北师大版八年级数学下不等式专项练习

合集下载

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题
A. B. Cห้องสมุดไป่ตู้ D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
②购买多少本书法练习本时,两种方案所花费的钱是一样多?
③购买多少本书法练习本时,按方案二付款更省钱?
18、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
故答案为:5x+200,4.5x+225;
②依题意可得,5x+200=4.5x+225,
解得:x=50.
答:购买50本书法练习本时,两种方案所花费的钱是一样多;
③依题意可得,5x+200>4.5x+225,
解得:x>50.
答:购买超过50本书法练习本时,按方案二付款更省钱
18、解:(1)设甲、乙两种型号的挖掘机各需x台、y台.
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
24.△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合 一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.
(1)如图①,点D与点A在直线BC 两侧,α=60°时, 的值是;直线AE与直线CD相交所成的锐角的度数是度;

最新北师大版八年级下册《不等式》经典测试题

最新北师大版八年级下册《不等式》经典测试题

2015年北师大版八年级下册《不等式》经典测试题《一元一次不等式组》测试题一.选择题。

1.已知:a b >,则下列不等式一定成立的是( ) A. a b +<+44B. 22a b <C. -<-22a bD. ab -<02.下列说法中,正确的是( )A. x=2是不等式3x>5的一个解B. x=2是不等式3x>5的解集C. x=2是不等式3x>5的唯一解D. x=2不是不等式3x>5的解3.不等式53>-x的解集是( ) A .35-<x B .35->x C .15-<x D .15>-x4.不等式组⎩⎨⎧--012<>x x 的解集是( )A. x >1B. x >-2C. -2<x <1D. x >1或x <-2 5.不等式3312-≥-x x 的正整数解的个数是( )A .1个B .2个C .3个D .4个6.有理数a 、b 、c 在数轴上的对应点的位置如图所示,下列式子中正确的是( )A 、b+c >0B 、a-b >a-cC 、ac >bcD 、ab >ac7.如图,用不等式表示数轴上所示的解集,正确的是( )A .<x D .31≤<-x 8.已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( ) A .2>x B .2<x C .2->x D . 2-<x9.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是( )A .4≥mB .4≤mC .4<mD .4=m 10.已知点M(4-a,a+3)在第二象限,则a 的取值范围是 ( ) A. a>-3 B. –3<a<4 C. a<-3 D. a>411.如图3,已知一次函数y=k 1x+b 1与一次函数y= k 2x+b 2的图象相交于点(2,1),则不等式k 1x+b 1<k 2x+b 2的解 集是 A .x >3 B .x >2C .x <2D .x <012.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )折 A.6 B.7 C.8 D.9 二.填空题13.不等式13->-x的正整数解是 。

北师大版八下数学不等式练习题2套

北师大版八下数学不等式练习题2套

八下练习题1一.选择题1.如果a >b ,下列各式中不正确...的是 A .2a >2b B .-2a <-2b C .a -3>b -3 D . a 1<b1 2.使不等式3x -7<5-x 成立的最大整数x 为( )A 、0B 、1C 、2D 、33.已知x >y ,下列不等式一定成立的是( )A. x -6<y -6B. -ax <-ay C .-2x >-2y D .2x+a >2y+a4.下列说法正确的是( )A. 由a >b 得-3a >-3b B .由a >b 得2c a >2c b C .由a >b 得ac 2>bc 2 D.由21->1- 得2a ->a - 5.下列说法中正确的是( )A .x =1是不等式3x +4>0的解 B.不等式-2x >0的解集为x >0C.若x +a >1,则x <1D.若ax <1,则x <1a6.如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC=BDB .∠CAB=∠DBAC .∠C=∠D D .BC=AD7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是( )A .SASB .SSSC .AASD .ASA8.已知a > b,则下列各式成立的是( )A. ac > bcB. ac 2> bc 2C. a+c > b+cD. a 2> b 29.不等式2(x –2)≤x –2的非负整数解的个数为( )A 、1B 、2C 、3D 、410.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )A 、1<a ≤7B 、a ≤7C 、 a <1或a ≥7D 、a =711.到三角形三个顶点距离相等的点是三角形( )A .三条角平分线的交点B .三条高线所在直线的交点C .三边的垂直平分线的交点D .三条中线的交点12.下列命题的逆命题是真命题的是( )A.两个锐角分别相等的直角三角形全等B.如果00==b a 且,则0=abC.角平分线上的点到角两边的距离相等D.对顶角相等 13.已知c b a 、、是△ABC 的三边,且满足0)(24222222=++-+c c b a b a )(,那么△ABC 的形状是( ) A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形 二.填空题14.函数y=,自变量x的取值范围是__________.15.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为 .16.已知等腰三角形的一边长为5cm,另一边长为9cm,则它的周长为 .17.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD= .18.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为.19.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.20.不等式35)1(3-≥+xx的正整数解是______________.21.若不等式ax-1>2x+1的解集是x<-2,则a的值是________.22.如果不等式2x-m<0只有三个正整数解,则m的取值范围是.23.如图,在△ABC中,若AB=AC,BC =4cm,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长是14cm,则AB的长等于 cm.24.如图,点P是AOB∠的角平分线上一点,过点P作PC OA∥交OB于点C.若604AOB OC∠==,,则点P到OA的距离PD等于.25.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕顶点O逆时针旋转到△AOB处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.26.如图是矩形纸片ABCD.AB=8cm,BC=20cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,那么折痕长度为cm.三.解答题ADB CE第11题O CADP第12题27.求不等式21362x x x --≥+的最大整数解.28.解不等式:x -)14(21-x ≤2 , 把解集表示在数轴上,并求出它所有整数解的积.29.如图,已知△ABC ,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)30.如图,在△ABC 中,AB=AC ,作AD ⊥AB 交BC 的延长线于点D ,作AE ∥BD ,CE ⊥AC ,且AE ,CE 相交于点E ,求证:AD=CE .31.如图,已知△ABC 为等边三角形,D 为BC 延长线上的一点,CE 平分∠ACD ,CE=BD ,求证:△ADE 为等边三角形.32.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润不低于26%,那么售价至少定为每千克多少元?八下练习题2E DC B A 一.选择题1.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <12.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人3.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).(A)11 (B)8 (C)7 (D)54.已知bm am >,则下面结论中正确的是( )A.b a >B.b a <C.a b m m> D.2am ≥2bm 5.点P (x-1,x+1)不可能在 ( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 6.若2)3(a -=3-a ,则a 与3的大小关系是( )A.a <3B.a ≤3C.a >3D.a ≥37.如上图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的31,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是acm ,若铁钉总长度为6cm ,则a 的取值范围是( )A .a >1354B .1354<a ≤29C .a <29D .1354≤a <29 二.填空题8.等腰三角形的两边长分别是3和7,则其周长为______.9.若x 是非负数,则5231x -≤-的解集是______. 10.如果a 2x >a 2y (a ≠0).那么x ______y .11.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.12.如果不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是 .13.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集是______.14.设a ,b 是常数,不等式a x +b 1>0的解集为x <51,则关于x 的不等式bx -a >0的解集是______. 15.我们学习过很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)16.如图,在等腰ABC ∆中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若B C E ∆ 的周长为50,则底边BC 的长为_________.17.如图,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为 ,DE 的长为 .18.如图,在Rt ABC 中,∠ACB =90°,∠B =30°,BC =3.点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将B ∠沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为 .三.解答题 2(2x -3)<5(x -1). 10-3(x +6)≤1. 3[x -2(x -7)]≤4x第10题22531-->+x x 612131-≥--+y y y 21362x x x --≥+20.如图,在∆ABC 中,090C ∠=.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.21.如图23,090AOB ∠=,OM 平分AOB ∠,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.22.已知:如图,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE=AD ,△CDE 是等边三角形.求证:△ABC 是等边三角形.23.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上? 图23。

一元一次不等式练习.八年级数学下册.北师大版

一元一次不等式练习.八年级数学下册.北师大版

一元一次不等式 (Байду номын сангаас) 基础 测试
八年级数学下学期 北师大版
1. 若 a > b > 0, c ̸= 0,则下列式子一定成立的是 ( ) a <1 b a b (D) 2 > 2 c c (B) 2 的解集是 x 1,则 a 的值
(A) a − c < b − c (C) −2a > −2b 2. 若不等式 −2x + a 是 .
一元一次不等式 (组) 应用 测试
八年级数学下学期 北师大版
解下列不等式组并把解集表示在数轴上 2 − x 1. 0
x − 1 2x − 1 1 − < 2 3 3
x − 3(x − 2) 2. 1 + 2x >x−1 3
4
x−3 +3 x+1 2 3. 1 − 3(x − 1) < 8 − x
−3− .
. 13. 某工厂现有甲种原料 360kg,乙种原料 290kg,计划 利用这两种原料生产 A、B 两种产品共 50 件.已知 生产一件 A 种产品需甲种原料 9kg、乙种原料 3kg; 生产一件 B 种产品需甲种原料 4kg、乙种原料 10kg. (1) 设生产 x 件 A 种产品,写出 x 应满足的不等式 组; (2) 有哪几种符合题意的生产方案?请你帮助设计. 14. 某仓库有甲种货物 360 吨,乙种货物 290 吨,计划 用 A、B 两种共 50 辆货车运往外地.若一辆 A 种 货车能装载甲种货物 9 吨和乙种货物 3 吨;一辆 B 种货车能装载甲种货物 6 吨和乙种货物 8 吨.按此 要求安排 A、B 两种货车运送这批货物,有哪几种 运输方案?请设计出来. −4−

北师大版八年级下册不等式习题

北师大版八年级下册不等式习题

八年级数学《不等式》测试题填空题(每题2分,共计20分)⑴用恰当的不等号表示下列关系:①x 的3倍与8的和比y 的2倍小:;②老师的年龄a 不小于你的年龄b :.⑵不等式3(x+1)≥5x —3的正整数解是⑶当a 时,不等式(a —1)x >1的解集是x <11-a . ⑷已知x =3是方程2a x -—2=x —1的解,那么不等式(2—5a )x <31的解集是 ⑸已知函数y=2x —3,当x 时,y ≥0;当x 时,y <5.X+8<4x -1⑹若不等式组 的解集是x >3,则m 的取值范围是x >mx -a ≥0⑺已知关于x 的不等式组 的整数解共有5个,则a 的取值范围是 3-2x >-12x -a <1⑻若不等式组 的解集为—1<x <1,那么(a —1)(b —1)的值等于x -2b >3⑼小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买只钢笔.⑽20XX 某省体育事业成绩显著,据统计,在有关大赛中获得奖牌数如右表所示(单位:枚)如果只获得1枚奖牌的选手有57人,那么荣获3枚奖牌的选手最多有人.(11)关于x 的方程2x+3k=1的解是负数,则x 的取值范围是_______.(12)若不等式(m-2)x>2的解集是x<22-m ,则x 的取值范围是_______二.选择题(每题4分,共计40分)1.已知“①x+y=1;②x >y ;③x+2y ;④x 2—y ≥1;⑤x <0”属于不等式的有个.A.2;B. 3;C.4;D. 5.2.如果m<n<0,那么下列结论错误的是A.m -9<n -9;B.—m>—n ;C.n 1>m 1;D.nm >1. 3.设“●”、“▲”、“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么●、▲、■这三种物体按质量从大到小的顺序排列为A.■、●、▲。

B.■、▲、●。

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。

北师大版八年级数学下册不等式的基本性质同步练习题 (2)

北师大版八年级数学下册不等式的基本性质同步练习题 (2)

2.3 不等式的解集1.下列数值中,是不等式x-2>2的一个解的是()A.0 B.2C.4 D.62.不等式x-3>1的解集是()A.x>2 B.x>4C.x>-2 D.x>-43.下列不等式中,不含有x=-1这个解的是()A.2x+1≤-3 B.2x-1≥-3 C.-2x+1≥3 D.-2x-1≤3 4.不等式3x<6的解集是;使该不等式成立的正整数解是,当时,不等式3x>7不成立.5.根据已知条件写出相应不等式.(1)-3,-2,-1,0,1都是不等式的解;(2)不等式的负整数解只有-1,-2,-3;(3)不等式的解的最大的值是0.6.对于解不等式-2x3>32,正确的结果是()A.x<-94B.x>-94C.x>-1 D.x<-17.若不等式(a-3)x>1的解集为x<1a-3,则a的取值范围是.8.根据不等式的基本性质,求出下列不等式的解集.(1)12x >-3; (2)3x -6≤0; (3)-12x +6>0.9.在数轴上表示不等式x -1<0的解集,正确的是( )10.如图,在数轴上所表示的是哪一个不等式的解集( )A.12x >-1 B.x +32≥-3C .x +1≥-1D .-2x >411.将下列不等式的解集分别表示在数轴上: (1)x ≤2; (2)x >-2.12.用A 、B 两种型号的钢丝各两根分别作为长方形的长与宽,焊接成周长不小于2.4m 的长方形框架,已知每根A 型钢丝的长度比每根B 型钢丝长度的2倍少3cm.(1)设每根B型钢丝长为x cm,按题意列出不等式并求出它的解集;(2)如果每根B型钢丝长度有以下四种选择:30cm,40cm,41cm,45cm,那么哪些合适?13.请阅读求绝对值不等式|x|<3和|x|>3的解集的过程:因为|x|<3,从如图1所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所以|x|<3的解集是-3<x<3;因为|x|>3,从如图2所示的数轴上看:小于-3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<-3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为________;不等式|x|>a(a>0)的解集为________;(2)解不等式|x-5|<3;(3)解不等式|x-3|>5.答案:1. B2. D3. A4. x <2 1 x≤735. 解:(1)答案不唯一.如:x ≥-3 (2)答案不唯一.如:x >-4 (3)答案不唯一.如:x ≤06. A7. a <38. 解:(1)两边都乘以2,得x >-6.(2)两边都加上6,得3x ≤6.两边都除以3,得x ≤2. (3)两边都减去6,得-12x >-6.两边都除以-12,得x <12.9. C 10. C11. 解:(1)(2)12. 解:(1)2(2x -3)+2x ≥240,∴x ≥41 (2)41cm,45cm 合适 13. 解:(1)不等式|x |<a (a >0)的解集为-a <x <a ;不等式|x |>a (a >0)的解集为x >a 或x <-a ;(2)|x -5|<3,由(1)可知-3<x -5<3,∴2<x <8; (3)|x -3|>5,由(1)可知x -3>5或x -3<-5,∴x >8或x <-2.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.这个方程是一元二次方程B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..0.620.其中合理的是A.①②B.②③C.①③D.①②③6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23 B.12C.13D.498.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE ⊥BC垂足为E,则AE的长为A.8B.6013 C.12013D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程:(1)2x 2-4x+1=0 (2)(x+8)(x+1)=-1218.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。

(完整版)北师大版八年级数学下-不等式专项练习

(完整版)北师大版八年级数学下-不等式专项练习

不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于01.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1D.a-b<02.在数轴上与原点的距离小于8的点对应的x满足()A.-8<x<8 B.x<-8或x>8 C.x<8 D.x>83.下列不等式中,是一元一次不等式的是()A.+1 >2B.x2 >9 C.2x+y ≤ 5 D.<0 4.下列表达式:①-m2≤0;②x+y>0;③a2+2ab+b2;④(a-b)2≥0;⑤--(y+1)2<0.其中不等式有()A.1个B.2个C.3个D.4个5.若m是非负数,则用不等式表示正确的是()A.m<0 B.m>0 C.m≤0D.m≥06.无论x取什么数,下列不等式总成立的是()A.x+6>0 B.x+6<0 C.-(x-6)2<0 D.(x-6)2≥07.下列不等关系中,正确的是()A.a不是负数表示为a>0B.x不大于5可表示为x>5C.x与1的和是非负数可表示为x+1>0D.m与4的差是负数可表示为m-4<0不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, c b c a <※2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<09、若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n-- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23;(3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1;(5)若ax b >,20ac <,则x______ba.1.若a >b ,则下列不等式不一定成立的是( ) A .a+m >b+m B .a (m 2+1)>b (m 2+1) C .- < - D .a 2>b 22.已知a>b,c≠0,则下列关系一定成立的是()A.ac>bc B.>C.c-a>c-b D.c+a>c+b 3.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a+c<b+c B.a-c>b-c C.ac<bc D.ac>bc5.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c-a>c-b C.ac>bc D.>6.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得-2a<-2bC.由a>b,得-a>-b D.由a>b,得a-2<b-27.若a<c<0<b,则abc与0的大小关系是()A.abc<0 B.abc=0 C.abc>0 D.无法确定8.若a+b>0,且b<0,则a,b,-a,-b的大小关系为()A.-a<-b<b<a B.-a<b<-b<a C.-a<b<a<-b D.b<-a<-b<a 9.由不等式ax>b可以推出x<那么a的取值范围是()A.a≤0B.a<0 C.a≥0D.a>010、x<y得到ax>ay的条件应是____________。

最新北师大八下不等式组专项训练

最新北师大八下不等式组专项训练

一元一次不等式组一、复习回顾解不等式组 (1)511031421->--+x x (2) 1312523-+≥-x x二、1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.1.把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .2.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )10 1-10 1- 10 1- 10 1- ABCD3.不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,24、已知a>b>0,则下列不等式组无解的是( )⎩⎨⎧<>bx a x A 、 ⎩⎨⎧-<->b x a x B 、 ⎩⎨⎧-><b x a x C 、 ⎩⎨⎧<->b x ax D 、 5、如果不等式 ⎩⎨⎧><m x x 8无解,那么m 的取值范围是( ) A .m>8 B .m ≥8 C .m<8 D .m ≤8 6、不等式组⎩⎨⎧>-<+-mx x x 62的解集是4>x ,那么m 的取值范围是( )A .4≥mB .4≤mC .4<mD .4=m 7、若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <8、已知关于x 的不等式,221x a b x a b -≥⎧⎨-<+⎩的解集为35x ≤<,则ba 的值是( )A.-2B.-1C.-4D. -39、若不等式组0,10a x x ->⎧⎨+>⎩无解,则a 的取值范围为( )A.1a ≤- B.1a ≥- C.1a <- D.1a >-10、若方程组21,2x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,则m 的取值范围是( )A.31m -<<B.31m -≤<C.31m -<≤D. 31m -≤≤11、若方程组21,23x y k x y +=+⎧⎨+=⎩的解为,,x a y b =⎧⎨=⎩且24k <<,则a b -的取值范围是 .12、解不等式组,并求出不等式组的整数解。

北师大版八年级下 解不等式 精选套题二

北师大版八年级下 解不等式 精选套题二

北师大版八年级下解不等式精选套题(二)一.选择题(共7小题)1.不等式组的解集为x<2,则k的取值范围为()A.k>1B.k<1C.k≥1D.k≤12.若不等式组的解集为x<5,则m的取值范围为()A.m<4B.m≤4C.m≥4D.m>43.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m≥4C.m<4D.m=44.若不等式组有解,则a的取值范围是()A.a>﹣1B.a≥﹣1C.a≤1D.a<15.关于x的不等式组无解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.﹣1<m≤0D.﹣1≤m<06.已知关于x的不等式组无解,则m的取值范围是()A.m≤3B.m>3C.m<3D.m≥37.若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥3二.填空题(共8小题)8.若关于x的一元一次不等式组无解,则a的取值范围是.9.在方程组中,已知x>0,y<0,则a的取值范围是.10.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为.11.若不等式组无解,则实数a的取值范围是.12.不等式组的解集为.13.若不等式组的解集是x>3,则m的取值范围是.14.不等式组的解集为x<3a+2,则a的取值范围是.15.若关于x的一元一次不等式组无解,则m的取值范围为.三.解答题(共5小题)16.解不等式组:.17.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.18.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?19.解不等式组,并把它的解集在数轴上表示出来.20.解不等式组:,并把解集在数轴上表示出来.。

北师大版八年级数学(下)不等式练习题

北师大版八年级数学(下)不等式练习题

0-20-20-2若方程组3133x y k x y +=+⎧⎨+=⎩
的解为x 、y ,且x +y >0,则k 的取值范围是( ) A .k >4 B .k >-4 C .k <4 D .k <-4
若不等式(3a -2)x +2<3的解集是x <2,那么a 必须满足( )
A .a =56
B .a >56
C .、a <56
D .a =-12
若关于x 的方程组⎩
⎨⎧-=++=+134123p y x p y x 的解满足x >y ,求p 的取值范围.
若不等式组4050a x x a ->⎧⎨+->⎩
无解,则a 的取值范围是_______________. 不等式组⎩
⎨⎧->>63,
2x x x 的解集在数轴是可以表示为( )
0-2 A B
C D 三角形的三边的长度分别是3cm, x cm 和7cm ,则x 的取值范围是( )
A.104≤≤x B.4<x<10 C.4>x<10 D.104≥≤x
解下列不等式,并分别在数轴上表示出它们的解集...............
:(每小题2分) (1)x x 5632-≥- (2)
14-x <2
2x -
(3)-3(x -2)<-2(x -3) (4)
2431+--x x >-2
若关于x 的方程组⎩⎨⎧-=++=+134123p y x p y x 的解满足x >y ,求p 的取值范围。

