第05章 凸轮机构-图解法设计凸轮轮廓-
凸轮机构
一、滚子半径的选择
滚子半径 rT 过大,导致实际轮 廓线变尖或交叉,如b、c所示。 ' rT , '实际轮廓曲率半径;
理论轮廓曲率半径; rT 滚子半径;
当 rT, ' 0,实际轮廓线为 光滑连续的曲线,没问 题; 当 rT, ' 0,实际轮廓线交叉, ,加工时被切除,导致 从动件运动
§第一节 凸轮机构的基本类型
二、凸轮机构的分类
移动凸轮
1.按凸轮的形状
当盘形构件的回 转中心趋于无穷 大时,绕轴转动 的盘形凸轮就变 成相对于机架作 往复直线移动的 凸轮。
§第一节 凸轮机构的基本类型
二、凸轮机构的分类
圆柱凸轮
1.按凸轮的形状
凸轮的轮廓曲线位于圆柱面上,它可以看作是把移动凸轮 卷成圆柱体而得。
(1)力封闭:利用从动件的重力、弹簧力或其他外力使从动件与 凸轮保持接触,如图6-1所示。 (2)形封闭:依靠凸轮与从动件的特殊结构来保持从动件与凸轮 接触,如图6-2所示。
§第一节 凸轮机构的基本类型
二、凸轮机构的分类 3.按凸轮与从动件保持接触的方式分
(2)形封闭:依靠凸轮与从动件的特殊结构来保持从 动件与凸轮接触,下图是常用的形封闭凸轮机构。
2.对心滚子直动从动件盘形凸轮
已知凸轮的基圆半径rb 、滚子半径rT 、角速度 ω和从动件的运动规律,设计该凸轮轮廓曲线。
8’
-ω
ω
7’ 5’ 3’ 1’
9’ 11’ 12’
13’ 14’ 9 11 13 15
理论轮廓η
1 3 5 78
设计步骤小结: 实际轮廓η’ ①选比例尺μ l作基圆rb。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。 ⑤作各位置滚子圆的内(外)包络线。
机械原理-凸轮轮廓曲线设计图解法
-ω
3’ 2’ 1’ ω O 1 2
1
2
3
3
直动从动件盘形凸轮轮廓的绘制
1.对心直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从 动件的运动规律,设计该凸轮轮廓曲线。
4’ 5’ 6’
-ω ω
3’ 2’ 1’
7’
8’ 5 6 7 8
1 2 3 4
设计步骤: ①作基圆r0。
②反向等分各运动角,得到一系列与基圆的交点。
7’ 5’ 3’ 1’ 1 3 5 78 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
e
-ω
ω 15’ 15 14’14
k12 k11 k10 k9 k15 k14 k13
A
13’
12’
k1 13 k 12 k32 k8 k7k6 k5k4 11 10 9
O
注意:与前不同的是——过 各等分点作偏距圆的一系列 切线,即是从动件导路在反 转过程中的一系列位置线。
11’
10’ 9’
直动平底从动件盘形凸轮轮廓的绘制
直动平底从动件盘形凸轮轮廓的绘制
-
实际廓线
直动平底从动件盘形凸轮轮廓的绘制
-
实际廓线
③过各交点作从动件导路线,确定反转后从动件尖顶在各等分点的位置。 ④将各尖顶点连接成一条光滑曲线。
直动从动件盘形凸轮轮廓的绘制
2.对心直动滚子从动件盘形凸轮 已知凸轮的基圆半径r0,滚子半径 rT ,角速度ω 和从动件的运动规 律,设计该凸轮轮廓曲线。
3’ 2’ 1’ 7’ 8’ 1 2 3 4 5 6 7 8 4’
-ω
理论轮廓
ω
5’ 6’
机械设计专升本章节练习题(含答案)——凸轮机构
第5章凸轮机构1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度2.动力特性:刚性冲击,柔性冲击3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件4.基本参数:基圆半径,滚子半径,平底尺寸【思考题】5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触?5-2 凸轮机构分成哪几类?凸轮机构有什么特点?5-3 为什么滚子从动件是最常用的从动件型式?5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点?5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理?5-6 什么情况下要用解析法设计凸轮的轮廓?5-7 设计凸轮应注意那些问题?5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律?A级能力训练题1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲击,运动规律产生柔性冲击,运动规律则没有冲击。
