盾构机的组成

合集下载

盾构机工作原理

盾构机工作原理

盾构机工作原理盾构机是一种用于地下隧道建设的重型机械设备,其工作原理是通过推进盾构机头部,同时进行土层的开挖和支护,实现隧道的掘进和建设。

一、盾构机的组成部分1. 盾构机头部:盾构机头部是盾构机的核心部分,由刀盘、推进缸、刀臂等组成。

刀盘上装有刀片,通过旋转切割土层,推进缸则用于推进盾构机向前移动。

2. 推进系统:推进系统由推进缸、推进液压站等组成,通过液压系统提供动力,推动盾构机前进。

3. 隧道衬砌系统:隧道衬砌系统用于支护隧道,通常由预制混凝土段、钢筋网、注浆设备等组成。

4. 泥水处理系统:盾构机在掘进过程中会产生大量泥浆,泥水处理系统用于处理和回收泥浆。

5. 控制系统:盾构机的控制系统用于监测和控制盾构机的运行状态,包括刀盘转速、推进速度、液压系统压力等参数。

二、盾构机的工作过程1. 准备工作:在开始盾构施工之前,需要进行现场勘探和测量,确定隧道的位置和地质情况。

然后,搭建起盾构机的施工平台和支撑结构。

2. 开始掘进:盾构机头部进入掘进区域后,刀盘开始旋转,刀片切割土层,同时推进缸推动盾构机向前移动。

盾构机掘进的同时,泥浆通过刀盘和刀臂上的泥浆管道排出。

3. 土层支护:盾构机掘进后,需要进行土层的支护,以防止隧道坍塌。

通常采用预制混凝土段作为隧道衬砌,通过隧道衬砌系统安装在盾构机后部。

4. 泥水处理:盾构机在掘进过程中产生的泥浆通过泥水处理系统进行处理和回收。

泥浆中的固体颗粒通过离心机和过滤器分离,回收后的水可以重新用于盾构机的工作。

5. 盾构机的推进和掘进不断进行,直到到达目标位置。

在到达目标位置后,盾构机停止工作,进行拆解和维护。

三、盾构机的优势和应用领域1. 盾构机具有高效、安全、环保等优势,能够快速掘进隧道,减少对周围环境的影响。

2. 盾构机广泛应用于地铁、隧道、水利工程等领域,可以用于城市地下交通建设、水利隧道建设等。

3. 盾构机可以适应各种地质条件,如软土、黏土、砂砾等,具有较强的适应性和灵活性。

盾构机主要结构功能及分类

盾构机主要结构功能及分类

盾构机主要结构功能及分类盾构机是一种用于地下工程的特种设备,主要用于隧道的掘进。

它的主要结构由多个部分组成,每个部分都有独特的功能。

分类上主要有两种,土压平衡盾构机和密闭式盾构机。

1.土压平衡盾构机的主要结构和功能:(1)盾构机主体结构:主要包括盾构机壳体、导轨、支撑盘、刀盘和推进系统。

盾构机壳体是盾构机的主要结构,起到抗土压力和保护工作人员的作用。

导轨可以保证盾构机在隧道掘进过程中的稳定运动。

支撑盘用于支撑刀盘和推进系统。

(2)刀盘:刀盘是盾构机掘进的核心部分,主要负责切削地层和储存切削土层,同时还可以承载推进力。

刀盘通常由切削刀片和刀杆组成,切削刀片负责切削,切削土层则通过刀杆输送到刀盘内。

(3)推进系统:推进系统是盾构机掘进的动力系统,主要由推进液压缸、液压系统和控制系统组成。

推进液压缸通过提供推进力,推动盾构机前进。

液压系统负责为推进液压缸提供液压能源。

控制系统监控和控制盾构机的运行。

2.密闭式盾构机的主要结构和功能:(1)盾构机主体结构:密闭式盾构机的主体结构与土压平衡盾构机类似,包括盾构机壳体、导轨、支撑盘、刀盘和推进系统。

盾构机壳体保护工作人员,导轨保证盾构机的稳定运动,支撑盘用于支撑刀盘和推进系统。

(2)刀盘:密闭式盾构机的刀盘相对复杂,主要包括切削刀片、刀杆、注浆管和注浆系统。

刀盘负责切削地层和储存切削土层,切削刀片通过刀杆进行切削,同时通过注浆管和注浆系统注入混凝土浆液,以形成地层的支撑结构。

(3)推进系统:推进系统和土压平衡盾构机类似,主要由推进液压缸、液压系统和控制系统组成。

推进液压缸通过提供推进力,推动盾构机前进。

液压系统为推进液压缸提供能源,控制系统监控和控制盾构机的运行。

综上所述,盾构机的种类主要有土压平衡盾构机和密闭式盾构机,其结构和功能都有所区别。

了解盾构机的结构和功能可以帮助人们更好地理解盾构机的工作原理,从而进行合理的使用和维护。

盾构机的工作原理介绍怎么写

盾构机的工作原理介绍怎么写

盾构机的工作原理介绍
盾构机是一种用于地下隧道挖掘的特殊机器设备,它的工作原理是通过同时掘进和支护地下隧道的工具。

盾构机在地下工程中起着重要的作用,下面将介绍盾构机的工作原理。

1. 盾构机的基本结构
盾构机主要由盾构壳体、刀盘、推力系统、控制系统和支撑系统组成。

盾构壳体是盾构机的外壳,内部装有刀盘和支撑系统。

刀盘是盾构机的主要工具,通过刀盘旋转挖掘地下土壤和岩石。

推力系统用于推动盾构机前进,控制系统则负责监控和操作盾构机的运行。

2. 盾构机的工作原理
盾构机工作时,首先将机器放入地下隧道的起点位置,然后启动推力系统,使盾构机开始向前推进。

同时,刀盘开始旋转,将土壤和岩石切割成小块并将其推出隧道。

支撑系统则用来支撑隧道周围的土壤和岩石,以防止塌方。

在盾构机推进的过程中,控制系统会根据地下情况调整刀盘的旋转速度和推力的大小,以确保隧道的顺利开挖。

盾构机可以根据需要进行曲线和斜坡的挖掘,以满足工程设计要求。

3. 盾构机的应用范围
盾构机广泛应用于地铁、隧道、管道等地下工程领域。

由于其高效、安全和精密的特点,盾构机在城市地下工程中得到越来越广泛的应用。

盾构机的工作原理使其可以适应不同地质条件下的隧道开挖,提高了工程的质量和效率。

总的来说,盾构机的工作原理是通过刀盘切割土壤和岩石,同时支撑隧道周围的结构。

盾构机在地下工程中扮演着重要的角色,为城市发展和基础设施建设提供了重要支持。

盾构机的工作原理介绍

盾构机的工作原理介绍

盾构机的工作原理介绍
盾构机是一种用于地底隧道开挖的特种机械设备。

它的工作原理基于土壤的掘进和排除。

以下是盾构机的工作原理介绍:
1. 预制环片安装:盾构机由机身、掘进头和推力系统等组成。

首先,在掘进头前部设置一个物理屏蔽结构,称为盾构壳体。

在盾构壳体尾部,有一个可供工人进入的工作室,用于预制环片。

2. 土壤挖掘:盾构机启动后,掘进头携带切削工具在掘进面上边切削土壤,同时使用液压系统将土壤转移到盾构机后部。

液压油压力将土壤推到盾构机机体上方,通过传送装置运输到尾部的舱室。

3. 土壤排除:使用螺旋输送机将土壤从尾部舱室中排出,或者通过推力推动盾构机推进,将土壤从尾部直接排出。

4. 支撑系统:盾构机作业过程中,需要使用支撑系统来保持隧道稳定。

一般是在盾构壳体外部设置一个钢管脚手架,支撑隧道壁体。

在支撑系统后方设置混凝土预制环片,固定住刚刚开挖的地下段。

5. 推进系统:为了推进盾构机,推进系统通过液压油缸施加推力。

液压油缸定期向前移动,推动盾构机前进。

同时,推进系统通过液压顶推系统传递前进力。

6. 后续支护和衬砌:在两端推进之后,需要进行后续支护和衬
砌工作。

在盾构机后面的空隙中灌注混凝土,形成隧道壁体。

同时,还可以安装其他支护设备,如加固钢筋和注浆等,以增加隧道的稳定性和强度。

总结:盾构机工作原理是通过切削土壤和运输土壤的方式,逐步掘进地下隧道。

同时,支撑系统、推进系统和后续支护工作保证了隧道的稳定性和安全性。

盾构机的组成

盾构机的组成

盾构机得组成及各组成部分在施工中得作用盾构机得最大直径为6、34m,总长65m,其中盾体长8、5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN m,最大推进力为36400kN,最陕掘进速度可达8cm/min。

盾构机主要由9大部分组成,她们分别就是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统与辅助设备。

2。

1盾体盾体主要包括前盾、中盾与尾盾三部分,这三部分都就是管状简体,其外径就是6.25m。

前盾与与之焊在一起得承压隔板用来支撑刀盘驱动,同时使泥土仓与后面得工作空间相隔离,推力油缸得压力可通过承压隔板作用到开挖面上,以起到支撑与稳定开挖面得作用。

承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度得土压力、前盾得后边就是中盾,中盾与前盾通过法兰以螺栓连接,中盾内侧得周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好得管片上,通过控制油缸杆向后伸出可以提供给盾构机向前得掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸得压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机得轴线尽量拟合隧道设计轴线、中盾得后边就是尾盾,尾盾通过14个被动跟随得铰接油缸与中盾相连。

这种铰接连接可以使盾构机易于转向。

2。

2刀盘刀盘就是一个带有多个进料槽得切削盘体,位于盾构机得最前部,用于切削土体,刀盘得开口率约为28%,刀盘直径6。

28m,也就是盾构机上直径最大得部分,一个带四根支撑条幅得法兰板用来连接刀盘与刀盘驱动部分,刀盘上可根据被切削土质得软硬而选择安装硬岩刀具或软土刀具,刀盘得外侧还装有一把超挖刀,盾构机在转向掘进时,可操作超挖刀油缸使超挖刀沿刀盘得径向方向向外伸出,从而扩大开挖直径,这样易于实现盾构机得转向。

超挖刀油缸杆得行程为50mm。

盾构机主要功能部件与结构

盾构机主要功能部件与结构

盾构机主要功能部件与结构密闭、加泥土压平衡式盾构主要由盾壳与盾尾、开挖机构、管片拼装机构、推进机构、排送机构、动力装置、附属设备等组成。

11.4.1 盾壳与盾尾盾壳由切口环、支承环、钢板束、盾尾等部分通过焊接、铆接、螺栓连接组成。

主要作用是:承受地层压力,起临时支护作用,保护设备及操作人员安全,承受千斤顶水平推力,使盾构在土层中前进,同时也是各机构的骨架与基础。

切口环。

为盾构最前面的一个具有刚度和强度的铸钢或焊接环。

前端切成锐角,便于切入地层,环周有加强筋,将千斤顶水平推力传至钢壳上。

支承环。

与切口环相似是盾构受力的主要部分,是具有一定厚度的铸钢件,由环状加强筋、纵向加强筋、外壳所组成。

环状加强筋焊在支承环两端,纵向加强筋焊在环状加强筋之间,盾构千斤顶安在上面。

支承环内设竖向和水平向立柱与横梁,形成井形隔架,第二层上设置工作平台。

钢板束。

主要作用是保护开挖、掘进、衬砌装置。

由两层钢板铆接而成,分块包在支承环和切口环外面,伸出部分为盾尾。

盾尾。

盾尾由环状外壳与安装在内侧的密封装置构成,其作用是支承隧道周边,防止地下水、开挖面泥浆、泥土与注浆材料被挤入隧道内。

盾尾是进行衬砌组装的地方,其长度取决于衬砌形式。

盾尾密封。

盾尾密封是为了防止注浆材料、地下水和开挖面泥浆与泥土从钢壳面板和管片外围流入盾构机而设置的。

由于盾构保持不断推进,盾尾内壁与衬砌管片外圈结合处摩擦力很大,极容易将密封损坏。

盾尾密封采用三道钢丝刷加密封脂密封方式。

在钢丝刷之间压入密封油脂来承受地下高压泥水。

始发前10 环,每环都注入密封油脂,随后每隔10 环注到第100 环,过了试验段每50 环或100 环注入密封油脂。

遇到特殊情况,如密封不好时,在施工中要注意保证随时补充密封油脂。

11.4.2 开挖机构开挖机构由切削刀盘、刀盘支承与密封系统、刀盘驱动系统、泥土仓等部分组成。

切削刀盘。

盾构刀盘是开挖机构的主要部件。

它直接与开挖面土壤接触,通过推进液压油缸的作用,使盾构刀盘向前推进,刀具切入土层,由驱动装置使刀盘旋转,刀盘把土壤切削下来,隧道向前掘进。

盾构机的工作原理介绍

盾构机的工作原理介绍

盾构机的工作原理介绍盾构机是一种用于地下隧道工程的特殊设备,它的工作原理是利用盾构机本身的推进力和土壤的支撑作用来完成隧道的开挖和衬砌工作。

盾构机通常由刀盘、推进系统、土压平衡系统、排土系统、控制系统等部分组成,下面将逐一介绍盾构机的工作原理。

首先,盾构机的刀盘是其核心部件,它位于盾构机的前端,用于切削土壤和岩石。

刀盘一般由刀具、刀架、主轴、主驱动器等部分组成,通过主驱动器的驱动,刀盘可以旋转并切削地下的土壤和岩石,完成隧道的开挖工作。

其次,盾构机的推进系统是用来推动盾构机向前行进的部分,通常由液压缸、推进顶板、推进腔等部分组成。

在盾构机工作时,推进系统可以提供足够的推进力,使盾构机能够顺利地向前推进,完成隧道的开挖和推进工作。

然后,盾构机的土压平衡系统是用来平衡地下土壤和岩石的压力,保证隧道开挖工作的稳定进行。

土压平衡系统通常由压力注入装置、控制室、土压平衡管道等部分组成,通过控制土压平衡系统的压力,可以有效地平衡地下土壤和岩石的压力,保证盾构机的安全工作。

此外,盾构机的排土系统是用来清理刀盘切削后的土壤和岩石碎片,保证盾构机的正常工作。

排土系统通常由螺旋输送机、输送管道、土料箱等部分组成,通过螺旋输送机将切削后的土壤和岩石碎片输送到地面,完成排土工作。

最后,盾构机的控制系统是用来控制盾构机各个部分的工作,保证盾构机能够按照设计要求进行工作。

控制系统通常由电气控制柜、液压控制柜、监控系统等部分组成,通过对盾构机的各个部分进行精确的控制,可以保证盾构机的稳定工作。

总的来说,盾构机是一种复杂的地下隧道工程设备,其工作原理涉及到刀盘的切削、推进系统的推进、土压平衡系统的平衡、排土系统的清理和控制系统的控制等多个方面。

只有这些部分协调配合,盾构机才能顺利地完成隧道的开挖和衬砌工作。

盾构机在地下隧道工程中发挥着重要的作用,相信随着技术的不断进步,盾构机的工作原理也将不断得到改进和完善。

盾构的基本构造

盾构的基本构造

盾构的基本构造
盾构是一种用于地下隧道施工的机械,其基本构造包括以下几个部分:
1. 盾构机壳体结构:盾构机的主体结构,由盾构壳、尾部刀盘、前部掘进机构和副机房组成。

2. 掘进机构:用于破碎土层并将其转运到后面的螺旋输送器中。

掘进机构包括刀盘、切削头、刀架、推土板等。

3. 螺旋输送器:用于将挖掘出来的土层通过输送螺旋提升至盾构机后端的输送带上,再通过输送带运送至地面。

4. 注浆系统:在盾构掘进过程中,需要注入混凝土或其他材料来加固隧道壁。

注浆系统由泵站、注浆管路、注浆喷嘴等组成。

5. 液压系统:盾构机需要大量的液压系统驱动各种机构进行工作,包括液压泵站、液压油箱、液压管路等。

6. 电气系统:盾构机需要大量的电力设备进行工作,包括发电机组、电缆、变压器等。

总之,盾构是一种复杂的机械设备,其基本构造包括盾构机壳体结构、掘进机构、螺旋输送器、注浆系统、液压系统和电气系统等。

盾构机工作原理

盾构机工作原理

盾构机工作原理盾构机是一种用于隧道掘进的机械设备,它采用盾构法进行掘进作业。

盾构机工作原理包括盾构机的结构组成、掘进过程和工作原理。

一、盾构机的结构组成1. 盾构机主体结构:盾构机主体由前部掘进机构和后部支撑机构组成。

前部掘进机构包括刀盘、推进装置和掘进腔体,用于掘进地下隧道。

后部支撑机构包括支撑系统、推进系统和尾部密封装置,用于支撑和稳定掘进工作面。

2. 刀盘:刀盘是盾构机的核心部件,由刀盘主轴、刀盘壳体和刀具组成。

刀盘壳体上安装有刀具,通过刀具的旋转和推进,实现地层的破碎和掘进。

3. 推进装置:推进装置由液压缸、推进支架和推进腔体组成,用于推动盾构机向前掘进。

推进装置通过液压缸的伸缩,推动推进支架向前挪移,同时推动盾构机前进。

4. 支撑系统:支撑系统由液压支撑腔体、支撑腿和支撑板组成,用于支撑和稳定掘进工作面。

支撑系统可以根据地层情况自动调整支撑板的位置和角度,确保掘进工作面的稳定和安全。

5. 尾部密封装置:尾部密封装置用于防止土层和水的侵入,保持掘进工作面的干燥和安全。

尾部密封装置通过密封垫和密封门的组合,实现对尾部空腔的封闭。

二、盾构机的掘进过程盾构机的掘进过程主要包括刀盘破碎地层、推进机构推进、支撑机构支护和尾部密封装置的封闭。

1. 刀盘破碎地层:盾构机启动后,刀盘开始旋转,刀具与地层发生碰撞,通过冲击和破碎地层。

刀盘破碎地层的同时,推进装置将盾构机向前推进。

2. 推进机构推进:推进装置通过液压缸的伸缩,推动推进支架向前挪移,同时推动盾构机前进。

推进装置不断推进,使盾构机不断向前掘进。

3. 支撑机构支护:当盾构机掘进一定距离后,支撑系统开始工作。

支撑系统根据地层情况自动调整支撑板的位置和角度,支撑和稳定掘进工作面。

4. 尾部密封装置封闭:当盾构机掘进到目标位置时,尾部密封装置开始工作。

尾部密封装置通过密封垫和密封门的组合,实现对尾部空腔的封闭,防止土层和水的侵入。

三、盾构机的工作原理盾构机的工作原理基于土层的破碎和推进。

盾构机械设计与优化分析

盾构机械设计与优化分析

盾构机械设计与优化分析盾构机是一种用于地下隧道开挖的重型机械设备,具有高效、安全、环保等优点。

盾构机的设计与优化分析是确保盾构机能够在复杂地质条件下稳定工作、提高开挖效率的关键。

本文将从盾构机械设计与优化分析的角度,介绍盾构机的结构、工作原理、设计要点和优化方法。

一、盾构机的结构盾构机主要由刀盘、刀盘推进系统、导轨、螺旋输送机、支架等主要部件组成。

刀盘是盾构机的核心部件,由刀具、铰接机架和剪刀臂等组成。

刀盘推进系统用于推进盾构机,通常包括压力室、液压缸等,通过推进液压缸的工作,实现盾构机的前进。

二、盾构机的工作原理盾构机的工作原理是利用刀盘的旋转和推进系统的推力,在地下挖掘出需要的隧道。

首先,盾构机将刀盘推进到工作面,并通过刀盘旋转将地层削掉。

然后,通过刀盘推进系统的推力,将挖出的土石材料推送到螺旋输送机,再由螺旋输送机将土石材料输送至出口。

三、盾构机械设计要点1. 可靠性设计:盾构机作业环境复杂,容易受到地质条件和外界环境的影响,因此在盾构机的设计中,需考虑其结构的稳定性和可靠性,以确保盾构机在工作过程中能够正常运行。

2. 自动化设计:现代盾构机普遍采用自动化控制系统,能实现对整个开挖过程的自动控制。

因此,在盾构机的设计中,需要考虑自动化控制系统的集成,以提高盾构机的作业效率和安全性。

3. 节能设计:盾构机作业消耗大量能源,因此,在盾构机的设计中,需注重节能设计,通过提高机械传动效率、减少能量损失等方式,降低盾构机的能耗。

四、盾构机优化方法1. 结构优化:通过对盾构机结构的优化设计,提高盾构机的刚度和稳定性,减少振动和变形,提高盾构机的工作效率。

2. 液压系统优化:盾构机的液压系统是保证盾构机正常工作的关键。

通过优化液压系统的设计,可以提高液压系统的响应速度和控制精度,从而提高盾构机的工作性能。

3. 机械传动系统优化:通过优化盾构机的机械传动系统,改善传动效率,减少能量损失,提高盾构机的动力输出和工作效率。

盾构机的组成

盾构机的组成

盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.34m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN m,最大推进力为36400kN,最陕掘进速度可达8cm/min.盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备.2。

1盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。

前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用.承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。

前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。

中盾的后边是尾盾,尾盾通过14个被动跟随的铰接油缸和中盾相连。

这种铰接连接可以使盾构机易于转向。

2.2刀盘刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体,刀盘的开口率约为28%,刀盘直径6.28m,也是盾构机上直径最大的部分,一个带四根支撑条幅的法兰板用来连接刀盘和刀盘驱动部分,刀盘上可根据被切削土质的软硬而选择安装硬岩刀具或软土刀具,刀盘的外侧还装有一把超挖刀,盾构机在转向掘进时,可操作超挖刀油缸使超挖刀沿刀盘的径向方向向外伸出,从而扩大开挖直径,这样易于实现盾构机的转向。

超挖刀油缸杆的行程为50mm.刀盘上安装的所有类型的刀具都由螺栓连接,都可以从刀盘后面的泥土仓中进行更换。

盾构机的结构设计与优化

盾构机的结构设计与优化

盾构机的结构设计与优化盾构机是一种用于地下工程中进行隧道掘进的设备。

它的结构设计和优化对于提高施工效率、保证工程质量具有关键作用。

本文将围绕盾构机的结构设计与优化展开,介绍其基本构成部分及优化方法。

一、盾构机的基本构成部分1. 推进系统:推进系统是盾构机的核心部分,用于推动盾构机前进并掘进地下隧道。

它通常包括主推进缸、伺服泵、液压站等。

主推进缸负责提供推力,伺服泵用于提供必要的液压动力,并通过液压站进行控制和管理。

2. 掘进系统:掘进系统是用于挖掘地下隧道的关键部分。

它通常由盾构刀盘、刀盘驱动系统和刀盘支撑系统等组成。

盾构刀盘上装有刀具,在推进过程中旋转切割地层。

刀盘驱动系统负责提供动力,使盾构刀盘能够旋转。

刀盘支撑系统用于支撑刀盘和控制盾构机的姿态。

3. 泥水处理系统:隧道掘进过程中,盾构机需要处理大量的泥浆和废水。

泥水处理系统包括泥浆循环系统和废水处理系统。

泥浆循环系统用于将泥浆回收、过滤和循环供给盾构机使用,以减少泥浆的消耗和净化排出的废水。

废水处理系统负责处理盾构机排出的废水,使其符合环保要求后排放。

4. 支护系统:由于地下隧道的土层和岩层不稳定,盾构机在掘进过程中需要进行支护。

支护系统包括隧道衬砌、预制片等。

隧道衬砌材料通常是混凝土或钢筋混凝土,用于加固和保护地下结构。

预制片则用于临时或永久性补充支护。

二、盾构机结构设计优化方法1. 结构强度优化:盾构机在掘进过程中需要承受来自地层的巨大压力和挤压力。

为保证其结构强度和稳定性,可采用有限元分析方法进行结构优化,提高材料的使用效率和盾构机整体性能。

同时,结合疲劳分析、振动分析等方法,完善结构设计,保证盾构机在长期使用过程中的安全可靠性。

2. 控制系统优化:盾构机的控制系统是保证其高效推进和掘进的关键。

优化控制系统可以提高盾构机的自动化水平,减少人为操作的失误和能耗。

采用先进的传感器技术、控制算法和通信技术,实现对盾构机推进速度、刀盘转速、切割力等参数的精确控制和调节,以适应不同地层条件。

盾构及配套设备参数

盾构及配套设备参数

盾构及配套设备参数盾构机是一种用于地下隧道和管道施工的专用设备,适用于各种地质环境。

其主要由盾构机主体、刀盘、推进系统、控制系统和配套设备组成。

首先是盾构机主体,主要由壳体、曲柄连杆机构、液压缸、冠架系统和大臂组成。

壳体是盾构机的主体部分,其内部安装有刀盘和推进系统。

曲柄连杆机构通过驱动电机将转动运动转化为直线推动力,推动盾构机前进。

液压缸用于控制盾构机的工作压力和推进速度。

冠架系统用于支撑和固定盾构机主体,确保施工的稳定性。

大臂是盾构机的延伸部分,用于连接刀盘和控制系统。

刀盘是盾构机的核心部件,主要由刀盘盘身和刀具组成。

刀盘盘身通常由钢材制成,具有足够的刚度和强度以应对复杂地质环境。

刀具是刀盘的工作部分,可根据不同的地质条件进行更换和调整,以确保施工的效率和质量。

推进系统是盾构机的动力系统,主要由推进液压缸、传动装置和推进轮组成。

推进液压缸通过油缸的伸缩变化推动盾构机前进。

传动装置用于将电机的转动力传递给液压缸,以产生推进力。

推进轮是盾构机前进的部分,通过与地下隧道壁面摩擦产生推力。

控制系统是盾构机的智能化部分,主要由电气系统、液压系统、传感器和监控系统组成。

电气系统负责盾构机的整体控制和电力供应。

液压系统用于控制盾构机的液压部件,如液压缸和液压马达。

传感器用于监测盾构机的工作状态和地质情况,以及对盾构机进行实时调整和控制。

监控系统用于实时显示盾构机的工作状态和地下施工环境,以便工作人员及时做出相应的调整和决策。

配套设备包括隧道回水系统、预制隧道衬砌系统和空气压缩机。

隧道回水系统用于将盾构机挖掘出来的泥浆和排水通过管道送回地面,以便处理和循环利用。

预制隧道衬砌系统用于安装预制混凝土片或钢管作为隧道的衬砌材料,确保隧道的结构稳定和安全性。

空气压缩机用于为盾构机提供所需的空气压力,并驱动部分液压系统和辅助设备。

总之,盾构机及配套设备参数丰富多样,其具体参数将根据具体的施工需求和地质环境进行调整和配置。

盾构机工作原理

盾构机工作原理

盾构机工作原理盾构机是一种用于地下隧道开挖的专用机械设备,其工作原理主要包括盾构机结构、推进系统、掘进系统和支护系统等方面。

一、盾构机结构盾构机主要由盾体、推进机构、掘进机构、支护系统、电气系统和液压系统等组成。

1. 盾体:盾体是盾构机的主体部分,由前盾和后盾组成。

前盾是用于掘进地下隧道的部分,后盾用于支撑和推进盾构机。

2. 推进机构:推进机构包括推进液压缸、推进螺杆和推进盖板等部分,用于推进盾构机的前进。

3. 掘进机构:掘进机构主要由盾壳、盾壳刀盘、刀臂和刀具等组成,用于掘进地层。

4. 支护系统:支护系统用于支撑和保护隧道壁,通常包括液压支架、支撑液压缸和支撑液压缸等。

5. 电气系统:电气系统用于盾构机的控制和驱动,包括电动机、传感器、控制器和电缆等。

6. 液压系统:液压系统用于盾构机的推进和掘进,包括液压泵、液压缸和液压管路等。

二、推进系统推进系统是盾构机的核心部分,主要用于推进盾构机前进。

推进系统通常由推进液压缸、推进螺杆和推进盖板等组成。

1. 推进液压缸:推进液压缸是推进系统的关键部件,通过液压力推动盾构机前进。

2. 推进螺杆:推进螺杆是连接推进液压缸和推进盖板的部件,通过旋转推动盾构机的前进。

3. 推进盖板:推进盖板位于盾构机前部,用于推进盾构机前进,并同时起到封闭隧道壁的作用。

三、掘进系统掘进系统是盾构机开挖地层的关键部分,主要由盾壳、盾壳刀盘、刀臂和刀具等组成。

1. 盾壳:盾壳是盾构机的外壳,通过盾壳与隧道壁形成封闭空间,并承受地层压力。

2. 盾壳刀盘:盾壳刀盘是掘进系统的核心部件,通过刀盘上的刀具对地层进行切削和破碎。

3. 刀臂:刀臂是连接盾壳刀盘和盾壳的部件,通过刀臂的旋转和伸缩,驱动刀盘进行掘进。

4. 刀具:刀具是盾壳刀盘上的工作部件,通过刀具的切削和破碎,将地层松动并运送至盾构机内部。

四、支护系统支护系统用于支撑和保护隧道壁,主要由液压支架、支撑液压缸和支撑液压缸等组成。

1. 液压支架:液压支架是支护系统的主要部件,通过液压力将支撑液压缸推动至隧道壁,起到支撑作用。

土压平衡盾构机工作原理

土压平衡盾构机工作原理

土压平衡盾构机工作原理
土压平衡盾构机是一种用于地下隧道施工的机械设备,主要通过施加土压力来平衡施工工作面前方的土压力,保持工作面的稳定。

具体的工作原理如下:
1. 盾构机由盾构壳体、刀盘、密封门、推进系统、护盾螺旋输送机等组成。

2. 盾构机首先将自身移到施工段的尾端,并固定在隧道壁上。

3. 利用螺旋输送机将前方挖掘的土层推送到密封门后方,并将土层通过施工段的输送管道运出。

4. 盾构机通过液压缸向前推进一定距离,使刀盘在前方继续挖掘土层。

同时,通过调节液压缸的伸缩长度,控制挖掘过程中的土压力。

土壤的土压力抵消了盾构机的推进力,实现土压平衡。

5. 在盾构机推进的同时,隧道壁采取防护措施,如设置衬砌或喷射混凝土,以保持施工现场的稳定。

6. 通过不断向前推进和挖掘土层,盾构机逐渐完成了整个隧道的挖掘和推进作业。

这种工作原理可以保证隧道工作面的稳定,并避免地面塌陷等安全问题的发生。

同时,土压平衡盾构机还可以充分利用挖掘的土层作为支撑,减少了对其他支撑结构的依赖,提高了施工效率。

盾构机的构造与工作原理

盾构机的构造与工作原理

盾构机的构造与工作原理盾构机是一种用于地下隧道施工的机械设备,它以其高效、快速、安全的特点被广泛应用于城市地铁、隧道、管廊等工程的建设中。

本文将从盾构机的构造和工作原理两个方面进行介绍。

一、盾构机的构造盾构机主要由盾构壳体、刀盘、推进系统、控制室和支撑系统等部分组成。

1. 盾构壳体:盾构壳体是盾构机的主体部分,由环片和壳体拼装而成。

它具有抗压、抗扭转和密封等功能,能够保护工作面的稳定和安全。

2. 刀盘:刀盘是盾构机的核心部件,位于盾构壳体前端。

它由刀盘主轴、刀臂、刀片等组成。

刀盘通过转动带动刀片切削地层,将土层碎块送入机械输送系统。

3. 推进系统:推进系统是盾构机的关键部分,它由推进液压缸、推进腔、推进座等组成。

推进系统通过液压力将盾构壳体向前推进,实现盾构机的整体推进。

4. 控制室:控制室是盾构机的操作中心,位于盾构壳体后部。

操作人员通过控制室内的控制台对盾构机进行控制和监控,实时了解施工情况并进行调整。

5. 支撑系统:支撑系统用于支撑盾构壳体,保证施工面的稳固。

它由液压支撑器、支撑梁、液压缸等组成,能够根据地质情况进行自动调整,确保盾构机的安全运行。

二、盾构机的工作原理盾构机的工作原理主要包括推进、掘进和支护三个过程。

1. 推进:盾构机在施工现场组装完成后,通过推进系统推进盾构壳体。

推进过程中,盾构机的刀盘不断转动,切削地层,同时使用推进液压缸施加推进力,将盾构壳体向前推进。

2. 掘进:在推进的同时,盾构机的刀盘通过旋转切削地层,将土层碎块送入盾构壳体内。

土层碎块经过机械输送系统,通过螺旋输送机或螺旋输送器等方式运出盾构壳体,最终被运出至地面。

3. 支护:在盾构机推进过程中,需要进行支护来保证施工面的稳固。

当盾构壳体推进一定距离后,液压支撑器通过液压力将支撑梁顶起,支撑盾构壳体,同时控制盾构壳体与地面之间的压力平衡,避免地面沉降和土层塌方。

盾构机的工作原理是将推进、掘进和支护等过程有机地结合起来,通过不断推进盾构壳体,实现隧道的快速、高效施工。

盾构机工作原理

盾构机工作原理

盾构机工作原理盾构机是一种用于地下隧道施工的专用机械设备,其工作原理是通过推进盾构机,同时进行土层的掘进和支护,完成地下隧道的开挖和施工。

盾构机通常由刀盘、推进系统、土压平衡系统、泥水处理系统和支撑系统等组成。

1. 刀盘刀盘是盾构机的核心部件,位于盾构机的前端。

刀盘上装有刀具,通过旋转切削地层,将土层切割成碎片,然后通过输送系统将碎片运送到后方的螺旋输送机上。

2. 推进系统推进系统是盾构机的驱动装置,用于推动盾构机前进。