(4分)
某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分,某同学要想得分为60分以上,他至少应答对多少道题?(5分)。

北师大版八年级下册数学第二章不等式练习题(解析版)

北师大版八年级下册数学第二章不等式练习题(解析版)

北师大版八年级下册数学第二章不等式练习1、下列各式中,不是不等式的是()A.2x≠1B.3x2–2x+1C.–3<0 D.3x–2≥1【答案】B【解析】A、2x≠1是不等式,故A不符合题意;B、3x2–2x+1是代数式,不是不等式,故B符合题意;C、–3<0是不等式,故C不符合题意;D、3x–2≥1是不等式,故D不符合题意;故选B.2、x=–1不是下列哪一个不等式的解()A.2x+1≤–3 B.2x–1≥–3C.–2x+1≥3D.–2x–1≤3【答案】A【解析】A、把x=–1代入2x+1=–1>–3,显然不成立.B、把x=–1代入2x–1=–3,显然成立.C、把x=–1代入–2x+1=3,显然成立.D、把x=–1代入–2x–1=1<3显然成立.故选A.3、不等式__________的解集在数轴上的表示如图所示.A.x–3<0 B.x–3≤0C.x–3>0 D.x–3≥0【答案】C【解析】如图所示:A、x–3<0,解得:x<3,不合题意;B、x–3≤0,解得:x≤3,不合题意;C、x–3>0,解得:x>3,符合题意;D、x–3≥0,解得:x≥3,不合题意;故选C.4、已知3a>–6b,则下列不等式一定成立的是A.a+1>–2b–1 B.–a<bC.3a+6b<0 D.a>–2b【答案】A【解析】∵3a>–6b,∴a>–2b,∴a+1>–2b+1,又–2b+1>–2b–1,∴a+1>–2b–1,故选A.5、不等式x≥–1的解在数轴上表示为A.B.C.D.【答案】A【解析】不等式x≥–1的解在数轴上表示为,故选A.6、“x的2倍与3的差不大于8”列出的不等式是A.238x-≥x-≤B.238C .238x -<D .238x ->【答案】A【解析】根据题意,得2x –3≤8.故选A . 7、下列不等式中是一元一次不等式的是①2x –1>1;②3+12x <0;③x ≤2.4;④1x<5;⑤1>–2;⑥3x –1<0. A .2个 B .3个 C .4个D .5个【答案】C【解析】①符合一元一次不等式的定义,故①正确; ②符合一元一次不等式的定义,故②正确; ③符合一元一次不等式的定义,故③正确;④1x是分式,故此不等式不是一元一次不等式,故④错误; ⑤此不等式不含未知数,不是一元一次不等式,故⑤错误; ⑥符合一元一次不等式的定义,故⑥正确;故选C. 8、用不等式表示“x 的2倍与3的和大于10”是___________. 【答案】2x +3>10【解析】∵x 的2倍为2x ,∴x 的2倍与3的和大于10可表示为:2x +3>10.故答案为:2x +3>10.9、若1123x ->-,则x ___________23. 【答案】<【解析】12-x >13-两边都乘以−2得:x <23.故答案为:<.10、一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x应满足的不等式为____________.【答案】2(x+50)≥280【解析】∵一个长方形的长为x米,宽为50米,∴周长为2(x+50)米,∴周长不小于280米可表示为2(x+50)≥280,故答案为2(x+50)≥280.11、用适当的不等式表示下列不等关系:(1)x减去6大于12;(2)x的2倍与5的差是负数;(3)x的3倍与4的和是非负数;(4)y的5倍与9的差不大于1 ;【答案】(1)由题意可得:x–6>12;(2)由题意可得:2x–5<0;(3)由题意可得:3x+4≥0;(4)由题意可得:5y–9≤–1.12、用“>”或“<”填空:(1)如果a–b<c–b,那么a()c;(2)如果3a>3b,那么a()b;(3)如果–a<–b,那么a()b;(4)如果2a+1<2b+1,那么a()b.【答案】(1)<;(2)>;(3)>;(4)<【解析】(1)由a–b<c–b得,a<c;(2)由3a >3b ,得a >b ; (3)由–a <–b ,得a >b ;(4)由2a +1<2b +1,得2a <2b ,∴a <b . 13、把下列不等式化为“x >a ”或“x <a ”的形式:(1)x +6>5;(2)3x >2x +2;(3)–2x +1<x +7;(4)–22x -<14x +. 【答案】(1)x >–1;(2)x >2;(3)x >–2;(4)x >1 【解析】(1)不等式两边同时减去6,得x +6–6>5–6,解得x >–1. (2)不等式两边同时减去2x ,得3x –2x >2x +2–2x ,解得x >2. (3)不等式两边同时减去(x +1),得–2x +1–(x +1)<x +7–(x +1), –3x <6,不等式两边同时除以–3,得x >–2.(4)不等式两边同时乘4,得–2(x –2)<x +1,整理得–2x +4<x +1, 不等式两边同时减去(x +4),得–2x +4–(x +4)<x +1–(x +4),整理得–3x <–3,不等式两边同时除以–3,得x >1. 14、下列说法中,正确的是( ) A .x =2是不等式3x >5的一个解 B .x =2是不等式3x >5的唯一解 C .x =2是不等式3x >5的解集 D .x =2不是不等式3x >5的解 【答案】A【解析】A.x =2是不等式3x >5的一个解,正确;B.不等式3x >5的解有无数个,则B错误;C.x=2是不等式3x>5的解,则C错误;D.x=2是不等式3x>5的解,则D错误,故选A.15、用不等式表示图中的解集,其中正确的是()A.x>–3 B.x<–3C.x≥–3 D.x≤–3【答案】C【解析】由数轴知不等式的解集为x≥–3,故选C16、已知ax<2a(a≠0)是关于x的不等式,那么它的解集是()A.x<2 B.x>–2C.当a>0时,x<2 D.当a>0时,x<2;当a<0时,x>2 【答案】D【解析】因为a的符号不确定,所以要分类讨论,当a>0时,x<2;当a<0时,x>2,故选D.17、不等式y+3>4变形为y>1,这是根据不等式的性质__________,不等式两边同时加上__________.【答案】1;–3【解析】不等式y+3>4变形为y>1,这是根据不等式的性质1,不等式两边同时减去3,即加上–3,不等号的方向不变.故答案是:1;–3.18、若a<b,则a+c()b+c;,若mx>my,且x>y成立,则m__________0;若5m–7b>5n–7b,则m()n。

