b a ≥2a b ×2b a =22(当且仅当a b=2b a 时等号成立).所以a b +2b a +3≥22+3,所以1a b+2b a +3≤122+3,所以-1a b +2b a +3≥-122+3=22-3,所以1-1a b+2b a +3≥1+22-3=22-2.即a a +2b +b a +b的最小值是22-2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有x 2+y 2≤a x 2-xy +y 2 ,则实数a 的最小值是___________.【答案】2【解析】因为x >0,y >0,则x 2-xy +y 2=x -y 2+xy >0,则x2+y2≤a x2-xy+y2,即x2+y2x2-xy+y2≤a,又x2+y2x2-xy+y2=11-xyx2+y2,因为x2+y2≥2xy,所以1-xyx2+y2≥12,所以11-xyx2+y2≤2,即x2+y2x2-xy+y2≤2,当且仅当x=y时,取等号,所以x2+y2x2-xy+y2max=2,所以a≥2,即实数a的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知x>0,y>0,则x2+3y2xy+y2的最小值为____.【答案】2【解析】∵x,y>0,则x2+3y2xy+y2=x2y2+3xy+1,设xy=t,t>0,则x2+3y2xy+y2=t2+3t+1=t+12-2t+1+4t+1=(t+1)+4t+1-2≥2t+1×4t+1-2=4-2=2,当且仅当t+1=4t+1,即t=1时取等号,此时x=y,故x2+3y2xy+y2的最小值为2.【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a,b满足2ab=a+b+12,则ab的最小值是_____ ______.【答案】9【解析】由2ab=a+b+12得,2ab≥2ab+12,化简得ab-3ab+2≥0,解得ab≥9,所以ab的最小值是9.【变式7-1】已知x>0,y>0,2xy=x+y+4,则x+y的最小值为______.【答案】4【解析】由题知x>0,y>0,由基本不等式得xy≤x+y22,即x+y+4≤2×x+y22,令t=x+y,t>0,则有t+4≤2×t22,整理得t2-2t-8≥0,解得t≤-2(舍去)或t≥4,即x+y≥4,当且仅当x=y=2时等号成立,所以x+y的最小值为4.【变式7-2】(2022·全国·高三专题练习)若4x2+y2+xy=1,则2x+y的最大值是___________.【答案】2105【解析】∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1≥(2x +y )2-322x +y 2 2=58(2x +y )2,当且仅当2x =y 时,等号成立,此时(2x +y )2≤85,所以2x +y ≤2105,即2x +y 的最大值是2105.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若x >0,y >0,y +1x+4x +2y =5,则2x +y 的最小值为___________.【答案】8【解析】因为x >0,y >0,所以2x +y >0由y +1x +4x +2y=5两边同时乘xy ,得y 2+y +4x 2+2x =5xy ,即4x 2+y 2+4xy +2x +y =5xy +4xy ,则2x +y 2+2x +y =9xy ,因为2xy ≤2x +y 2 2=2x +y 24,所以9xy =92×2xy ≤92×2x +y 24=982x +y2,故2x +y 2+2x +y ≤982x +y 2,整理得2x +y 2-82x +y ≥0,即2x +y 2x +y -8 ≥0,所以2x +y ≥8或2x +y ≤0(舍去),故2x +y 的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知a >0,b >0,则4b +ba2+2a 的最小值为()A.22 B.42C.42+1D.22+1【答案】B【解析】因为a >0,b >0,所以4b +ba2+2a ≥24b ⋅b a 2+2a =4a+2a ≥24a⋅2a =42,当且仅当4b =b a2且4a =2a ,即a =2,b =22时取等号,即4b +ba2+2a 的最小值为4 2.故选:B .【变式8-1】(2022春·江苏淮安·高三校联考期中)当0<x <2a ,不等式1x 2+12a -x2≥1恒成立,则实数a 的取值范围是()A.2,+∞B.0,2C.0,2D.2,+∞【答案】B【解析】1x 2+12a -x 2≥1恒成立,即1x 2+12a -x 2 min≥1∵0<x <2a ,∴2a -x >0,又1x 2+1(2a -x )2≥21x 2(2a -x )2=2x (2a -x )≥2x +2a -x 22=2a 2,上述两个不等式中,等号均在x =2a -x 时取到,∴1x 2+12a -x 2min=2a 2,∴2a2≥1,解得-2≤a ≤2且a ≠0,又a >0,实数a 的取值范围是0,2 .故选:B .【变式8-2】(2022·全国·模拟预测)已知a >0,b >0,c >1,a +2b =2,则1a +2bc +2c -1的最小值为()A.92B.2C.6D.212【答案】D【解析】1a +2b =121a +2b a +2b =125+2b a +2a b≥125+4 =92,当且仅当a =b =23时等号成立,(应用基本不等式时注意等号成立的条件)所以1a +2bc +2c -1≥92c -1 +2c -1+92≥29c -1 2⋅2c -1+92=212,当且仅当9c -1 2=2c -1,即c =53且a =b =23时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知a ,b ,c ∈R +,θ∈-π2,π2,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,则θ的取值范围是()A.-π2,π2B.-π3,π3C.-π4,π4D.-π6,π6【答案】C【解析】因为a ,b ,c ∈R +,θ∈-π2,π2 ,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,所以2b a +c a 2+4b 2+c 2 max≤cos θ,因为a ,b ,c ∈R +,所以2ab =12×2a 2b ≤12a 2+2b 2 =12a 2+2b 2,当且仅当a =2b 时等号成立;2bc =12×2c 2b ≤12c 2+2b 2 =12c 2+2b 2,当且仅当c =2b 时等号成立.所以2b a +c a 2+4b 2+c 2=2ab +2bc a 2+4b 2+c 2≤12a 2+2b 2 +12c 2+2b 2a 2+4b 2+c 2=22,当且仅当a =2b =c 时等号成立,所以2b a +c a 2+4b 2+c2的最大值为22,所以cos θ≥22,又因为θ∈-π2,π2,所以θ∈-π4,π4.故选:C.【变式8-4】(2023·全国·高三专题练习)若a,b,c均为正实数,则ab+bca2+2b2+c2的最大值为()A.12B.14C.22D.32【答案】A【解析】因为a,b均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤a+c2a2+c2b×2b=a+c22a2+c2=12a2+2ac+c22a2+c2=1212+aca2+c2≤1212+ac2a2×c2=12,当且仅当a2+c2b=2b,且a=c,即a=b=c时取等号,则ab+bca2+2b2+c2的最大值为12.故选:A.限时检测(建议用时:60分钟)1.(2022春·江苏徐州·高三学业考试)若正实数x,y满足1x+2y=1,则x+2y的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x,y是正数,所以有1x+2yx+2y=5+2yx+2xy≥5+22yx∙2xy=9,当且仅当2yx=2xy时取等号,即当且仅当x=y=3时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知x>2,y=x+1x-2,则y的最小值为()A.2B.1C.4D.3【答案】C【解析】因为x>2,所以x-2>0,1x-2>0,由基本不等式得y=x+1x-2=x-2+1x-2+2≥2x-2⋅1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立,则y的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知a>1,b>1,且aln+4bln=2,则a elog+b e4log的最小值为()A.92lg B.212 C.252 D.12【答案】C【解析】a e log =1a ln ,b e 4log =4b ln ,因为a >1,b >1,故a >0ln ,b ln >0,a e log +b e 4log =1a ln +4b ln =12×a ln +4b ln 1a ln +4bln=12×17+4b ln a ln +4a ln bln≥12×17+24b ln a ln ⋅4a ln bln=252,当且仅当a ln =b ln 时,即a =b =e 25时等号成立.所以a e log +b e 4log 的最小值为252.故选:C4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数a ,b 满足4a +9b =4,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数a ,b 满足4a +9b =4,由基本不等式得:4a +9b =4≥24a ⋅9b ,解得:ab ≤19,当且仅当4a =9b ,即a =12,b =29时,等号成立,ab 的最大值为19.故选:A 5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知a >0,b >0,9是3a 与27b 的等比中项,则a 2+2a +3b 2+1b 的最小值为()A.9+26 B.21+264C.7D.14+263【答案】B【解析】由等比中项定义知:3a ⋅27b =3a +3b =92,∴a +3b =4,∴a 2+2a +3b 2+1b =a +3b +2a +1b =4+142a +1b a +3b =4+145+6b a +a b≥4+145+26b a ⋅a b =4+5+264=21+264(当且仅当6b a =ab,即a =46-8,b =43-6 3时取等号),即a 2+2a +3b 2+1b的最小值为21+264.故选:B .6.(2022春·河南南阳·高三校考阶段练习)在△ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM =xAB ,AN =yAC ,(x >0,y >0),则4x +y 的最小值是()A.43B.103C.3D.2【答案】C【解析】在△ABC 中,E 为重心,所以AE =23⋅12AB +AC =13AB +AC ,设AM =xAB ,AN =yAC ,(x >0,y >0),所以AB =1x AM ,AC =1y AN ,所以AE =13⋅1x AM +13⋅1yAN .因为M 、E 、N 三点共线,所以13x +13y=1,所以4x +y 13x +13y=43+13+y 3x +4x 3y ≥53+2y 3x ⋅4x 3y =3(当且仅当y 3x =4x 3y ,即x =12,y =1时取等号).故4x +y 的最小值是3.故选:C .7.(2022春·四川德阳·高三阶段练习)已知实数a 、b >0,且函数f x =x 2-2a +b x +2a +b -1的定义域为R ,则a 2b +2a 的最小值是()A.4B.6C.22D.2【答案】A【解析】∵f x =x 2-2a +b x +2a +b -1定义域为R ,∴x 2-2a +b x +2a +b -1≥0在R 上恒成立,∴△=-2a +b 2-4×2a +b -1 ≤0,即:a +b 2-2a +b +1≤0∴a +b -1 2≤0,解得:a +b =1又∵a >0,b >0∴a 2b +2a =1-b 2b +2a =12b +2a -12=12b +2a a +b -12=a 2b +2ba +2≥2a 2b ⋅2b a+2=4当且仅当a 2b =2b a ,即a =23,b =13时取等号.故选:A .8.(2022春·江西宜春·高三校考阶段练习)设x >y >z ,且1x -y +1y -z ≥nx -zn ∈N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x >y >z ,所以x -y >0,y -z >0,x -z >0,所以不等式1x -y +1y -z ≥n x -z 恒成立等价于n ≤x -z 1x -y +1y -z恒成立.因为x -z =x -y +y -z ≥2x -y y -z ,1x -y +1y -z≥21x -y ⋅1y -z ,所以x -z ⋅1x -y +1y -z≥4x -y y -z⋅1x -y ⋅1y -z =4(当且仅当x -y =y -z 时等号成立),则要使n ≤x -z 1x -y +1y -z恒成立,只需使n ≤4n ∈N ,故n 的最大值为4.故选:C 9.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足4a 2-ab +b 2=1,以下说法正确的是()A.a ≤21515B.a +b <1C.45≤4a 2+b 2≤43D.2a -b ≤2105【答案】ACD【解析】由4a 2-ab +b 2=1,可得b 2-ab +4a 2-1=0,关于b 的方程有解,所以△=-a 2-44a 2-1 ≥0,所以a 2≤415,即a ≤21515,故A 正确;取a =0,b =1,4a 2-ab +b 2=1,则a +b =1,故B 错误;由4a 2-ab +b 2=1,可得4a 2+b 2=ab +1=1+12⋅2ab ,又-4a 2+b 22≤2ab ≤4a 2+b 22,令t=4a 2+b 2,则-t 2≤2t -1 ≤t 2,所以45≤t ≤43,即45≤4a 2+b 2≤43,故C 正确;由4a 2-ab +b 2=1,可得2a -b 2+3ab =1,所以2a -b 2=1-3ab =1+32⋅2a ⋅-b ,令u =2a -b ,由2a ⋅-b ≤2a -b 22,可得u 2≤1+38u 2,所以u 2≤85,即2a -b ≤2105,故D 正确.故选:ACD .10.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且2a +b -2=0,则()A.a 2+16>8a B.2a +1b≥9 C.a 2+b 2≥255D.32<a +b -5a -2<4【答案】ACD【解析】对于A 选项,a 2+16-8a =a -4 2≥0,当且仅当a =4时等号成立,当a =4时,由于2a +b -2=0,得b =2-2a =2-8=-6,与b 为正数矛盾,故a ≠4,即得a 2+16>8a ,故A 选项正确;对于B 选项,∵2a +b -2=0,∴a +b2=1.又∵a >0,b >0∴2a +1b =2a +1b a +b 2 =2+b a +a b+12≥52+2b a ⋅a b =92,当且仅当b a =a b,即a =b =23时等号成立;故B 选项不正确;对于C 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∵a 2+b 2=a 2+2-2a 2=5a 2-8a +4=5a -45 2+45,∴a 2+b 2≥45,当且仅当a =45时等号成立,∴a 2+b 2≥255,故C 选项正确;对于D 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∴a +b -5a -2=a +2-2a -5a -2=-a -3a -2=-a -2 -5a -2=-1-5a -20<a <1 ,当0<a <1时,-2<a -2<-1,∴-5<5a -2<-52,得32<-1-5a -2<4,即32<a +b -5a -2<4,故D 选项正确.故选:ACD11.(2022春·山西·高三校联考阶段练习)(多选)若a >b >1,且a +3b =5,则()A.1a -b +4b -1的最小值为24 B.1a -b +4b -1的最小值为25C.ab -b 2-a +b 的最大值为14 D.ab -b 2-a +b 的最大值为116【答案】BD【解析】由a >b >1,可知a -b >0,b -1>0,a -b +4b -1 =a +3b -4=5-4=1,1a -b +4b -1=a -b +4b -1 a -b +4a -b +4b -1 b -1=17+4b -1 a -b +4a -b b -1≥17+24b -1 a -b ⋅4a -b b -1=25当且仅当a -b =b -1=15 时,等号成立,1a -b +4b -1的最小值为25.又1=a -b +4b -1 ≥2a -b ⋅4b -1 =4a -b ⋅b -1 .当且仅当a -b =4b -1 =12时,等号成立,所以ab -b 2-a +b =a -b ⋅b -1 ≤116,故ab -b 2-a +b 的最大值为116.故选:BD .12.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.y =x +4xB.y =x +5x +1x >0 C.y =x sin +4xsin ,x ∈0,π2D.y =4x +41-x【答案】BD【解析】对于A ,当x >0时,y =x +4x ≥2x ⋅4x =4,当且仅当x =4x,即x =2时取等号;当x <0时,y =x +4x =--x +-4x ≤-2x ⋅4x =-4,当且仅当-x =-4x ,即x =-2时取等号,所以y ∈-∞,-4 ⋃4,+∞ ,A 错误;对于B ,y =x +5x +1=x +1+4x +1=x +1+4x +1,因为x >0,所以x +1>1,x +1+4x +1≥2x +1⋅4x +1=4,当且仅当x +1=4x +1,即x =3时取等号,所以y =x +5x +1x >0 的最小值为4,B 正确;对于C ,因为x ∈0,π2,所以x sin ∈0,1 ,由对勾函数性质可知:y =x sin +4x sin ,x ∈5,+∞ ,C 错误;对于D ,4x >0,y =4x +41-x =4x +44x ≥24x ×44x =4,当且仅当4x =44x ,即x =12时取等号,所以y =4x +41-x 的最小值为4,D 正确.故选:BD13.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足4x +7y =4,则2x +3y+12x +y的最小值为______.【答案】94【解析】因为4x +7y =4,所以2x +3y +12x +y =142x +3y +2x +y 2x +3y +12x +y ,所以2x +3y +12x +y =144+2x +3y 2x +y +22x +y x +3y +1,因为x ,y 为正实数,所以2x +3y 2x +y >0,22x +yx +3y>0,所以2x +3y 2x +y +22x +y x +3y≥22x +3y 2x +y ⋅22x +yx +3y =4,当且仅当x +3y =2x +y 4x +7y =4时等号成立,即x =815,y =415时等号成立,所以2x +3y +12x +y ≥144+4+1 =94,当且仅当x =815,y =415时等号成立,所以2x +3y +12x +y 的最小值为94.14.(2022春·天津静海·高三静海一中校考阶段练习)若a ,b ∈R ,且b 2-a 2=1,则a +b2-a 2b的最大值为___________.【答案】2【解析】由题知,a ,b ∈R ,且b 2-a 2=1,即b 2=a 2+1,所以a +b2-a 2b =a +1b ,当a =0时,b 2=1,即b =±1,此时a +1b =±1,所以a +b 2-a 2b的最大值为1,当a ≠0时,a +1b2=a 2+2a +1b 2=1+2a a 2+1≤1+2a 2a =2,当且仅当a =1时取等号,此时-2≤a +1b ≤2;所以a +a 2-b 2b 的最大值为2.综上,a +a 2-b 2b的最大值为2.15.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数x ,y 满足83x 2+2xy +3xy +2y 2=1,则xy的最小值是_________.【答案】52【解析】根据题意,由83x 2+2xy +3xy +2y 2=1可得8xy +2y 2 +33x 2+2xy 3x 2+2xy xy +2y 2=1,即16y 2+9x 2+14xy =3x 3y +8x 2y 2+4xy 3=xy 4y 2+3x 2+8xy所以16y 2+9x 2+14xy 4y 2+3x 2+8xy =xy =16y 2x2+9+14y x 4y 2x2+3+8y x ;又因为x ,y 均是正数,令y x =t ∈0,+∞ ,则xy =f t =16t 2+14t +94t 2+8t +3所以, f t =16t 2+14t +94t 2+8t +3=4-18t +34t 2+8t +3=4-14t 2+8t +318t +3令 g t =4t 2+8t +318t +3,则g t =29t +1127+16918t +3=29t +16 +16918t +3+1027≥229t +16 ×16918t +3+1027=1827当且仅当29t +16 =16918t +3,即t =12时,等号成立;所以f t =4-14t 2+8t +318t +3≥4-11827=4518=52所以f t 的最小值为f t min =52;即当t =y x =12,x =2y =5时,即x =5,y =52时,等号成立.16.(2022春·陕西商洛·高三校联考阶段练习)已知正实数a ,b ,c 满足a 2+ab +b 2-12c 2=0,则当a +bx取得最大值时,a -b 2+c 的最大值为______.【答案】916【解析】由a 2+ab +b 2-12c 2=0,可得12c 2=a +b 2-ab ≥a +b 2-a +b 22=34a +b 2,即a +bc≤4,当且仅当a =b 时,等号成立,所以当a +b c 取得最大值时,a =b ,c =a +b 4=a 2,所以a -b 2+c =32a -a 2=-a -342+916,故当a =34,b =34,c =38时,a -b 2+c 取最大值916.。

函数不等式恒成立问题6大题型

函数不等式恒成立问题6大题型

函数不等式恒成立问题6大题型新高考越来越注重对综合素质的考查,恒成立问题变式考查综合素质的很好途经,它经常以函数、方程、不等式和数列等知识为载体,渗透着还原、化归、分类讨论、数形结合、函数与方程等思想方法。

