14.2勾股定理的应用教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.2 勾股定理的应用
执笔人:审核:八年级数学组课型:新授时间:
1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关
计算,深入对勾股定理的理解。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
课前复习
1、勾股定理的内容是什么?
问:是这样的。在RtΔABC中,∠C =90°,有:AC2+BC2=AB2,勾股定理揭示了直角三角形三边之间的关系。
今天我们来看看这个定理的应用。
新课过程
分析:
大家分组合作探究:
解:在RtΔABC中,由题意有:
AC==≈2.236
∵AC大于木板的宽
∴薄木板能从门框通过。
学生进行练习:
1、在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90゜.
①已知a=5,b=12,求c;
②已知a=20,c=29,求b
(请大家画出图来,注意不要简单机械的套a2+b2=c2,要根据本质来看问题)
2、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?
解:①当6cm和8cm分别为两直角边时;
斜边==10
∴周长为:6+8+10=24cm
②当6cm为一直角边,8cm是斜边时,
另一直角边==2
周长为:6+8+2=14+2
解:由题意有:∠O=90°,在RtΔABO中
∴AO==2.4(米)
又∵下滑了0.4米
∴OC=2.0米
在RtΔODC中
∴OD==1.5(米)
∴外移BD=0.8米
答:梯足将外移0.8米。
例3再来看一道古代名题:
这是一道成书于公元前一世纪,距今约两千多年前的,《九章算术》中记录的一道古代趣题:
“现在有一个贮满水的正方形池子,池子的中央长着一株芦苇,水池的边长为10尺,芦苇露出水面1尺。若将芦苇拉到岸边,刚好能达到水池岸与水面的交接线的中点上。请求出水深与芦苇的长各有多少尺?
解:由题意有:DE=5尺,DF=FE+1。
设EF=x尺,则DF=(x+1)尺
由勾股定理有:
x2+52=(x+1)2
解之得:x=12
答:水深12尺,芦苇长13尺。
例4
如图,校园内有两棵树,相距12米,一棵树高16米,另一棵树高11米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?
解:由题意有:BC=12米,AC=16-11=5米。
在RtΔABC中
AB==13
答:小鸟至少要飞13米。
三、作业:完成书P77页1,P78页2、3
四、教学反思: