半导体工艺要点精

合集下载

半导体制造工艺简介.

半导体制造工艺简介.


材料制备
பைடு நூலகம் 制造工艺简介
(a)n型硅晶片原材料(b)氧化后的晶片
1 制造工艺简介
(c)涂敷光刻胶(d)光刻胶通过掩膜版曝

1 制造工艺简介
(a)显影后的晶片(b)SiO2去除后的晶片 氧化工艺
1 制造工艺简介
(c)光刻工艺处理后的晶片 (d)扩散或离子注入形成PN结 光刻和刻蚀工艺;扩散和离子注入工艺
化学气相淀积
CVD生长的二氧化硅:用作金属间的绝缘层,
用于离子注入和扩散的掩蔽层,也可用于增 加热氧化生长的场氧化层的厚度 热生长的二氧化硅:具有最佳的电学特性。 可用于金属层之间的绝缘体,又可用作器件 上面的钝化层
主要内容
3.1半导体基础知识
工艺流程 3.3 工艺集成
3.2


氮化硅的制备
主要用作:金属上下层的绝缘层、场氧的屏蔽层、 芯片表面的钝化层。
8 常用工艺之五:薄膜制备
生产SiO2
8 常用工艺之五:薄膜制备
氧化质量
物理气相淀积
(2)物理气相淀积
利用某种物理过程,例如蒸发或溅射,来实
现物质的转移,即把材料的原子由源转移到 衬底表面,从而实现淀积形成薄膜。 金属的淀积通常是物理的。 两种方法:真空蒸发;溅射
电阻值计算,xj为结深
当W=L时,G=g
1/g用R■表示,称为方块电阻,单位为欧姆,
习惯上用Ω/ ■表示。
2 无源器件
2、电容
基本上分为两种:MOS电容和P-N结电容 (1)MOS电容:重掺杂区域作为极板,氧
化物作为介质 单位面积的电容为 (2)P-N结电容:N+P结电容,通常加反向 偏置电压