推进系统通常由液压缸、液压马达和推进盾构机的推进液压缸组成。

液压马达通过液压系统提供动力,推动盾构机向前推进。

3. 土压平衡系统土压平衡系统是保持盾构机在地下工作时的平衡状态的重要装置。

它通过在盾构机前方施加与土层压力相等的反力,使盾构机前后压力保持平衡,防止土层坍塌。

土压平衡系统通常由前后推进液压缸、活塞、土压平衡油缸和土压平衡油缸控制系统等组成。

4. 泥水处理系统泥水处理系统用于处理盾构机在工作过程中产生的泥浆和废水。

盾构机在切削地层时会产生大量的泥浆,泥水处理系统通过过滤、分离和回收,将泥浆中的固体颗粒和废水分离,使其可以循环使用或进行处理。

5. 支护系统支护系统用于在盾构机开挖过程中对地下隧道进行支护,防止土层坍塌。

支护系统通常由支护壁、液压支撑系统和封闭环境系统等组成。

支护壁可以是预制的钢筋混凝土片或喷射混凝土,液压支撑系统通过液压缸提供支撑力,保持隧道的稳定。

盾构机工作原理的具体步骤如下:1. 盾构机进入工作区域,并进行安全检查和准备工作。

2. 启动盾构机的推进系统,盾构机开始向前推进。

3. 刀盘开始旋转,切削土层,将碎片通过输送系统运送到螺旋输送机上。

4. 土压平衡系统施加与土层压力相等的反力,保持盾构机的平衡状态。

5. 泥水处理系统处理盾构机产生的泥浆和废水,使其可以循环使用或进行处理。

6. 支护系统根据盾构机的推进情况,及时进行地下隧道的支护,防止土层坍塌。

7. 盾构机持续推进,直至完成地下隧道的开挖和施工。

盾构的基本构造

盾构的基本构造

盾构的基本构造
盾构是一种常用于地下隧道建设的机械化掘进方法,主要由以下几个部分组成:
1. 掘进头:位于盾构机前端,负责掘进工作。

通常由刀盘、切
削器和支撑系统等组成。

刀盘上装有大量的刀具,通过旋转和推进来掏出隧道断面,同时支撑系统负责保证掘进面的稳定。

2. 主轴承箱:位于盾构机中央,起到支撑机身和传递扭矩的作用。

主轴承箱内部包含主轴承、传动齿轮和液压缸等部件。

3. 推进系统:由液压油缸、支架和螺旋输送机等部件组成,通
过支架将掘进头向前推进,并通过螺旋输送机将掏出的土方运出隧道。

4. 后备系统:包括供电、通风、水泵、防火等设备,以及紧急
救援设备,确保施工安全。

5. 盾尾部分:包括尾盘、尾架和后备系统等。

其中,尾盘负责
支撑机尾,尾架负责支持和平衡掘进头,后备系统负责为机组提供各种设备和保障。

盾构机的基本构造如上所述,其具有自动化程度高、施工速度快、安全性高等优点,因此被广泛应用于地下隧道建设领域。

盾构机构造

盾构机构造

通常由盾构壳体、推进系统、拼装系统、出土系统等
四大部分组成。

1)盾构壳体
盾构壳体由切口环、支承环、盾尾与竖直隔板、水平隔板组成,并由外壳钢板连成整体。

切口环:开挖;上下宽度可以等值、也可以不等值,甚至是活动的。

容纳各种专门的挖土设备。

支承环:承受荷重的核心部分,刚性较好的圆环结构。

水平隔板和竖直隔板:增加盾构刚度,水平承受拉力,竖直承受压力。

盾尾:掩护工人在其内部安装衬砌。

2)推进系统
由盾构千斤顶和液压设备组成,上下左右活塞杆伸出长度不同达到纠偏目的。

盾构千斤顶一般是沿支承环圆周均匀分布的;
3)拼装系统
衬砌拼装器又称举重臂,是拼装系统的主要设备,以油压系统为动力,一般举重臂均安装在支承环上。

举重臂能作旋转、径向运动,还能沿隧道中轴线作往复运动。

完成这些运动的精度应该保证待装配的管片上的螺栓孔能和已装配好的螺栓孔对齐,以便螺栓固定。

4)出土系统
出土方式一般有三种:
(1)有轨运输:皮带运输机-矿车-洞口-垂直起吊至地面。

(2)无轨运输:自卸卡车
(3)管道运输:混合泥浆,压力输出,出土连续化。

盾构知识点总结

盾构知识点总结

盾构知识点总结一、盾构的基本原理盾构机是一种专门设计用于地下隧道开挖的设备,它通常由推进系统、掘进系统、土压平衡系统、注浆系统、排土系统、控制系统等组成。

盾构机的基本原理是通过在地下挖掘同时安装隧道衬砌或其他结构物,从而实现地下隧道的开挖和建设。

在工程现场,盾构机通常通过液压系统驱动,利用刀盘或刀盘刀具对地下土壤进行切削,然后将挖掘的土壤通过土压平衡或压力泥浆的方式排出隧道外。

隧道衬砌则通过推进系统安装到地下的开挖部位,从而形成完整的隧道结构。

二、盾构的分类盾构机可以根据其工作原理、结构特点以及适用范围等不同进行分类。

常见的盾构分类有以下几种:1. 按照工作原理分类:盾构机主要分为开式盾构机和闭式盾构机两种。

开式盾构是指在整个开挖过程中,土壤和水可以随着刀盘的转动自由流动,不需要采取特殊措施排出,一般用于稳定的土质条件下的隧道开挖。

闭式盾构则是指在开挖过程中通过压力泥浆或土压平衡的方式来控制土壤流动,适用于不稳定的土质条件下的隧道开挖。

2. 按照结构特点分类:盾构机可以分为硬岩盾构和软土盾构两种。

硬岩盾构主要适用于坚硬岩石层下的隧道开挖,其刀盘一般采用碳化钎头等硬质合金材料制成;软土盾构则适用于松软土质条件下的隧道开挖,其刀盘一般采用刀片、刀架等结构较为复杂的装置。