近几年的数学高考中频频出现恒成立问题、能问题,其形式逐渐多样化,但都与函数、导数知识密不可分,考查难度一般为中等或难题。

一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x2、∀∈x D ,()()max ≥⇔≥m f x m f x3、∃∈x D ,()()max ≤⇔≤m f x m f x4、∃∈x D ,()()min ≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;【题型1单变量不等式恒成立问题】【例1】(2020秋·吉林白城·高三校考阶段练习)设函数()21f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎢⎝⎦⎣⎭C .33,22⎛⎫-∞⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦【变式1-1】(2022秋·吉林·高三校考期末)已知()g x 为奇函数,()h x 为偶函数,且满足()()2xg x h x -+=,若对任意的[]1,1x ∈-都有不等式()()0mh x g x -≥成立,则实数m 的最小值为()A .13B .35C .1D .35-【变式1-2】(2022秋·陕西商洛·高三校联考阶段练习)已知一次函数()f x 满足()()2f f x x =+.(1)求()f x 的解析式;(2)若对任意的()0,x ∈+∞,()af x x >a 的取值范围.【变式1-3】(2022·全国·高三专题练习)已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求,a b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意R t ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.【题型2单变量不等式能成立问题】【例2】(2022秋·福建龙岩·高三上杭一中校考阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为()A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫ ⎪⎝⎭C .13,16⎛⎫+∞⎪⎝⎭D .1313,1616⎛⎫-⎪⎝⎭【变式2-1】(2022秋·辽宁葫芦岛·高三校联考阶段练习)已知函数()3()23a a f x x -=-为幂函数.(1)求函数()2xf a +的值域;(2)若关于x 的不等式2()log ()f x f x a +<在[2,4]上有解,求a 的取值范围.【变式2-2】(2022·黑龙江大庆·大庆实验中学校考模拟预测)已知函数()1f x x x a =+--,1a >.(1)当a =2时,求不等式()1f x >的解集;(2)若()01,1x ∃∈-,使()20001f x x ax <-+-成立,求a 的取值范围.【变式2-3】(2021秋·江苏·高三校联考期中)已知函数()151x af x =-+为奇函数.(1)求实数a 的值;(2)若存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,求x 的取值范围.【变式2-4】(2022秋·重庆北碚·高三重庆市朝阳中学校考开学考试)已知函数4()2x xa g x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值;(2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【题型3任意-任意型不等式成立问题】【例3】(2022秋·上海徐汇·高三上海中学校考期中)已知函数()213,11log ,12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()1x g x x =+,若对任意的实数12,x x ,均有()()12f x g x ≤,则实数k 的取值范围是__.【变式3-1】(2022秋·安徽合肥·高三合肥市第十中学校联考阶段练习)已知函数()f x 满足22()()(0)f x f x x x x+-=+≠.(1)求()y f x =的解析式,并求()f x 在[3,1]--上的值域;(2)若对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,求实数k的取值范围.【变式3-2】(2022秋·全国·高三统考阶段练习)已知函数()1lg x f x xλ+=.(1)当2λ=时,解不等式()0f x >;(2)设0λ>,当1,22a ⎡⎤∈⎢⎥⎣⎦时,对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,求λ的取值范围.【变式3-3】(2022秋·上海浦东新·高三校考阶段练习)设()e xf x =,函数()g x 的图像和函数()f x 的图像关于y 轴对称.(1)若()()43f x g x =+,求x 的值.(2)令()()2f x h x x=,()22t x x x a =-++,若对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,求实数a 的取值范围.【题型4任意-存在性不等式成立问题】【例4】(2022秋·江苏常州·高三校联考阶段练习)已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,命题p :对任意[]10,3x ∈,都存在[]22,1x ∈--,使得()()12f x g x,则命题p 正确的一个充分不必要条件是()A .3mB .2mC .1mD .0m【变式4-1】(2022秋·天津宝坻·高三天津市宝坻区第一中学校考期末)已知函数2()x x af x x++=.(1)若()()1g x f x =-,判断()g x 的奇偶性并加以证明;(2)当12a =时,①用定义法证明函数()f x 在[1,)+∞上单调递增,再求函数()f x 在[1,)+∞上的最小值;②设()52h x kx k =+-,若对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤成立,求实数k 的取值范围.【变式4-2】(2022秋·广东广州·高三广东实验中学校考阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【变式4-3】(2022秋·河北邢台·高三校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()()2log 21x f x kx =+-,()()g x f x x =+.(1)求k 的值;若函数()f x 的定义域为[]0,4,求()()22f x xh x +=的值域.(2)设()4ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【题型5存在-存在性不等式成立问题】【例5】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)已知函数()1f x x x a =-+.(1)当0a =时,解不等式()()2122f x f x -++>;(2)若存在1x ,(]2,ln 2x ∈-∞,使得()()12e e3x x f f ->,求实数a 的取值范围.【变式5-1】(2022秋·江苏泰州·高一靖江高级中学校考期末)已知函数()()121,2121x x x f x g x ++==--(1)利用函数单调性的定义,判断并证明函数()f x 在区间()0,∞+上的单调性;(2)若存在实数()12,0,x x ∈+∞且12x x <,使得()f x 在区间[]12,x x 上的值域为()()21,m m g x g x ⎡⎤⎢⎥⎢⎥⎣⎦,求实数m 的取值范围.【变式5-2】(2022秋·江西抚州·高三江西省抚州市第一中学校考阶段练习)已知()214f x x x =-++(1)解不等式()23f x x +≤;(2)若存在实数x 1,x 2,使得()21222f x x x a <-++,求实数a 的取值范围.【变式5-3】(2022·全国·高三专题练习)已知函数()()2xx ax bf x x R e ++=∈的一个极值点是2x =.(1)求a 与b 的关系式,并求()f x 的单调区间;(2)设0a >,()22x g x a e -=,若存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,求实数a 的范围.【题型6任意-存在性等式成立问题】【例6】(2023·全国·高三对口高考)已知函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2cos 13g x k x ⎛⎫=-- ⎪⎝⎭,若对任意π4π,33t ⎡⎤∈⎢⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,则实数k 的可能取值是().A .54B .74C .94D .114【变式6-1】(2022秋·北京·高三人大附中校考阶段练习)已知函数()24a x x x f =-+,()5g x ax a =+-,若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A .(],9-∞-B .[]9,3-C .[)3,+∞D .(][),93,-∞-+∞ 【变式6-2】(2022秋·北京·高三北师大实验中学校考期中)已知函数()()214x a f x x x+=≤≤,且()15f =.(1)求实数a 的值,并求函数()f x 的最大值和最小值;(2)函数()()122g x kx x =--≤≤,若对任意[]11,4x ∈,总存在[]02,2x ∈-,使得()()01g x f x =成立,求实数k 的取值范围.【变式6-3】(2022秋·上海长宁·高三上海市延安中学校考期中)已知2()327mx n f x x +=+,||1()3x m g x -⎛⎫= ⎪⎝⎭,其中,m n ∈R ,且函数()y f x =为奇函数;(1)若函数()y f x =的图像过点A (1,1),求实数m 和n 的值;(2)当3m =时,不等式()()()()f x g x af x g x +≥对任意[3,)x ∈+∞恒成立,求实数a 的取值范围;(3)设函数()()()393f x x h xg x x ⎧≥⎪=⎨<⎪⎩,若对任意1[3,)x ∈+∞,总存在唯一的2(,3)x ∈-∞使得()()12h x h x =成立,求实数m的取值范围;(建议用时:60分钟)1.(2022秋·北京西城·高三北京师大附中校考阶段练习)已知函数()253,121,1 2x x x f x x x x ⎧-+≤⎪⎪=⎨⎪+>⎪⎩设R a ∈,若关于x 的不等式()2x f x a ≥+恒成立,则a 的取值范围是()A .[]2,1-B .232,44⎡-⎢⎥⎣⎦C .32,14⎡⎤-⎢⎥⎣⎦D .[]1,2-2.(2022秋·黑龙江哈尔滨·高三哈尔滨市第六中学校校考期中)已知()f x ,()g x 分别为定义域为R 的偶函数和奇函数,且()()e xf xg x +=,若关于x 的不等式()()220f x ag x -≥在()0,ln 3上恒成立,则正实数a 的取值范围是()A .15,8⎡⎫+∞⎪⎢⎣⎭B .[)0,∞+C .15,8⎛⎤-∞ ⎝⎦D .150,8⎛⎤⎥⎝⎦3.(2022·全国·高三专题练习)设函数()()1xf x xe a x =--,其中1a <,若存在唯一整数0x ,使得()0f x a <,则a 的取值范围是().A .21,1e ⎡⎫-⎪⎢⎣⎭B .211,e e ⎡⎫-⎪⎢⎣⎭C .211,e e ⎡⎫⎪⎢⎣⎭D .21,1e ⎡⎫⎪⎢⎣⎭4.(2022·全国·高三专题练习)已知函数()2222,2log ,2x x x f x x x ⎧-+<=⎨>⎩,若∃0x ∈R ,使得()2054f x m m ≤-成立,则实数m 的取值范围为()A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .124⎡⎤-⎢⎥⎣⎦,D .113⎡⎤⎢⎥⎣⎦,5.(2022秋·江苏盐城·高三校考阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,对任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是()A .13,4⎛⎤-∞ ⎝⎦B .13,4⎛⎫+∞⎪⎝⎭C .130,4⎛⎫⎪⎝⎭D .(1,4)6.(2022秋·河南·高三安阳一中校联考阶段练习)已知函数()()22()26f x x x x ax b =-+++,且对任意的实数x ,()(4)f x f x =-恒成立,函数2()4mxg x x =+,若对[]11,3x ∀∈,[]21,3x ∃∈,使12()()g x f x =,则正实数m 的取值范围是()A .(][)0,1524,⋃+∞B .[]15,24C .[]16,25D .(][)0,1625,⋃+∞7.(2023秋·河南郑州·高三校联考期末)已知函数()()224,243f x x m x g x x x =++-=-+.(1)若3m =,求不等式()7f x >的解集;(2)若12R,R x x ∀∈∃∈,使得()()12f x g x ≥成立,求实数m 的取值范围.8.(2022秋·辽宁·高三大连二十四中校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()2()log 21x f x kx =+-,()()g x f x x =+.(1)若不等式()422(2)x xg a g -⋅+>-恒成立,求实数a 的取值范围;(2)设4()ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.9.(2022秋·湖南岳阳·高三校考阶段练习)已知函数()141log 1axf x x -=-的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)当()1,x ∈+∞时,()()14log 1f x x m+-<恒成立,求实数m 的取值范围;(3)若关于x 的方程()()14log f x x k =+在[]2,3上有解,求实数k 的取值范围.参考答案【题型1单变量不等式恒成立问题】【例1】(2020秋·吉林白城·高三校考阶段练习)设函数()21f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎢⎝⎦⎣⎭C .33,22⎛⎡⎫-∞⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦【答案】C【解析】由对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414xf m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,得222222314(1)(1)14(1)(,))[2x m x x m x m ---≤--+-∈+∞恒成立,即22213241m m x x -≤--+在3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,令211()321x x x ϕ⎛⎫=--+ ⎪⎝⎭,因为3,2x ⎡⎫∈+∞⎪⎢⎣⎭,令120,3t x ⎛⎤=∈ ⎥⎝⎦,则2()321t t t ϕ=--+,所以2()321t t t ϕ=--+在20,3t ⎛⎤∈ ⎥⎝⎦单调递减,所以min 25()(33t ϕϕ==-,所以221543m m -≤-,化简得()2231(43)0m m +-≥,解得3m ≤3m ≥故选:C.【变式1-1】(2022秋·吉林·高三校考期末)已知()g x 为奇函数,()h x 为偶函数,且满足()()2xg x h x -+=,若对任意的[]1,1x ∈-都有不等式()()0mh x g x -≥成立,则实数m 的最小值为()A .13B .35C .1D .35-【答案】B【解析】 ()g x 为奇函数,()h x 为偶函数,且()()2xg x h x -+=①()()()()2x g x h x g x h x ∴-+-=-+=②①②两式联立可得()222x xg x -=-,()222x x h x -=+.由()()0mh x g x -≥,即2222022x x x xm ----≥+,得224121224141x x x x x x x m ----≥==-+++,∵41=+x t 在[]1,1x ∈-是增函数,且5,54t ⎡⎤∈⎢⎥⎣⎦,2y t=-在5,54t ⎡⎤∈⎢⎥⎣⎦上是单调递增,∴由复合函数的单调性可知2141x y =-+在[]1,1x ∈-为增函数,∴max 2231141415x⎛⎫-=-= ⎪++⎝⎭,∴35m ≥,即实数m 的最小值为35.故选:B.【变式1-2】(2022秋·陕西商洛·高三校联考阶段练习)已知一次函数()f x 满足()()2f f x x =+.(1)求()f x 的解析式;(2)若对任意的()0,x ∈+∞,()af x x >a 的取值范围.【答案】(1)()1f x x =+;(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】(1)设(),0f x kx b k =+≠,则()()()()22f f x f kx b k kx b b k x kb b x =+=++=++=+,所以212k kb b ⎧=⎨+=⎩解得11k b =⎧⎨=⎩所以()f x 的解析式为()1f x x =+.(2)由()0,x ∈+∞,()af x x >1x a x >+,11112x x x x=≤+x x =1x =时,1x x +取得最大值,所以12a >,即a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.【变式1-3】(2022·全国·高三专题练习)已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求,a b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意R t ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.【答案】(1)1a =,1b =;(2)证明见解析.;(3)1,3⎛⎫-∞- ⎪⎝⎭【解析】(1)()f x 为R 上的奇函数,02(0)02b f a-∴==+,可得1b =又(1)(1)f f -=-,11121222a a----∴=-++,解之得1a =,经检验当1a =且1b =时,12()21xx f x -=+,满足1221()()2112x x x xf x f x -----===-++是奇函数,故1a =,1b =.(2)由(1)得122()12121x x xf x -==-+++,任取实数12,x x ,且12x x <,则()()()()()211212122222221212121x x x x x x f x f x --=-=++++,12x x < ,可得1222x x <,且()()1221210x x ++>,故()()()211222202121x x x x ->++,()()120f x f x ∴->,即()()12f x f x >,所以函数()f x 在(,)-∞+∞上为减函数;(3)根据(1)(2)知,函数()f x 是奇函数且在(,)-∞+∞上为减函数.∴不等式()()22220f t t f t k -+-<恒成立,即()()()222222f t t f t k f t k -<--=-+恒成立,也就是:2222t t t k ->-+对任意的R t ∈都成立,即232k t t <-对任意的R t ∈都成立,221132333t t t ⎛⎫-=-- ⎪⎝⎭ ,当13t =时232t t -取得最小值为13-,13k ∴<-,即k 的范围是1,3⎛⎫-∞- ⎪⎝⎭.【题型2单变量不等式能成立问题】【例2】(2022秋·福建龙岩·高三上杭一中校考阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为()A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫⎪⎝⎭C .13,16⎛⎫+∞⎪⎝⎭D .1313,1616⎛⎫-⎪⎝⎭【答案】C【解析】∵()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∴114x ≤≤,12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎣⎦上的最小值.∵213()24g x x ⎛⎫=-+ ⎪⎝⎭,∴()g x 在12,4⎡⎤-⎢⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∴实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.故选:C .【变式2-1】(2022秋·辽宁葫芦岛·高三校联考阶段练习)已知函数()3()23a a f x x -=-为幂函数.(1)求函数()2xf a +的值域;(2)若关于x 的不等式2()log ()f x f x a +<在[2,4]上有解,求a 的取值范围.【答案】(1)10,2⎛⎫⎪⎝⎭;(2)7,4⎛⎫-+∞ ⎪⎝⎭【解析】(1)由题意可得231a -=,解得2a =,则1()f x x =,所以()1222xx f a +=+,因为x ∈R ,则222x +>,故函数()2xf a +的值域为10,2⎛⎫ ⎪⎝⎭.(2)方法一:因为1()f x x=在[]2,4上单调递减,所以1()f x x =在[]2,4上的值域为11,42⎡⎤⎢⎥⎣⎦.令()f x t =,2()log g t t t =+,则()g t 在11,42⎡⎤⎢⎥⎣⎦上单调递增,所以()g t 的最小值为1172444g ⎛⎫=-=- ⎪⎝⎭,所以74a >-,即a 的取值范围为7,4⎛⎫-+∞ ⎪⎝⎭.方法二:因为1()f x x =,所以2()log ()f x f x a +<即21log x a x-<.令函数21()log g x x x=-,则()g x 在[]2,4上单调递减,所以()g x 的最小值为17(4)244g =-=-,所以74a >-,即a 的取值范围为7,4⎛⎫-+∞ ⎪⎝⎭.【变式2-2】(2022·黑龙江大庆·大庆实验中学校考模拟预测)已知函数()1f x x x a =+--,1a >.(1)当a =2时,求不等式()1f x >的解集;(2)若()01,1x ∃∈-,使()20001f x x ax <-+-成立,求a 的取值范围.【答案】(1){}1x x >;;(2)()2,+∞.【解析】(1)当a =2时,()12f x x x =+--,当2x ≥时,()3f x =,()1f x >恒成立,解得2x ≥;当12x -<<时,()21f x x =-,由()1f x >,得1x >,解得12x <<;当1x ≤-时,()3f x =-,()1f x >无解,综上所述,()1f x >的解集为{}1x x >;(2)当1a >,()1,1x ∈-时,()121f x x a x x a =+-+=-+.由()21f x x ax <-+-得2211x a x ax -+<-+-,即()2122x a x x +>++.当()1,1x ∈-时,()10,2x +∈,所以2221x x a x++>+.若()1,1x ∃∈-使()21f x x ax <-+-成立,则只需2min221x x a x ⎛⎫++> ⎪+⎝⎭,而222111(1)2111x x x x x x x++=++≥+⋅+++(当且仅当x =0时等号成立),所以a 的取值范围为()2,+∞.【变式2-3】(2021秋·江苏·高三校联考期中)已知函数()151x af x =-+为奇函数.(1)求实数a 的值;(2)若存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,求x 的取值范围.【答案】(1)2a =;(2)[]22-,【解析】(1)函数的定义域为R ,由题意可得()00f =,即01051a-=+,解得2a =,所以2()151x f x =-+,()()()222511120515151x x x xf x f x -+--+-=-==++++,即()f x 为奇函数,所以2a =.