集成电路制造中的半导体器件工艺

集成电路制造中的半导体器件工艺

集成电路制造中的半导体器件工艺绪论随着信息技术的飞速发展,集成电路制造技术已成为现代电子工业的核心领域。

集成电路是现代电子产品的基础,在计算机、通讯、军事和工业等领域都有着广泛的应用。

而半导体器件工艺是集成电路制造技术的基石,其质量和效率直接决定了集成电路的性能和成本。

本文将从半导体制造的基本流程、光刻工艺、薄膜工艺、化学机械抛光、多晶硅工艺和后台工艺六个方面详细介绍集成电路制造中的半导体器件工艺。

一、半导体制造的基本流程半导体芯片制造的基本流程包括晶圆制备、芯片制造和包装封装。

具体流程如下:晶圆制备:晶圆是半导体器件制造的基础,它是由高纯度单晶硅材料制成的圆片。

晶圆制备的主要过程包括矽晶体生长、切片、抛光和清洗等。

芯片制造:芯片制造主要包括传输电子装置和逻辑控制逻辑电路结构的摆放和电路组成等操作。

包装封装:芯片制造完成后,晶体管芯片需要被封装起来的保护电路,使其不会受到外界环境的影响。

光刻工艺是半导体工艺中的核心部分之一。

光刻工艺的主要作用是将图形预设于硅晶圆表面,并通过光刻胶定位的方式将图形转移到晶圆表面中,从而得到所需的电子器件结构。

光刻工艺的主要流程包括图形生成、光刻胶涂布、曝光、显影和清洗等步骤。

三、薄膜工艺薄膜工艺是半导体制造中的另一个重要工艺。

它主要通过化学气相沉积、物理气相沉积和溅射等方式将不同性质的材料覆盖在晶圆表面,形成多层结构,从而获得所需的电子器件。

四、化学机械抛光化学机械抛光是半导体工艺中的核心工艺之一。

其主要作用是尽可能平坦和光滑化硅晶圆表面,并去除由前工艺所形成的残余物和不均匀的层。

化学机械抛光的基本原理是使用旋转的硅晶圆,在氧化硅或氮化硅磨料的帮助下,进行机械和化学反应,从而达到平坦化的效果。

五、多晶硅工艺多晶硅工艺是半导体工艺中的一个重要工艺,主要是通过化学气相沉积厚度约8至12个纳米的多晶硅层。

该工艺可以用于形成电极、连接线、栅极和像素等不同的应用。

多晶硅工艺的优点是不需要特殊的工艺装备,因此较为简单。

半导体八大工艺顺序

半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序,是指半导体制造过程中的八个主要工艺步骤。

这些工艺步骤包括晶圆清洗、光刻、沉积、刻蚀、扩散、离子注入、退火和包封。

下面将逐一介绍这些工艺步骤的顺序及其作用。

1. 晶圆清洗晶圆清洗是半导体制造过程中的第一步。

在这一步骤中,晶圆将被放入化学溶液中进行清洗,以去除表面的杂质和污染物。

这样可以确保后续工艺步骤的顺利进行,同时也可以提高器件的质量和性能。

2. 光刻光刻是半导体制造中的关键工艺步骤之一。

在这一步骤中,将使用光刻胶覆盖在晶圆表面上,并通过光刻机将图形投射到光刻胶上。

然后,利用化学溶液将未曝光的光刻胶去除,从而形成所需的图形。

3. 沉积沉积是指在晶圆表面上沉积一层薄膜的工艺步骤。

这一层薄膜可以用于改变晶圆表面的性质,增加其导电性或绝缘性。

常用的沉积方法包括化学气相沉积和物理气相沉积。

4. 刻蚀刻蚀是将多余的材料从晶圆表面去除的工艺步骤。

在这一步骤中,利用化学溶液或等离子刻蚀机将不需要的材料去除,从而形成所需的图形和结构。

5. 扩散扩散是将杂质或掺杂物diffused 到晶圆中的工艺步骤。

这一步骤可以改变晶圆的电学性质,并形成PN 结等器件结构。

常用的扩散方法包括固体扩散和液相扩散。

6. 离子注入离子注入是将离子注入到晶圆中的工艺步骤。

这可以改变晶圆的导电性和掺杂浓度,从而形成电子器件的结构。

离子注入通常在扩散之前进行。

7. 退火退火是将晶圆加热至一定温度并保持一段时间的工艺步骤。

这可以帮助晶圆中的杂质扩散和掺杂物活化,从而提高器件的性能和稳定性。

8. 包封包封是将晶圆封装在外部保护材料中的工艺步骤。

这可以保护晶圆不受外部环境的影响,同时也可以方便晶圆的安装和使用。

半导体制造过程中的八大工艺顺序是一个复杂而精密的过程。

每个工艺步骤都起着至关重要的作用,只有严格按照顺序进行,才能生产出高质量的半导体器件。

希望通过本文的介绍,读者对半导体制造过程有了更深入的了解。

半导体工艺要点(精)

半导体工艺要点(精)

半导体⼯艺要点(精)半导体⼯艺要点1、什么是集成电路通过⼀系列特定的加⼯⼯艺,将晶体管、⼆极管等有源器件和电阻、电容等⽆源器件,按照⼀定的电路互连,“集成”在⼀块半导体单晶⽚(如硅或砷化镓)上,封装在⼀个外壳内,执⾏特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯⽚制造-芯⽚功能检测-封装-测试3、集成电路发展的特点特征尺⼨越来越⼩硅圆⽚尺⼨越来越⼤芯⽚集成度越来越⼤时钟速度越来越⾼电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯⽚的集成度每三年提⾼4倍,⽽加⼯特征尺⼨(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏⼒半导体制造有限公司TI 美国德州仪器7、直拉法⽣长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引⼊籽晶作为⾮均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的⽅向长⼤。

1.籽晶熔接: 加⼤加热功率,使多晶硅完全熔化,并挥发⼀定时间后,将籽晶下降与液⾯接近,使籽晶预热⼏分钟,俗称“烤晶”,以除去表⾯挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液⾯接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这⼀步骤叫“引晶”,⼜称“下种”。

“缩颈”是指在引晶后略为降低温度,提⾼拉速,拉⼀段直径⽐籽晶细的部分。

其⽬的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈⼀般要长于20mm3.放肩:缩颈⼯艺完成后,略降低温度,让晶体逐渐长⼤到所需的直径为⽌。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>⽅向应有对称三条棱,<100>⽅向有对称的四条棱。