北师大八年级下册数学不等式专练_20210314150532

北师大八年级下册数学不等式专练_20210314150532

北师大八年级下册数学不等式专练1.“x 的2倍与3的差不大于8”列出的不等式是()A.2x -3≤8B.2x -3≥8C.2x -3<8D.2x -3>82.下列不等式一定成立的是()A.5a >4aB.x +2<x +3C.-a >-2aD.a a 24>3.如果3x <-,那么下列不等式成立的是()A.23x x <- B.23x x ≤- C.23x x>- D.23x x ≥-4.不等式260x -+≥的正整数解有()A.1个B.2个C.3个D.4个5.若m 满足m m >,则m 一定是()A.正数 B.负数 C.非负数 D.任意实数6.在数轴上与原点的距离小于8的点对应的x 满足()A.-8<x <8B.x <-8或x >8C.x <8D.x >87.若不等式组⎩⎨⎧>≤11x m x 无解,则m 的取值范围是()A.m <11 B.m >11 C.m ≤11 D.m ≥118.要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为()A.m >23,n >-31B.m >3,n >-3C.m <23,n <-31D.m <23,n >-319.不等式6-3x >0的解集是________.10.当x ________时,代数式523--x 的值是非正数.11.当m _______时,不等式(2-m )x <8的解集为82x m >-12.若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________13.已知三角形的两边为3和4,则第三边a 的取值范围是________14.不等式组⎩⎨⎧-<+<212m x m x 的解集是2x m <-,则m 的取值应为________15.已知方程组⎩⎨⎧=+-=+2212y x m y x 的解x 、y 满足x +y >0,求m 的取值范围__________16.如图,函数1y ax =-的图象过点()1,2,则不等式12ax ->的解集是______17、解不等式(组)(1)()231x -->(2)()311x x -≤-(3)1513x x --<。

北师大版.八年级数学.下学期.一元一次不等式.两套专项练习

北师大版.八年级数学.下学期.一元一次不等式.两套专项练习

22.
4 1 x − 4(1 − x) < 32( x − 2) 3 6
26. 0
3 − 2x 5
1
23. 5x − 12
2(4x − 3)
27. −1 <
3x − 1 2
4
24. 5 −
x 3
1 2x + 1 3 − 2 4
28.
1 5 (2x + 3) + x > x + 4 3 3
−3 −
二 解下列不等式组,并将它的解集在数轴上表示 出来 2x − 1 x+6 < 2 3 29. 3x + 3 x−1 2+ >3− 8 4 33.
44. |3x − 1|
2
48. 方程
2x − 3 2 = x − 3 的解不大于与 3x − 1 = 5 3 3(x + n) − 2n 的解,求 (n − 3)2 的最小值。
45.
3x − 2 6
4 3
49. 代数式
2a − 1 a−2 与代数式 1 − 的和小于 3, 6 2 求 a 的值。
46.
14. 2y > 1 −
4−y 3
பைடு நூலகம்
21. y −
y−1 2
2−
y+2 5
15. 2x
1−
1 − 3x 2
22.
x − 3 5x − 4 − 4 3
1
1 2
16.
y y+2 > 3 2
23.
x+1 −1 4
2x − 1 6
2x + 3 5x − 1 17. − <0 3 6

北师大版 八下数学不等式练习题2套

北师大版 八下数学不等式练习题2套

八下练习题1一.选择题1.如果a >b ,下列各式中不正确...的是 A .2a >2b B .-2a <-2b C .a -3>b -3 D . a 1<b1 2.使不等式3x -7<5-x 成立的最大整数x 为( )A 、0B 、1C 、2D 、33.已知x >y ,下列不等式一定成立的是( )A. x -6<y -6B. -ax <-ay C .-2x >-2y D .2x+a >2y+a4.下列说法正确的是( )A. 由a >b 得-3a >-3b B .由a >b 得2c a >2c b C .由a >b 得ac 2>bc 2 D.由21->1- 得2a ->a - 5.下列说法中正确的是( )A .x =1是不等式3x +4>0的解 B.不等式-2x >0的解集为x >0C.若x +a >1,则x <1D.若ax <1,则x <1a6.如图,已知∠ABC=∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC=BDB .∠CAB=∠DBAC .∠C=∠D D .BC=AD7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是( )A .SASB .SSSC .AASD .ASA8.已知a > b,则下列各式成立的是( )A. ac > bcB. ac 2> bc 2C. a+c > b+cD. a 2> b 29.不等式2(x –2)≤x –2的非负整数解的个数为( )A 、1B 、2C 、3D 、410.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )A 、1<a ≤7B 、a ≤7C 、 a <1或a ≥7D 、a =711.到三角形三个顶点距离相等的点是三角形( )A .三条角平分线的交点B .三条高线所在直线的交点C .三边的垂直平分线的交点D .三条中线的交点12.下列命题的逆命题是真命题的是( )A.两个锐角分别相等的直角三角形全等B.如果00==b a 且,则0=abC.角平分线上的点到角两边的距离相等D.对顶角相等13.已知c b a 、、是△ABC 的三边,且满足0)(24222222=++-+c c b a b a )(,那么△ABC 的形状是( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形14.函数y=,自变量x的取值范围是__________.15.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为 .16.已知等腰三角形的一边长为5cm,另一边长为9cm,则它的周长为 .17.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD= .18.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为.19.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.20.不等式35)1(3-≥+xx的正整数解是______________.21.若不等式ax-1>2x+1的解集是x<-2,则a的值是________.22.如果不等式2x-m<0只有三个正整数解,则m的取值范围是.23.如图,在△ABC中,若AB=AC,BC =4cm,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长是14cm,则AB的长等于 cm.24.如图,点P是AOB∠的角平分线上一点,过点P作PC OA∥交OB于点C.若604AOB OC∠==,,则点P到OA的距离PD等于.25.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕顶点O逆时针旋转到△AOB处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为.26.如图是矩形纸片ABCD.AB=8cm,BC=20cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,那么折痕长度为cm.ADB CE第11题O CADP第12题27.求不等式21362x x x --≥+的最大整数解.28.解不等式:x -)14(21-x ≤2 , 把解集表示在数轴上,并求出它所有整数解的积.29.如图,已知△ABC ,请用尺规过点A 作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)30.如图,在△ABC 中,AB=AC ,作AD ⊥AB 交BC 的延长线于点D ,作AE ∥BD ,CE ⊥AC ,且AE ,CE 相交于点E ,求证:AD=CE .31.如图,已知△ABC 为等边三角形,D 为BC 延长线上的一点,CE 平分∠ACD ,CE=BD ,求证:△ADE 为等边三角形.32.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润不低于26%,那么售价至少定为每千克多少元?DC 八下练习题2一.选择题1.如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <12.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人 (B)3人 (C)4人 (D)5人3.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ).(A)11 (B)8 (C)7 (D)54.已知bm am >,则下面结论中正确的是( )A.b a >B.b a <C.a b m m> D.2am ≥2bm 5.点P (x-1,x+1)不可能在 ( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 6.若2)3(a -=3-a ,则a 与3的大小关系是( )A.a <3B.a ≤3C.a >3D.a ≥37.如上图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的31,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是acm ,若铁钉总长度为6cm ,则a 的取值范围是( )A .a >1354B .1354<a ≤29C .a <29D .1354≤a <29 二.填空题8.等腰三角形的两边长分别是3和7,则其周长为______.9.若x 是非负数,则5231x -≤-的解集是______. 10.如果a 2x >a 2y (a ≠0).那么x ______y .11.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.12.如果不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是 .13.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集是______.14.设a ,b 是常数,不等式a x +b1>0的解集为x <51,则关于x 的不等式bx -a >0的解集是______. 15.我们学习过很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)16.如图,在等腰ABC ∆中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE ∆ 的周长为50,则底边BC 的长为_________.17.如图,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点B 与点A 重合,折痕为DE ,则CD 的长为 ,DE 的长为 .18.如图,在Rt ABC 中,∠ACB =90°,∠B =30°,BC =3.点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将B ∠沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为 .第10题三.解答题2(2x -3)<5(x -1). 10-3(x +6)≤1. 3[x -2(x -7)]≤4x22531-->+x x 612131-≥--+y y y 21362x x x --≥+20.如图,在∆ABC 中,090C ∠=.(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.21.如图23,090AOB ∠=,OM 平分AOB ∠,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.22.已知:如图,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE=AD ,△CDE 是等边三角形.求证:△ABC 是等边三角形.23.某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?图23。