(2)由(1)可知2()151x f x =-+, 存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,∴存在m ∈[-1,1],使得不等式()22(2)20f x x f mx mx ++-+-≤成立,设()()g x f x x =+,定义域为R ,()f x 为奇函数,()()f x f x ∴=--,而()()()()g x f x x f x x g x -=--=--=-,所以()g x 为奇函数,∴存在m ∈[-1,1],()()22g x g mx ≤--成立,即存在m ∈[-1,1],()()22g x g mx ≤-成立,又因为2()151xf x =-+在R 上单调递增,所以()()g x f x x =+在定义域R 上单调递增,所以22x mx ≤-,∴存在m ∈[-1,1],使得220mx x +-≤,看成关于m 的一次函数,当0x >时,220x x -+-≤,解得02x <≤;当0x =时,20-≤不等式成立;当0x <时,则220x x +-≤,解得20x -≤<,综上所述,x 的取值范围为[]22-,【变式2-4】(2022秋·重庆北碚·高三重庆市朝阳中学校考开学考试)已知函数4()2x xa g x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值;(2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【答案】(1)11,2a b ==-;(2)910110m -<<.【解析】(1)因为函数4()2x x ag x -=是奇函数,所以(0)0g =得1a =,则41()2x x g x -=,经检验()g x 是奇函数.又()()lg 101xf x bx =++是偶函数,所以(1)(1)f f -=得12b =-,则()1()lg 1012xf x x =+-,经检验()f x 是偶函数,∴112a b ==-,.(2)()()lg 101x h x =+,lg(109)(lg(109))lg[101lg(1010)m h m m +⎤+=+=+⎦,则由已知得,存在(]0,1x ∈,使不等式lg(1010)()m g x >+成立,因为411()222x x x x g x -==-,易知()g x 单调递增,∴max 3()(1)2g x g ==,∴323lg(1010)lg101g10102m +<==∴101010m +<所以101m -,又109010100m m +>⎧⎨+>⎩,解得910m >-,所以910110m -<<.【题型3任意-任意型不等式成立问题】【例3】(2022秋·上海徐汇·高三上海中学校考期中)已知函数()213,11log ,12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()1x g x x =+,若对任意的实数12,x x ,均有()()12f x g x ≤,则实数k 的取值范围是__.【答案】3,4⎛⎤-∞- ⎥⎝⎦【解析】由于对任意的12,R x x ∈,均有()()12f x g x ≤,因此max min ()()f x g x ≤,当0x >时,1()1g x x x =+,而12x x+≥,当且仅当=1x 时,等号成立,因此()()110,0012g x g x x<=≤=+,当0x <时,21()11x g x x x x==++,1120x x x x ⎛⎫+=---≤-< ⎪⎝⎭,当且仅当=1x -时,等号成立,此时,11()12g x x x =≥-+,所以,min 1()2g x =-.对()f x ,由已知,()2f x xx k =-++在1x ≤上最大值为1124f k⎛⎫=+ ⎪⎝⎭;()131log 2f x x =-+在1x >时单调递减,所以有()12f x <-满足.所以要使()()max min f xg x ≤成立,只需满足1142k +≤-所以34k ≤-,则实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.【变式3-1】(2022秋·安徽合肥·高三合肥市第十中学校联考阶段练习)已知函数()f x 满足22()()(0)f x f x x x x+-=+≠.(1)求()y f x =的解析式,并求()f x 在[3,1]--上的值域;(2)若对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,求实数k的取值范围.【答案】(1)2()(0)f x x x x =+≠,()f x 在[3,1]--上的值域为11,23⎡--⎢⎣;(2)(],2-∞.【解析】(1)函数()f x 的定义域为{}0x x ≠,因为22()()f x f x x x+-=+①,所以22()()f x f x x x-+=--②,联立①②解得2()(0)f x x x x=+≠22222(2((2)2))1f x x x x x x x '=--+-==,当3,2x ⎡∈-⎣时,()0f x '>,()f x 为增函数;当(2,1x ⎤∈-⎦时,()0f x '<,()f x 为减函数,因为11(3),(2)22,(1)33f f f -=--=--=-,所以11(),223f x ⎡∈--⎢⎣,即()f x 在[3,1]--上的值域为11,223⎡--⎢⎣.(2)对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,不妨设1224x x <<<,可得函数()()2kk g x f x x x x+=+=+在区间()2,4上单调递增,则()2210k g x x +'=-≥对任意的()2,4x ∈恒成立,即22k x +≤,当()2,4x ∈时,2416x <<,故24k +≤,解得2k ≤.因此,实数k 的取值范围是(],2-∞.【变式3-2】(2022秋·全国·高三统考阶段练习)已知函数()1lg x f x xλ+=.(1)当2λ=时,解不等式()0f x >;(2)设0λ>,当1,22a ⎡⎤∈⎢⎥⎣⎦时,对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,求λ的取值范围.【答案】(1)()(),10,x ∈-∞-+∞ ;(2)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当2λ=时,()21lgx f x x+=由21lg0x x+>,得2121110x x x x ++>⇒->,即10x x+>,等价于()10x x +>,解得()(),10,x ∈-∞-+∞ ;(2)因为对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,所以对任意1x ,[]2,1x a a ∈+,都有()()max min lg 2f x f x ≤-,设()f x 的定义域为I ,又当1x ,2x I ∈且12x x <时,有121211x x x x λλ++>,即121211lg lg x x x x λλ++>,即()()12f x f x >,所以()f x 在I 上单调递减.因此函数()f x 在区间[],1a a +上的最大值与最小值分别为()f a ,()1f a +.由()11()1lg lg lg 21a a f a f a a a λλλ+++⎛⎫⎛⎫-+=-≤⎪ ⎪+⎝⎭⎝⎭,化简得()2110a a λλ++-≥,上式对任意1,22a ⎡⎤∈⎢⎥⎣⎦成立.因为0λ>,2(1)40λλ∆=++>令()()211h a a a λλ=++-,对称轴为102a λλ+=-<,所以函数()()211h a a a λλ=++-在区间1,22a ⎡⎤∈⎢⎥⎣⎦上单调递增,所以,()min h a =131242h λ⎛⎫=- ⎪⎝⎭,由31042λ-≥,得23λ≥.故λ的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.【变式3-3】(2022秋·上海浦东新·高三校考阶段练习)设()e xf x =,函数()g x 的图像和函数()f x 的图像关于y 轴对称.(1)若()()43f x g x =+,求x 的值.(2)令()()2f x h x x=,()22t x x x a =-++,若对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,求实数a 的取值范围.【答案】(1)ln 4x =;(2),12e⎛⎤-∞- ⎥⎝⎦【解析】(1)由题意得:()e xg x -=,则e e 43x x -=+,即2e e 340x x --=,解得:e 4x =或1-(舍去),所以ln 4x =;(2)()e 2x h x x=,()22t x x x a =-++,对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,则只需()e 2xh x x=在()0,+∞上的最小值大于等于()t x 在()0,+∞上的最大值,()()2e 12x x h x x-'=,当1x >时,()0h x '>,当01x <<时,()0h x '<,所以()e 2xh x x =在()1,+∞上单调递增,在()0,1上单调递减,故()e 2xh x x =在=1x 处取得最小值,()()min 1e 2h x h ==,()()22211t x x x a x a =-++=--++,()0,x ∈+∞,当=1x 时,()t x 取得最大值,()()max 11t x t a ==+,所以e 12a ≥+,故12e a ≤-.求实数a 的取值范围,12e⎛⎤-∞- ⎥⎝⎦.【题型4任意-存在性不等式成立问题】【例4】(2022秋·江苏常州·高三校联考阶段练习)已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,命题p :对任意[]10,3x ∈,都存在[]22,1x ∈--,使得()()12f x g x,则命题p 正确的一个充分不必要条件是()A .3mB .2mC .1mD .0m【答案】A【解析】p 为真,()f x 在[]0,3单调递增,()min ()00f x f ==,()g x 在[]2,1--单调递减,()min ()12g x g m =-=-,02m ∴≥-,2m ∴≥.又“3m ≥”是“2m ≥”的一个充分不必要条件.故选:A .【变式4-1】(2022秋·天津宝坻·高三天津市宝坻区第一中学校考期末)已知函数2()x x a f x x++=.(1)若()()1g x f x =-,判断()g x 的奇偶性并加以证明;(2)当12a =时,①用定义法证明函数()f x 在[1,)+∞上单调递增,再求函数()f x 在[1,)+∞上的最小值;②设()52h x kx k =+-,若对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤成立,求实数k 的取值范围.【答案】(1)见解析;(2)见解析【解析】(1)由已知2()x x a f x x++=,()()()()1=00ag x f x x x x=-+∈-∞+∞ ,,,,()()a a g x x x g x x x ⎛⎫-=--=-+=- ⎪⎝⎭故()g x 为奇函数.(2)①当12a =时,()112f x x x=++,[)12,1,x x ∀∈+∞,且12x x <()()()()()211212121212121211111=1222x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=-+--+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为[)12,1,x x ∞∈+,所以()120x x -<,121102x x ⎛⎫-> ⎝⎭,所以()()120f x f x -<即()()12f x f x <,故函数()f x 在[1,)+∞为单调递增,函数()f x 在[1,)+∞上的最小值为()15111=22f =++②由①知,1[1,2]x ∈,所以()1513,24f x ⎡⎤∈⎢⎥⎣⎦,当0k =时,()25h x =,()()12f x h x ≤成立,符合题意.当0k >时,22()52h x kx k =+-在2[0,1]x ∈为单调递增,[]2()52,5h x k k ∈--对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤故()()12max max f x h x ≤,即1354k ≤-,解得704k <≤当0k <时,22()52h x kx k =+-在2[0,1]x ∈为单调递减,[]2()552h x k k ∈--,同理:()()12max max f x h x ≤,即13524k ≤-,解得0k <综上可知:k 的取值范围为74⎛⎤-∞ ⎥⎝⎦,.【变式4-2】(2022秋·广东广州·高三广东实验中学校考阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【答案】(1)奇函数,理由见解析;(2)最大值为(3)6f -=;(3)2m <-或2m >.【解析】(1)令==0x y ,则(0)2(0)f f =,可得(0)=0f ,令y x =-,则(0)()()0f f x f x =+-=,可得()()f x f x -=-,又()f x 定义域为R ,故()f x 为奇函数.(2)令12=+>=x x y x x ,则1212()=()+()f x f x f x x -,且120x x ->,因为0x >时,()0f x <,所以1212()()=()<0f x f x f x x --,故12()()f x f x <,即()f x 在定义域上单调递减,所以()f x 在[]3,3-上的最大值为(3)=(12)=(1)+(2)=3(1)=3(1)=6f f f f f f -------.(3)由(2),()f x 在[]1,1-上min ()=(1)=2f x f -,2[1,1],[1,1],()<22x a f x m am ∃∈-∀∈---恒成立,即2[1,1],22>2a m am ∀∈----恒成立,所以2[1,1],()=2>0a g a m ma ∀∈--恒成立,显然0m =时不成立,则2>0(1)=2>0m g m m -⎧⎨⎩,可得2m >;2<0(1)=+2>0m g m m -⎧⎨⎩,可得2m <-;综上,2m <-或2m >.【变式4-3】(2022秋·河北邢台·高三校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()()2log 21x f x kx =+-,()()g x f x x =+.(1)求k 的值;若函数()f x 的定义域为[]0,4,求()()22f x xh x +=的值域.(2)设()4ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【答案】(1)12k =;()h x 值域为[]2,17;(2)3e 1,2⎡⎫++∞⎪⎢⎣⎭【解析】(1)()()()()22212log log 21log 222102xx x x f x f x kx kx kx k x -+--=+-++=+=-= ,210∴-=k ,解得:12k =,()()21log 212xf x x ∴=+-;若()f x 定义域为[]0,4,则由024x ≤≤得:02x ≤≤,即()2f x 的定义域为[]0,2;()()222log 21x f x x +=+ ,()()22221f x x x h x +∴==+,∴当[]0,2x ∈时,[]2212,17x +∈,()h x ∴值域为[]2,17.(2)由(1)得:()()21log 212xg x x =++;21x y =+ 在R 上单调递增,()2log 21xy ∴=+在R 上单调递增,又12y x =在R 上单调递增,()g x ∴在R 上单调递增;当[]0,3x ∈时,()()min 01g x g ==;对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,∴存在22e,e x ⎡⎤∈⎣⎦,4ln 211x x x mx +-+≤,即32ln m x x ≥+,3ln y x x =+ 在2,e e ⎡⎤⎣⎦上单调递增,()33min ln e 1x x ∴+=+,32e 1m ∴≥+,解得:3e 12m +≥,即实数m 的取值范围为3e 1,2⎡⎫++∞⎪⎢⎣⎭.【题型5存在-存在性不等式成立问题】【例5】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)已知函数()1f x x x a =-+.(1)当0a =时,解不等式()()2122f x f x -++>;(2)若存在1x ,(]2,ln 2x ∈-∞,使得()()12e e3x xf f ->,求实数a 的取值范围.【答案】(1)1,3⎛⎫-+∞ ⎪⎝⎭;(2)()1,23,2⎛⎫-∞⋃+∞⎪⎝⎭【解析】(1)当0a =时,()1f x x x =+,记()22,0,0x x g x x x x x ⎧-<==⎨≥⎩,则()()g x g x -=-,故()g x 为奇函数,且()g x 在R 上单调递增,不等式()()2122f x f x -++>化为()()211212g x g x -++++>,即()()2120g x g x -++>,进一步化为()()212g x g x ->-+,即()()212g x g x ->--,从而由()g x 在R 上单调递增,得212x x ->--,解得13x >-,故不等式的解集为1,3⎛⎫-+∞ ⎪⎝⎭.(2)设11e xt =,22e x t =,则问题转化为存在(]12,0,2t t ∈,使得()()123f t f t ->,又注意到0t >时,()11f t t t a =-+>,且()01f =,可知问题等价于存在(]0,2t ∈,()4f t >,即3t t a ->在(]0,2t ∈上有解.即3t a t ->在(]0,2t ∈上有解,于是3a t t ->或3a t t-<-在(]0,2t ∈上有解,进而3a t t >+或3a t t<-在(]0,2t ∈上有解,由函数()3g t t t =+在(3上单调递减,在3,2⎡⎤⎣⎦上单调递增,()3h t t t=-在(]0,2上单调递增,可知()min 323g t g==()()max 122h t h ==,故a 的取值范围是()1,23,2⎛⎫-∞⋃+∞ ⎪⎝⎭.【变式5-1】(2022秋·江苏泰州·高一靖江高级中学校考期末)已知函数()()121,2121x x x f x g x ++==--(1)利用函数单调性的定义,判断并证明函数()f x 在区间()0,∞+上的单调性;(2)若存在实数()12,0,x x ∈+∞且12x x <,使得()f x 在区间[]12,x x 上的值域为()()21,m m g x g x ⎡⎤⎢⎥⎢⎥⎣⎦,求实数m 的取值范围.【答案】(1)()f x 在区间()0,∞+上是减函数,详见解析;;(2)()9,+∞.【解析】(1)由题可得()21212121x x x f x +==+--,()f x 在区间()0,∞+上是减函数,任取()12,0,x x ∈+∞,且12x x <,则21221x x >>,则()()()()()22111212222221121212121x x x x x x f x f x -⎛⎫⎛⎫-=+-+= ⎪ ⎪----⎝⎭⎝⎭,由题设知21121120,20,220x x x x--->>>,故()()()()()21121222202121x x x x f x f x --=>--,所以()()12f x f x >,所以()f x 在区间()0,∞+上是减函数;(2)由(1)知()f x 在区间()0,∞+上是减函数,所以当120x x <<时,()f x 在区间[]12,x x 上单调递减,所以函数()f x 在区间[]12,x x 上的值域为()()2121212121,,2121x x x x f x f x ⎡⎤++⎡⎤=⎢⎥⎣⎦--⎣⎦,所以2221111121212121 2121x x x x x x m m ++⎧+=⎪⎪--⎨+⎪=⎪--⎩,所以1212121x x x m ++=--在()0,∞+上有两解,所以()()()22121210x x xm ⋅-+--=在()0,∞+上有两解,令21x t =-,则210x t =->,则关于t 的方程()()2120t t mt ++-=在()0,∞+上有两解,即()22520t m t +-+=在()0,∞+上有2解,所以220504Δ(5)160m m >⎧⎪-⎪>⎨⎪=-->⎪⎩,解得9m >,所以m 的取值范围为()9,+∞.【变式5-2】(2022秋·江西抚州·高三江西省抚州市第一中学校考阶段练习)已知()214f x x x =-++(1)解不等式()23f x x +≤;(2)若存在实数x 1,x 2,使得()21222f x x x a <-++,求实数a 的取值范围.【答案】(1)[)1,+∞;(2)()4,+∞【解析】(1)依题意,21423x x x -+++≤,不等式化为以下3个不等式组:①42(1)(4)23x x x x <-⎧⎨---+≤+⎩即423x x <-⎧⎪⎨≥-⎪⎩,无解,②412(1)(4)23x x x x-≤<⎧⎨--++≤+⎩即411x x -≤<⎧⎨≥⎩,无解,12(1)(4)23x x x x ≥⎧⎨-++≤+⎩,即13223x x x ≥⎧⎨+≤+⎩,解得1x ≥,所以不等式()23f x x +≤的解集为[)1,+∞.(2)因为()()()3246(41)321x x f x x x x x ⎧--<-⎪=-+-≤<⎨⎪+≥⎩所以当1x =时,()f x 取得最小值5()()222111=-++=--+++≤g x x x a x a a ,()max 1g x a =+若存在实数1x ,2x ,使得()21222f x x x a <-++,则()min max ()f x g x <即51a <+,所以4a >即实数a 的取值范围是()4,+∞.【变式5-3】(2022·全国·高三专题练习)已知函数()()2xx ax bf x x R e ++=∈的一个极值点是2x =.(1)求a 与b 的关系式,并求()f x 的单调区间;(2)设0a >,()22x g x a e -=,若存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,求实数a 的范围.【答案】(1)0a b +=,单调区间见解析;(2)0<<3a 【解析】(1)可求得()()22xx a x a b f x e -+-+-'=,()f x 的一个极值点是2x =,()()242220a a bf e-+-+-'∴==,解得0a b +=,()()()()2222xxx a x a x a x f x e e -+-+-+-'∴=,当2a =-时,()0f x '≤,()f x 单调递减,此时函数没有极值点,不符合题意,当2a <-时,令()0f x ¢>,解得2x a <<-,令()0f x '<,解得2x <或x a >-,当2a >-时,令()0f x ¢>,解得2a x -<<,令()0f x '<,解得x a <-或2x >,综上,当2a <-时,()f x 的单调递增区间为()2,a -,单调递减区间为(),2∞-,(),a -+∞;当2a >-时,()f x 的单调递增区间为(),2a -,单调递减区间为(),a -∞-,()2,∞+;(2)()2xx ax a f x e +-=,由(1)可知,0a >时,()f x 在()0,2单调递增,在()2,3单调递减,()()2max 42af x f e +∴==,()00f a =-< ,()39230a f e +=>,()min f x a ∴=-,()22x g x a e-= 在[]0,3单调递增,()()22min 0ag x g e∴==,()()2max 3g x g a e ==,存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,即存在1x ,[]20,3x ∈,使得()()()2122222g x f x g x e e -<<+成立,2222222240a a e e aa e e e a ⎧-<+⎪⎪+⎪∴-<⎨⎪>⎪⎪⎩,解得0<<3a .【题型6任意-存在性等式成立问题】【例6】(2023·全国·高三对口高考)已知函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2cos 13g x k x ⎛⎫=-- ⎪⎝⎭,若对任意π4π,33t ⎡⎤∈⎢⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,则实数k 的可能取值是().A .54B .74C .94D .114【答案】B【解析】当π4π,33x ⎡⎤∈⎢⎣⎦,有π1π5π3266x ≤+≤,故11πsin 1226x ⎛⎫≤+≤ ⎪⎝⎭,所以1π12sin 226x ⎛⎫≤+≤ ⎪⎝⎭,故()f x 的值域为[]1,2.当π2π,63x ⎛⎫∈ ⎪⎝⎭,有πππ633x -<-<,故1πcos 123x ⎛⎫<-≤ ⎪⎝⎭,所以π12cos 23x ⎛⎫<-≤ ⎪⎝⎭,当0k >时,()g x 的值域为(1,21]k k --,因为任意π4π,33t ⎡⎤∈⎢⎥⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,故[]1,2(1,21]k k ⊆--,故011212k k k >⎧⎪-<⎨⎪-≥⎩,即322k ≤<.当0k <,同理有[1,2][21,1)k k ⊆--,故012211k k k <⎧⎪->⎨⎪-≥⎩,此不等式组无解.综上,322k ≤<.四个选项中,只有37224≤<.故选:B.。