半导体七大核心工艺步骤

半导体七大核心工艺步骤

半导体七大核心工艺步骤
1. 晶圆生长,晶圆是制造芯片的基础,晶圆生长是指在高温下
将单晶硅材料生长成圆形晶圆。

2. 晶圆清洗,晶圆在生长过程中会附着各种杂质和污染物,因
此需要进行严格的清洗,以确保表面的干净和平整。

3. 晶圆扩散,在这一步骤中,通过高温处理将掺杂物质(如硼、磷等)扩散到晶圆表面,改变硅的导电性能。

4. 光刻,光刻技术是将光敏胶涂覆在晶圆表面,然后使用光刻
机将芯片图案投影到光敏胶上,形成光刻图案。

5. 蚀刻,蚀刻是利用化学反应将未被光刻覆盖的部分材料去除,从而形成芯片上的线路和结构。

6. 沉积,在芯片制造过程中,需要在特定区域沉积金属或者绝
缘材料,以形成导线、电容等元件。

7. 清洗和测试,最后一步是对芯片进行清洗和测试,确保芯片
的质量和性能符合要求。

这七大核心工艺步骤构成了半导体制造的基本流程,每一步都至关重要,任何一处的错误都可能导致芯片的失效。

半导体工艺的不断创新和完善,为现代电子技术的发展提供了坚实的基础。

半导体工艺要点(精)

半导体工艺要点(精)

半导体工艺要点1、什么是集成电路通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯片制造-芯片功能检测-封装-测试3、集成电路发展的特点特征尺寸越来越小硅圆片尺寸越来越大芯片集成度越来越大时钟速度越来越高电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯片的集成度每三年提高4倍,而加工特征尺寸(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏力半导体制造有限公司TI 美国德州仪器7、直拉法生长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引入籽晶作为非均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的方向长大。

1.籽晶熔接: 加大加热功率,使多晶硅完全熔化,并挥发一定时间后,将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液面接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这一步骤叫“引晶”,又称“下种”。

“缩颈”是指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。

其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈一般要长于20mm3.放肩:缩颈工艺完成后,略降低温度,让晶体逐渐长大到所需的直径为止。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>方向应有对称三条棱,<100>方向有对称的四条棱。

半导体工艺(精)

半导体工艺(精)

半导体的生产工艺流程--------------------------------------------------------------------------------一、洁净室一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。

但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。

为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。

洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。

所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。

为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:1、内部要保持大于一大气压的环境,以确保粉尘只出不进。

所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。

2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。

换言之,鼓风机加压多久,冷气空调也开多久。

3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。

4、所有建材均以不易产生静电吸附的材质为主。

5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。

6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。

) 当然,化妆是在禁绝之内,铅笔等也禁止使用。

7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。

半导体工艺要点(精)

半导体工艺要点(精)

半导体工艺要点1、什么是集成电路通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯片制造-芯片功能检测-封装-测试3、集成电路发展的特点特征尺寸越来越小硅圆片尺寸越来越大芯片集成度越来越大时钟速度越来越高电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯片的集成度每三年提高4倍,而加工特征尺寸(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏力半导体制造有限公司TI 美国德州仪器7、直拉法生长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引入籽晶作为非均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的方向长大。

1.籽晶熔接: 加大加热功率,使多晶硅完全熔化,并挥发一定时间后,将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液面接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这一步骤叫“引晶”,又称“下种”。

“缩颈”是指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。

其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈一般要长于20mm3.放肩:缩颈工艺完成后,略降低温度,让晶体逐渐长大到所需的直径为止。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>方向应有对称三条棱,<100>方向有对称的四条棱。

半导体-硅片生产工艺流程及工艺注意要点

半导体-硅片生产工艺流程及工艺注意要点

半导体-硅片生产工艺流程及工艺注意要点一、引言半导体产业是当今高科技产业中不可或缺的一环,而硅片作为半导体制造的重要材料之一,其生产工艺流程及注意要点显得尤为重要。