2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于中速,但不宜用于高速的情况,而可在高速下应用。
3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是或。
4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采用的措施是。
若只降低升程的压力角,可采用方法。
5.凸轮的基圆半径是从到的最短距离。
6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是__________________________________________。
7.与其他机构相比,凸轮机构的最大优点是。
(1)便于润滑(2)可实现客种预期的运动规律(3)从动件的行程可较大(4)制造方便,易获得较高的精度8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。
(1)增大(2)减小(3)不变(4)增大或减小9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。
机械设计专升本章节练习题(含答案)——凸轮机构
第5章凸轮机构1.从动件的运动规律:等速,等加速等减速,余弦加速度,正弦加速度2.动力特性:刚性冲击,柔性冲击3.设计原理:反转法,比例尺,等分基圆,偏置从动件压力角与自锁条件4.基本参数:基圆半径,滚子半径,平底尺寸【思考题】5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触?5-2 凸轮机构分成哪几类?凸轮机构有什么特点?5-3 为什么滚子从动件是最常用的从动件型式?5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点?5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理?5-6 什么情况下要用解析法设计凸轮的轮廓?5-7 设计凸轮应注意那些问题?5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律?A级能力训练题1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲击,运动规律产生柔性冲击,运动规律则没有冲击。
2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于中速,但不宜用于高速的情况,而可在高速下应用。
3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是或。
4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采用的措施是。
若只降低升程的压力角,可采用方法。
5.凸轮的基圆半径是从到的最短距离。
6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是__________________________________________。
7.与其他机构相比,凸轮机构的最大优点是。
(1)便于润滑(2)可实现客种预期的运动规律(3)从动件的行程可较大(4)制造方便,易获得较高的精度8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。
(1)增大(2)减小(3)不变(4)增大或减小9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。
