算术平方根PPT教学课件
合集下载
《平方根》PPT教学课文课件
2. 性质:(1)正数的算术平方根是一个正数; (2)0 的算术平方根是0; (3)负数没有算术平方根; (4)被开方数越大,对应的算术平方根也越大.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
∴
99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,
∴
99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
∴
99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,
∴
99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.
平方根ppt课件
在直角三角形中,直角边的平方和等 于斜边的平方。因此,斜边的平方根 是直角边的长度与另一条直角边的长 度之间的比例中项。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。
《算术平方根》课件
应用实例
建筑设计
通过计算平方根,设计师可以确 定建筑物的比例和尺寸。
科学研究
平方根在物理学、化学和工程学 等领域的测量和计算中起着重要 作用。
股票市场交易
投资者可以使用平方根来分析统 计数据和预测市场走势。
总结和要点
1 算术平方根是一个数 2 平方根具有非负性质、 3 计算算术平方根可以
的正平方根。
唯一性质和运算性质。
使用试探法、公式法
和近似法。
4 注意常见错误并采取相应的解决方
法。
5 平方根的应用广泛,涉及建筑设计、
科学研究和股票市场交易等领域。
1 非负性质
每个非负实数都有一个非 负平方根。
2 唯一性质
每个非负实数都有唯一的 平方根。
3 运算性质
平方根和乘法、除法、指 数运算等具有一定的关系。
计算算术平方根的方法
试探法
通过试探不同的平方数来逼近 目标数的平方根。
公式法
利用数学公式和方程求解平方 根。
近似法
使用数值逼近方法计算平方根。
例题演示
《算术平方根》PPT课件
欢迎来到《算术平方根》PPT课件!本课程将深入探讨算术平方根的定义、性 质、计算方法,并通过例题演示和应用实例巩固学习。让我们开启这个令人 兴奋的数学之旅吧!
算术平方根的定义
算术平方根是一个数学运算,它指的是一个数的平方等于该数的正平方根。以符号√表示,例如√9 = 3。
平方根的性质
1
题目1
计算√16。
2
题目2Biblioteka 求解方程x²= 25的解。
3
题目3
使用牛顿迭代法求解√2的近似值。
常见错误和解决方法
错误:忘记提取负号
算术平方根课件
直接开平法
对于形如a^(1/2)的算术平方根, 可以直接开平方得到结果。
迭代法
通过不断逼近的方式求得算术平方 根的值。
算术平方根的运算性质
非负性
有序性
算术平方根的结果总是非负的,即对 于任意实数a,其算术平方根√a≥0。
对于任意两个实数a和b(a≥0,b≥0 ),如果a≥b,那么√a≥√b。
唯一性
进行因式分解或化简。
几何学
在几何学中,算术平方根用于计 算图形的边长、面积和体积等, 例如,求圆的半径、矩形的宽或
长等。
数学分析
在数学分析中,算术平方根用于 研究函数的单调性、极值和积分
等。
算术平方根在物理中的应用
力学
在力学中,算术平方根用于计算速度、加速度和力的关系,例如 ,根据牛顿第二定律计算物体的加速度。
在此添加您的文本16字
题目:计算 $sqrt{25}$。
在此添加您的文本16字
答案:5
在此添加您的文本16字
解析:同样根据算术平方根的定义,$sqrt{25}$ 的解为 5 。
进阶练习题
题目:计算 $sqrt{16}$。
解析:进阶题目需要理解平方根的性质,$sqrt{16}$ 的 解为 4。 答案:9
电磁学
在电磁学中,算术平方根用于计算与电场、磁场相关的物理量,例 如,计算带电粒子的洛伦兹力。
热学
在热学中,算术平方根用于计算热量、温度和压力等物理量的关系 ,例如,计算热容和热传导系数。
算术平方根在日常生活中的应用
1 2 3
建筑学
在建筑学中,算术平方根用于计算建筑物的横梁 、立柱和地基等结构的尺寸和强度。
03
答案
约等于 1.73205(四舍五入到小数点后五位 )
七年级数学下册教学课件《算术平方根》
(2) 9 3; (3) 22 2. 25 5
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
平方根ppt课件
81
与 - 79 ,6.25的平方根是2.5与-2.5.