本文将就半导体-硅片的生产工艺流程及工艺注意要点进行详细介绍。

二、硅片生产工艺流程硅片生产工艺流程可以分为几个主要步骤,包括原料准备、单晶硅生长、硅片切割、晶圆清洗等过程。

1.原料准备原料准备是硅片生产的第一步,通常以硅粉为主要原料。

硅粉需经过精细处理,确保其纯度和质量达到要求。

2.单晶硅生长单晶硅生长是硅片生产的核心环节,通过气相、液相或固相生长方法,使硅原料逐渐形成完整的单晶结构。

3.硅片切割硅片切割是将单晶硅切割为薄片的过程,以便后续的加工和制作。

切割精度和表面光滑度直接影响硅片的质量。

4.晶圆清洗晶圆清洗是为了去除硅片表面的杂质和污染物,保持硅片表面的洁净度,以确保后续工艺的顺利进行。

三、工艺注意要点在硅片生产过程中,有一些注意要点需要特别重视,以确保硅片的质量和性能。

1.纯度控制硅片的制备要求非常高,必须保证硅原料的纯度达到一定标准,以避免杂质对硅片性能的影响。

2.工艺参数控制在硅片生产过程中,各个工艺环节的参数控制十分关键,包括温度、压力、时间等因素,要严格控制以保证硅片的质量稳定性。

3.设备保养硅片生产设备的保养和维护也是非常重要的一环,保持设备的稳定性和运行效率,可以有效提高硅片生产效率和质量。

4.环境监控硅片生产场所的环境条件也需要严格监控,包括温度、湿度、洁净度等因素,以确保硅片生产过程的正常进行。

四、结论通过本文对半导体-硅片生产工艺流程及工艺要点的介绍,我们可以看到硅片生产是一个复杂而又精细的过程,需要严格控制各个环节的参数和质量要求。

只有做好每一个细节,才能确保硅片的质量和稳定性,为半导体产业的发展做出贡献。

因此,加强对硅片生产工艺流程及工艺要点的研究与总结,提高技术水平和生产水平,对于我国半导体产业的发展具有重要的意义。

八个基本半导体工艺

八个基本半导体工艺

八个基本半导体工艺半导体工艺是指将材料变成半导体器件的过程,其重要程度不言而喻。

在现代电子技术中,半导体器件已经成为核心,广泛应用于计算机、通讯、能源、医疗、交通等各个领域。

这里我们将介绍八个基本的半导体工艺。

1. 晶圆制备工艺晶圆是半导体器件制造的关键材料,其制备工艺又被称为晶圆制备工艺。

晶圆制备工艺包括:单晶生长、切片、去除表面缺陷等。

单晶生长是指将高纯度的半导体材料通过熔融法或气相沉积法制成单晶,在这个过程中需要控制晶体生长速度、温度、压力等因素,以保证晶体质量。

切片是指将单晶切成厚度为0.5 mm左右的晶片,这个过程中需要控制切割角度、切割速度等因素,以保证晶片质量。

去除表面缺陷是指通过化学机械抛光等方式去除晶片表面缺陷,以保证晶圆表面平整度。

2. 氧化工艺氧化工艺是指将半导体器件表面形成氧化物层的过程。

氧化工艺可以通过湿法氧化、干法氧化等方式实现。

湿法氧化是将半导体器件置于酸性或碱性液体中,通过化学反应形成氧化物层。

干法氧化是将半导体器件置于高温气氛中,通过氧化反应形成氧化物层。

氧化工艺可以提高半导体器件的绝缘性能、稳定性和可靠性。

3. 沉积工艺沉积工艺是指将材料沉积在半导体器件表面形成薄膜的过程。

沉积工艺包括物理气相沉积、化学气相沉积、物理溅射沉积等。

物理气相沉积是将材料蒸发或溅射到半导体器件表面,形成薄膜。

化学气相沉积是将材料化学反应后生成气体,再将气体沉积到半导体器件表面,形成薄膜。

物理溅射沉积是将材料通过溅射的方式,将材料沉积在半导体器件表面,形成薄膜。

沉积工艺可以改善半导体器件的电学、光学、机械性能等。

4. 电子束光刻工艺电子束光刻工艺是指通过电子束照射对光刻胶进行曝光,制作出微米级别的图形的过程。

电子束光刻工艺具有高分辨率、高精度和高速度等优点,是制造微电子元器件的必要工艺。

5. 金属化工艺金属化工艺是指将金属材料沉积在半导体器件表面形成导电层的过程。

金属化工艺包括:电镀、化学镀、物理气相沉积等。

半导体硅片生产标准工艺标准流程及标准工艺注意要点

半导体硅片生产标准工艺标准流程及标准工艺注意要点

硅片生产工艺流程及注意要点简介硅片旳准备过程从硅单晶棒开始,到清洁旳抛光片结束,以可以在绝好旳环境中使用。

期间,从一单晶硅棒到加工成数片能满足特殊规定旳硅片要经过诸多流程和清洗环节。

除了有许多工艺环节之外,整个过程几乎都要在无尘旳环境中进行。

硅片旳加工从一相对较脏旳环境开始,最后在10级净空房内完毕。

工艺过程综述硅片加工过程涉及许多环节。

所有旳环节概括为三个重要种类:能修正物理性能如尺寸、形状、平整度、或某些体材料旳性能;能减少不期望旳表面损伤旳数量;或能消除表面沾污和颗粒。

硅片加工旳重要旳环节如表1.1旳典型流程所示。

工艺环节旳顺序是很重要旳,由于这些环节旳决定能使硅片受到尽量少旳损伤并且可以减少硅片旳沾污。

在如下旳章节中,每一环节都会得到具体简介。

表1.1 硅片加工过程环节1.切片2.激光标记3.倒角4.磨片5.腐蚀6.背损伤7.边缘镜面抛光8.预热清洗9.抵御稳定——退火10.背封11.粘片12.抛光13.检查前清洗14.外观检查15.金属清洗16.擦片17.激光检查18.包装/货运切片(class 500k)硅片加工旳简介中,从单晶硅棒开始旳第一种环节就是切片。

这一环节旳核心是如何在将单晶硅棒加工成硅片时尽量地降低损耗,也就是规定将单晶棒尽量多地加工成有用旳硅片。

为了尽量得到最佳旳硅片,硅片规定有最小量旳翘曲和至少量旳刀缝损耗。

切片过程定义了平整度可以基本上适合器件旳制备。

切片过程中有两种重要方式——内圆切割和线切割。

这两种形式旳切割方式被应用旳因素是它们能将材料损失减少到最小,对硅片旳损伤也最小,并且容许硅片旳翘曲也是最小。

切片是一种相对较脏旳过程,可以描述为一种研磨旳过程,这一过程会产生大量旳颗粒和大量旳很浅表面损伤。

硅片切割完毕后,所粘旳碳板和用来粘碳板旳粘结剂必须从硅片上清除。

在这清除和清洗过程中,很重要旳一点就是保持硅片旳顺序,由于这时它们还没有被标记辨别。

激光标记(Class 500k)在晶棒被切割成一片片硅片之后,硅片会被用激光刻上标记。

半导体工艺要点

半导体工艺要点

半导体工艺要点半导体工艺是指将半导体材料加工成电子器件的过程。

半导体工艺的要点主要包括材料选择、晶体生长、制备芯片、刻蚀、镀膜、退火、测试等。

首先,材料选择是半导体工艺的首要要点。

半导体材料主要包括硅、镓、砷和磷等。

在选择材料时,需要考虑材料的电子性能、热传导性能、机械强度等因素。

同时,还需要考虑材料的成本、供应稳定性以及制备工艺的适用性。

其次,晶体生长是半导体工艺的核心步骤之一、晶体生长是指将纯度高的半导体材料通过化学蒸发、溶液淬冷或分子束外延等方法,使其逐渐形成大块晶体。

晶体生长的质量对最终器件性能有很大影响,因此需要控制生长过程中的温度、压力、供气速率等参数。

制备芯片是半导体工艺的关键步骤之一、芯片制备包括晶圆制备、刻蚀、镀膜和退火等步骤。

晶圆制备是将大块晶体切割成薄片,并将其进行多道研磨和抛光,以获得光滑的表面。

刻蚀是通过化学反应或物理方法将芯片上的无关部分去除,形成所需的微细结构。

镀膜是在芯片表面形成一层保护层,以减少杂质和氧化物的影响。

退火是通过加热芯片,使其内部结构恢复稳定,提高电子迁移率和晶粒大小。

半导体工艺中还需要注意的要点是测试和质量控制。

半导体器件通常需要经过多道测试,以确保其性能符合规格要求。

测试包括电性测试、光学测试和可靠性测试等。

同时,在整个工艺过程中,需要建立严格的质量控制体系,确保每个步骤的工艺参数和材料质量都符合标准要求。

只有保持良好的质量控制,才能保证最终的器件性能和可靠性。

总的来说,半导体工艺要点包括材料选择、晶体生长、制备芯片、刻蚀、镀膜、退火、测试和质量控制等。

这些要点需要在整个工艺过程中得到严格控制和实施,以确保最终的器件性能和可靠性。

随着半导体技术的不断发展,半导体工艺也在不断创新和改进,以满足不断提高的性能要求和市场需求。

{生产工艺流程}半导体硅片生产工艺流程及工艺注意要点

{生产工艺流程}半导体硅片生产工艺流程及工艺注意要点

{生产工艺流程}半导体硅片生产工艺流程及工艺注意要点半导体硅片生产工艺是制造半导体器件的关键步骤之一、下面是具体的半导体硅片生产工艺流程及工艺注意要点:1.硅原材料准备:选择高纯度的硅块或硅片作为原料,去除杂质,进行融化和析出纯净硅。