机械设计基础第五章
3.余弦加速度运动规律
从动件加速度按余弦规律变 化的运动规律。 在推程始末点处仍存在“软 冲”,因此只适用于中、低速。 但若从动件作无停歇的升— 降—升型连续运动,则加速度曲 线为光滑连续的余弦曲线,消除 了“软冲”,故可用于高速。
4、正弦加速度运动规律
从动件加速度按正 弦规律变化的运动规律。 运动特征:没有冲击, 故可用于高速。
3.按锁合方式分
(1)力锁合凸轮机构 依靠重力、弹簧力或其他外力来 保证锁合,如内燃机配气凸轮机构。
(2)形锁合凸轮机构 依靠凸轮和从动件几何形状来锁合。
4.按从动件相对机架的运动方式分
(1)移动从动件凸轮机构 按其从动件导路是否通过凸 轮回转中心分为对心移动从动件和偏置移动从动件凸轮 机构。 (2)摆动从动件凸轮机构
移动从动件
摆动从动件
二、常用的从动件运动规律
(一)平面凸轮机构的基本尺寸及运动参数
一对心直动尖顶从动件盘 形凸轮机构,凸轮上有一最小 向径,以最小向径r。为半径 所作的圆称凸轮基圆,r。称 基圆半径,凸轮以等角速度ω1 逆时针转动。凸轮机构运动过 程如下:
升—停—降—停
凸轮机构的运动过程
(二)常用的从动件运动规律
一、概述
(一)凸轮机构的应用 1. 组成
凸轮机构由凸轮1、从动件2、机 架3三个基本构件组成,是一种高副 机构。其中凸轮是一个具有曲线轮 廓或凹槽的构件,通常作连续等速 转动,从动件则在凸轮轮廓的控制 下按预定的运动规律作往复移动或 摆动。
2. 特点: 优点:只要正确地设计和制造出凸轮的轮廓曲线,就能实 现从动件所预期的复杂运动规律的运动;凸轮机构结构
(一)凸轮机构的压力角
压力角:不计摩擦时,凸轮对 从动件的作用力(法向力)与从 动件上受力点速度方向所夹的锐 角。 将从动件所受力F分解为两个 力:
第05章 凸轮机构-图解法设计凸轮轮廓-
1’
1 3 5 78
11’ 设计步骤: 10’ 9’ ①选比例尺μ l作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件平底直线在各等份点的位置。 ④作平底直线族的内包络线。
4)偏置直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从动件的运动规律和偏心距e, 设计该凸轮轮廓曲线。
一、直动从动件盘形凸轮轮廓的绘制 1.对心直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和 从动件的运动规律,设计该凸轮轮 廓曲线。
7’ 8’
-ω
ω
作者:潘存云教授
5’
3’ 1’ 1 3 5 78
9’10’ 11’ 12’ 13’ 14’ 9 11 13 15
设计:潘存云
设计步骤小结: ①选比例尺μ l作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。
7’ 5’ 3’ 1’ 1 3 5 78
e
ω A
k12 90° k11 O作者:潘存云教授 k10 ° k9 90° 120 k 1 k15 k14 k13
-ω
8’
9’ 11’ 12’ 13’ 14’ 9 11 13 15
15’ 15 14’ 14 13’ 12’
13 k2 12 k 3 k8 60° k7k6 k5k4 11 10 9
min
对于外凸轮廓,要保证正常工作,应使: rT ≤ρ
3)对心直动平底从动件盘形凸轮 已知凸轮的基圆半径r0,角速度 ω 和从动件的运动规律,设计 该凸轮轮廓曲线。
7’ 5’ 3’ 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
汽车机械基础课件 模块五 任务5.3.1凸轮轮廓曲线设计
图8 形锁合凸轮机构
4、凸轮机构的命名
图9 对心直动尖顶从动件盘形凸轮机构
图10 摆动滚子从动件盘形凸轮机构
进油? OR 进气?
图1
图2
图3
实现配气要求的关键:凸轮轮廓曲线形状 结论:从动件(气门杆)的运动规律完全由凸轮轮廓曲线决定
从动件运动规律如何得到?
图4 圆珠笔芯装配线上自动送进-联动“凸轮”机构
s
8 9 10