不等式恒成立、能成立问题【七大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

不等式恒成立、能成立问题【七大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

不等式恒成立、能成立问题【七大题型】【题型1 一元二次不等式在实数集上恒成立问题】 (2)【题型2 一元二次不等式在某区间上的恒成立问题】 (3)【题型3 给定参数范围的一元二次不等式恒成立问题】 (5)【题型4 基本不等式求解恒成立问题】 (7)【题型5 一元二次不等式在实数集上有解问题】 (10)【题型6 一元二次不等式在某区间上有解问题】 (11)【题型7 一元二次不等式恒成立、有解问题综合】 (13)1、不等式恒成立、能成立问题一元二次不等式是高考数学的重要内容.从近几年的高考情况来看,“含参不等式恒成立与能成立问题”是常考的热点内容,这类问题把不等式、函数、三角、几何等知识有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐.另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维能力都起到很好的作用.【知识点1 不等式恒成立、能成立问题】1.一元二次不等式恒成立、能成立问题不等式对任意实数x恒成立,就是不等式的解集为R,对于一元二次不等式ax2+bx+c>0,它的解集为R的条件为{a>0,Δ=b2-4ac<0;一元二次不等式ax2+bx+c≥0,它的解集为R的条件为{a>0,Δ=b2-4ac≤0;一元二次不等式ax2+bx+c>0的解集为∅的条件为{a<0,Δ≤0.2.一元二次不等式恒成立问题的求解方法(1)对于二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.(2)解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.①若ax2+bx+c>0恒成立,则有a>0,且△<0;若ax2+bx+c<0恒成立,则有a<0,且△<0.②对第二种情况,要充分结合函数图象利用函数的最值求解(也可采用分离参数的方法).3.给定参数范围的一元二次不等式恒成立问题的解题策略解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数;即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.4.常见不等式恒成立及有解问题的函数处理策略不等式恒成立问题常常转化为函数的最值来处理,具体如下:(1)对任意的x∈[m,n],a>f(x)恒成立a>f(x)max;若存在x∈[m,n],a>f(x)有解a>f(x)min;若对任意x∈[m,n],a>f(x)无解a≤f(x)min.(2)对任意的x∈[m,n],a<f(x)恒成立a<f(x)min;若存在x∈[m,n],a<f(x)有解a<f(x)max;若对任意x∈[m,n],a<f(x)无解a≥f(x)max.【例1】(2023·福建厦门·二模)“b∈(0,4)”是“∀x∈R,bx2―bx+1>0成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】由∀x∈R,bx2―bx+1>0成立求出b的范围,再利用充分条件、必要条件的定义判断作答.【解答过程】由∀x∈R,bx2―bx+1>0成立,则当b=0时,1>0恒成立,即b=0,当b≠0时,b>0b2―4b<0,解得0<b<4,因此∀x∈R,bx2―bx+1>0成立时,0≤b<4,因为(0,4)￿[0,4),所以“b∈(0,4)”是“∀x∈R,bx2―bx+1>0成立”的充分不必要条件.故选:A.【变式1-1】(2023·江西九江·模拟预测)无论x取何值时,不等式x2―2kx+4>0恒成立,则k的取值范围是()A.(―∞,―2)B.(―∞,―4)C.(―4,4)D.(―2,2)【解题思路】由题知4k2―16<0,再解不等式即可得答案.【解答过程】解:因为无论x取何值时,不等式x2―2kx+4>0恒成立,所以,4k2―16<0,解得―2<k<2,所以,k的取值范围是(―2,2)故选:D.【变式1-2】(2023·福建厦门·二模)不等式ax2―2x+1>0(a∈R)恒成立的一个充分不必要条件是()A.a>2B.a≥1C.a>1D.0<a<12【解题思路】分a=0和a≠0两种情况讨论求出a的范围,再根据充分条件和必要条件的定义即可得解.【解答过程】当a=0时,―2x+1>0,得x<12,与题意矛盾,当a≠0时,则a>0Δ=4―4a<0,解得a>1,综上所述,a>1,所以不等式ax2―2x+1>0(a∈R)恒成立的一个充分不必要条件是A选项.故选:A.【变式1-3】(2023·四川德阳·模拟预测)已知p:0≤a≤2,q:任意x∈R,ax2―ax+1≥0,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】根据一元二次不等式恒成立解得q:0≤a≤4,结合充分、必要条件的概念即可求解.【解答过程】命题q:一元二次不等式ax2―ax+1≥0对一切实数x都成立,当a=0时,1>0,符合题意;当a≠0时,有a>0Δ≤0,即a>0a2―4a≤0,解为a∈(0,4],∴q:0≤a≤4.又p:0≤a≤2,设A=[0,2],B=[0,4],则A是B的真子集,所以p是q成立的充分非必要条件,故选:A.【题型2 一元二次不等式在某区间上的恒成立问题】【例2】(2023·辽宁鞍山·二模)已知当x >0时,不等式:x 2―mx +16>0恒成立,则实数m 的取值范围是( )A .(―8,8)B .(―∞,8]C .(―∞,8)D .(8,+∞)【解题思路】先由x 2―mx +16>0得m <x +16x,由基本不等式得x +16x≥8,故m <8.【解答过程】当x >0时,由x 2―mx +16>0得m <x +16x,因x >0,故x +16x≥=8,当且仅当x =16x即x =4时等号成立,因当x >0时,m <x +16x恒成立,得m <8,故选:C.【变式2-1】(23-24高一上·贵州铜仁·期末)当x ∈(―1,1)时,不等式2kx 2―kx ―38<0恒成立,则k 的取值范围是( )A .(―3,0)B .[―3,0)C .―D .―【解题思路】对二项式系数进行分类,结合二次函数定义的性质,列出关系式求解.【解答过程】当x ∈(―1,1)时,不等式2kx 2―kx ―38<0恒成立,当k =0时,满足不等式恒成立;当k ≠0时,令f (x )=2kx 2―kx ―38,则f (x )<0在(―1,1)上恒成立,函数f (x )的图像抛物线对称轴为x =14,k >0时,f (x )在―,1上单调递增,则有f (―1)=2k +k ―38≤0f (1)=2k ―k ―38≤0,解得0<k ≤18;k <0时,f (x )在―,1上单调递减,则有=2k 16―k 4―38<0,解得―3<k <0.综上可知,k的取值范围是―故选:D.【变式2-2】(23-24高一上·江苏徐州·阶段练习)若对于任意x ∈[m,m +1],都有x 2+mx ―1<0成立,则实数m 的取值范围是( )A .―23,0B .―,0C .―23,0D .,0【解题思路】利用一元二次函数的图象与性质分析运算即可得解.【解答过程】由题意,对于∀x ∈[m,m +1]都有f(x)=x 2+mx ―1<0成立,∴f (m )=m 2+m 2―1<0f (m +1)=(m +1)2+m (m +1)―1<0,解得:―<m <0,即实数m 的取值范围是―,0.故选:B.【变式2-3】(22-23高一上·安徽马鞍山·期末)已知对一切x ∈[2,3],y ∈[3,6],不等式mx 2―xy +y 2≥0恒成立,则实数m 的取值范围是( )A .m ≤6B .―6≤m ≤0C .m ≥0D .0≤m ≤6【解题思路】令t =yx ,分析可得原题意等价于对一切t ∈[1,3],m ≥t ―t 2恒成立,根据恒成立问题结合二次函数的性质分析运算.【解答过程】∵x ∈[2,3],y ∈[3,6],则1x ∈[13,12],∴yx ∈[1,3],又∵mx 2―xy +y 2≥0,且x ∈[2,3],x 2>0,可得m ≥y x―,令t =yx ∈[1,3],则原题意等价于对一切t ∈[1,3],m ≥t ―t 2恒成立,∵y =t ―t 2的开口向下,对称轴t =12,则当t =1时,y =t ―t 2取到最大值y max =1―12=0,故实数m 的取值范围是m ≥0.故选:C.【题型3 给定参数范围的一元二次不等式恒成立问题】【例3】(23-24高一上·山东淄博·阶段练习)若命题“∃―1≤a ≤3,ax 2―(2a ―1)x +3―a <0”为假命题,则实数x 的取值范围为( )A .{x |―1≤x ≤4 }B .x |0≤xC .x |―1≤x ≤0或53≤x ≤4D .x |―1≤x <0或53<x ≤4【解题思路】由题意可得:命题“∀―1≤a ≤3,ax 2―(2a ―1)x +3―a ≥0”为真命题,根据恒成立问题结合一次函数运算求解.【解答过程】由题意可得:命题“∀―1≤a ≤3,ax 2―(2a ―1)x +3―a ≥0”为真命题,即ax 2―(2a ―1)x +3―a =(x 2―2x ―1)a +x +3≥0对a ∈[―1,3]恒成立,则―(x 2―2x ―1)+x +3≥03(x 2―2x ―1)+x +3≥0,解得―1≤x ≤0或53≤x ≤4,即实数x 的取值范围为x |―1≤x ≤0或53≤x ≤4.故选:C.【变式3-1】(23-24高一上·广东深圳·阶段练习)当1≤m ≤2时,mx 2―mx ―1<0恒成立,则实数x 的取值范围是( )A<x <B<x <C <x<D <x <【解题思路】将不等式整理成关于m 的一次函数,利用一次函数性质解不等式即可求得结果.【解答过程】根据题意可将不等式整理成关于m 的一次函数(x 2―x )m ―1<0,由一次函数性质可知(x 2―x )×1―1<0(x 2―x )×2―1<0 ,即x 2―x ―1<02x 2―2x ―1<0;<x <<x <<x <故选:B.【变式3-2】(23-24高一下·河南濮阳·期中)已知当―1≤a ≤1时,x 2+(a ―4)x +4―2a >0恒成立,则实数x 的取值范围是( )A .(―∞,3)B .(―∞,1]∪[3,+∞)C .(―∞,1)D .(―∞,1)∪(3,+∞)【解题思路】将x2+(a―4)x+4―2a>0化为(x―2)a+x2―4x+4>0,将a看成主元,令f(a)=(x―2) a+x2―4x+4,分x=2,x>2和x<2三种情况讨论,从而可得出答案.【解答过程】解:x2+(a―4)x+4―2a>0恒成立,即(x―2)a+x2―4x+4>0,对任意得a∈[―1,1]恒成立,令f(a)=(x―2)a+x2―4x+4,a∈[―1,1],当x=2时,f(a)=0,不符题意,故x≠2,当x>2时,函数f(a)在a∈[―1,1]上递增,则f(a)min=f(―1)=―x+2+x2―4x+4>0,解得x>3或x<2(舍去),当x<2时,函数f(a)在a∈[―1,1]上递减,则f(a)min=f(1)=x―2+x2―4x+4>0,解得x<1或x>2(舍去),综上所述,实数x的取值范围是(―∞,1)∪(3,+∞).故选:D.【变式3-3】(2008·宁夏·高考真题)已知a1>a2>a3>0,则使得(1―a i x)2<1(i=1,2,3)都成立的x取值范围是( )A.B.0,C.D.(a i>0),【解题思路】由(1―a i x)2<1可求得0<x<2a i【解答过程】由(1―a i x)2<1,得:1―2a i x+a2i x2<1,(a i>0),即x(a2i x―2a i)<0,解之得0<x<2a i因为a1>a2>a3>0,使得(1―a i x)2<1(i=1,2,3)都成立,;所以0<x<2a1故选:B.【题型4 基本不等式求解恒成立问题】【例4】(23-24高一下·贵州贵阳·期中)对任意的x∈(0,+∞),x2―2mx+1>0恒成立,则m的取值范围为()A.[1,+∞)B.(―1,1)C.(―∞,1]D.(―∞,1)【解题思路】参变分离可得2m <x +1x 对任意的x ∈(0,+∞)恒成立,利用基本不等式求出x +1x 的最小值,即可求出参数的取值范围.【解答过程】因为对任意的x ∈(0,+∞),x 2―2mx +1>0恒成立,所以对任意的x ∈(0,+∞),2m <x 2+1x=x +1x 恒成立,又x +1x ≥=2,当且仅当x =1x ,即x =1时取等号,所以2m <2,解得m <1,即m 的取值范围为(―∞,1).故选:D.【变式4-1】(22-23高三上·河南·期末)已知a >0,b ∈R ,若x >0时,关于x 的不等式(ax ―2)(x 2+bx ―5)≥0恒成立,则b +4a 的最小值为( )A .2B .C .D .【解题思路】根据题意设y =ax ―2,y =x 2+bx ―5,由一次函数以及不等式(ax ―2)(x 2+bx ―5)≥0分析得x =2a 时,y =x 2+bx ―5=0,变形后代入b +4a ,然后利用基本不等式求解.【解答过程】设y =ax ―2(x >0),y =x 2+bx ―5(x >0),因为a >0,所以当0<x <2a 时,y =ax ―2<0;当x =2a 时,y =ax ―2=0;当x >2a 时,y =ax ―2>0;由不等式(ax ―2)(x 2+bx ―5)≥0恒成立,得:ax ―2≤0x 2+bx ―5≤0 或ax ―2≥0x 2+bx ―5≥0 ,即当0<x ≤2a 时,x 2+bx ―5≤0恒成立,当x ≥2a 时,x 2+bx ―5≥0恒成立,所以当x =2a 时,y =x 2+bx ―5=0,则4a 2+2b a―5=0,即b =5a 2―2a ,则当a >0时,b +4a =5a 2―2a +4a =5a 2+2a ≥=当且仅当5a2=2a ,即a =所以b +4a 的最小值为故选:B.【变式4-2】(23-24高三上·山东威海·期中)关于x 的不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),则实数a 的取值范围为( )A +∞B .―∞C .―D .―∞,∪+∞【解题思路】不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),即对于∀x ∈R ,ax 2―|x|+2a ≥0恒成立,即a ≥|x |x 2+2,分x =0和a ≠0两种情况讨论,结合基本不等式即可得出答案.【解答过程】解:不等式ax 2―|x|+2a ≥0的解集是(―∞,+∞),即对于∀x ∈R ,ax 2―|x|+2a ≥0恒成立,即a ≥|x |x 2+2,当x =0时,a ≥0,当a ≠0时,a ≥|x |x 2+2=1|x |+2|x |,因为1|x |+2|x |≤=所以a ≥综上所述a ∈+∞.故选:A.【变式4-3】(23-24高一上·湖北·阶段练习)已知x >0,y >0,且1x+2+1y =27,若x +2+y >m 2+5m 恒成立,则实数m 的取值范围是( )A .(―4,7)B .(―2,7)C .(―4,2)D .(―7,2)【解题思路】利用基本不等式“1”的代换求不等式左侧最小值,结合x +2+y >m 2+5m 恒成立得到不等式,解一元二次不等式求参数范围【解答过程】因为x >0,y >0,且1x+2+1y =27,所以x +2+y =72×(x +2+y =72×1+1+y x+2+≥72×2+=14,当且仅当y =x +2=7时取等号,又因为x +2+y >m 2+5m 恒成立,所以14>m 2+5m ,解得―7<m <2.所以实数m的取值范围是(―7,2).故选:D.【题型5 一元二次不等式在实数集上有解问题】【例5】(2024·陕西宝鸡·模拟预测)若存在实数x,使得mx2―(m―2)x+m<0成立,则实数m的取值范围为()A.(―∞,2)B.(―∞,0]∪C.―∞D.(―∞,1)【解题思路】分别在m=0、m>0和m<0的情况下,结合二次函数的性质讨论得到结果.【解答过程】①当m=0时,不等式化为2x<0,解得:x<0,符合题意;②当m>0时,y=mx2―(m―2)x+m为开口方向向上的二次函数,;只需Δ=(m―2)2―4m2=―3m2―4m+4>0,即0<m<23③当m<0时,y=mx2―(m―2)x+m为开口方向向下的二次函数,则必存在实数x,使得mx2―(m―2)x+m<0成立;综上所述:实数m的取值范围为―∞故选:C.【变式5-1】(22-23高一上··阶段练习)若关于x的不等式x2―4x―2―a≤0有解,则实数a 的取值范围是()A.{a|a≥―2 }B.{a|a≤―2 }C.{a|a≥―6 }D.{a|a≤―6 }【解题思路】直接利用判别式即可研究不等式的解的情况.【解答过程】若关于x的不等式x2―4x―2―a≤0有解,则Δ=16+4(2+a)≥0,解得a≥―6.故选:C.【变式5-2】(23-24高一上·山东临沂·阶段练习)若不等式―x2+ax―1>0有解,则实数a的取值范围为()A.a<―2或a>2B.―2<a<2C.a≠±2D.1<a<3【解题思路】根据一元二次不等式有实数解的充要条件列式求解作答.【解答过程】不等式―x2+ax―1>0有解,即不等式x2―ax+1<0有解,因此Δ=a2―4>0,解得a<―2或a>2,所以实数a的取值范围为a<―2或a>2.故选:A.【变式5-3】(23-24高一上·江苏徐州·期中)已知关于x的不等式―x2+4x≥a2―3a在R上有解,则实数a 的取值范围是()A.{a|―1≤a≤4 }B.{a|―1<a<4 }C.{a|a≥4 或a≤―1}D.{a|―4≤a≤1 }【解题思路】由题意知x2―4x+a2―3a≤0在R上有解,等价于Δ≥0,解不等式即可求实数a的取值范围.【解答过程】因为关于x的不等式―x2+4x≥a2―3a在R上有解,即x2―4x+a2―3a≤0在R上有解,只需y=x2―4x+a2―3a的图象与x轴有公共点,所以Δ=(―4)2―4×(a2―3a)≥0,即a2―3a―4≤0,所以(a―4)(a+1)≤0,解得:―1≤a≤4,所以实数a的取值范围是{a|―1≤a≤4 },故选:A.【题型6 一元二次不等式在某区间上有解问题】【例6】(2023·福建宁德·模拟预测)命题“∃x∈[1,2],x2≤a”为真命题的一个充分不必要条件是()A.a≥1B.a≥4C.a≥―2D.a≤4【解题思路】根据能成立问题求a的取值范围,结合充分不必要条件理解判断.【解答过程】∵∃x∈[1,2],x2≤a,则(x2)min≤a,即a≥1,∴a的取值范围[1,+∞)由题意可得:选项中的取值范围对应的集合应为[1,+∞)的真子集,结合选项可知B对应的集合为[4,+∞)为[1,+∞)的真子集,其它都不符合,∴符合的只有B,故选:B.【变式6-1】(22-23高二上·河南·开学考试)设a为实数,若关于x的不等式x2―ax+7≥0在区间(2,7)上有实数解,则a的取值范围是()A.(―∞,8)B.(―∞,8]C.(―∞D.―∞【解题思路】参变分离,再根据对勾函数的性质,结合能成立问题求最值即可.【解答过程】由题意,因为x ∈(2,7),故a ≤x +7x 在区间(2,7)上有实数解,则a <x +,又g (x )=x +7x在上单调递减,在上单调递增,且g (2)=2+72=112,g (7)=7+77=8>g (2),故x +<8.故a ≤x +7x 在区间(2,7)上有实数解则a <8.故选:A.【变式6-2】(23-24高一上·福建·期中)若至少存在一个x <0,使得关于x 的不等式3―|3x ―a |>x 2+2x 成立,则实数a 的取值范围是( )A .―374,3B .―C .―374D .(―3,3)【解题思路】化简不等式3―|3x ―a |>x 2+2x ,根据二次函数的图象、含有绝对值函数的图象进行分析,从而求得a 的取值范围.【解答过程】依题意,至少存在一个x <0,使得关于x 的不等式3―|3x ―a |>x 2+2x 成立,即至少存在一个x <0,使得关于x 的不等式―x 2―2x +3>|3x ―a |成立,画出y =―x 2―2x +3(x <0)以及y =|3x ―a |的图象如下图所示,其中―x 2―2x +3>0.当y =3x ―a 与y =―x 2―2x +3(x <0)相切时,由y =3x ―ay =―x 2―2x +3消去y 并化简得x 2+5x ―a ―3=0,Δ=25+4a +12=0,a =―374.当y =―3x +a 与y =―x 2―2x +3(x <0)相切时,由y =―3x +ay =―x 2―2x +3消去y 并化简得x 2―x +a ―3=0①,由Δ=1―4a +12=0解得a =134,代入①得x 2―x +14=x=0,解得x =12,不符合题意.当y =―3x +a 过(0,3)时,a =3.结合图象可知a 的取值范围是―374,3.故选:A.【变式6-3】(22-23高一上·江苏宿迁·期末)若命题“∀x 0∈(0,+∞),使得x 20+ax 0+a +3≥0”为假命题,则实数a 的取值范围是( )A .(―∞,―2),(6,+∞)B .(―∞,―2)C .[―2,6]D .[2+【解题思路】根据题意可知“∃x 0∈(0,+∞),使得x 20+ax 0+a +3<0”为真命题,然后参变分离,将问题转化为最值问题,利用基本不等式可解.【解答过程】因为“∀x 0∈(0,+∞),使得x 20+ax 0+a +3≥0”为假命题,所以“∃x 0∈(0,+∞),使得x 20+ax 0+a +3<0”为真命题,即a <―x 20+3x 0+1在(0,+∞)内有解,即a <―.因为―x 20+3x 0+1=―(x 0+1)2―2(x 0+1)+4x 0+1=―x 0+1―2≤―2,当且仅当x 0=1时等号成立,所以=―2,所以实数a 的取值范围为(―∞,―2).故选:B.【题型7 一元二次不等式恒成立、有解问题综合】【例7】(23-24高一上·山东潍坊·阶段练习)已知关于x 的不等式2x ―1>m(x 2―1).(1)是否存在实数m ,使不等式对任意x ∈R 恒成立,并说明理由;(2)若不等式对于m ∈[―2,2]恒成立,求实数x 的取值范围;(3)若不等式对x ∈[2,+∞)有解,求m 的取值范围.【解题思路】将2x ―1>m(x 2―1)转化为mx 2―2x +(1―m)<0,(1)讨论m =0和m ≠0时的情况;(2)f(m)=(x 2―1)m ―(2x ―1),显然该函数单调,所以只需f(2)<0f(―2)<0即可.(3)讨论当m =0时,当m <0时,当m >0时,如何对x ∈[2,+∞)有解,其中m <0,m >0,均为一元二次不等式,结合一元二次函数图象求解即可.【解答过程】(1)原不等式等价于mx2―2x+(1―m)<0,当m=0时,―2x+1<0,即x>12,不恒成立;当m≠0时,若不等式对于任意实数x恒成立,则m<0且Δ=4―4m(1―m)<0,无解;综上,不存在实数m,使不等式恒成立.(2)设f(m)=(x2―1)m―(2x―1),当m∈[―2,2]时,f(m)<0恒成立,当且仅当f(2)<0f(―2)<0,即2x2―2x―1<0―2x2―2x+3<0,解得<x<x<x><x<所以x的取值范围是.(3)若不等式对x∈[2,+∞)有解,等价于x∈[2,+∞)时,mx2―2x―m)<0有解.令g(x)=mx2―2x+(1―m),当m=0时,―2x+1<0即x>12,此时显然在x∈[2,+∞)有解;当m<0时,x∈[2,+∞)时,结合一元二次函数图象,mx2―2x+(1―m)<0显然有解;当m>0时,y=g(x)对称轴为x=1m,Δ=4―4m(1―m)=4m2―4m+4=(2m―1)2+3>0,∵x∈[2,+∞)时,mx2―2x+(1―m)<0有解,∴结合一元二次函数图象,易得:g(2)<0或g(2)≥01m>2,解得m<1或m≥1m<12(无解),又∵m>0,∴0<m<1;综上所述,m的取值范围为(―∞,1).【变式7-1】(23-24高一上·江苏扬州·阶段练习)设函数y=ax2―(2a+3)x+6,a∈R.(1)若y+2>0恒成立,求实数a的取值范围:(2)当a=1时,∀t>―2,关于x的不等式y≤―3x+3+m在[―2,t]有解,求实数m的取值范围.【解题思路】(1)利用一元二次不等式恒成立的条件即可求解;(2)根据已知条件及二次函数的性质即可求解.【解答过程】(1)y+2>0恒成立,即ax2―(2a+3)x+8>0恒成立,当a=0时,―3x+8>0,解得x<83,舍去;当a≠0时,a>04a2―20a+9<0,解得12<a<92所以实数a(2)当a=1时,∀t>―2,关于x的不等式y≤―3x+3+m在[―2,t]有解,则―2是x2―2x+3―m≤0的解,因为抛物线y=x2―2x+3开口向上,对称轴x=1,所以11―m≤0,解得m≥11,所以m的取值范围为[11,+∞).【变式7-2】(23-24高一上·浙江台州·期中)已知函数f(x)=2x2―ax+a2―4,g(x)=x2―x+a2―314,(a∈R)(1)当a=1时,解不等式f(x)>g(x);(2)若任意x>0,都有f(x)>g(x)成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[0,1],使得不等式f(x1)>g(x2)成立,求实数a的取值范围.【解题思路】(1)作差后解一元二次不等式即可.(2)解法一:构造函数,分类讨论求解二次函数最小值,然后列不等式求解即可;解法二:分离参数,构造函数k=x+154x,利用基本不等式求解最值即可求解;(3)把问题转化为f(x)min>g(x)min,利用动轴定区间分类讨论即可求解.【解答过程】(1)当a=1时,f(x)=2x2―x―3,g(x)=x2―x―274所以f(x)―g(x)=x2+154>0,所以f(x)>g(x),所以f(x)>g(x)的解集为R.(2)若对任意x>0,都有f(x)>g(x)成立,即x2+(1―a)x+154>0在x>0恒成立,解法一:设ℎ(x )=x 2+(1―a )x +154,x >0,对称轴x =a―12,由题意,只须ℎ(x )min >0,①当a―12≤0,即a ≤1时,ℎ(x )在0,+∞上单调递增,所以ℎ(x )>ℎ(0)=154,符合题意,所以a ≤1;②当a―12>0,即a >1时,ℎ(x )在+∞单调递增,所以ℎ(x )>=―(a―1)24+154>0,解得1<a <1+a >1,所以1<a <1+综上,a <1+解法二:不等式可化为(a ―1)x <x 2+154,即a ―1<x +154x ,设k =x +154x ,x >0,由题意,只须a ―1<k (x )min ,k =x +154x ≥=当且仅当x =154x 即x =k min =所以a ―1<a <1+(3)若对任意x 1∈[0,1],存在x 2∈[0,1],使得不等式f (x 1)>g (x 2)成立,即只需满足f (x )min >g (x )min ,x ∈[0,1],g (x )=x 2―x +a 2―314,对称轴x =12,g (x )在0,递增,g (x )min ==a 2―8,f (x )=2x 2―ax +a 2―4,x ∈[0,1],对称轴x =a4,①a4≤0即a ≤0时,f (x )在[0,1]递增,f (x )min =f (0)=a 2―4>g (x )min =a 2―8恒成立;②0<a4<1即0<a <4时,f (x )在0,,1递增,f (x )min ==78a 2―4,g (x )min =a 2―8,所以78a 2―4>a 2―8,故0<a <4;③a4≥1即a ≥4时,f (x )在[0,1]递减,f (x )min =f (1)=a 2―a ―2,g (x )min =a 2―8,所以a 2―a ―2>a 2―8,解得4≤a <6,综上:a ∈(―∞,6).【变式7-3】(23-24高一上·山东威海·期中)已知函数f(x)=x 2―(a +3)x +6(a ∈R)(1)解关于x 的不等式f(x)≤6―3a ;(2)若对任意的x ∈[1,4],f(x)+a +5≥0恒成立,求实数a 的取值范围(3)已知g(x)=mx +7―3m ,当a =1时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f (x 1)=g (x 2)成立,求实数m 的取值范围.【解题思路】(1)由不等式f(x)≤6―3a 转化为(x ―3)(x ―a)≤0,分a <3,a =3,a >3讨论求解;(2)将对任意的x ∈[1,4],f(x)+a +5≥0恒成立,转化为对任意的x ∈[1,4],a(x ―1)≤x 2―3x +11恒成立,当x =1,恒成立,当x ∈(1,4]时,a ≤(x ―1)+9x―1―1恒成立,利用基本不等式求解;(3)分析可知函数f (x )在区间[1,4]上的值域是函数g (x )在区间[1,4]上的值域的子集,分m =0、m <0、m >0三种情况讨论,求出两个函数的值域,可得出关于实数m 的不等式组,综合可得出实数m 的取值范围.【解答过程】(1)因为函数f(x)=x 2―(a +3)x +6(a ∈R),所以f(x)≤6―3a ,即为x 2―(a +3)x +3a ≤0,所以(x ―3)(x ―a)≤0,当a <3时,解得a ≤x ≤3,当a =3时,解得x =3,当a >3时,解得3≤x ≤a , 综上,当a <3时,不等式的解集为{x |a ≤x ≤3},当a ≥3时,不等式的解集为{x |3≤x ≤a }(2)因为对任意的x ∈[1,4],f(x)+a +5≥0恒成立,所以对任意的x ∈[1,4],a(x ―1)≤x 2―3x +11恒成立,当x =1时,0≤9恒成立,所以对任意的x ∈(1,4]时,a ≤(x ―1)+9x―1―1恒成立, 令(x ―1)+9x―1―1≥1=5,当且仅当x ―1=9x―1,即x =4时取等号,所以a ≤5,所以实数a 的取值范围是(―∞,5](3)当a =1时,f(x)=x 2―4x +6,因为x ∈[1,4],所以函数f(x)的值域是[2,6],因为对任意的x 1∈[1,4],总存在x 2[1,4],使f (x 1)=g (x 2)成立,所以f(x)的值域是g(x)的值域的子集,当m >0时,g(x)∈[7―2m,m +7],则m >07―2m ≤2m +7≥6,解得m ≥52当m <0时,g(x)∈[m +7,7―2m],则m <07―2m ≥6m +7≤2,解得m ≤―5,当m =0时,g(x)∈{7},不成立;综上,实数m 的取值范围(―∞,―5]∪+∞.一、单选题1.(2023·河南·模拟预测)已知命题“∃x 0∈[―1,1],―x 20+3x0+a >0”为真命题,则实数a 的取值范围是( )A .(―∞,―2)B .(―∞,4)C .(―2,+∞)D .(4,+∞)【解题思路】由题知x 0∈[―1,1]时,a >x 20―3x 0min ,再根据二次函数求最值即可得答案.【解答过程】解:因为命题“∃x 0∈[―1,1],―x 20+3x 0+a >0”为真命题,所以,命题“∃x 0∈[―1,1],a >x 20―3x 0”为真命题,所以,x 0∈[―1,1]时,a >x 20―3x 0min ,因为,y =x 2―3x =x―94,所以,当x ∈[―1,1]时,y min =―2,当且仅当x =1时取得等号.所以,x 0∈[―1,1]时,a >x 20―3x 0min=―2,即实数a 的取值范围是(―2,+∞)故选:C.2.(2024·浙江·模拟预测)若不等式kx 2+(k ―6)x +2>0的解为全体实数,则实数k 的取值范围是( )A .2≤k ≤18B .―18<k <―2C .2<k <18D .0<k <2【解题思路】分类讨论k =0与k ≠0两种情况,结合二次不等式恒成立问题的解决方法即可得解.【解答过程】当k =0时,不等式kx 2+(k ―6)x +2>0可化为―6x +2>0,显然不合题意;当k ≠0时,因为kx 2+(k ―6)x +2>0的解为全体实数,所以k >0Δ=(k ―6)2―4k ×2<0,解得2<k <18;综上:2<k <18.故选:C.3.(2023·辽宁鞍山·二模)若对任意的x ∈(0,+∞),x 2―mx +1>0恒成立,则m 的取值范围是( )A .(―2,2)B .(2,+∞)C .(―∞,2)D .(―∞,2]【解题思路】变形给定不等式,分离参数,利用均值不等式求出最小值作答.【解答过程】∀x ∈(0,+∞),x 2―mx +1>0⇔m <x +1x ,而当x >0时,x +1x ≥=2,当且仅当x =1x ,即x =1时取等号,则m <2,所以m 的取值范围是(―∞,2).故选:C.4.(2023·宁夏中卫·二模)已知点A(1,4)在直线x +y=1(a >0,b >0)上,若关于t 的不等式a +b ≥t 2+5t +3恒成立,则实数t 的取值范围为( )A .[―6,1]B .[―1,6]C .(―∞,―1]∪[6,+∞)D .(―∞,―6]∪[1,+∞)【解题思路】将点代入直线方程,再利用基本不等式求得a +b 的最小值,从而将问题转化9≥t 2+5t +3,解之即可.【解答过程】因为点A(1,4)在直线xa +yb =1(a >0,b >0)上,所以1a +4b =1,故a +b =(a +b +=ba +4a b+5≥=9,当且仅当ba =4a b且1a +4b =1,即a =3,b =6时等号成立,因为关于t 的不等式a +b ≥t 2+5t +3恒成立,所以9≥t 2+5t +3,解得―6≤t ≤1,所以t ∈[―6,1].故选:A.5.(23-24高二上·山东潍坊·阶段练习)若两个正实数x ,y 满足1x +4y =2,且不等式x +y4<m 2―m 有解,则实数m 的取值范围是( )A .(―1,2)B .(―∞,―2)∪(1,+∞)C .(―2,1)D .(―∞,―1)∪(2,+∞)【解题思路】利用均值不等式求出最小值,根据题意列不等式求解即可.【解答过程】x +y4=+=+1+y 4x≥12(1+1+2)=2,要使得不等式x +y4<m 2―m 有解,只需m 2―m >2有解即可,解得m >2或者m <―1,故选:D.6.(23-24高一上·全国·单元测试)不等式2x 2―axy +y 2≥0,对于任意1≤x ≤2及1≤y ≤3恒成立,则实数a 的取值范围是( )A .a|a ≤B .a|a ≥C .a|a ≤D .a|a【解题思路】由于在不等式2x 2―axy +y 2≥0中出现两个变量,对其进行变形令t =xy 则转化为含参数t 的不等式2t 2―at +1≥0,在t ∈,2上恒成立的问题,然后进行分离参数求最值即可.【解答过程】由y ∈[1,3],则不等式2x 2―axy +y 2≥0两边同时乘以1y 2不等式可化为:+1≥0,令t =xy ,则不等式转化为:2t 2―at +1≥0,在t ∈,2上恒成立,由2t 2―at +1≥0可得a ≤2t 2+1t即a ≤2t +,又2t +1t ≥=t =t =2t +1t 取得最小值故可得a ≤故选:A .7.(2023·江西九江·二模)已知命题p :∃x ∈R ,x 2+2x +2―a <0,若p 为假命题,则实数a 的取值范围为( )A .(1,+∞)B .[1,+∞)C .(―∞,1)D .(―∞,1]【解题思路】首先由p 为假命题,得出¬p 为真命题,即∀x ∈R ,x 2+2x +2―a ≥0恒成立,由Δ≤0,即可求出实数a 的取值范围.【解答过程】因为命题p :∃x ∈R ,x 2+2x +2―a <0,所以¬p :∀x ∈R ,x 2+2x +2―a ≥0,又因为p 为假命题,所以¬p 即∀x ∈R ,x 2+2x +2―a ≥0恒成立,所以Δ≤0,即22―4(2―a)≤0,解得a ≤1,故选:D .8.(2024·上海黄浦·模拟预测)已知不等式ρ:ax 2+bx +c <0(a ≠0)有实数解.结论(1):设x 1,x 2是ρ的两个解,则对于任意的x 1,x 2,不等式x 1+x 2<―ba 和x 1⋅x 2<ca 恒成立;结论(2):设x 0是ρ的一个解,若总存在x 0,使得ax 02―bx 0+c <0,则c <0,下列说法正确的是( )A .结论①、②都成立B .结论①、②都不成立C .结论①成立,结论②不成立D .结论①不成立,结论②成立【解题思路】根据一元二次不等式与二次方程以及二次函数之间的关系,以及考虑特殊情况通过排除法确定选项.【解答过程】当a<0且Δ=b2―4ac<0时,ρ:ax2+bx+c<0(a≠0)的解为全体实数,故对任意的x1,x2,x1+x2与―ba的关系不确定,例如:ρ:―x2+2x―2<0,取x1=1,x2=4,而―ba =2,所以x1⋅x2=4>ca=2,故结论①不成立.当a<0且Δ=b2―4ac>0时,ρ:ax2+bx+c<0的解为x|x<p或x>q,其中p,q是ax2+bx+c=0的两个根.当x0<p,―x0>q此时ax02―bx0+c<0,但c值不确定,比如:ρ:―x2+x+2<0,取x0 =―3,则―x02―x0+2<0,但c>0,故结论②不成立.故选:B.二、多选题9.(2023·江苏连云港·模拟预测)若对于任意实数x,不等式(a―1)x2―2(a―1)x―4<0恒成立,则实数a可能是()A.―2B.0C.―4D.1【解题思路】首先当a=1,不等式为―4<0恒成立,故满足题意;其次a≠1,问题变为了一元二次不等式恒成立问题,则当且仅当a―1<0Δ<0,解不等式组即可.【解答过程】当a=1时,不等式为―4<0恒成立,故满足题意;当a≠1时,要满足a―1<0Δ<0,而Δ=4(a―1)2+16(a―1)=4(―1)(a+3),所以解得―3<a<1;综上,实数a的取值范围是(―3,1];所以对比选项得,实数a可能是―2,0,1.故选:ABD.10.(2024·广东深圳·模拟预测)下列说法正确的是()A.不等式4x2―5x+1>0的解集是x|x>14或x<1B.不等式2x2―x―6≤0的解集是x|x≤―32或x≥2C.若不等式ax2+8ax+21<0恒成立,则a的取值范围是∅D.若关于x的不等式2x2+px―3<0的解集是(q,1),则p+q的值为―12【解题思路】对于AB ,直接解一元二次不等式即可判断;对于C ,对a 分类讨论即可判断;对于D ,由一元二次不等式的解集与一元二次方程的根的关系,先求得p,q ,然后即可判断.【解答过程】对于A ,4x 2―5x +1>0⇔(x ―1)(4x ―1)>0⇔x <14或x >1,故A 错误;对于B ,2x 2―x ―6≤0⇔(x ―2)(2x +3)≤0⇔―32≤x ≤2,故B 错误;若不等式ax 2+8ax +21<0恒成立,当a =0时,21<0是不可能成立的,所以只能a <0Δ=64a 2―84a <0 ,而该不等式组无解,综上,故C 正确;对于D ,由题意得q,1是一元二次方程2x 2+px ―3=0的两根,从而q ×1=―322+p ―3=0,解得p =1,q =―32,而当p =1,q =―32时,一元二次不等式2x 2+x ―3<0⇔(x ―1)(2x +3)<0⇔―32<x <1满足题意,所以p +q 的值为―12,故D 正确.故选:CD.11.(22-23高三上·河北唐山·阶段练习)若(ax -4)(x 2+b )≥0对任意x∈(-∞,0]恒成立,其中a ,b 是整数,则a +b 的可能取值为( )A .-7B .-5C .-6D .-17【解题思路】对b 分类讨论,当b≥0由(ax -4)(x 2+b )≥0可得ax -4≥0,由一次函数的图象知不存在;当b <0时,由(ax -4)(x 2+b )≥0,利用数形结合的思想可得出a ,b 的整数解.【解答过程】当b≥0时,由(ax -4)(x 2+b )≥0可得ax -4≥0对任意x∈(-∞,0]恒成立,即a≤4x 对任意x∈(-∞,0]恒成立,此时a 不存在;当b <0时,由(ax -4)(x 2+b )≥0对任意x∈(-∞,0]恒成立,可设f (x )=ax -4,g (x )=x 2+b ,作出f (x ),g (x )的图象如下,aa,b是整数可得a=-1b=-16或a=-4b=-1或a=-2b=-4所以a+b的可能取值为-17或-5或-6故选:BCD.三、填空题12.(2024·陕西渭南·模拟预测)若∀x∈R,a<x2+1,则实数a的取值范围是(―∞,1).(用区间表示)【解题思路】利用二次函数的性质计算即可.【解答过程】由题得a<(x2+1)min=1,即实数a的取值范围为(―∞,1).故答案为:(―∞,1).13.(2024·辽宁·三模)若“∃x∈(0,+∞),使x2―ax+4<0”是假命题,则实数a的取值范围为(―∞,4].【解题思路】将问题转化为“a≤x+4x在(0,+∞)上恒成立”,再利用对勾函数的单调性求得最值,从而得解.【解答过程】因为“∃x∈(0,+∞),使x2―ax+4<0”是假命题,所以“∀x∈(0,+∞),x2―ax+4≥0”为真命题,其等价于a≤x+4x在(0,+∞)上恒成立,又因为对勾函数f(x)=x+4x在(0,2]上单调递减,在[2,+∞)上单调递增,所以f(x)min=f(2)=4,所以a≤4,即实数a∞,4].故答案为:(―∞,4].14.(2023·河北·模拟预测)若∃x∈R,ax2+ax+a―3<0,则a的一个可取的正整数值为1(或2,3).【解题思路】由判别式大于0求解.【解答过程】由题意Δ=a2―4a(a―3)>0,解得0<a<4,a的正整数值为1或2或3,故答案为:1(也可取2,3).四、解答题15.(2024·全国·模拟预测)已知函数f(x)=|2x―a|,且f(x)≤b的解集为[―1,3].(1)求a和b的值;(2)若f(x)≤|x―t|在[―1,0]上恒成立,求实数t的取值范围.【解题思路】(1)根据绝对值不等式的性质即可求解,(2)将问题转化为3x2+(2t―8)x+4―t2≤0在[―1,0]上恒成立,即可利用二次函数零点分布求解.【解答过程】(1)由f(x)≤b得|2x―a|≤b,易知b≥0,则―b≤2x―a≤b,解得a―b2≤x≤b+a2,由于f(x)≤b的解集为[―1,3],则b+a2=3,a―b2=―1,解得a=2,b=4.(2)由(1)知f(x)=|2x―2|,由f(x)≤|x―t|得|2x―2|≤|x―t|,得3x2+(2t―8)x+4―t2≤0在[―1,0]上恒成立,Δ=(2t―8)2―4×3×(4―t2)=16(t―1)2>0,故t≠1.令g(x)=3x2+(2t―8)x+4―t2,若g(x)≤0在[―1,0]上恒成立,则g(―1)≤0g(0)≤0,即―t2―2t+15≤04―t2≤0,解得t≤―5或t≥3,故实数t的取值范围为(―∞,―5]∪[3,+∞).16.(2024·新疆乌鲁木齐·一模)已知函数f(x)=|x―1|+|x+2|.(1)求不等式f(x)≤5的解集;(2)若不等式f(x)≥x2―ax+1的解集包含[―1,1],求实数a的取值范围.【解题思路】(1)分类讨论,求解不等式即可;(2)将问题转化为二次函数在区间上恒成立的问题,列出不等式组即可求得.【解答过程】(1)当x≤―2时,f(x)≤5等价于―2x―1≤5,解得x∈[―3,―2];当―2<x<1时,f(x)≤5≤5,恒成立,解得x∈(―2,1);当x≥1时,f(x)≤5等价于2x+1≤5,解得x∈[1,2];综上所述,不等式的解集为[―3,2].(2)不等式f(x)≥x2―ax+1的解集包含[―1,1],等价于f(x)≥x2―ax+1在区间[―1,1]上恒成立,也等价于x2―ax―2≤0在区间[―1,1]恒成立.则只需g(x)=x2―ax―2满足:g(―1)≤0且g(1)≤0即可.即1+a―2≤0,1―a―2≤0,解得a∈[―1,1].。