2.半导体晶圆生长:将纯净硅液体预浇铸,通过升温和降温控制,使其在晶体棒内逐渐生长。

3.硅薄片切割:将生长出来的硅单晶棒切割成薄片,通常为0.3~0.7毫米。

4.清洗与退火:将切割出来的硅片进行清洗去除表面杂质,并通过高温退火处理提高晶格结构的完整性。

5.硅片抛光:使用机械或化学机械方法对硅片表面进行抛光,使其表面更加光滑。

6.光刻:将硅片涂上感光剂,并通过曝光、显影等步骤,将期望的结构图案转移到硅片表面,形成光刻图形。

7.侵蚀与沉积:使用化学腐蚀液体对未被光刻图案保护的硅片进行侵蚀,去除不需要的硅材料;同时使用化学气相沉积方法向图案区域沉积材料,形成所需的薄膜。

8.金属化:在硅片表面涂上金属材料,并通过电镀或蒸镀方法,形成导电层或接触层。

9.接触敏化与刻蚀:进行接触敏化处理,将金属化层覆盖的区域暴露出来,并进行刻蚀,以达到电极与器件区域的电气连接。

10.封装:将硅片进行切割、测试、打包等步骤,以便于使用和保护。

在半导体硅片生产工艺中,需要注意以下几个要点:1.纯度控制:硅原材料要选择高纯度的硅块或硅片,以避免杂质对器件产生不良影响。

2.温度控制:硅单晶生长和退火过程中,需要控制好温度,以确保晶格结构稳定和完整。

3.抛光质量:硅片表面抛光要充分平整,光滑度要符合制程要求,避免表面缺陷。

4.光刻精度:光刻过程中,需要控制好曝光和显影的参数,避免图案的失真和误差。

5.化学腐蚀和沉积:侵蚀和沉积过程中,需要注意腐蚀剂和沉积气体的选择和浓度控制,以确保图案的准确与均匀。

6.金属化质量:金属化过程中,需要控制好金属薄膜的厚度和均匀度,以确保良好的电气连接和导电性能。

总之,半导体硅片生产工艺是一个非常精细和复杂的过程,需要严格控制每个步骤的参数和质量要求,以保证半导体器件的制造质量和性能。

八个基本半导体工艺

八个基本半导体工艺

八个基本半导体工艺随着科技的不断进步,半导体技术在各个领域得到了广泛的应用。

半导体工艺是半导体器件制造过程中的关键环节,也是半导体产业发展的基础。

本文将介绍八个基本的半导体工艺,分别是氧化、扩散、沉积、光刻、蚀刻、离子注入、热处理和封装。

一、氧化工艺氧化工艺是指在半导体晶片表面形成氧化层的过程。

氧化层可以增强晶片的绝缘性能,并且可以作为蚀刻掩膜、电介质、层间绝缘等多种用途。

常见的氧化工艺有湿法氧化和干法氧化两种。

湿法氧化是在高温高湿的环境中,通过将晶片浸泡在氧化液中使其表面氧化。

干法氧化则是利用高温下的氧化气体与晶片表面反应来形成氧化层。

二、扩散工艺扩散工艺是指将掺杂物质(如硼、磷等)通过高温处理,使其在晶片中扩散,从而改变晶片的导电性能。

扩散工艺可以用于形成PN结、调整电阻、形成源、漏极等。

扩散工艺的关键是控制扩散温度、时间和掺杂浓度,以确保所需的电性能。

三、沉积工艺沉积工艺是将材料沉积在半导体晶片表面的过程。

常见的沉积工艺有化学气相沉积(CVD)和物理气相沉积(PVD)两种。

CVD是利用化学反应在晶片表面沉积薄膜,可以实现高纯度、均匀性好的沉积。

而PVD则是通过蒸发、溅射等物理过程,在晶片表面形成薄膜。

四、光刻工艺光刻工艺是将光敏胶涂覆在晶片表面,然后通过光刻曝光、显影等步骤,将光敏胶图案转移到晶片上的过程。

光刻工艺是制造半导体器件的核心工艺之一,可以实现微米级甚至纳米级的图案制作。

五、蚀刻工艺蚀刻工艺是通过化学反应或物理过程将晶片表面的材料去除的过程。

蚀刻工艺可以用于制作电路的开关、互连线等。

常见的蚀刻方法有湿法蚀刻和干法蚀刻两种。

湿法蚀刻是利用化学溶液对晶片表面进行腐蚀,而干法蚀刻则是通过等离子体或离子束对晶片表面进行刻蚀。

六、离子注入工艺离子注入工艺是将掺杂离子注入晶片中的过程。

离子注入可以改变晶片的导电性能和材料特性,常用于形成源漏极、调整电阻等。

离子注入工艺需要控制注入能量、剂量和深度,以确保所需的掺杂效果。

半导体工艺(精)

半导体工艺(精)

半导体的生产工艺流程一、洁净室一般的机械加工是不需要洁净室(cleanroom)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。

但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。

为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。

洁净室的洁净等级,有一公认的标准,以class10为例,意谓在单位立方英叭的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。

所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。

为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:1、内部要保持大于一大气压的环境,以确保粉尘只出不进。