A
7 5 3 1
11 12
13 14
O
1 3 5 7 8 9 11 13 15
120º 60º 90º 90º
【设计步骤】 基圆①③和取确从与定动位反件移转的曲后初线从始相动位同件置尖的。顶比在例各尺等,分绘点制占半据径的为位rb的置。11
④②将等各分尖位顶移点曲连线接及成反一向条等光分滑各曲运线动。角,确定反转后对应于 各等分点的从动件的位置。
静止不动,从动件绕着凸轮以角
速度-ω作转动,同时还沿其导
路作预期的往复运动
图5
结论:从动件尖顶复合运动的轨迹即凸轮的轮廓曲线。
凸轮轮廓设计的“反转法”原理。
◇只要作出从动件 位置,就可设计出 凸轮的轮廓曲线。
图6
对心尖顶直动从动件盘形凸轮轮廓的设计
已知凸轮的基圆半径rb和从动件的
运动规律,设计该凸轮轮廓曲线。
根据实际运动规律得到
凸轮轮廓曲线的设计方法
设计方法 图解法
图解法
Hale Waihona Puke 用函数关系用几何作图的方法设
式计,计对运算动过凸程的轮理
解直观、清晰,但精
廓度较形低 的坐标,
解析法
复杂抽象,
但精度高易
设计 凸轮廓线于实现数控 加工
图解法设计凸轮轮廓
已知凸轮的基圆半径rmin,角速度ω、
e
从动件的运动规律和偏心距e,设计该
凸轮轮廓曲线。
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
ωA
15’15 14’14
13’ 12’
13 12
11
10
kk9k1k0k1181kk21k73k14k6O1k55k4kk3k21
的距离d,摆杆角位移方程,设计该凸轮轮廓曲线。
4’ 3’ 2’ 1’
12 3 4
5’ 6’
7’
8’ 5 67 8
d A8
A7
A
l B’1 B B1
rminω1
A1-ω1
φ1
B’2 B’3φ2
A2
B2 B3
B’φ4 3
120°B4A3来自φ790 °B8 B7
60 B6
B’7
设计:潘存云
°B5
B’6
B’5
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
理论轮廓
ω
设计:潘存云
设计步骤:
实际轮廓
①选比例尺μl作基圆rmin。 ②反向等分各运动角。原则是:陡密缓疏。
③确定反转后从动件尖顶在各等份点的位置。
④将各尖顶点连接成一条光滑曲线。
⑤作各位置滚子圆的内(外)包络线。
ρa-工作轮廓的曲率半径,ρ-理论轮廓的曲率半径,
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’10’ 11’ 12’
13’ 14’
9 11 13 15
-ω ω
设计:潘存云
凸轮机构图解法
滚子从动件凸轮机构设计当根据使用场合和工作要求选定了凸轮机构的类型和从动件的运动规律后,即可根据选定的基圆半径着手进行凸轮轮廓曲线的设计。
凸轮廓线的设计方法有图解法和解析法,其依据的基本原理相同。
凸轮机构工作时,凸轮和从动件都在运动,为了在图纸上绘制出凸轮的轮廓曲线,可采用反转法。
下面以图示的对心尖端移动从动件盘形凸轮机构为例来说明其原理。
从图中可以看出:凸轮转动时,凸轮机构的真实运动情况:凸轮以等角速度ω绕轴O 逆时针转动,推动从动件在导路中上、下往复移动。
当从动件处于最低位置时,凸轮轮廓曲线与从动件在A点接触,当凸轮转过φ1角时,凸轮的向径OA 将转到OA´的位置上,而凸轮轮廓将转到图中兰色虚线所示的位置。
这时从动件尖端从最低位置A 上升到B´,上升的距离s1=AB´。
采用反转法,凸轮机构的运动情况:现在设想凸轮固定不动,而让从动件连同导路一起绕O点以角速度(-ω)转过φ1角,此时从动件将一方面随导路一起以角速度(-ω)转动,同时又在导路中作相对移动,运动到图中粉红色虚线所示的位置。
此时从动件向上移动的距离与前相同。
此时从动件尖端所占据的位置B 一定是凸轮轮廓曲线上的一点。
若继续反转从动件,可得凸轮轮廓曲线上的其它点。
由于这种方法是假定凸轮固定不动而使从动件连同导路一起反转,故称反转法(或运动倒置法)。
凸轮机构的形式多种多样,反转法原理适用于各种凸轮轮廓曲线的设计。
一、直动从动件盘形凸轮廓线的设计(1)尖端从动件以一偏置移动尖端从动件盘形凸轮机构为例。
设已知凸轮的基圆半径为rb,从动件轴线偏于凸轮轴心的左侧,偏距为e,凸轮以等角速度ω顺时针方向转动,从动件的位移曲线如图(b)所示,试设计凸轮的轮廓曲线。
依据反转法原理,具体设计步骤如下:1)选取适当的比例尺,作出从动件的位移线图。
将位移曲线的横坐标分成若干等份,得分点1,2, (12)2)选取同样的比例尺,以O 为圆心,rb为半径作基圆,并根据从动件的偏置方向画出从动件的起始位置线,该位置线与基圆的交点B0,便是从动件尖端的初始位置。
《凸轮机构设计》PPT课件
180º
60º 120º δ
(1)作出角位移线图;
A(0 2)作初始位置;
A5
C
6
2
B B180°B
6 5
4C
C
4
5
3
C 3 2
R
(3)按- 方向划分圆R得A0、
A1
A1、A2等点;即得机架 反转的一系列位置;
(4)找从动件反转后的一系
A4 A3
A2
列位置AiBi,再按角位移规律
得 C1、C2、…… 等点,即
机架上的观察结果
凸轮上的观察结果
可整理ppt
19
2). 反转法原理 -
S B0
r0 o 1
s
假想给正在运动着的整个凸 轮机构加上反一转个前与凸轮反角转速后度
B
大度小(机o相-架δ等)、,方这不向样动相,反各的构- 公件转共的动角相δ2速对
运动关系并不改变,但原来以角
速凸度轮转动的凸转轮动将处于不静动止状
1
t
1
13
二.基本运动规律
二)等加速等减速运动规律
a2 a0 常数
v2 a0t
s2
1 2
a0t 2
在运动规律推程的始末点和前 后半程的交接处,加速度变化为 有限值,由此引起的冲击称为柔 性冲击。
适用于中、低速场合。 可整理ppt
s2
t
o
v2
1 2 3 4 5 6
δ1
1
t
0
δt/2
1
amax
2. 从动件的位移为角位 移ψ,而不是直线位移
B2
B1
B0
δt
δ
O
最大摆角
max
图解法设计盘形凸轮轮廓
压力角↑, 有效分力↓, 有害分力↑,
Ff↑, 当压力角α 大到一定程度时,
Ff Fr FN
t v
n
机构卡死。
平面机构的组成
3、许用压力角
Ff nα
直动从动件: 推程[α] ≤ 30°~ 40° 摆动从动件: 推程[α] ≤ 40°~ 50°
回程:[α] ≤ 70°~ 80°
F
Fr
t
v
Ft
凸轮机构运动中,压力角是变化。
③将基圆分成与位移相对应的若干 等分。
④量取各个位移段,沿径向确定位置点。
⑤将位置点连接为光滑的曲线。
δ
900
图解法设计盘形凸轮轮廓
三、压力角及许用值
1、压力角α:接触点作
用力与从动件速度方向所夹
Fr Ff
的锐角。
nα F
Fr F cos 有效分力
Ft
Ft F sin 有害分力 t
2、自锁
CONTENTS
目
2 图解法设计盘形凸轮轮廓
录
图解法设计盘形凸轮轮廓
1.尖顶对心直动盘形凸轮
s
已知:基圆半径rb=50mm,推杆运 动规律,凸轮逆时针方向转动。
h=50mm
设计:凸轮廓线 解:作图步骤:
0
120 600
900
①定比例尺 1=1:1000,作推杆的位
移线图 ,将其坐标分成若干等分。
②按比例尺 1定基圆及初始位置 。
凸轮机构
图解法设计盘形凸轮轮廓
1 盘形凸轮轮廓设计的基本原理
CONTENTS
目
2 图解法设计盘形凸轮轮廓
录
盘形凸轮轮廓设计的基本原理
1、“反转法”原理
-
机械原理凸轮机构
O
Ov
1
1
2 3 4 5 6 234 56
速度的变化率(即跃度j)在这些 位置为无穷大——柔性冲击
v
O
2
适应场合:中速轻载
O
2
a a0
O 2
j
3.简谐运动(余弦加速度运动)
当质点在圆周上作匀速运动 时,它在该圆直径上的投影所构 成的运动规律—简谐运动
s
h 2
1
cos
π Φ
φ
特点:有柔性冲击
作平底的内包络线,即为所要设计 的凸轮廓线
4.4 解析法设计平面凸轮轮廓曲线
一、直动滚子从动件盘形凸轮
已知:凸轮以等角速度 逆
y
时针方向转动,凸轮基园半
径ro、滚子半径rr,导路和凸
e
轮轴心间的相对位置及偏距e,
B0 ''
n
从动件的运动规律 s s(。)
1. 理论廓线方程: B(x, y)
s0 O
4.1.2 凸轮机构的分类
1. 按凸轮的形状分类
盘形凸轮 移动凸轮
圆柱凸轮
