数学练习题抽象函数(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考一轮专练——抽象函数
1. 已知函数y = f (x )(x ∈R ,x ≠0)对任意的非零实数1x ,2x ,恒有f (1x 2x )=f (1x )+f (2x ),试判断f (x )的奇偶性。
2 已知定义在[-2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1-m ) 3. 设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。 4. 设函数 ()f x 对任意121 ,[0,]2 x x ∈,都有12 1 ()()() f x x f x f x + =⋅,()2f x = 已知(1)2f =,求1()2f ,1 ()4 f 的值. 5. 已知f (x )是定义在R 上的函数,且满足:f (x+2)[1-f (x )]=1+f (x ),f (1)=1997,求f (2001)的值。 6. 设f (x )是定义R 在上的函数,对任意x ,y ∈R ,有 f (x+y )+f (x-y )=2f (x )f (y )且f (0)≠0. (1)求证f (0)=1;(2)求证:y=f (x )为偶函数. 7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有 b a b f a f ++) ()(>0 (1)若a >b ,试比较f (a )与f (b )的大小; (2)若f (k )293()3--+⋅x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,都满足: ()()()f a b af b bf a ∙=+. (1)求(0),(1)f f 的值;(2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R ,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++,且1()02f =, 当1 2 x > 时, ()f x >0. (1)求(1)f ;(2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R ,并满足以下条件:①对任意x R ∈,有()f x >0;②对任意,x y R ∈,有 ()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值;(2)求证: ()f x 在R 上是单调减函数; (3)若0a b c >>>且2 b a c =,求证:()()2()f a f c f b +>. 15.已知函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=∙,且当0x >时,0()1f x <<. (1)证明:(0)1,0f x =<且时,f(x)>1;(2)证明: ()f x 在R 上单调递减; (3)设A=22 {(,)()()(1)}x y f x f y f ∙>,B={(,)(2)1,x y f ax y a R -+=∈},若A B =Φ,试确定a 的 取值范围. 16.已知函数()f x 是定义在R 上的增函数,设F ()()()x f x f a x =--. (1)用函数单调性的定义证明:()F x 是R 上的增函数; (2)证明:函数y =()F x 的图象关于点(,0)2 a 成中心对称图形. 17.已知函数()f x 是定义域为R 的奇函数,且它的图象关于直线1x =对称. (1)求(0)f 的值;(2)证明: 函数()f x 是周期函数; (3)若()(01),f x x x =<≤求当x R ∈时,函数()f x 的解析式,并画出满足条件的函数()f x 至少一个周期的图象。 18.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。 (1)证明:(1)0f =;(2)若()(3)2f x f x +-≥成立,求x 的取值范围。 19.设函数()f x 在(,)-∞+∞上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,且在闭区间[0,7]上,只有(1)(3)0f f ==. (1)试判断函数()y f x =的奇偶性; (2)试求方程()f x =0在闭区间[-2005,2005]上的根的个数,并证明你的结论. 20. 已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。