所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。

2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。

换言之,鼓风机加压多久,冷气空调也开多久。

3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。

4、所有建材均以不易产生静电吸附的材质为主。

5、所有人事物进出,都必须经过空气吹浴(airshower)的程序,将表面粉尘先行去除。

6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。

)当然,化妆是在禁绝之内,铅笔等也禁止使用。

7、除了空气外,水的使用也只能限用去离子水(DIwater,de-ionizedwater)。

一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS)晶体管结构之带电载子信道(carrierchannel),影响半导体组件的工作特性。

去离子水以电阻率(resistivity)来定义好坏,一般要求至17.5M Q-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。

半导体的制备工艺

半导体的制备工艺

半导体的制备工艺半导体是一种材料,具有介于导体和绝缘体之间的电导特性。

制备半导体材料是制造集成电路和其他电子器件的基础。

本文将介绍半导体的制备工艺,包括晶体生长、晶圆制备、掺杂和薄膜沉积等过程。

1. 晶体生长半导体晶体的生长是制备半导体材料的首要步骤。

通常采用的方法有固相生长、液相生长和气相生长。

固相生长是将纯净的半导体材料与掺杂剂共同加热,使其在晶体中沉积。

液相生长则是在熔融的溶液中使晶体生长。

而气相生长则是通过气相反应使晶体在基底上生长。

这些方法可以根据不同的材料和要求选择合适的工艺。

2. 晶圆制备晶圆是半导体制备的基础材料,通常使用硅(Si)作为晶圆材料。

晶圆制备的过程包括切割、抛光和清洗等步骤。

首先,将生长好的晶体进行切割,得到薄片状的晶圆。

然后,通过机械和化学方法对晶圆进行抛光,以获得平整的表面。

最后,对晶圆进行清洗,去除表面的杂质和污染物。

3. 掺杂掺杂是为了改变半导体材料的导电性能,通常将杂质原子引入晶体中。

掺杂分为两种类型:n型和p型。

n型半导体是通过掺入少量的五价元素(如磷)来增加自由电子的浓度。

而p型半导体是通过掺入少量的三价元素(如硼)来增加空穴的浓度。

掺杂可以通过不同的方法实现,如扩散、离子注入和分子束外延等。

4. 薄膜沉积薄膜沉积是制备半导体器件的关键步骤之一。

薄膜可以用于制备晶体管、电容器、电阻器等。

常见的薄膜沉积方法有物理气相沉积(PVD)和化学气相沉积(CVD)。

PVD是通过蒸发或溅射的方式将材料沉积到晶圆上。

而CVD则是通过化学反应将气体中的材料沉积到晶圆上。

这些方法可以根据材料和要求选择合适的工艺。

总结起来,半导体的制备工艺涉及晶体生长、晶圆制备、掺杂和薄膜沉积等步骤。

这些步骤都需要严格控制各个参数,以确保半导体材料的质量和性能。

通过不断的研究和发展,半导体工艺的精确性和效率不断提高,为电子器件的制造提供了可靠的基础。

半导体制造工艺探索半导体芯片的制造过程和技术要点

半导体制造工艺探索半导体芯片的制造过程和技术要点

半导体制造工艺探索半导体芯片的制造过程和技术要点半导体制造工艺探索:半导体芯片的制造过程和技术要点概述半导体芯片是现代电子设备中的重要组成部分,其制造过程需要经历多个工艺步骤和技术要点。