盘形凸轮:最基本的形式,结构简单,应用最为广泛
移动凸轮:凸轮相对机架做直线运动
圆柱凸轮:空间凸轮机构
2. 按从动件的形状分类
尖端能以任意复杂的凸轮轮廓 保持接触,从而使从动件实现 任意的运动规律。但尖端处极 易磨损,只适用于低速场合。
d
min
s
e
L
rρ
rb r' Cu
O
4.6 圆柱凸轮机构
一、直动从动件圆柱凸轮机构
O
rm 1
O a)
v1
η η
1
η 2
v2
图解法设计凸轮轮廓曲线法设计凸轮轮廓曲线
设计方法:图解法 解析法 1. 凸轮廓线设计基本原理 设计凸轮廓线时,假 设凸轮静止,使推杆相对 于凸轮作反向转动,推杆 又在导轨内作预期运动, 推杆尖顶的复合运动的轨 迹即是凸轮轮廓曲线,这 种方法又叫反转法 种方法又叫 反转法。 。
2. 图解法设计凸轮轮廓曲线
1)偏置直动尖顶推杆盘形凸轮机构
5)摆动尖顶推杆盘形凸轮机构 已知:基圆半径r ,凸轮逆时针 0 转动w,推杆的运动规律 j=j(d),LOA、LAB
A B
确定基圆 A点所在圆、AB初始位置 确定基圆、 将A点所在圆瓜分
O
自基圆向外量取等分点角位移 确定推程、远休、回程、近休廓线
3)对心直动滚子推杆盘形凸轮机构
以滚子中心为尖顶,按尖顶推杆设计凸轮廓线 按尖顶推杆设计凸轮廓线, 得到理论廓线。 以理论廓线上的各点为圆心,滚子半径为半径 滚子半径为径, 画一系列滚子圆,这些滚子圆的包络线即为 这些滚子圆的包络线即为实 际廓线。 注意:基圆半径是理论廓线上的最小向径。
4)对心直动平底推杆盘形凸轮机构 以平底中心A为尖顶,按尖顶推杆 设计凸轮廓线,得到理论廓线。 以理论廓线上的各点为平底中心, 画一系列平底,这些平底的包络线 即为实际廓线。
已知:基圆半径r ,凸轮逆时针转动w,推 0 杆的运动规律s=s(d),偏距为e,推杆在 凸轮回转中心右侧。
作偏距圆、基圆、推杆的初始位置 将偏距圆瓜分 将推程运动角等分,作偏距圆的切线 从基圆向外量推杆的位移,得推程廓线
2)对心直动尖顶推杆盘形凸轮机构
对心直动尖顶推杆盘形凸轮机构推杆在反转过 程中始终通过凸轮的回转中心。
凸轮机构设计(图文)
凸轮机构设计(图文)一、凸轮机构概述凸轮机构是一种常见的机械传动装置,主要由凸轮、从动件和机架组成。
它通过凸轮的轮廓曲线,使从动件实现预期的运动规律。
凸轮机构具有结构简单、运动可靠、传动精度高等优点,广泛应用于各种自动化设备和机械中。
二、凸轮机构设计要点1. 确定从动件的运动规律在设计凸轮机构之前,要明确从动件的运动规律,包括位移、速度和加速度等。
这将为后续的凸轮轮廓设计提供依据。
2. 选择合适的凸轮类型根据从动件的运动规律和实际应用需求,选择合适的凸轮类型,如平面凸轮、圆柱凸轮、摆动凸轮等。
3. 设计凸轮轮廓曲线凸轮轮廓曲线是凸轮机构设计的核心部分。
设计时,要确保凸轮与从动件之间的运动协调,避免干涉和冲击。
三、凸轮机构设计步骤1. 分析运动需求在设计之初,我们需要深入了解设备的工作原理和从动件的运动需求。
这包括从动件的运动轨迹、速度、加速度以及所需的力和行程。
这些信息将帮助我们确定凸轮的基本尺寸和形状。
2. 初步确定凸轮尺寸基于运动需求分析,我们可以初步确定凸轮的直径、基圆半径和宽度等关键尺寸。
这些尺寸将直接影响凸轮的强度、刚度和运动性能。
3. 设计凸轮轮廓确保从动件的运动平稳,避免突变和冲击。
考虑凸轮与从动件之间的间隙,防止运动干涉。
优化轮廓曲线,减少加工难度和提高耐磨性。
四、凸轮机构材料选择考虑耐磨性:凸轮在连续工作中会与从动件接触,因此应选择耐磨材料,如钢、铸铁或耐磨塑料。
考虑重量和成本:在满足性能要求的前提下,可以选择重量轻、成本较低的材料。
考虑环境因素:如果凸轮机构将工作在特殊环境中,如高温或腐蚀性环境,需要选择相应的耐高温或耐腐蚀材料。
五、凸轮机构的加工与装配精确加工:凸轮的轮廓必须严格按照设计图纸加工,以确保运动的精确性。
间隙调整:在装配时,需要适当调整凸轮与从动件之间的间隙,以确保运动的顺畅。
校验运动:装配完成后,应对凸轮机构进行运动校验,确保从动件的运动符合预期。
六、凸轮机构动态分析与优化在设计过程中,动态分析是不可或缺的一环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
φ4
A4
φ6
A5
φ5
A l
φ1
A1-ω
4’ 3’ 2’ 1’ 1 2 3 4
5’ 6’
d
7’
8’ 5 6 7 8B’3 B B2 B3 B 1 B’φ
4 3
120° B4
A3
A7
φ7
A6
作者:潘存云教授 设计:潘存云 90 ° 60 ° B5 B8 B7 B6 B’5 B’7 B’6
一、直动从动件盘形凸轮轮廓的绘制 1.对心直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和 从动件的运动规律,设计该凸轮轮 廓曲线。
7’ 8’
-ω
ω
作者:潘存云教授
5’
3’ 1’ 1 3 5 78
9’10’ 11’ 12’ 13’ 14’ 9 11 13 15
设计:潘存云
设计步骤小结: ①选比例尺μ l作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。
5-3图解法设计凸轮轮廓
反转原理: 给整个凸轮机构施以-ω 时, 不影响各构件之间的相对运动, 此时,凸轮将静止,而从动件尖 顶复合运动的轨迹即凸轮的轮廓 曲线。 依据此原理可以用几何作图 的方法设计凸轮的轮廓曲线。
3’ 2’ 1’
-ω
1 2
作者:潘存云教授
ω O
1
2 3
设计:潘存云
3
动画1 动画2
min
对于外凸轮廓,要保证正常工作,应使: rT ≤ρ
3)对心直动平底从动件盘形凸轮 已知凸轮的基圆半径r0,角速度 ω 和从动件的运动规律,设计 该凸轮轮廓曲线。
7’ 5’ 3’ 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
-ω
1’ 2’ 3’ 12 4’ ω 3 4 5’ 5 作者:潘存云教授 6’ 6 15 14’ 14 7 设计:潘存云 7’ 8 13’ 13 12 11 10 9 8’ 12’
7’ 5’ 3’ 1’ 1 3 5 78
e
ω A
k12 90° k11 O作者:潘存云教授 k10 ° k9 90° 120 k 1 k15 k14 k13
-ω
8’
9’ 11’ 12’ 13’ 14’ 9 11 13 15
15’ 15 14’ 14 13’ 12’
13 k2 12 k 3 k8 60° k7k6 k5k4 11 10 9
2)对心直动滚子从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从动件的运动规律,设计该凸轮 轮廓曲线。
7’ 5’ 3’ 1’ 1 3 5 78 8’
-ω
ω
作者:潘存云教授
9’ 11’ 12’
13’ 14’ 9 11 13 15
理论轮廓
设计:潘存云
实际轮廓 设计步骤小结: ①选比例尺μ l作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。 ⑤作各位置滚子圆的内(外)包络线。
滚子半径的确定 ρa -工作轮廓的曲率半径, ρ -理论轮廓的曲率半径, rT-滚子半径 外凸 内凹 rT 轮廓正常 轮廓正常
ρ
ρa
ρ
ρ
作者:潘存云教授
rT
ρ
a
ρa=ρ+rT
轮廓变尖
rT
ρ > rT ρa=ρ-rT
轮廓失真
rT
ρ
作者:潘存云教授
设计:潘存云
ρ = rT ρa=ρ-rT=0
ρ <r T ρa=ρ-rT<0
1’
1 3 5 78
11’ 设计步骤: 10’ 9’ ①选比例尺μ l作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件平底直线在各等份点的位置。 ④作平底直线族的内包络线。
4)偏置直动尖顶从动件盘形凸轮 已知凸轮的基圆半径r0,角速度ω 和从动件的运动规律和偏心距e, 设计该凸轮轮廓曲线。
设计步骤小结: 11’ ①选比例尺μ l作基圆r0; 10’ 9’ ②反向等分各运动角; ③确定反转后,从动件尖顶在各等份点的位置; ④将各尖顶点连接成一条光滑曲线。
设计:潘存云
二、摆动从动件盘形凸轮轮廓的绘制 已知凸轮的基圆半径r0,角速度ω ,摆杆长度l以及摆 杆回转中心与凸轮回转中心的距离d,摆杆角位移方程, 设计该凸轮轮廓曲线。