高考数学复习考点题型专题讲解31 不等式

高考数学复习考点题型专题讲解31 不等式

高考数学复习考点题型专题讲解专题31 不等式高考定位 1.对不等式的性质及不等式的解法的考查一般不单独命题,常与集合、函数图象与性质相结合,也常渗透在三角函数、数列、解析几何、导数等题目中;2.基本不等式主要渗透在其他知识中求最值;3.题型多以选择题、填空题的形式呈现,中等难度.1.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}答案 B解析法一因为A={x|(x-2)(x+1)>0}={x|x<-1或x>2},A={x|-1≤x≤2},故选B.所以∁R法二因为A={x|x2-x-2>0},A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.所以∁R2.(2019·全国Ⅱ卷)若a>b,则( )A.ln(a-b)>0B.3a<3bC.a3-b3>0D.|a|>|b|答案 C解析由函数y=ln x的图像(图略)知,当0<a-b<1时,ln(a-b)<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.3.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则() A.x +y ≤1 B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1答案 BC解析 因为ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ),由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤3⎝ ⎛⎭⎪⎫x +y 22,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为⎝⎛⎭⎪⎫x -y 22+34y 2=1, 设x -y 2=cos θ,32y =sin θ, 所以x =cos θ+33sin θ,y =233sin θ, 因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13=43+23sin ⎝⎛⎭⎪⎫2θ-π6∈⎣⎢⎡⎦⎥⎤23,2, 所以当x =33,y =-33时满足等式, 但是x 2+y 2≥1不成立,所以D 错误.4.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 法一 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2, 所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号. 所以x 2+y 2的最小值为45. 法二 设x 2+y 2=t >0,则x 2=t -y 2.因为5x 2y 2+y 4=1,所以5(t-y2)y2+y4=1,所以4y4-5ty2+1=0. 由Δ=25t2-16≥0,解得t≥45⎝⎛⎭⎪⎫t≤-45舍去.故x2+y2的最小值为4 5 .热点一不等式的性质及应用不等式的常用性质(1)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(2)a>b>0,c>d>0⇒ac>bd>0.(3)a>b>0⇒a n>b n,na>nb(n∈N,n≥2).(4)a>b,ab>0⇒1a<1b.例1 (1)(多选)(2022·苏州模拟)若a>b>0>c,则( )A.ca>cbB.b-ca-c>baC.a c>b cD.a-c>2-bc(2)(2022·长沙模拟)已知a,b,c满足a>b>c,且ac>0,则下列选项中一定能成立的是( )A.ab>acB.c(b-a)>0C.ab(a-c)>0D.cb2>ca2答案(1)ABD (2)C解析(1)由于a>b>0>c,对于A:ca-cb=c⎝⎛⎭⎪⎫1a-1b=c⎝⎛⎭⎪⎫b-aab>0,故ca-cb>0,∴ca>cb,故A正确;对于B:由于a>b>0,所以b-ca-c>ba,故B正确;对于C:当a>b>1时,a c<b c,故C错误;对于D:由于a>b>0>c,所以a-c>b-c>2b(-c)=2-bc,故D正确. (2)取a=-1,b=-2,c=-3,则ab=2<ac=3,cb2=-12<ca2=-3,排除A,D;取a=3,b=2,c=1,则c(b-a)=-1<0,排除B;因为a>b>c,且ac>0,所以a,b,c同号,且a>c,所以ab(a-c)>0.规律方法判断关于不等式命题真假的常用方法(1)作差法、作商法.(2)利用不等式的性质推理判断.(3)利用函数的单调性.(4)特殊值验证法,特殊值法只能排除错误的命题,不能判断正确的命题.训练1 (1)(多选)(2022·广州模拟)设a,b,c为实数且a>b,则下列不等式一定成立的是( )A.1a >1bB.2 023a -b >1C.ln a >ln bD.a (c 2+1)>b (c 2+1)(2)设12<a <1,m =log a (a 2+1),n =log a (1-a ),p =log a 12a,则m ,n ,p 的大小关系是( )A.n >m >pB.m >p >nC.p >n >mD.n >p >m答案 (1)BD (2)D解析 (1)对于A ,若a >b >0,则1a <1b,所以A 错误; 对于B ,因为a -b >0,所以2 023a -b >1,所以B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误; 对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D 正确.故选BD.(2)因为12<a <1, 所以a 2+1-12a =2a 3+2a -12a >0, 12a -(1-a )=1-2a +2a 22a =2⎝ ⎛⎭⎪⎫a -122+122a>0,y =log a x 为减函数, 所以m <p ,p <n .可得n >p >m .热点二 不等式的解法不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I .(2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法.例2 (1)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( )A.(-∞,-3)∪(2,+∞)B.(-3,2)C.(-∞,-2)∪(3,+∞)D.(-2,3)(2)若不等式x 2-ax ≥16-3x -4a 对任意a ∈[-2,4]都成立,则x 的取值范围为() A.(-∞,-8]∪[3,+∞)B.(-∞,0)∪[1,+∞)C.[-8,6]D.(0,3]答案 (1)A (2)A解析 (1)由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0,则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0,即(x +3)(x -2)>0,解得x <-3或x >2,所以不等式的解集为(-∞,-3)∪(2,+∞).(2)由题意得不等式(x -4)a -x 2-3x +16≤0对任意a ∈[-2,4]都成立,则⎩⎨⎧(x -4)×(-2)-x 2-3x +16≤0,(x -4)×4-x 2-3x +16≤0,即⎩⎨⎧-x 2-5x +24≤0,-x 2+x ≤0,解得x≥3或x≤-8.故选A.易错提醒求解含参不等式ax2+bx+c<0恒成立问题的易错点(1)对参数进行讨论时分类不完整,易忽略a=0时的情况.(2)不会通过转换把参数作为主元进行求解.(3)不考虑a的符号.训练2 (1)已知函数f(x)在R上为增函数,若不等式f(-4x+a)≥f(-3-x2)对任意x∈(0,3]恒成立,则a的取值范围为( )A.[-1,+∞)B.(3,+∞)C.[0,+∞)D.[1,+∞)(2)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( )A.(-∞,-2)B.(-2,+∞)C.(-6,+∞)D.(-∞,-6)答案(1)D (2)A解析(1)由题意得,不等式-4x+a≥-3-x2对任意x∈(0,3]恒成立,所以a≥-x2+4x-3对任意x∈(0,3]恒成立,令g(x)=-x2+4x-3=-(x-2)2+1,当x∈(0,3]时,g(x)∈(-3,1],所以a≥1,即a的取值范围为[1,+∞).故选D.(2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max,x∈(1,4). 令g(x)=x2-4x-2,x∈(1,4),所以g(x)<g(4)=-2,所以a<-2.热点三基本不等式及其应用基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑出符合基本不等式条件的项,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y=m+Ag(x)+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式来求最值.例3 (1)(多选)(2022·青岛模拟)设正实数a,b满足a+b=1,则( )A.log2a+log2b≥-2 B.ab+1ab≥174C.2a+1b≤3+22D.2a-b>12(2)(2022·湖北九师联盟质检)已知a>0,b≠0,且a+|b|=3,则9a+b+3|b|的最小值为________.答案(1)BD (2)3+2 3解析(1)log2a+log2b=log2(ab)≤log2⎝⎛⎭⎪⎫a+b22=-2,A错误;因为a>0,b>0,a+b=1,所以ab ≤a +b 2=12(当且仅当a =b 时取等号), 所以0<ab ≤14, 因为函数y =x +1x 在⎝ ⎛⎦⎥⎤0,14上单调递减, 所以ab +1ab ≥14+4=174,B 正确; 因为⎝ ⎛⎭⎪⎫2a +1b (a +b )=3+2b a +a b ≥3+22(当且仅当2b a =a b 时取等号), 所以2a +1b≥3+22,C 错误; 易知0<a <1,0<b <1,所以-1<a -b <1,所以2a -b >2-1=12,D 正确.选BD. (2)9a +b +3|b |=9a +3|b |+b |b |, 当b >0时,b |b |=1, 当b <0时,b|b |=-1. 9a +3|b |=13⎝ ⎛⎭⎪⎫9a +3|b |(a +|b |)=13⎝ ⎛⎭⎪⎫12+9|b |a +3a |b |≥13(12+63) =4+23,当且仅当9|b |a =3a |b |,3+13+1所以当a =333+1,b =-33+1时, 9a +b +3|b |取得最小值,且最小值为3+2 3.易错提醒 利用基本不等式求最值时,要注意其必须满足的条件: (1)一正二定三相等,三者缺一不可;(2)若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.训练3 (1)(2022·湖州质检)若x >0,y >0且x +y =xy ,则x x -1+2yy -1的最小值为( ) A.3 B.52+ 6C.3+6D.3+2 2(2)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2B.2 2 C.4 D.92答案 (1)D (2)B 解析 (1)∵x +y =xy , ∴(x -1)(y -1)=1, ∴x x -1+2y y -1=(x -1)+1x -1+2(y -1)+2y -1=3+1x -1+2y -1≥3+21x -1·2y -1=3+22,x -1y -1(2)∵对任意m ,n ∈(0,+∞), 都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n+2nm≥2m n ·2nm=22, 当且仅当m n=2nm即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.一、基本技能练1.若a ,b ,c 为实数,且a <b <0,则下列说法正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2 答案 D解析 当c =0时,A 不成立; 1a -1b =b -a ab >0,即1a >1b,B 错误;b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,C 错误; 由a <b <0,得a 2>ab >b 2,D 正确.2.不等式4x -2≤x -2的解集是( ) A.(-∞,0]∪(2,4]B.[0,2)∪[4,+∞) C.[2,4)D.(-∞,2)∪(4,+∞) 答案 B解析 当x -2>0,即x >2时,(x -2)2≥4, 即x -2≥2,则x ≥4,当x -2<0,即x <2时,(x -2)2≤4, 即-2≤x -2<0,∴0≤x <2, 综上,0≤x <2或x ≥4.3.(2022·泰安质检)若不等式ax 2-x -c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12,则函数y =cx 2-x -a的图象可以为( )答案 C解析由题意可得-1和12是方程ax 2-x -c =0的两个根,且a <0,∴⎩⎪⎨⎪⎧-1+12=1a ,-1×12=-ca ,解得a =-2,c =-1,则y =cx 2-x -a =-x 2-x +2=-(x +2)(x -1),其图象开口向下,与x 轴交于 (-2,0),(1,0).故选C.4.已知关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为(-∞,x 1)∪(x 2,+∞),且x 2-x 1=52,则a 等于( ) A.-5B.-32C.-2D.-52答案 C解析 x 2-ax -6a 2=(x -3a )(x +2a )>0, ∵a <0,∴x >-2a 或x <3a , ∴x 2=-2a ,x 1=3a ,∴x 2-x 1=-5a =52,∴a =- 2.5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是( )A.f (x )有最大值114B.f (x )有最大值-114 C.f (x )有最小值132D.f (x )有最小值74答案 B解析 f (x )=x -14+9x -1+14= -⎝⎛⎭⎪⎫1-x4+91-x +14≤-21-x 4·91-x +14=-114,当且仅当x =-5时等号成立. 6.原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A.第一种方案更划算B.第二种方案更划算C.两种方案一样D.无法确定 答案 B解析 设小李这两次加油的油价分别为x 元/升、y 元/升,则 方案一:两次加油平均价格为40x +40y 80=x +y2≥xy ,方案二:两次加油平均价格为400200x +200y=2xyx +y ≤xy ,故无论油价如何起伏,方案二比方案一更划算. 7.设x >y >z ,n ∈N *,且1x -y +1y -z ≥n x -z恒成立,则n 的最大值为( ) A.2 B.3 C.4 D.5 答案 C解析 因为x >y >z ,n ∈N *, 所以x -y >0,y -z >0,x -z >0,由1x -y +1y -z ≥n x -z, 可得n ≤(x -z )⎝⎛⎭⎪⎫1x -y +1y -z =[(x -y )+(y -z )]⎝ ⎛⎭⎪⎫1x -y +1y -z =1+1+y -z x -y +x -yy -z≥2+2y -z x -y ·x -yy -z=4, 当且仅当x -y =y -z 时,上式取得等号, 由题意可得n ≤4,即n 的最大值为4.8.已知关于x 的不等式ax 2-2x +3a <0在(0,2]上有解,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,33 B.⎝⎛⎭⎪⎫-∞,47 C.⎝ ⎛⎭⎪⎫33,+∞D.⎝ ⎛⎭⎪⎫47,+∞答案 A解析x ∈(0,2]时, 不等式可化为ax +3a x<2;当a =0时,不等式为0<2,满足题意; 当a >0时,不等式化为x +3x <2a,则2a>2x ·3x=23,当且仅当x =3时取等号, 所以a <33,即0<a <33;当a <0时,x +3x >2a恒成立.综上所述,实数a 的取值范围是⎝⎛⎭⎪⎫-∞,33.选A.9.(多选)(2022·泰州模拟)下列函数中最小值为6的是( ) A.y =ln x +9ln x B.y =6|sin x |+32|sin x |C.y =3x +32-xD.y =x 2+25x 2+16答案 BC解析 对于A 选项,当x ∈(0,1)时,ln x <0, 此时ln x +9ln x<0,故A 不正确.对于B 选项,y =6|sin x |+32|sin x |≥29=6,当且仅当6|sin x |=32|sin x |,即|sin x |=12时取“=”,故B 正确.对于C 选项,y =3x +32-x ≥232=6, 当且仅当3x =32-x ,即x =1时取“=”,故C 正确.对于D 选项,y =x 2+16+9x 2+16=x 2+16+9x 2+16≥29=6, 当且仅当x 2+16=9x 2+16,即x 2=-7无解,故D 不正确.故选BC.10.(多选)已知a >0,b >0,且a +b =1,则( ) A.a 2+b 2≥12B.2a -b >12C.log 2a +log 2b ≥-2D.a +b ≤ 2 答案 ABD解析 因为a >0,b >0,a +b =1,所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B ,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2(ab )≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2,得a +b ≤2,故D 正确. 综上可知,正确的选项为ABD.11.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0, 即x 2-2x -c <0的解集为(m ,m +4), 所以m ,m +4是方程x 2-2x -c =0的两个根, 所以⎩⎨⎧m +m +4=2,m (m +4)=-c ,解得⎩⎨⎧m =-1,c =3.12.若命题“∃x ∈R ,x 2-2x +m <0”为真命题,则实数m 的取值范围为________. 答案 (-∞,1)解析由题意可知,不等式x2-2x+m<0有解,∴Δ=4-4m>0,m<1,∴实数m的取值范围为(-∞,1).二、创新拓展练13.(多选)(2022·苏锡常镇调研)已知正实数a,b满足a+2b=ab,则以下不等式正确的是( )A.2a+1b≥2 B.a+2b≥8C.log2a+log2b<3 D.2a+b≥9答案BD解析对于A,因为正实数a,b满足a+2b=ab,所以a+2bab=1,即2a+1b=1,所以A错误,对于B,因为a>0,b>0,a+2b=ab,所以a+2b≥22ab=22(a+2b),当且仅当a=2b时取等号,所以(a+2b)2≥8(a+2b),因为a+2b>0,所以a+2b≥8,当且仅当a=2b时取等号,所以B正确,对于C,若log2a+log2b<3,则log2a+log2b=log2(ab)<3=log28,所以ab <8,所以a +2b <8,而由选项B 可知a +2b ≥8, 所以log 2a +log 2b <3不成立,所以C 错误, 对于D ,因为正实数a ,b 满足a +2b =ab , 由选项A 知,2a +1b=1,所以2a +b =(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+22ab·2ba=9,当且仅当2ba=2ab,即a=b =3时取等号, 所以D 正确,故选BD.14.(多选)(2022·镇海中学模拟)已知函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,下列选项正确的是( )A.函数f (x )在(-2,1)上单调递增B.函数f (x )的值域为⎣⎢⎡⎭⎪⎫-1e 2,+∞C.若关于x 的方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,则实数a 的取值范围是⎝ ⎛⎭⎪⎫1e 2,4e D.不等式f (x )-ax -a >0在(-1,+∞)恰有两个整数解,则实数a 的取值范围是⎣⎢⎡⎭⎪⎫3e 2,2e答案 ACD解析函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,所以函数f ′(x )=⎩⎨⎧(x +2)e x (x <0),-(x +1)(x -1)e x (x ≥0), 故函数f (x )的大致图象如图1所示,故A 正确,B 错误;对于D ,不等式f (x )>a (x +1),在(-1,+∞)上恰有两个整数解,必为x =0,x =1, 故⎩⎨⎧f (1)>a (1+1),f (2)≤a (2+1),解得a ∈⎣⎢⎡⎭⎪⎫3e 2,2e ,故D 正确;对于C ,如图2,函数y =|f (x )|的图象,原方程可化为|f (x )|=0或|f (x )|=a ,由于方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,所以只需|f (x )|=a 有两个不等实根,所以a ∈⎝ ⎛⎭⎪⎫1e 2,4e ,C 正确,故选ACD. 15.(多选)(2022·全国名校大联考)若实数x ,y 满足2x +2y +1=1,m =x +y ,n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1,则( )A.x <0且y <-1B.m 的最大值为-3C.n 的最小值为7D.n ·2m <2答案 ABD解析 由2x +2y +1=1,得2y +1=1-2x >0,2x =1-2y +1>0,所以x <0且y <-1,故A 正确;由2x +2y +1=1≥22x ·2y +1=22x +y +1,得m =x +y ≤-3,当且仅当x =y +1=-1,即x =-1,y =-2时,等号成立,所以m 的最大值为-3,故B 正确;n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1(2x +2y +1) =5+2×2y 2x +2×2x2y ≥5+22×2y 2x ·2×2x 2y =9, 当且仅当2×2y 2x =2×2x2y ,即x =y =-log 23时,等号成立, 所以n 的最小值为9,故C 错误;n ·2m=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1·2x +y =2y +2x +1=2-3×2y <2,故D 正确.故选ABD. 16.(2022·湖南三湘名校联考)若两个正实数x ,y 满足x +2y -xy =0,且不等式x +2y ≥m 2-7m 恒成立,则实数m 的取值范围为________.答案 [-1,8]解析 由x +2y -xy =0,得2x +1y=1, 所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+x y +4y x ≥8,当且仅当x =4,y =2时等号成立, 所以m 2-7m ≤8,解得-1≤m ≤8.17.已知关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4},则c 2+5a +b 的取值范围为________.答案 [45,+∞)解析 关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4}, 所以a <0,且3和4是关于x 的方程ax 2+bx +c =0的两实数根,由根与系数的关系知:⎩⎪⎨⎪⎧3+4=-b a ,3×4=c a ,解得⎩⎨⎧b =-7a ,c =12a (a <0). 所以c 2+5a +b =144a 2+5a -7a =-24a -56a≥ 2(-24a )·5-6a =45(当且仅当-24a =-56a ,即a =-512时等号成立), 所以c 2+5a +b的取值范围是[45,+∞). 18.(2022·温州测试)已知函数f (x )=x 2+|x -a |+b ,若存在实数b ,使得对任意的|x |≤1都有|f (x )|≤109,则实数a 的最大值是________. 答案 13解析 由题可得,因为存在实数b 对任意的|x |≤1都有|x 2+|x -a |+b |≤109, 所以-109≤x 2+|x -a |+b ≤109, 即存在实数b 对任意的|x |≤1都有-x 2-109-b ≤|x -a |≤109-x 2-b , 由对称性可知,当实数a 取得最大值时,a ≥0,令g (x )=-x 2-109-b ,h (x )=-x 2+109-b ,则g ′(x )=h ′(x )=-2x .因为y =-x +a 的斜率为-1,所以-2x =-1,解得x =12, 所以g ⎝ ⎛⎭⎪⎫12=-14-109-b =-4936-b . 又因为h (-1)=-1+109-b =19-b , 即当a ≥12时,切线斜率k =h (-1)-g ⎝ ⎛⎭⎪⎫12-1-12=-5354>-1,不能满足条件; 故当0≤a <12时,g (x )的零点为a ,此时a 最大,满足⎩⎪⎨⎪⎧g (a )=-a 2-109-b =0,k =-1+109-b -1-a =-1,即⎝⎛⎭⎪⎫a -23⎝ ⎛⎭⎪⎫a -13=0, 由0≤a <12可得a =13.。

