高三数学数列测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学数列测试题及答案
1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( )
A.6 B.7 C.8 D.9
解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.
答案:A
2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是( )
A.12 B.1 C.2 D.3
解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.
答案:C
3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( )
A.1 B.-4 C.4 D.5
解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…
故{an}是以6为周期的数列,
∴a2 011=a6×335+1=a1=1.
答案:A
4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )
A.d<0 B.a7=0
C.S9>S5 D.S6与S7均为Sn的最大值
解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0.
又S7>S8,∴a8<0.
假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.
∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9<S5.∴C错误.
答案:C
5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为( )
A.-12 B.12
C.1或-12 D.-2或12[
解析:设首项为a1,公比为q,
则当q=1时,S3=3a1=3a3,适合题意.
当q≠1时,a1(1-q3)1-q=3a1q2,
∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,解得q=1(舍去),或q=-12.
综上,q=1,或q=-12.
答案:C
6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最大项为第x项,最小项为第y项,则x+y等
于( )
A.3 B.4 C.5 D.6
解析:an=5252n-2-425n-1=525n-1-252-45, ∴n=2时,an最小;n=1时,an最大.
此时x=1,y=2,∴x+y=3.
答案:A
7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( )
A.a21a22 B.a22a23 C.a23a24 D.a24a25 解析:∵3an+1=3an-2,
∴an+1-an=-23,即公差d=-23.
∴an=a1+(n-1)d=15-23(n-1).
令an>0,即15-23(n-1)>0,解得n<23.5.
又n∈N*,∴n≤23,∴a23>0,而a24<0,∴a23a24<0.
答案:C
8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( ) A.1.14a B.1.15a
C.11×(1.15-1)a D.10×(1.16-1)a
解析:由已知,得每年产值构成等比数列a1=a,w
an=a(1+10%)n-1(1≤n≤6).
∴总产值为S6-a1=11×(1.15-1)a.
答案:C
9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最大值为( )
A.25 B.50 C.1 00 D.不存在
解析:由S20=100,得a1+a20=10. ∴a7+a14=10.
又a7>0,a14>0,∴a7a14≤a7+a1422=25.
答案:A
10.设数列{an}是首项为m,公比为q(q≠0)的等比数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( ) A.在直线mx+qy-q=0上
B.在直线qx-my+m=0上
C.在直线qx+my-q=0上
D.不一定在一条直线上
解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,②
由②得qn=y-1,代入①得x=mq(y-1),即qx-my +m=0.
答案:B
11.将以2为首项的偶数数列,按下列分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为( ) A.n2-n B.n2+n+2
C.n2+n D.n2-n+2
解析:因为前n-1组占用了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的首项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2.
答案:D
12.设m∈N*,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F(1 024)的值是( )
A.8 204 B.8 192
C.9 218 D.以上都不对
解析:依题意,F(1)=0,
F(2)=F(3)=1,有2 个
F(4)=F(5)=F(6)=F(7)=2,有22个.
F(8)=…=F(15)=3,有23个.
F(16)=…=F(31)=4,有24个.
…
F(512)=…=F(1 023)=9,有29个.
F(1 024)=10,有1个.
故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10.
令T=1×2+2×22+3×23+…+9×29,①
则2T=1×22+2×23+…+8×29+9×210.②