3. 按照适用范围分类:盾构机可以分为地铁盾构、道路盾构、排水管道盾构等不同种类,针对具体的工程需求进行设计和定制。

三、盾构的优点在地下隧道建设中,盾构机具有以下几大优点:1. 高效性:盾构机可以实现连续不间断的隧道开挖和衬砌施工,大大提高了开挖速度和工程进度。

2. 精准性:盾构机的开挖过程受到严格的控制和监测,可以保证隧道的准确尺寸和优质质量。

3. 安全性:盾构机工作过程中不会对地表造成破坏,减少了施工对周边环境和建筑物的影响,同时也降低了工人的工作风险。

4. 环保性:盾构机在工作过程中可以控制和处理排出的土壤和水,减少了对环境的污染,有利于城市生态环境的保护。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.34m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577k W,最大掘进扭矩5 300kN m,最大推进力为36400kN,最陕掘进速度可达8cm/min。

盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。

盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。

前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。

承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。

前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。

中盾的后边是尾盾,尾盾通过14个被动跟随的铰接油缸和中盾相连。

这种铰接连接可以使盾构机易于转向。

刀盘刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体,刀盘的开口率约为28%,刀盘直径6.28m,也是盾构机上直径最大的部分,一个带四根支撑条幅的法兰板用来连接刀盘和刀盘驱动部分,刀盘上可根据被切削土质的软硬而选择安装硬岩刀具或软土刀具,刀盘的外侧还装有一把超挖刀,盾构机在转向掘进时,可操作超挖刀油缸使超挖刀沿刀盘的径向方向向外伸出,从而扩大开挖直径,这样易于实现盾构机的转向。

超挖刀油缸杆的行程为50mm。

刀盘上安装的所有类型的刀具都由螺栓连接,都可以从刀盘后面的泥土仓中进行更换。

法兰板的后部安装有一个回转接头,其作用是向刀盘的面板上输入泡沫或膨润土及向超挖刀液压油缸输送液压油。

刀盘驱动刀盘驱动由螺栓牢固地连接在前盾承压隔板上的法兰上,它可以使刀盘在顺时针和逆时针两个方向上实现0-6.1rpm的无级变速。

刀盘驱动主要由8组传动副和主齿轮箱组成,每组传动副由一个斜轴式变量轴向柱塞马达和水冷式变速齿轮箱组成,其中一组传动副的变速齿轮箱中带有制动装置,用于制动刀盘。

安装在前盾右侧承压隔板上的一台定量螺旋式液压泵驱动主齿轮箱中的齿轮油,用来润滑主齿轮箱,该油路中一个水冷式的齿轮油冷却器用来冷却齿轮油。

双室气闸双室气闸装在前盾上,包括前室和主室两部分,当掘进过程中刀具磨损工作人员进入到泥土仓检察及更换刀具时,要使用双室气闸。

在进入泥土仓时,为了避免开挖面的坍坍,要在泥土仓中建立并保持与该地层深度土压力与水压力相适应的气压,这样工作人员要进出泥土仓时,就存在一个适应泥土仓中压力的问题,通过调整气闸前室和主室的压力,就可以使工作人员可以适应常压和开挖仓压力之间的变化。

但要注意,只有通过高压空气检查和受到相应培训有资质的人员,才可以通过气闸进出有压力的泥土仓。

现以工作人员从常压的操作环境下进入有压力的泥土仓为例,来说明双室气闸的作用。

J怍/u吊甲先从前室进入主室,关闭前室和主室之间的隔离门,按照规定程序给主室加压,直到主室的压力和泥土仓的压力相同时,打开主室和泥土仓之间的闸阀,使两者之间压力平衡,这时打开主室和泥土仓之间的隔离门,工作人员甲进入泥土仓。

如果这时工作人员乙也需要进入泥土仓工作,乙就可以先进入前室,然后关闭前室和常压操作环境之间的隔离门,给前室加压至和主室及泥土仓中的压力相同,扣开前室和主室之间的闸阀,使两者之间的压力平衡,打开主室和前室之间的隔离门,工作人员乙进入主室和泥土仓中。

管片拼装机管片拼装机由拼装机大梁、支撑架、旋转架和拼装头组成。

拼装机大梁用法兰连接在中盾的后支撑架上,拼装机的支撑架通过左右各两个滚轮安放在拼装机大梁上的行走槽中,一个内圈为齿圈形式外径3.2m的滚珠轴承外圈通过法兰与拼装机支撑架相连,内圈通过法兰与旋转架相连,拼装头与旋转支架之间用两个伸缩油缸和一个横粱相连接。

现以拼装头在正下方位置的情况为例,来说明拼装机的运动情况。

两个拼装机行走液压油缸可以使支撑架、旋转架、拼装头在拼装机大梁上沿隧道轴线方向移动;安装在支撑架上的两个斜盘式轴向柱塞旋转马达,通过驱动滚珠轴承的内齿圈可以使旋转架和拼装头沿隧道圆周方向左右旋转各200度;通过伸缩油缸可以使拼装头上升或下降;拼装头在油缸的作用下又可以实现在水平方向上的摆动,和在竖直方向上的摆动以及抓紧和放松管片的功能。

这样在拼装管片时,就可以有六个方向的自由度,从而可以使管片准确就位。

拼装手可以使用有线的或遥控的控制器操作管片拼装机,用来拼装管片。

我们采用的是1.2m长的通用管片,一环管片由六块管片组成,它们是三个标准块、两块临块和一块封顶块。

封顶块可以有十个不同的位置,代表十种不同类型的管环,通过选择不同类型的管环就可以使成型后的隧道轴线与设计的隧道轴线相拟合。

隧道成型后,管环之间及管环的管片之间都装有密封,用以防水。

管片之间及管环之间都由高强度的螺栓连接。

排土机构盾构机的排土机构主要包括螺旋输送机和皮带输送机。

螺旋输送机由斜盘式变量轴向柱塞马达驱动,皮带输送机由电机驱动。

碴土由螺旋输送机从泥土仓中运输到皮带输送机上,皮带输送机再将碴土向后运输至第四节台车的尾部,落入等候的碴土车的土箱中,土箱装满后,由电瓶车牵引沿轨道运至竖井,龙门吊将士箱吊至地面,并倒人碴土坑中。