专题1.7 基本不等式-重难点题型精讲(新高考地区专用)(解析版)

专题1.7 基本不等式-重难点题型精讲(新高考地区专用)(解析版)

专题1.7 基本不等式-重难点题型精讲1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤(a +a 2)2(a ,b ∈R ).(4)a 2+b 22≥(a +a 2)2(a ,b ∈R ).以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【题型1 利用基本不等式求最值(拼凑法)】【例1】(2020•德阳模拟)已知x ,y 为正实数,则4x x+3y+3y x的最小值为( )A .53B .103C .32D .3【分析】根据基本不等式的性质求出代数式的最小值即可. 【解答】解:∵x ,y 为正实数, ∴4x x+3y+3y x=41+3y x+(1+3yx )﹣1 ≥2√41+3y x(1+3yx )−1=4﹣1=3, 当且仅当(1+3yx )2=4即x =3y 时“=”成立, 故选:D .【点评】本题考查了基本不等式的性质,注意应用性质的条件,本题是一道基础题. 【变式1-1】(2020•天津模拟)设x >y >0,则x +4x+y +1x−y 的最小值为( ) A .3√2B .2√3C .4D .3√102【分析】原式可变形为x +4x+y +1x−y =[12(x +y)+4x+y ]+[12(x −y)+1x−y],然后根据基本不等式即可求出原式的最小值. 【解答】解:∵x >y >0, ∴x ﹣y >0,∴x +4x+y +1x−y =[12(x +y)+4x+y ]+[12(x −y)+1x−y ]≥2√2+√2=3√2,当且仅当12(x +y)=4x+y,12(x −y)=1x−y,即x =3√22,y =√22时取等号.故选:A .【点评】本题考查了基本不等式求最小值的方法,利用基本不等式时需说明等号成立的条件,考查了计算能力,属于基础题.【变式1-2】(2021•浙江模拟)已知正实数a ,b 满足a +2b =2,则a 2+1a+2b 2b+1的最小值是( )A .94B .73C .174D .133【分析】变形利用基本不等式即可得出结论. 【解答】解:∵正实数a ,b 满足a +2b =2, ∴a 2+1a +2b 2b+1=a +1a +2b +2﹣4+2b+1=1a +2b+1, =14(a +2b +2)(1a+2b+1)=14(1+4+2b+2a +2a b+1)≥14×(5+2√2b+2a ×2a b+1)=94, 当且仅当a =43,b =13时,取得最小值, 故选:A .【点评】本题考查了基本不等式,考查了推理能力与计算能力,属于基础题. 【变式1-3】(2021•和平区校级模拟)实数a ,b 满足a >0,b >0,a +b =4,则a 2a+1+b 2b+1的最小值是( )A .4B .6C .32D .83【分析】利用基本不等式得到ab 的范围,可解决此题. 【解答】解:∵a >0,b >0,∴4=a +b ≥2√ab ,∴0<ab ≤4. ∴a 2a+1+b 2b+1=a 2(b+1)+b 2(a+1)(a+1)(b+1)=a 2+b 2+ab(a+b)ab+a+b+1=(a+b)2−2ab+4abab+5=16+2ab ab+5=2(ab+5)+6ab+5=2+6ab+5∈[83,165).∴最小值为83. 故选:D .【点评】本题考查基本不等式应用、转化思想,考查数学运算能力,属于中档题. 【题型2 利用基本不等式求最值(常数代换法)】【例2】(2021•丙卷模拟)若a >0,b >0,且ab =a +b ,则4a +9b 的最小值为( ) A .25B .5C .26D .13【分析】由ab =a +b 可得1a+1b =1,再由4a +9b 转化(1a+1b)(4a +9b )可解决此题.【解答】解:由ab =a +b 可得1a +1b=1,又a >0,b >0,∴4a +9b =(4a +9b)(1a +1b )=13+9b a +4a b ≥13+2×√9b a ×4a b=13+12=25, 当且仅当9b a=4a b,且1a+1b=1,即a =52,b =53时,等号成立,所以4a +9b 的最小值为25,故选:A .【点评】本题考查基本不等式应用,考查数学运算能力,属于中档题.【变式2-1】(2021•沙坪坝区校级模拟)已知正实数m ,n 满足m (n ﹣1)=4n ,则m +4n 的最小值是( ) A .25B .18C .16D .8【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:因为m (n ﹣1)=4n ,可得mn ﹣m =4n ,整理可得1=4m +1n, 所以m +4n =(m +4n )(4m+1n)=8+m n +16n m ≥8+2√m n ⋅16n m=16, 当且仅当m n=16n m时,即m =8,n =2时等号成立,所以m +4n 的最小值为16. 故选:C .【点评】本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的配凑,属于基础题. 【变式2-2】(2021•辽阳一模)已知a >0,b >0,a +4b =4,则4a+9b 的最小值为 .【分析】利用“1”的代换,结合基本不等式转化求解即可. 【解答】解:因为4a+9b=14(a +4b)(4a+9b)=14(40+16b a+9a b),16b a+9a b ≥2√16b a⋅9a b=24,当且仅当a =1,b =34时,等号成立.所以4a+9b≥16.故答案为:16.【点评】本题考查均值不等式的应用,考查运算求解能力,是基础题. 【变式2-3】(2021•红桥区二模)已知正实数a ,b 满足a +b =1,则a 2+4a+b 2+1b的最小值为 .【分析】将a 2+4a+b 2+1b变形再代入a +b =1,利用基本不等式可得答案.【解答】解:已知正实数a ,b 满足a +b =1, 则a 2+4a+b 2+1b=a +4a +b +1b =a +b +4a +1b =1+4a +1b =1+(a +b )(4a +1b)=1+5+ab +4b a ≥6+2√a b ⋅4b a=10, 当且仅当a b=4b a且a +b =1时,取等号,即a =23,b =13时取等号,则a 2+4a+b 2+1b的最小值为10;故答案为:10.【点评】本题考查基本不等式的运用,属于基础题. 【题型3 利用基本不等式求最值(消元法)】【例3】(2021•浙江模拟)若正实数x ,y 满足1x +1y+x y=4,则x +1x +1y的最小值为 .【分析】先由已知关系式求出y 的表达式,代入所求的关系式中化简,然后利用基本不等式即可求解. 【解答】解:由1x +1y+x y=4可得:x+1y=4−1x=4x−1x,所以y =x(x+1)4x−1, 则x +1x+1y =x +1x +4x−1x(x+1)=x +x+1+4x−1x(x+1)=x +5x+1=(x +1)+5x+1−1 ≥2√(x +1)⋅5x+1−1=2√5−1,当且仅当x +1=5x+1,即x =√5−1时取等号, 此时x +1x+1y的最小值为2√5−1, 故答案为:2√5−1.【点评】本题考查了基本不等式求最值的问题,考查了学生的运算转化能力,属于基础题. 【变式3-1】(2021•海曙区校级模拟)已知正数a ,b 满足1a +1b=2,则3b+1−a 的最大值为 .【分析】利用已知的等式,将所求的式子进行消元,得到关于a 的关系式,然后利用基本不等式求解最值即可.【解答】解:因为1a+1b=2,所以a +b =2ab ,当a =12时,1b=0,不符合题意,所以b =a 2a−1(a >12), 则3b+1−a =3a2a−1+1−a =2−(13a−1+3a−13)−13,因为a >12,则a >13,所以3a ﹣1>0,则13a−1+3a−13≥2√13a−1⋅3a−13=2√33, 当且仅当13a−1=3a−13,即a =1+√33时取等号, 所以2−(13a−1+3a−13)−13≤2−2√33−13=5−2√33, 则3b+1−a 的最大值为5−2√33. 故答案为:5−2√33. 【点评】本题考查了基本不等式的应用,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,属于中档题.【变式3-2】(2021•鄞州区校级模拟)若实数x ,y 满足2x 2+xy ﹣y 2=1,则5x 2﹣2xy +2y 2的最小值为 . 【分析】由已知2x 2+xy ﹣y 2=(2x ﹣y )(x +y )=1,而5x 2﹣2xy +2y 2=(2x ﹣y )2+(x +y )2,然后利用基本不等式即可求解,【解答】解:因为2x 2+xy ﹣y 2=(2x ﹣y )(x +y )=1, 令t =2x ﹣y ,则x +y =1t,则5x 2﹣2xy +2y 2=(2x ﹣y )2+(x +y )2=t 2+1t 2≥2√t2⋅1t 2=2, 当且仅当t 2=1t 2,即t =±1时取等号,此时5x 2﹣2xy +2y 2取最小值2. 故答案为:2.【点评】本题主要考查了利用基本不等式求解最值,解题的关键是基本不等式的应用条件的配凑,属于基础题.【变式3-3】(2021•嵊州市二模)已知x >0,y >0,若x •(y +1)=2,则x −1y的最大值为 . 【分析】根据条件可得x −1y =x−x 22−x ,设t =2﹣x ,则x −1y =−(t +2t )+3,然后利用基本不等式求出最大值即可.【解答】解:因为x >0,y >0,x •(y +1)=2,所以y=2−xx,则x−1y=x−x2−x=x−x22−x,设t=2﹣x,则由0<x<2,得0<t<2,所以x−1y=−(2−t)2+2−tt=−(t+2t)+3≤3−2√2,当且仅当t=2t,即t=√2时取等号,所以x−1y的最大值3﹣2√2.故答案为:3﹣2√2.【点评】本题主要考查了利用基本不等式求最值,考查了转化思想,属于中档题.【题型4 基本不等式的综合(求参数)】【例4】(2021•广东模拟)当x>4时,不等式x+4x−4≥m恒成立,则m的取值范围是()A.m≤8B.m<8C.m≥8D.m>8【分析】当x>4时,不等式x+4x−4≥m恒成立,只需m≤(x+4x−4)min,求出x+4x−4的最小值即可.【解答】解:∵x>4,∴x﹣4>0,∴x+4x−4=x﹣4+4x−4+4≥2√(x−4)⋅4x−4+4=8当且仅当x−4=4x−4,即x=6时取等号,∵当x>4时,不等式x+4x−4≥m恒成立,∴只需m≤(x+4x−4)min=8.∴m的取值范围为:(﹣∞,8].故选:A.【点评】本题考查了利用基本不等式求最值和不等式恒成立问题,考查了转化思想,属基础题.【变式4-1】(2020•藁城区校级模拟)若两个正实数x,y满足1x +4y=2,且不等式x+y4<m2﹣m有解,则实数m的取值范围是()A.(﹣1,2)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣2,1)D.(﹣∞,﹣1)∪(2,+∞)【分析】将不等式x+y4<m2﹣m有解转化为m2﹣m>(x+y4)min即可,利用1的代换结合基本不等式进行求解即可.【解答】解:若不等式x +y 4<m 2﹣m 有解,即m 2﹣m >(x +y 4)min 即可, ∵1x +4y=2,∴12x+2y =1,则x +y4=(x +y4)(12x +2y)=12+24+2xy +y8x ≥1+2√2xy ⋅y8x =1+2×√14=1+2×12=1+1=2, 当且仅当2x y=y 8x,即y 2=16x 2,即y =4x 时取等号,此时x =1,y =4,即(x +y 4)min =2,则由m 2﹣m >2得m 2﹣m ﹣2>0,即(m +1)(m ﹣2)>0, 得m >2或m <﹣1,即实数m 的取值范围是(﹣∞,﹣1)∪(2,+∞), 故选:D .【点评】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键. 【变式4-2】(2020•湖北模拟)若不等式1x +11−4x−m ≥0对x ∈(0,14)恒成立,则实数m 的最大值为( )A .7B .8C .9D .10【分析】根据题意,由基本不等式的性质分析可得1x+11−4x 的最小值为9,据此分析可得答案.【解答】解:根据题意,x ∈(0,14),则1﹣4x >0,则1x+11−4x=44x+11−4x=[4x +(1﹣4x )](44x+11−4x)=5+4(1−4x)4x +4x1−4x≥5+2×√4(1−4x)4x ×4x 1−4x=9,当且仅当1﹣4x =2x 时等号成立, 则1x +11−4x 的最小值为9,若不等式1x+11−4x−m ≥0对x ∈(0,14)恒成立,即式1x+11−4x≥m 恒成立,必有m ≤9恒成立,故实数m 的最大值为9; 故选:C .【点评】本题考查基本不等式的性质以及应用,注意原式的变形,属于基础题. 【变式4-3】(2021•浙江模拟)已知x >0、y >0,且2x +1y=1,若2x +y >m 2+8m 恒成立,则实数m 的取值范围为( ) A .(﹣1,9)B .(﹣9,1)C .[﹣9,1]D .(﹣∞,﹣1)∪(9,+∞)【分析】先把2x +y 转化为(2x +y )(2x+1y)展开后利用基本不等式求得其最小值,然后根据2x +y >m 2+8m 恒成立求得m 2+7m ≤9,进而求得m 的范围. 【解答】解:∵x >0,y >0,且2x +1y=1,∴(2x +y )(2x+1y)=5+2x y +2y x ≥5+2√2x y ⋅2yx=9,当且仅当x =3,y =3时取等号, ∵2x +y >m 2+8m 恒成立, ∴m 2+8m <9,解得﹣9<m <1, 故选:B .【点评】本题主要考查了基本不等式在最值问题中的应用.考查了学生分析问题和解决问题的能力. 【题型5 基本不等式与其他知识综合】【例5】(2021•河北模拟)已知函数f (x )=x +21+e x ,若正实数m 、n 满足f (m ﹣9)+f (2n )=2,则2m+1n的最小值为( ) A .8B .4C .83D .89【分析】直接利用函数的单调性和对称性的应用及基本不等式的应用求出结果. 【解答】解:函数f (x )=x +21+e x , 所以f (﹣x )=﹣x +21+e −x , 所以f (x )+f (﹣x )=2.由于函数f (x )=x +21+e x 在定义域上单调递增, 故正实数m 、n 满足f (m ﹣9)+f (2n )=2, 故9﹣m =2n , 所以m +2n =9, 所以2m+1n=19⋅(m +2n )(2m +1n)=19(4+4n m +m n )≥19×(4+2√4)=89(当且仅当买m =2n 时,等号成立). 故选:D .【点评】本题考查的知识要点:关系式的恒等变换,函数的单调性和对称性的应用,基本不等式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.【变式5-1】(2021•金凤区校级一模)已知函数f (x )=log a (x +3)﹣1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +4=0上,其中mn >0,则1m +2n的最小值为( ) A .23B .43C .2D .4【分析】由对数函数的性质可求A (﹣2,﹣1),代入直线方程可得2m +n =4,从而有1m+2n=14(1m+2n)(2m +n ),利用基本不等式即可求解.【解答】解:f (x )=log a (x +3)﹣1(a >0且a ≠1)的图象恒过定点A (﹣2,﹣1), ∵点A 在直线mx +ny +4=0上, ﹣2m ﹣n +4=0即2m +n =4, ∵mn >0, ∴m >0,n >0, ∴1m+2n=14(1m +2n )(2m +n )=14(4+n m +4m n )≥14(4+4)=2,当且仅当4m n=n m且2m +n =4即m =1,n =2时取得最小值2.故选:C .【点评】本题主要考查了对数函数的性质及基本不等式在求解最值中的应用,试题具有一定的综合性. 【变式5-2】(2020•济宁模拟)已知首项与公比相等的等比数列{a n }中,若m ,n ∈N *,满足a m a n 2=a 42,则2m+1n的最小值为 ,等号成立时m ,n 满足的等量关系是 .【分析】设首项与公比为a ,则通项为a n =a n (a ≠0),根据a m a n 2=a 42,可得到m ,n 的关系式,然后结合基本不等式求解即可.【解答】解:设首项与公比为a ,则通项为a n =a n (a ≠0), ∵a m a n 2=a 42,∴a m +2n =a 8,∴m +2n =8,m ,n ∈Z +. ∴2m+1n=18(m +2n)(2m+1n)=18(4+4n m+m n)≥18(4+2√4n m×m n)=1.当且仅当n =2,m =4时取等号,此时m =2n . 故答案为:1,m =2n .【点评】本题主要是考查了基本不等式的应用.注意适用条件的判断.属于中档题.【变式5-3】(2020•河南三模)存在正数m ,使得方程√3sin x ﹣cos x =m 的正根从小到大排成一个等差数列.若点A (1,m )在直线ax +by ﹣2=0(a >0,b >0)上,则1a+2b 的最小值为 .【分析】运用两角差的正弦公式,化简可得y =2sin (x −π6),可得0<m ≤2,讨论m 的范围,结合三角函数的图象和等差数列的定义,可得m =2,将A 代入直线方程,可得a +2b =2,再由乘1法和基本不等式即可得到所求最小值. 【解答】解:由√3sin x ﹣cos x =2(√32sin x −12cos x )=2sin (x −π6), 存在正数m ,使得方程√3sin x ﹣cos x =m 的正根从小到大排成一个等差数列, 即有0<m ≤2.若0<m <2,由y =2sin (x −π6)的图象可得:直线y =m 与函数y =2sin (x −π6)的图象的交点的横坐标不成等差数列,若m =2,即有x −π6=2k π+π2,即为x =2k π+2π3,k ∈Z , 可得所有正根从小到大排成一个等差数列,公差为2π, 则m =2,由点A (1,2)在直线ax +by ﹣2=0上, 可得a +2b =2,a ,b >0, 即b +12a =1, 则1a +2b =(1a+2b)(b +12a )=2+12+b a +ab≥52+2√b a ⋅ab =52+2=92.当且仅当a =b =23时,取得最小值92.故答案为:92.【点评】本题考查最小值的求法,注意运用基本不等式,运用乘1法,同时考查三角函数的化简,以及等差数列的定义,考查运算能力,属于中档题. 【题型6 利用基本不等式解决实际问题】【例6】(2021•湖南模拟)某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,当工厂和仓库之间的距离为 千米时,运费与仓储费之和最小,最小值为 万元.【分析】先求出比例系数,再得出运费与仓储费之和,利用基本不等式可求最值.【解答】解:设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=k 1x ,y 2=k2x∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元, ∴k 1=5,k 2=20, ∴运费与仓储费之和为5x +20x∵5x +20x ≥2√5x ×20x =20,当且仅当5x =20x ,即x =2时,运费与仓储费之和最小为20万元 故答案为:2,20【点评】本题考查函数模型的构建,考查基本不等式的运用,正确确定函数解析式是关键.【变式6-1】(2020秋•浙江期中)某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本y (万元)与年产量(吨)之间的函数关系式近似地表示为y =x 210−30x +4000.问:(1)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润; (2)年产量为多少吨时,每吨的平均成本最低?并求出最低成.【分析】(1)根据题意得出z =16x ﹣(x 210−30x +4000)=−x 210+46x ﹣4000=−110(x ﹣230)2+1290,(150≤x ≤250),利用二次函数求解即可. (2)得出函数式子W =y x =x 104000x −30=110(x +40000x)﹣30,(150≤x ≤250),运用基本不等式求解即可.【解答】解:(1)年产量为x ,年利润为z 万元,根据题意得: z =16x ﹣(x 210−30x +4000)=−x 210+46x ﹣4000=−110(x ﹣230)2+1290,(150≤x ≤250), 当x =230时,z max =1290(万元),(2)年产量为x 吨时,每吨的平均成本为W 万元,为y =x 210−30x +4000.∴W =y x =x 104000x −30=110(x +40000x)﹣30,(150≤x ≤250), ∵x +40000x≥2√40000=400,(x =200等号成立), ∴x =200时,W 最小=110×400﹣30=10.故年产量为200吨时,每吨的平均成本最低为10万元.【点评】本题考查了函数,基本不等式在实际问题中的应用,属于中档题.【变式6-2】(2020秋•虹口区期末)某居民小区欲在一块空地上建一面积为1200m 2的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m ),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?【分析】设矩形车场南北侧边长为xm ,则其东西侧边长为1200xm ,人行道占地面积为S =(x +6)(8+1200x )﹣1200=8x +7200x+48,然后结合基本不等式即可求解.【解答】解:设矩形车场南北侧边长为xm ,则其东西侧边长为1200xm ,人行道占地面积为S =(x +6)(8+1200x )﹣1200=8x +7200x +48≥2√8x ⋅7200x+48=528, 当且仅当8x =7200x ,即x =30(m )时取等号,S min =96(m 2),此时1200x=40(m ), 所以矩形停车场的南北侧边长为30m ,则其东西侧边长为40m ,才能使人行通道占地面积最小, 最小面积是528m 2.【点评】本题主要考查了基本不等式在实际问题中的应用,体现了转化思想的应用.【变式6-3】(2020秋•大丰区校级期末)合肥六中德育处为了更好的开展高一社团活动,现要设计如图的一张矩形宣传海报,该海报含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60000cm 2,四周空白的宽度为10cm ,栏与栏之间的中缝空白的宽度为5cm .(1)怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,并求最小值;(2)如果要求矩形栏目的宽度不小于高度的2倍,那么怎样确定海报矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,并求最小值.【分析】(1)根据矩形栏目面积确定高与宽的关系,可得整个矩形广告面积,再利用基本不等式,即可求得最值.(2)由题意得b ≥2a ,b =20000a ,求得a 的范围,由(1)可得S =30(a +40000a)+60600,函数确定为减区间,即可得到何时取得最小值.【解答】解:(1)设矩形栏目的高为acm,宽为bcm,则ab=20000,所以b=20000a,广告的高为(a+20)cm,宽为(3b+30)cm(其中a>0,b>0),广告的面积S=(a+20)(3b+30)=30(a+2b)+60600=30(a+40000a)+60600≥30×2√a×40000a+60600=72600,当且仅当a=40000a,即a=200时,取等号,此时b=100.故当广告矩形栏目的高为200cm,宽为100cm,时可使广告的面积最小为72600cm2.(2)由题意得,b≥2a,b=20000a,解得0<a≤100,由(1)可得S=30(a+40000a)+60600,当a=100时,广告的面积最小为75600cm2.故当广告矩形栏目的高为100cm,宽为200cm,可使广告的面积最小为75600cm2.【点评】本题考查函数模型的构建,基本不等式的运用,解题的关键是正确表示整个矩形广告面积,属于中档题.。