感谢聆听
112=121
122=144
162=256
132=169
172=289
142=196 152=225
182=324 192=361
=
的算术平方根是
=
=3
=
=
=
=
=
=
1
算术平方根——算术平方根的定义
例题1 填空
=
2
①④⑤
1.下列说法正确的是_________
① -3是9的平方根; ②25的平方根是5; ③ -36
的平方根是-6; ④平方根等于0的数是0;
⑤64
的算术平方根是8.
B
2.下列说法不正确的是______
A.0的平方根是0
B. 22 的平方根是2
C.非负数的平方根互为相反数
D.一个正数的算术平方根一定大于这个数的相反数
?
= −
Cc
负数没有算术平方根
1
算术平方根——算术平方根的定义
有
. = .
有
没有
=
=
有
有
=
有
= =
非平方数的算术平方根
只能用根号表示
笔记区
算术平方根判断:
正数的算术平方根为正数
Cc
0的算术平方根是0
负数没有算术平方根
当堂练习
16
(1)已知4 =16,则_______叫做_______的算术平方根,记做_________________.
4
25的算数平方根
与 - 79 ,6.25的平方根是2.5与-2.5.
感谢聆听
112=121
122=144
162=256
132=169
172=289
142=196 152=225
182=324 192=361
=
的算术平方根是
=
=3
=
=
=
=
=
=
1
算术平方根——算术平方根的定义
例题1 填空
=
2
①④⑤
1.下列说法正确的是_________
① -3是9的平方根; ②25的平方根是5; ③ -36
的平方根是-6; ④平方根等于0的数是0;
⑤64
的算术平方根是8.
B
2.下列说法不正确的是______
A.0的平方根是0
B. 22 的平方根是2
C.非负数的平方根互为相反数
D.一个正数的算术平方根一定大于这个数的相反数
?
= −
Cc
负数没有算术平方根
1
算术平方根——算术平方根的定义
有
. = .
有
没有
=
=
有
有
=
有
= =
非平方数的算术平方根
只能用根号表示
笔记区
算术平方根判断:
正数的算术平方根为正数
Cc
0的算术平方根是0
负数没有算术平方根
当堂练习
16
(1)已知4 =16,则_______叫做_______的算术平方根,记做_________________.
4
25的算数平方根
《第1课时 算术平方根》教学课件(共18张ppt)
注:正数的算术平方根是正数,
0的算术平方根是0,
负数没有算术平方根.
再见
26-1
在2和3之间.
2
典型例题
例3:已知
5.217 ≈2.284,52. 17 ≈7.232,则
(1) 0.005217 ≈ 0.07232 。
(2)若
≈0.02284,则x= 0.0005217 。
分析:(1) 52.17 向左移动四位就是 0.005217 ,所以7.232
应向左移动两位为0.07232。
第六章 实数
6.1 平方根
第1课时 算术平方根
学习目标
1.经历算术平方根概念的形成过程,了解算术平方根的概念.
2.会求某些正数(完全平方数)的算术平方根并会用符号表示.
新知讲解
算术平方根
学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形
画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
正数4的平方等于16,我们把正数4叫做16的算术平方根.
如果一个正数的平方等于a,那么这个正数叫做a的算术平方根.
为了书写方便,我们把a的算术平方根记作 a .
新知讲解
算术平方根
根号
a
被开方数
钓鱼杆似的符号叫做根号,a叫做被开方数, a 表示a的算术平方根.
正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.
循环小数.
利用计算器计算,我们会发现 3、 5、 7 都是无限
不循环小数.
新知讲解
怎样求 5 的近似值。
新知讲解
算术平方根小数点移动法则
规律:被开方数的小数点每向右(或向左)移动两位,它的算术
平方根的小数点就向右(或向左)移动一位.
0的算术平方根是0,
负数没有算术平方根.
再见
26-1
在2和3之间.