螺旋输送机有前后两个闸门,前者关闭可以使泥土仓和螺旋输送机隔断,后者可以在停止掘进或维修时关闭,在整个盾构机断电紧急情况下,此闸门也可由蓄能器贮存的能量自动关闭,以防止开挖仓中的水及渣土在压力作用下进入盾构机。

后配套设备后配套设备主要由以下几部分组成:管片运输设备、四节后配套台车及其上面安装的盾构机操作所需的操作室、电气部件、液压部件、注浆设备、泡沫设备、膨润土设备、循环水设备及通风设备等。

管片运输设备管片运输设备包括管片运送小车、运送管片的电动葫芦及其连接桥轨道。

管片由龙门吊从地面下至竖井的管片车上,由电瓶车牵引管片车至第一节台车前的电动葫芦—方,由电动葫芦吊起管片向前运送到管片小车上,由管制、车再向前运送,供给管片拼装机使用。

一号台车及其上的设备一号台车上装有盾构机的操作室及注浆设备。

盾构机操作室中有盾构机操作控制台、控制电脑、盾构机PLC自动控制系统、VMT隧道掘进激光导向系统电脑及螺旋输送机后部出土口监视器。

二号台车及其上的设备二号台车上有包含液压油箱在内的液压泵站、膨润土箱、膨润土泵、盾尾密封油脂泵及润滑油脂泵。

液压油箱及液压泵站为刀盘驱动、推进油缸、铰接油缸、管片拼装机、管片运输小车、螺旋输送机、注浆泵等液压设备提供压力油。

泵站上装有液压油过滤及冷却回路,液压油冷却器是水冷式。

盾尾密封油脂泵在盾构机掘进时将盾尾密封油脂由12条管路压送到三排盾尾密封刷与管片之间形成的两个腔室中,以防止注射到管片背后的浆液进入盾体内。

润滑油脂泵将油脂泵送到盾体中的小油脂桶中,盾构机掘进时,4kw电机驱动的小油脂泵将油脂泵送到主驱动齿轮箱、螺旋输送机齿轮箱及刀盘回转接头中。

这些油脂起到两个作用,一个作用是被注入到上述三个组件中唇形密封件之间的空间起到润滑唇形密封件工作区域及帮助阻止赃物进入被密封区域内部的作用,对于螺旋输送机齿轮箱还有另外一个作用,就是润滑齿轮箱的球面轴承。

三号台车及其上的设备三号台车上装有两台打气泵、一个1立方米贮气罐、一组配电柜及一台二次风机。

打气泵可提供8Bar的压缩空气并将压缩空气贮存在贮气罐中,压缩空气可以用来驱动盾尾油脂泵、密封油脂泵和气动污水泵,用宋给人闸、开挖室加压,用来操作膨润土、盾尾油脂的气动开关,用来与泡沫剂、水混合形成改良土壤的泡沫,用来8嘞气动工具等。

二次风机由11kW的电机驱动,将由中间井输送至第四节台车位置处的新鲜空气,继续向前泵送至盾体附近,以给盾构机提供良好的通风。

四号台车及其上的没备四号台车上装有变压器、电缆卷筒、水管卷筒、风管盒。

铺设在隧道中的两条内径为100mm的水管作为盾构机的进、回水管,将竖井地面的蓄水池与水管卷筒上的水管连接起来,与蓄水池连接的一台高压水泵驱动盾构机用水在蓄水池和盾构机之间循环。

通常情况下,进人盾构机水管卷筒水管的水压控制在5Bar 左右。

正常掘进时,进人盾构机水循环系统的水有以下的用途:对掖压油、主驱动齿轮油、空压机、配电柜中的电器部件及刀盘驱动副变速箱具有冷却功能,为泡沫剂的合成提供用水,提供给盾构机及隧道清洁用水。

蓄水池中的水用冷却塔进行循环冷却。

风管盒中装有折叠式的风管,风管与竖井地面上的风肌连接,向隧道中的盾构机里提供新鲜空气。

新鲜空气通过风管被送至第四节台车的位置。

电气设备盾构机电气设备包括电缆卷筒、主供电电缆、变压器、配电柜、动力电缆、控制电缆、控制系统、操作控制台、现场控制台、螺旋输送机后部出土口监视器、电机、插座、照明、接地等。

电器系统最小保护等级为IP5.5。

主供电电缆安装在电缆卷筒上,10kV的高压电由地面通过高压电缆沿隧道输送到与之连接的主供电电缆上,接着通过变压器转变成400v,50Hz的低压电进人配电柜,再通过供电电缆和控制电缆供盾构机使用。

西门子S7-PLC是控制系统的关键部件,控制系统用于控制盾构机掘进、拼装时的各主要功能。

例如盾构机要掘进时,盾构机司机按下操作控制台上的掘进按钮,一个电信号就被传到PLC控制系统,控制系统首先分析推进的条件是否具备(如推进油缸液压油泵是否打开,润滑脂系统是否工作正常等,.如果推进的条件不具备,就不能推进,如果条件具备,控制系统就会使推进按钮指示灯变亮,同时控制系统也会给推进油缸控制阀的电磁阀供电,电磁阀通电打开推进油缸控制阀,盾构机开始向前推进。

PLC安装于控制室,在配电柜里装有远程接口,PLC系统也与操作控制台的控制电脑及VMT公司的SLS-T隧道激光导向系统电脑相连。

盾构机操作室内的操作控制台和盾构机某些可移动装置旁边的现场控制台(如管片拼装机、管片吊车、管片运送小车等)用来操作盾构机,实现各种功能。

操作控制台上有控制系统电脑显示器、实现各种功能的按钮、调整压力和速度的旋钮、显示压力或油缸伸长长度的显示模块及各种钥匙开关等。

螺旋输送机后部出土口监视器用来监视螺旋输送机的出土情况。

电机为所有液压油泵、皮带机、泡沫剂泵、合成泡沫用水水泵、膨润土泵等提供动力。

当电机的功率在30kW以下时,采用直接起动的方式,当电机的功率大于30kW时,为了降低起动电流,采用星形—三角形起动的方式。

相关文档
最新文档