历年高三数学高考考点之〈不等式〉必会题型及答案

历年高三数学高考考点之〈不等式〉必会题型及答案

历年高三数学高考考点之〈不等式〉必会题型及答案体验高考体验高考1.已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解 f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1,所以-1<x ≤-12;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1, 所以,-12<x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明 由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,即(a +b )2<(1+ab )2, 因此|a +b |<|1+ab |.2.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}. (2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3, 解得a ≥2.所以a 的取值范围是[2,+∞).高考必会题型题型一 含绝对值不等式的解法 含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.例1 已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4| 得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解; 当x ≥4时,由f (x )≥4-|x -4| 得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.点评 (1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.变式训练1 已知函数f (x )=|x -2|-|x -5|. (1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.(1)证明 f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3. 所以-3≤f (x )≤3. (2)解 由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5}; 当x ≥5时,f (x )≥x 2-8x +15的解集为 {x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}. 题型二 不等式的证明 1.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |. 2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 例2 (1)已知x ,y 均为正数,且x >y .求证:2x +1x 2-2xy +y 2≥2y +3.(2)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.证明 (1)因为x >0,y >0,x -y >0, 2x +1x 2-2xy +y 2-2y=2(x -y )+1x -y2=(x -y )+(x -y )+1x -y2≥33x -y21x -y2=3,所以2x +1x 2-2xy +y 2≥2y +3.(2)因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |, 由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=56,所以|y |<518.点评 (1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力. (2)在不等式的证明中,适当“放”“缩”是常用的推证技巧. 变式训练2 (1)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.(2)已知a ,b ,c 均为正数,a +b =1,求证:a 2b +b 2c +c 2a≥1.证明 (1)当|a +b |=0时,不等式显然成立. 当|a +b |≠0时,由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c , 所以a 2b +b 2c +c 2a≥1.题型三 柯西不等式的应用 柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.例3 (2015·福建)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值.解 (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b . 所以f (x )的最小值为a +b +c . 又已知f (x )的最小值为4, 所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1) ≥⎝ ⎛⎭⎪⎫a 2×2+b3×3+c ×12=(a +b +c )2=16, 即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c1,即a =87,b =187,c =27时等号成立.故14a 2+19b 2+c 2的最小值为87. 点评 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明. (2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n)≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.变式训练3 已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a . (1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.(1)解 因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3. (2)证明 由(1)知p +q +r =3, 又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9, 即p 2+q 2+r 2≥3.高考题型精练1.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,求实数a 的取值范围. 解 设y =|x -3|-|x -4|, 则y =⎩⎪⎨⎪⎧-1,x ≤3,2x -7,3<x <4,1,x ≥4的图象如图所示:若|x -3|-|x -4|<a 的解集不是空集, 则(|x -3|-|x -4|)min <a .由图象可知当a >-1时,不等式的解集不是空集. 即实数a 的取值范围是(-1,+∞).2.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解 ∵x >0,y >0,∴原不等式可化为-λ≤(1x +1y )·(x +y )=2+y x +xy.∵2+y x +x y ≥2+2y x ·xy=4, 当且仅当x =y 时等号成立. ∴[(1x +1y)(x +y )]min =4,∴-λ≤4,λ≥-4.即实数λ的最小值是-4.3.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,求实数a 的取值范围.解 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值范围为[-1,12].4.设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A ,(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解 (1)因为32∈A ,且12∉A ,所以⎪⎪⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3, 当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 5.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. (1)解 f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1.当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4; 当x >1时,由2x <4,得1<x <2. ∴综上可得-2<x <2,即M =(-2,2). (2)证明 ∵a ,b ∈M , 即-2<a <2,-2<b <2,∴4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.6.已知a 2+2b 2+3c 2=6,若存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立,求实数x 的取值范围.解 由柯西不等式知[12+(2)2+(3)2][a 2+(2b )2+(3c )2] ≥(1·a +2·2b +3·3c )2即6×(a 2+2b 2+3c 2)≥ (a +2b +3c )2. 又∵a 2+2b 2+3c 2=6, ∴6×6≥(a +2b +3c )2, ∴-6≤a +2b +3c ≤6,∵存在实数a ,b ,c ,使得不等式a +2b +3c >|x +1|成立.∴|x +1|<6,∴-7<x <5. ∴x 的取值范围是{x |-7<x <5}. 7.设函数f (x )=|x -a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解 (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2. 由此可得x ≥3或x ≤-1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}. (2)由f (x )≤0得|x -a |+3x ≤0.此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a2}.由题设可得-a2=-1,故a =2.8.(2015·课标全国Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).。

高考数学专题--基本不等式求最值的常用方法(解析版)

高考数学专题--基本不等式求最值的常用方法(解析版)

基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。

不等式常见考试题型总结

不等式常见考试题型总结
2.含字母系数的一元一次不等式的解法与普通不等式的解法是一致的,所不同的是:前者在最后一步要根据题中附加条件或隐含条件,去判断未知数系数的符号,从而决定不等号是否反向。或对其系数进行分类讨论,写出各种情况下不等式的解集。一般的讨论方法:对于;
当时,
当时,若解集为任意实数;
若,无解
当时,
【典型例题】
题型一:与整数解个数有关的不等式
2.作商(常用于分数指数幂的代数式);
3.分析法;
4.平方法;
间量或放缩法;
8.图象法。
(4)不等式求函数最值
技巧一:凑项
例:已知,求函数的最大值。
技巧二:凑系数
例。 当时,求的最大值.
技巧三:分离
例. 求的值域。
技巧四:换元
例。 求的值域。
∴W≤ =2
变式: 求函数的最大值.
解析:注意到与的和为定值。
又,所以
当且仅当=,即时取等号. 故。
评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件.
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。
应用二:利用基本不等式证明不等式
(5)证明不等式
常用方法:比较法、分析法、综合法和放缩法。
基本不等式—最值求法的题型
基础题型一:指数类最值的求法
1.已知,求的最小值。
变式1.已知,求的最小值.
变式2.已知,求的最小值。
变式3。已知,求的最小值。
变式4。已知点在直线上,求的最小值。
基础题型二:对数类最值的求法
2.已知,且,求的最大值。
4。若,则(当且仅当时取“=”)
注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.

高考数学如何快速解决复杂的不等式问题

高考数学如何快速解决复杂的不等式问题

高考数学如何快速解决复杂的不等式问题不等式问题在高考数学中占据重要的位置,解决复杂的不等式问题需要灵活运用相关的数学知识和技巧。

本文将介绍一些方法和策略,帮助同学们快速解决复杂的不等式问题。

一、一元一次不等式一元一次不等式是最简单的不等式问题之一,其解的思路与方程类似。

首先,将不等式中的常数项移项,使得不等式变为等式,并写出其解集;然后,根据不等号的性质确定解集的范围。

例如,对于不等式2x+3>5,可以将常数项移项得到2x>2,然后除以2得到x>1,即解集为(1,+∞)。

二、一元二次不等式一元二次不等式在高考数学中出现频率较高,解决这类不等式问题可以使用图像法、开口方向法和根判别法等方法。

1. 图像法:将一元二次不等式转化为一元二次方程,并绘制出关于x的二次函数图像。

通过观察函数图像与x轴的位置关系,确定不等式的解集。

例如,对于不等式x^2-4x+3<0,可以将其转化为方程x^2-4x+3=0,求得方程的根x=1和x=3,在图像上标出这两个根,并观察函数图像在根之间的部分与x轴的位置关系,确定解集为(1,3)。

2. 开口方向法:将一元二次不等式转化为标准形式,并确定开口的方向。

例如,对于不等式2x^2+5x+3>0,可以通过求解方程2x^2+5x+3=0,得到方程的根x=-1和x=-3/2,再观察二次曲线的开口方向,确定解集为(-∞,-3/2)∪(-1,+∞)。

3. 根判别法:对于一元二次不等式ax^2+bx+c(a>0),通过求解方程ax^2+bx+c=0,得到方程的两个根x1和x2。

根据二次函数的凹凸性,确定解集的范围。

例如,对于不等式x^2+6x+9>0,方程的根为x=-3,因为a=1>0,所以二次曲线开口向上,根据函数图像与x轴的关系,确定解集为(-∞,-3)∪(-3,+∞)。

三、绝对值不等式绝对值不等式是高考数学中常见的一类问题,可以通过分情况讨论的方法求解。

高考数学不等式方法技巧及题型全归纳(100页)

高考数学不等式方法技巧及题型全归纳(100页)

g(x) 0
f
(x)
0
(2) f (x) 0 f x g x 0
g(x)
f (x) g(x)
0
f (x) g(x) g(x) 0
0
2.2 含有绝对值的不等式
(1) f x g x f (x) g(x) 或 f (x) g(x) ;
(2)| f (x) | g(x) g(x) f (x) g(x) ;
到的 与原式是恒等的,则称 1, 2, ⋅⋅⋅ , 是完全对称的.

+
+

b
a
c
c
b
a
a
c
b
等.
设 ( 1, 2, ⋅⋅⋅ , )是一个 元函数. 若作置换 1 → 2, 2 → 3, ⋅⋅⋅ , −1 → , → 1,得到
的 与原式是恒等的,则称 ( 1, 2, ⋅⋅⋅ , )是轮换对称的.
如3
+
3
+
3 , a b c 等. ab bc ca
显然,完全对称的一定是轮换对称的.
2
2、重要不等式
2.1 无理式、分式
(1)
f
(x)
g(x)
g(x) 0
f
(x)
0
g(x) 0

f
(x)
g 2(x)
g(x) 0
f
(x)
g(x)
f
(x)
0
f (x) g 2 (x)
f (x)
g(x) 0 g(x) 0 或
2.1 无理式、分式............................................................................................................... 3 2.2 含有绝对值的不等式................................................................................................... 3 2.3 一元二次不等式........................................................................................................... 3 2.4 基本不等式................................................................................................................... 4 2.5 柯西不等式................................................................................................................... 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10讲不等式
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

一、知识整合
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.
3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.
4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法多样,内容丰富、技巧性较强.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.
6.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.作答。

7.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.
二、方法技巧
1.解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。

2.解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。

3.不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。

如运用放缩法证明不等式时要注意调整放缩的度。

4.根据题目结构特点,执果索因,往往是有效的思维方法。

三、例题分析
b)∈M ,且对M 中的其
它元素(c ,d),总有c ≥a ,则a=____.
分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M 中的其它元素(c ,
d),总有c ≥a ”?M 中的元素又有什么特点?
解:依题可知,本题等价于求函数x=f(y)=(y+3)·|y-1|+(y+3)
(2)当1≤y ≤3时,
所以当y=1时,min x = 4.
简评:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示 其数学实质.即求集合M
中的元素满足关系式
例2.已知非负实数x ,y 满足2380x y +-≤且3270x y +-≤,则x y +的最大值是( )
A .73
B .83
C .2
D . 3 解:画出图象,由线性规划知识可得,选D
例3.数列{}n x 由下列条件确定:*+∈⎪⎪⎭⎫ ⎝
⎛+=>=N n x a x x a x n n n ,21,011 (1)证明:对于a x n n ≥≥总有,2,
(2)证明:对于1,2+≥≥n n x x n 总有.
证明:(1))()(21,0)(210111*∈=⋅≥+=>+=>=++N n a x a x x a x x x x a x x a x n
n n n n n n n n 从而知及 (2)当2≥n 时,)(21),(21,011n n n n n n n n x x a x x x a x x a x -=-∴+=
>≥++ =成立时12,2.021+≥≥∴≤-•n n n
n x x n x x a 。

例4.解关于x 的不等式:()09
22>≤-a a a x x 分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。

本题的关键不是对参数a 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。

解:当()⎩⎨⎧≤--≥⎩⎨⎧≤-≥≥0
29929222a ax x a x a a x x a x a x 即时,不等式可转化为 ]⎥⎦
⎤⎢⎣⎡+
⋃-∞<≤≤∴a a a
a x a a x 6173,323,(3
23故不等式的解集为或。

例5.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解. 解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax2+bx .于是
解法一(利用基本不等式的性质)
不等式组(Ⅰ)变形得
(Ⅰ)
所以f(-2)的取值范围是[6,10].
解法二(数形结合)
建立直角坐标系aob ,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b ,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10.
解法三(利用方程的思想)
又f(-2)=4a-2b=3f(-1)+f(1),而
1≤f(-1)≤2,3≤f(1)≤4, ①
所以 3≤3f(-1)≤6. ②
①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.
简评:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:
2b ,8≤4a ≤12,-3
≤-2b ≤-1,所以 5≤f(-2)≤11.
(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.
例6.设函数f(x)=ax 2+bx+c 的图象与两直线y=x ,y=-x ,均不相交.试证明对一切x R ∈都有214ax bx c a
++>. 分析:因为x ∈R ,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x 0)2+f(x0). 证明:由题意知,a ≠0.设f(x)=a(x-x 0)2+f(x 0),则
又二次方程ax 2+bx+c=±x 无实根,故
Δ1=(b+1)2-4ac <0,Δ2=(b-1)2-4ac <0.
所以(b+1)2+(b-1)2-8ac <0,即2b 2+2-8ac <0,即b 2-4ac <-1,所以|b 2-4ac|>1. 简评:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径.
例7.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。

为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
解:设2001年末的汽车保有量为1a ,以后每年末的汽车保有量依次为....,32a a ,每年新增汽车x 万辆。

由题意得。

相关文档
最新文档