2
典型例题
例3:已知
5.217 ≈2.284,52. 17 ≈7.232,则
(1) 0.005217 ≈ 0.07232 。
(2)若
≈0.02284,则x= 0.0005217 。
分析:(1) 52.17 向左移动四位就是 0.005217 ,所以7.232
应向左移动两位为0.07232。
第六章 实数
6.1 平方根
第1课时 算术平方根
学习目标
1.经历算术平方根概念的形成过程,了解算术平方根的概念.
2.会求某些正数(完全平方数)的算术平方根并会用符号表示.
新知讲解
算术平方根
学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形
画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?
正数4的平方等于16,我们把正数4叫做16的算术平方根.
如果一个正数的平方等于a,那么这个正数叫做a的算术平方根.
为了书写方便,我们把a的算术平方根记作 a .
新知讲解
算术平方根
根号
a
被开方数
钓鱼杆似的符号叫做根号,a叫做被开方数, a 表示a的算术平方根.
正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.
循环小数.
利用计算器计算,我们会发现 3、 5、 7 都是无限
不循环小数.
新知讲解
怎样求 5 的近似值。
新知讲解
算术平方根小数点移动法则
规律:被开方数的小数点每向右(或向左)移动两位,它的算术
平方根的小数点就向右(或向左)移动一位.
《算术平方根》课件
06 总结与回顾
本课重点回顾
01
02
03
04
算术平方根的定义:非负实数 的平方根。
平方根的性质:正数有两个平 方根,互为相反数;0的平方 根是0;负数没有实数平方根
。
平方根的表示方法:使用 “√”符号表示,读作“根号
”。
平方根的运算性质:平方根具 有交换律、结合律和分配律。
学习心得分享
掌握了算术平方根的基本概念 和性质,能够正确判断一个数 的平方根。
平方根近似值的实际应用
大数开方
在处理大数时,直接计算其平方 根可能超出计算机的表示范围, 此时需要使用近似值进行计算。
科学计算
在物理、工程、金融等领域中,经 常需要计算平方根,近似值可以满 足实际应用的需求。
数学建模
在数学建模中,平方根的近似值可 以用于解决一些实际问题,如求解 线性方程、优化问题等。
开方运算的性质
开方运算具有非负性,即对于任何实数a,其算术平方根√a都是非负的。此外, 开方运算还具有正值性,即对于任何正实数a,其算术平方根√a都是正的。
开方运算的规则
开方运算的运算法则
在进行开方运算时,需要注意运算法则的运用。首先,对于 任何实数a,都有√(a^2) = |a|。此外,对于任何实数a和b, 都有√(a^2 + b^2) = √(a + b)^2 = |a + b|。
通过实例练习,加深了对平方 根运算的理解和应用。
在学习过程中,遇到了一些困 难,但通过与同学讨论和请教 老师,最终克服了困难。
下一步学习计划
深入学习平方根的性质和应用, 掌握更多关于平方根的运算技巧
。
学习其他与数学相关的内容,如 乘方、开方等,以扩展数学知识
平方根ppt课件
别
取值范
正数的算术平方根
正数的平方根是一
围不同
一定是正数
正一负
感悟新知
知3-讲
续表:
算术平方根
具有包
联 含关系
平方根
平方根包含算术平方根,算术平方根是
平方根中正的那个(0除外)
系 存在条 平方根和算术平方根都只有非负数才有,
件相同
0的平方根与算术平方根都是0
感悟新知
知3-讲
特别提醒
1. 任何一个数的平方都是非负数,所以求算术平方根时,被开
C. ±6是36的平方根: =±6
D. -2是4的负的平方根: =-2
感悟新知
知3-练
6-2. 求下列各式的值:
(1) ;
(2)-
;
解: 1 600=40.
-
14
2 =-
25
(3)± (-);± (-2)2=±2.
(4) . .
0.003 6=0.06.
解:因为152=225,所以225的算术平方根是15.
(2)72;
72的算术平方根是7.
感悟新知
知3-练
(3)(-6)2;
解:因为(-6)2=36=62,所以(-6)2的算术平方根是6.
(4) .
因为 16=4=22,所以 16的算术平方根是 2.
感悟新知
知3-练
例 5 已知a的算方:根据平方根的性质,找出两个平方根
之间的关系列方程求值.
感悟新知
知2-练
(1)一个正数的两个平方根分别是3a-5 和a-3,则这个正
数是多少?
解:根据题意,得(3a-5)+(a-3)=0,
解得a=2,所以这个正数为(3a-5)2=(3×2-5)2=1.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
(2)因为 7 = 49,所以 49的算术平方根是
8 64
64
7
8 ,即
4Hale Waihona Puke = 764 8(3)因为 0.012 =0.0001,所以0.0001的算术平方
根为0.01,即 0.0001 =0.01。
思考:
1.下列各式哪些有意义,哪些没
有意义?
(1)- 4
(3) 32
(2) 4
(4)
2
3
探探索究:& 交流
怎样用两个面积为1的小正方形拼 成一个面积为2的大正方形?
如图,把两个小正方形沿对角线剪开,
将所得的4个直角三角形拼在一起,就
得到一个面积为2的大正方形。你知道
这个大正方形的边长是多少吗?
设大正方形的边长为x,则
x2 =2.
由算术平方根的意义可知
小正方形 的对角线 的长是多 少呢?
你能根据等式:122 =144说出 144的算术平方根是多少吗? 并用等式表示出来。
下列式子表示什么意思?你 能求出它们的值吗?
25
0.81
0
学以致用
例1 求下列各数的算术平方根:
(1)100
解:(1)因为 102
=(1002,)所6449以100(的算3)术平0.方00根0为110,
即 100 =10。
问题:学校要举行美术作品 比赛,小鸥很高兴,他想裁出 一块面积为25的正方形画布, 画上自己的得意之作参加比赛, 这块正方形画布的边长应取多 少?
正方形 1
9
16 36
0.25
的面积
边长
一般地,如果一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。
其中:0的算术平方根是0。 判断: (1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0; (4)0.01是0.1的算术平方根; (5)-5是-25的算术平方根。
•
跟我一起来做:
有关地震的几个概念:
• 震源: • 震源深度: • 震中: • 震中距:
如何预报和防范地震、减小其危害?
• 1、根据各种表象进行判断(请听 唐山大地震之前的记录),提前进 行预防;
• 2、修建的建筑具有防震功能; • 3、掌握逃生技巧。
内容小结:
• 一、火山 • 1、火山构造 • 2、火山的危害和益处 • 3、火山的分类、分布 • 二、地震 • 1、地震的发生 • 2、地震的分布
请观察下列不同类型的火山:
火山的分类:
• 死火山:在人类的历史上没有喷发过 • 活火山:在人类历史上经常喷发 • 休眠火山:史前曾经喷发过,史上偶尔有
过 •
喷发。
资料:
• 全世界被确认的火山的2500余 座,它在地球上的分布并不均匀, 主要集中分布在某些地区,如环太 平洋的陆地和周围海区,以及地中 海--喜马拉雅山一带。
x= 2
随堂练习
1.自由下落物体的高度h(单位:m)与 下落时间t(单位:s)的关系是
h=4.9 t2 。如图,有一个物体从490m
高的建筑物上自由落下,到达地面需要 多长时间?
回顾与反思
1.这节课你有什么收获? 2. 你还有什么问题或想法需要和大家交流?
课后作业: P167 / 1、2
选做:P168/11
请先回忆:
• 地球的结构:
• 地壳、地幔、地核
• 岩石圈包括: • 地壳和地幔的顶部,
平均厚度约为300千 米
请展示同学们所制作的火山模型:
• 火山的构成:
•
•
火山锥、火山口、火山通道
• 火山喷发物:
• 气体、固体、液体三类
试一试:能完成吗?
•
• 用教师所提供的材料,你能否模拟一下 火山喷发时的情景吗?(建议用红色材料 表示岩浆,用软的泡沫来代替地壳)。
火山的害处和益处:
• 危害: • 1、 • 2、 • 3、 • 对人类的益处: • 1、 • 2、 • 3、 • 4、
地震的危害:
• 1、有关唐山大地震的灾害报道; • 2、其它有关地震灾害的记录;
思考:
• 地震既然能够造成极大的破坏,其释放 出来的能量一定相当巨大,这些能量来源 于哪里呢?