《不等式的解集》习题含解析北师大八年级下数学

《不等式的解集》习题含解析北师大八年级下数学

《不等式的解集》习题一、选择题1.下列数值中不是不等式5x≥2x+9的解的是()A.5B.4C.3D.22.如果关于+1的解集为<0 B.m<﹣1C.m>1 D.m>﹣1 3.下列说法错误的是()A.2x<﹣8的解集是x<﹣4B.x<5的正整数解有无穷个C.﹣15是2x<﹣8的解D.x>﹣3的非负整数解有无穷个4.如图,数轴上所表示关于x的不等式组的解集是()A.x≥2B.x>2 C.x>﹣1 D.﹣1<x≤25.不等式3x﹣1>x+1的解集在数轴上表示为()A.B.C.D.6.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.7.关于>2的解集为x>1,则m的值为()A.0B.1 C.2 D.3二、填空题8.不等式x2≥0的解集是.9.一个关于x的不等式的解集为一切实数,这个不等式可以是.10.关于x的不等式﹣2x+a≤2的解集如图所示,则a的值是.11.某不等式的解集如图,则这个解集用不等式表示为.三、解答题12.下列各数中,是不等式x+1<4解的数有哪些?哪些不是不等式的解?8、7、5.5、4、2、1、0、2.5、﹣6.13.解不等式:﹣x>1,并把解集在数轴上表示出来.14.解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)15.请用不等式表示如图的解集.参考答案一、选择题1.答案:D解析:【解答】移项得,5x﹣2x≥9合并同类项得,3x≥9系数化为1得,x≥3所以,不是不等式的解集的是x=2.故选:D.【分析】根据一元一次不等式的解法,移项、合并,系数化为1求出不等式的解集,再确定答案.2.答案:B解析:【解答】∵不等式(m+1)x>m+1的解集为<﹣1故选:B.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的取值范围.3.答案:B解析:【解答】A、两边同时除以2,即可得到,故原说法正确;B、x<5的正整数解有1,2,3,4共有4个,故原说法错误;C、解2x<﹣8得:x<﹣4,﹣15是不等式的解,故原说法正确;D、原说法正确.故选B.【分析】利用等式的性质,以及不等式的解集.4.答案:A解析:【解答】由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.【分析】根据在数轴上表示不等式组解集的方法进行解答.5.答案:C解析:【解答】由3x﹣1>x+1,可得2x>2,解得x>1,所以一元一次不等式3x﹣1>x+1的解在数轴上表示为:故选:C.【分析】首先根据解一元一次不等式的方法,求出不等式3x﹣1>x+1的解集,然后根据在数轴上表示不等式的解集的方法,把不等式3x﹣1>x+1的解集在数轴上表示出来即可.6.答案:C解析:【解答】x﹣1<0解得:x<1,故选:C.【分析】解不等式x﹣1<0得:x<1,即可解答.7.答案:B解析:【解答】解不等式,根据题意得:2﹣m=1,解得:m=1.故选B.【分析】首先解关于x的不等式,然后根据不等式的解集是的方程,从而求解.二、填空题8.答案:一切实数.解析:【解答】x2≥0,x是任意实数.【分析】根据解不等式的方法,可得答案.9.x2+1>0.解析:【解答】∵一个关于x的不等式的解集为一切实数,∴这个不等式可以是x2+1>0.【分析】根据不等式的解集的定义,任意写出一个不等式符合提出的条件即可.10.答案:0.解析:【解答】∵﹣2x+a≤2∴22ax-≥∵x≥﹣1∴22a-=﹣1解得:a=0.【分析】先用a表示出x的取值范围,再根据数轴上x的取值范围求出a的值即可.11.答案:x≤3解析:【解答】根据图示知,该不等式的解集是:x≤3;【分析】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.三、解答题12.答案:8、7、5.5、4不是不等式的解.解析:【解答】∵x+1<4,∴x<3.∴2、1、0、2.5、﹣6是不等式的解.8、7、5.5、4不是不等式的解.【分析】利用不等式的基本性质,将不等式左边的常数项1改变符号以后移到右边,再合并同类项,解出x的解集,即可求解.13.答案:x<﹣1.解析:【解答】不等式﹣x>1,解得:x<﹣1,【分析】不等式x系数化为1,求出解集,表示在数轴上.14.答案:见解答过程.解析:【解答】5x﹣2>3x+3,2x>5,∴52x>.【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.15.答案:见解答过程.解析:【解答】(1)由数轴表示的不等式的解集,得x<﹣1;(2)由数轴表示的不等式的解集,得x≥1;(3)由数轴表示的不等式的解集,得x≤﹣1;(4)由数轴表示的不等式的解集,得x>3.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,可得答案.。

新北师大版八年级数学下第二章不等式与不等式组测试题

新北师大版八年级数学下第二章不等式与不等式组测试题

不等式与不等式组一、选择题1. 如果a 、b表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1ﻩ(C)b a 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a>b ,则a 2>b 2 (B )若a 2>b 2,则a >b(C)若a ≠b,则|a|≠|b | (D)若|a |≠|b |,则a ≠b3. |a |+a的值一定是( ).(A)大于零ﻩ(B)小于零 (C)不大于零 (D)不小于零4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A )a ≥0ﻩ(B)a ≤0 (C)a >0ﻩ(D)a <05. 若不等式(a+1)x >a +1的解集是x <1,则a 必满足( ).(A )a <0ﻩ(B)a >-1 (C )a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ).(A)2人ﻩ(B)3人ﻩ(C)4人ﻩ(D)5人7. 若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是( ). (A)k <2ﻩ(B)k ≥2ﻩ(C)k <1(D )1≤k <2 8. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A )m ≤2ﻩ(B )m ≥2 (C)m ≤1(D )m ≥1 9. 对于整数a,b,c ,d,定义bd ac c d b a -=,已知3411<<d b ,则b +d 的值为_________. 10. 如果a 2x>a 2y (a≠0).那么x ______y.11. 若x是非负数,则5231x -≤-的解集是______. 12. 已知(x -2)2+|2x -3y-a |=0,y 是正数,则a 的取值范围是______.13. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 14. 若m >5,试用m 表示出不等式(5-m )x>1-m 的解集______.15. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.16. k满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y小于1. 二、解下列不等式17. ⋅-->+22531x x ⋅-≥--+612131y y y18. .151)13(21+<--y y y ﻩ .15)2(22537313-+≤--+x x x 三、解不等式组19. ⎪⎩⎪⎨⎧⋅>-<-322,352x x x x ﻩ ⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x x x 四、变式练 20. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.21. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围. 22. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集. 23. 已知A=2x 2+3x+2,B=2x 2-4x -5,试比较A 与B的大小.24. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y满足0<y -x <1,求k 的取值范围. 25. 已知a是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.26. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.27. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题28. 某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?29. 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?30. 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?31. 某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?32. 一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?33. 某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?34.若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?35.某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)若此车间每天所获利润为y(元),用x的代数式表示y.(2)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件?36.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?37.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.38.--39.(1)。

北师大八年级下册数学第二章 不等式计算专项练习(含答案)

北师大八年级下册数学第二章 不等式计算专项练习(含答案)

北师大八下数学第二章不等式计算专项练习(含答案)一、解答题1.解不等式(组):(1)3-2x<6 (2).2.解下列不等式组:(1),(2),3.解下列不等式,并把解集用数轴表示出来;(1);(2);4.(1)已知不等式组的解集为1≤x<2,求a、b的值.(2)已知关于x的不等式组无解,试化简|a+1|﹣|3﹣a|.5.解不等式组,并判断﹣1,这两个数是否是该不等式组的解.6.解不等式组,,并求出它所有的非负整数解.7.解不等式组:()2157 {1023x xxx+>-+>.8.已知:关于x的方程2132x m xm+--=的解是非正数,求m的取值范围.9.已知关于x,y的方程组31{+33x y kx y+=+=的解满足-1<x+y<1,求k的取值范围.10.已知不等式-1>x与ax-6>5x同解,试求a的值.11.在关于x,y的方程组21{22x y mx y+=-+=①②中,若未知数x,y满足x+y>0,求m的取值范围,并在数轴上表示出来.12.当x的取值范围是不等式组的解时,试化简:.13.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.14.解不等式:.15解不等式组:参考答案1.(1) x>-;(2) 2<x<32.(1)1<x<2(2)-3.(1);(2).4.(1)a=﹣1,b=2;(2)4.5.﹣1<x<2,-1不是该不等式组的解,是该不等式组的解.6.0,1,2.7.x<2.8.34 m .9.-8<k<0.10.a=2.11.m<312,<x2,213,<m<9.14 ≥ 15, ﹣1< ≤ .。

最新北师大版八年级下册不等式的各个章节测试试题以及答案

最新北师大版八年级下册不等式的各个章节测试试题以及答案

最新八年级下册数学不等式的测试试题一元一次不等式与一次函数(1)图像在x轴上方的部分,表示y>0,即ax+b>0.图像与x轴交于(x,0),即ax+b=0;图像在x轴下方的部分,表示y<0,即ax+b <0.一、例题1、一个一次函数的图象如图所示,则它的解析式是_______________;当x______时,0=y;当x______时,0>y;当x_________时,0<y。

2、观察函数y1和y2的图象, 当x=1,两个函数值的大小为()A、y1> y2B、y1< y2C、y1=y2D、y1≥y23、某医院研究发现了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3毫克,每毫升血液中含药量y(微克),随着时间x(小时)的变化如图所示(成人按规定服药后).1)分别求出x≤2和x≥2时,y与x之间的函数关系式;2)根据图象观察,如果每毫升血液中含药量为4微克或4微克以上,在治疗疾病时是有效的,那么这个有效时间是多少?4、如果一次函数y =-x +b 的图象经过y 轴的正半轴,那么b 应取值为( )A.b >0B.b <0C.b =0D.b 不确定5、已知函数y =8x -11,要使y >0,那么x 应取( )A.x >811B.x <811 C.x >0 D.x <06、汽车由A 地驶往相距120千米的B 地,汽车的平均速度是30千米/时,则汽车距B 地的路程S (千米)与行驶时间t (小时)的关系式及自变量t 的取值范围是( )A.S =120-30t (0≤t ≤4)B.S =30t (0≤t ≤4)C.S =120-30t (t >0)D.S =30t (t >4)7、要使一次函数y =(2a -1)x +(a -1)的图象经过y 轴的正半轴且过x 轴的负半轴,则a 的取值范围是( )A.a >21 B.a >1 C.21<a <1 D.a <21 8、已知函数y =(2m -1)x 的图象上两点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,那么m 的取值范围是( )A.m <21B.m >21 C.m <2D.m >09、如图,一次函数y=kx+b的图象经过A、B两点则不等式kx+b>0的解是()A.x>0B.x>2C.x>-3D.x=-310、如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()A.B.C.D.11、如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是______.12、一次函数 与 a x y 2+=的图象如图,则下列结论①k <0;②a >0 ;③当 x <3时,21y y < 中,正确的个数是( )A .0B .1C .2D .3 13、已知一次函数y=ax+b 的图象经过一、二、三象限,且与x 轴交于点(-2,0),则不等式ax >b 的解集为一元一次不等式组1.一元一次不等式组的定义:关于同一未知数的几个一元一次不等式合在一起,就组成一元一次不等式组。

北师大版八年级数学下第一章一元一次不等式单元测试题

北师大版八年级数学下第一章一元一次不等式单元测试题

一元一次不等式单元测试题 学校_______班 姓名_______ 成绩_______一、填空题:(每空1分,共22分)1、用适当的不等式表示下列关系:(1)a 是非正数__________; (2)n 的值不超过15_____________;(3)x 的21与2差不足12____________; (4)x 与3的和不小于6_________; 2、若m<n ,则m -5_______n -5; 21m_______21n ; -m_______-n ; m -n_______0。

3、已知m 是实数,比较3m 与2m 的大小:当m>0时,3m_______2m ;当m =0时,3m_______2m ;当m<0时,3m_______2m 。

4、不等式2x>4的解集为_______,不等式-2x>3的解集为_______。

5、要使x+4=m 的解为正,则m 的取值范围是_______。

6、已知131-=x y ,12+=x y 。

当x_______时(填的取值范围),y 1=y 2;当_______时(填的取值范围)时,y 1<y 2。

7、已知a<b ,且a<0,b<0,请横线上填上“>”或“<”:a -b_______0;b -a_______0。

8、写出不等式3x -10≤0所有的正整数解是:x =_______。

9、在括号内写出下列数轴上表示的不等式的解集:10. 当a_______时(a-2)x>2(a-2)的解集为x>2.二、选择题(每小题3分,共30分)11、不等式3x +2<x +6的解集是( )A. x>2 B. x<2 C. x<4 D. x>412、不等式组⎩⎨⎧>--<32x x 的解集是( )A. x<-3 B. x<-2 C. -3<x<-2 D. 无解13、当x 为何值时,-2x -6的值小于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于01.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1D.a-b<02.在数轴上与原点的距离小于8的点对应的x满足()A.-8<x<8 B.x<-8或x>8 C.x<8 D.x>83.下列不等式中,是一元一次不等式的是()A.+1 >2B.x2 >9 C.2x+y ≤ 5 D.<0 4.下列表达式:①-m2≤0;②x+y>0;③a2+2ab+b2;④(a-b)2≥0;⑤--(y+1)2<0.其中不等式有()A.1个B.2个C.3个D.4个5.若m是非负数,则用不等式表示正确的是()A.m<0 B.m>0 C.m≤0D.m≥06.无论x取什么数,下列不等式总成立的是()A.x+6>0 B.x+6<0 C.-(x-6)2<0 D.(x-6)2≥07.下列不等关系中,正确的是()A.a不是负数表示为a>0B.x不大于5可表示为x>5C.x与1的和是非负数可表示为x+1>0D.m与4的差是负数可表示为m-4<0不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, c b c a <※2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<09、若m <n ,比较下列各式的大小:(1)m -3______n -3 (2)-5m______-5n (3)3m -______3n - (4)3-m______2-n (5)0_____m -n (6)324m --_____324n-- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______23;(3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1;(5)若ax b >,20ac <,则x______ba.1.若a >b ,则下列不等式不一定成立的是( ) A .a+m >b+m B .a (m 2+1)>b (m 2+1) C .- < - D .a 2>b 22.已知a>b,c≠0,则下列关系一定成立的是()A.ac>bc B.>C.c-a>c-b D.c+a>c+b 3.设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a+c<b+c B.a-c>b-c C.ac<bc D.ac>bc5.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c-a>c-b C.ac>bc D.>6.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得-2a<-2bC.由a>b,得-a>-b D.由a>b,得a-2<b-27.若a<c<0<b,则abc与0的大小关系是()A.abc<0 B.abc=0 C.abc>0 D.无法确定8.若a+b>0,且b<0,则a,b,-a,-b的大小关系为()A.-a<-b<b<a B.-a<b<-b<a C.-a<b<a<-b D.b<-a<-b<a 9.由不等式ax>b可以推出x<那么a的取值范围是()A.a≤0B.a<0 C.a≥0D.a>010、x<y得到ax>ay的条件应是____________。

11、根据不等式的性质解下列不等式:(1)x-9<1 (2)3124x->ba基础练习1. 用不等式表示:x 的2倍与1的和大于-1为__________,y 的13与t 的差的一半是负数为_________。

a 是非正数__________; n 的值不超过15_____________;x 的21与2差不足12____________; x 与3的和不小于6_________;2、a 是非负数,它的正确表达式是( )A. 0>aB. 0≥aC. 0<aD. 0≤a3、“—x 不大于—3”用不等式表示为 ( ) (A )—x ≥—3 (B )—x ≤—3 (C )—x >—3 (D )—x <—34、下列按条件列出的不等式中,正确的是 ( )(A )a 不是负数,则a >0 (B )a 与3的差不等于1,则a —3<1 (C )a 是不小于0的数,则a >0 (D )a 与 b 的和是非负数,则a +b ≥05、下列四个不等式:(1)ac>bc ;(2) ;(3) ;(4) 中,能推出a>b 的有( ) A. 1个 B. 2个 C. 3个 D. 4个1、.有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。

b 0 a(1)a +3______b +3; (2)b -a_______0 (3)______; (4)a +b________02、若m <n ,则下列各式中正确的是 ( ) (A )m -5>n -5 (B )3m >3n(C )-3m >-3n (D )13-m >13-n3、 若a>b ,则下列不等式中一定成立的是( ) A. B.C.D.a b - > 0 - > -a b ba < 1ab > 1 -a 3 -b3 - < -ma mb ac bc2 2> - ≤ - ac bc 2 24、若m<n ,则m -5____n -5;21m_____21n ; -m_____-n ; m -n_____0。

5、已知m 是实数,比较3m 与2m 的大小:当m>0时,3m_______2m ;当m =0时,3m_______2m ;当m<0时,3m_______2m 。

6、已知a<b ,且a<0,b<0,请横线上填上“>”或“<”:a -b_______0;b -a_______0。

7、若0<a<1,则按从小到大排列为________。

a a a2 1, ,不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数。

3、不等式的解集可在数轴上直观表示。

例如:不等式x>5的解集可以用数轴上表示5的点的右边部分来表示,在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.;不等式4≤x 的解集可以用数轴上表示4的点及其左边部分来表示,在数轴上表示4的点的位置画实心圆点,表示4在这个解集内. 正整数解是用数轴表示不等式的解,应记住规律:大于向右画,小于向左画,有等号(≤,≥)画实心点,无等号(<,>)画空心圈。

一元一次不等式1、不等式左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:1)去分母(根据不等式的基本性质2、3) 2)去括号(根据整式运算法则) 3)移项(根据不等式基本性质1) 4)合并同类项(根据整式运算法则)5)将x 项的系数化为1(根据不等式的基本性质2、3) 3、根据实际问题列不等式并求解,主要有以下环节: (1)审题,找出不等关系;(2)设未知数;(3)列出不等式;(4)求出不等式的解集;(5)找出符合题意的值;(6)作答。

1、解下列不等式,并在数轴上表示出它们的解集.-2x ≤ 1 -2x >-1 -3x >-2x +1 -3x -2(x -1)>0)1(5)32(2+<+x x 46)3(25->--x x1、不等式2x>4的解集为_______,2、要使x+4=m 的解为正,则m 的取值范围是_______。

3、不等式x +5<1的解集是 .4、不等式x >-3的负整数解是 .2、用不等式表示图中的解集,其中正确的是( )A. x ≥-2B. x >-2C. x <-2D. x ≤-2 3、不等式x -3>1的解集是( )A.x >2B. x >4C.x >-2D. x >-4 4、-3x ≤6的解集是 ( )-1-2-1-2012012A 、B 、C 、D 、5、一个不等式的解集如图所示,则这个不等式的正整数解是___.4321-16、不等式2x <6的非负整数解为( )A.0,1,2B.1,2C.0,-1,-2D.无数个7、下列不等式的解集中,不包括-4的是 ( ) (A )x ≥-4 (B )x ≤-4 (C )x >-6 (D )x <-68、下列说法正确的是 ( ) (A )x =4不是不等式2x >7的一个解 (B )x =4是不等式 2x >7 的解集 (C )不等式 2x >7 的解集是x >4(D )不等式 2x >7 的解集是x >279、.下列说法中,错误的是 ( ). (A )不等式 x <5的正整数解有无数多个 (B )不等式 x >-5 的负整数解有有限个 (C )不等式 -2x >8 的解集是x <-4 (D )-40是不等式 2x <-8 的一个解10.如果1-x 是负数,那么x 的取值范围是( ).(A )x >0 (B )x <0 (C )x >1 (D )x <111、已知x 的12与3的差小于x 的-12与-6的和,根据这个条件列出不等式.你能估计出它的解集吗?1、下列不等式中,属于一元一次不等式的是( ) A 、4>1 B 、3x -24<4 C 、12x< D 、4x -3<2y -7 2、若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为3、关于x 的方程5-a(1-x)=8x -(3-a)x 的解是负数,则a 的取值范围是( ) A 、a <-4B 、a >5C 、a >-5D 、a <-54、若关于x 的不等式(2n -3)x <5的解集为x >-31,则n =5、不等式12xx ->与65ax x ->的解集相同,则a =______.6、已知2R -3y =6,要使y 是正数,则R 的取值范围是_______________.7. 要使方程的解是负数,则m________ 8. 当x_______时,代数式3x +4的值为正数。

相关文档
最新文档