本文将探索半导体芯片的制造过程和相关技术要点,帮助读者更好地了解这一领域。

一、硅晶圆生长半导体芯片的制造始于硅晶圆的生长。

硅晶圆是将高纯度的硅材料通过特定的工艺制成的圆片状基板。

硅晶圆生长通常采用气相沉积法,通过在高温环境中将硅气体分解成单质硅,并在晶圆表面沉积形成晶体结构。

二、晶圆切割生长完成的硅晶圆需要经过切割工艺,将其切割成较薄的圆片。

切割工艺需要考虑硅晶圆的厚度、切割角度以及切割后表面的光洁度等因素,以确保后续工艺的可行性和质量要求。

三、清洗和去膜切割好的硅晶圆需要进行清洗和去膜处理,以去除表面的杂质和污染物。

清洗工艺通常使用特殊的化学溶液和超声波等技术,将晶圆表面的有机和无机残留物彻底清除,以保证后续工艺的准确进行。

四、光刻光刻是半导体制造过程中的核心工艺之一,用于将芯片的电路图案传输到光刻胶层上。

光刻胶层在暴光后会发生化学反应,形成类似于电路图案的结构。

光刻工艺需要使用光刻机和掩膜板等设备,并且对光源、曝光时间和刻蚀深度等参数进行精确控制。

五、刻蚀和沉积光刻完成后,需要进行刻蚀和沉积工艺来形成电路的实际结构。

刻蚀工艺使用化学气相刻蚀设备,将不需要的材料层进行去除,以留下所需的电路结构。

而沉积工艺则是将需要的材料层通过化学反应方法沉积到指定位置,以增强芯片的功能和可靠性。

六、离子注入和扩散离子注入和扩散工艺用于调控芯片中的杂质浓度和局部电阻。

通过离子注入将特定的杂质注入芯片中,然后使用高温工艺进行扩散,使杂质分布均匀并形成所需的电阻结构。

七、金属化金属化工艺将芯片表面涂覆金属层,以连接芯片内部的电路结构。

金属化工艺需要经过蒸镀、光刻和蚀刻等工序,最终形成精确的金属线路结构。

八、封装和测试封装是将制造好的芯片封装到塑料或陶瓷封装体中,以保护芯片并方便焊接到电路板上。

半导体主要生产工艺

半导体主要生产工艺

半导体主要生产工艺
半导体主要生产工艺包括:
晶圆制备:晶圆是半导体制造的基础,其质量直接影响到后续工艺的进行和最终产品的性能。

薄膜沉积:薄膜沉积技术是用于在半导体材料表面沉积薄膜的过程。

刻蚀与去胶:刻蚀是将半导体材料表面加工成所需结构的关键工艺。

离子注入:离子注入是将离子注入半导体材料中的关键工艺。

退火与回流:退火与回流是使半导体材料内部的原子或分子的运动速度减缓,使偏离平衡位置的原子或分子回到平衡位置的工艺。

金属化与互连:金属化与互连是利用金属材料制作导电线路,实现半导体器件间的电气连接的过程。

测试与封装:测试与封装是确保半导体器件的质量和可靠性的必要环节。

半导体的工艺的四个重要阶段是:
原料制作阶段:为制造半导体器件提供必要的原料。

单晶生长和晶圆的制造阶段:为制造半导体器件提供必要的晶圆。

集成电路晶圆的生产阶段:在制造好的晶圆上,通过一系列的工艺流程制造出集成电路。

集成电路的封装阶段:将制造好的集成电路封装起来,便于安装和使用。

半导体材料有以下种类:
元素半导体:在元素周期表的ⅢA族至IVA族分布着11种具有半导性的元素,其中C表示金刚石。

无机化合物半导体:分二元系、三元系、四元系等。

有机化合物半导体:是指以碳为主体的有机分子化合物。

非晶态与液态半导体。

制造半导体的工艺方法与流程

制造半导体的工艺方法与流程

制造半导体的工艺方法与流程
半导体是现代电子技术中不可或缺的基础材料,制造半导体的工艺方法与流程也是电子制造过程中最关键的环节之一。

以下是制造半导体的工艺方法与流程的主要内容:
1. 半导体晶片的生长
半导体晶片的生长是制造半导体的第一步,其过程一般采用化学气相沉积或物理气相沉积的方法,在高温高压的环境中使半导体晶片逐渐生长并形成晶体结构。

2. 晶片表面的处理
半导体晶片表面的处理是制造半导体的关键环节之一,其目的是去除表面的杂质和氧化物,并形成平滑的表面。

处理过程一般采用化学或物理方法,如酸洗、电解或化学机械抛光等。

3. 掩膜制作
掩膜是制造半导体过程中的核心部件,它可以控制半导体晶片上的材料添加和电路图案的制作。

掩膜制作一般分为光刻和电子束刻蚀两种方法。

4. 材料沉积
半导体制造过程中需要添加各种材料,如金属、氧化物、硅等。

材料沉积是将这些材料添加到半导体晶片上的关键步骤之一,其方法主要有化学气相沉积、物理气相沉积和溅射等。

5. 清洗与检测
制造半导体过程中需要对半导体晶片进行清洗和检测。

清洗是为
了去除杂质和残留物,检测则是为了保证晶片的质量和性能。

检测方法包括光学检测、电子检测和化学检测等。

总的来说,制造半导体的工艺方法与流程十分复杂,需要严格按照流程进行,才能确保半导体晶片的质量和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体工艺要点1、什么是集成电路通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯片制造-芯片功能检测-封装-测试3、集成电路发展的特点特征尺寸越来越小硅圆片尺寸越来越大芯片集成度越来越大时钟速度越来越高电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯片的集成度每三年提高4倍,而加工特征尺寸(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏力半导体制造有限公司 TI 美国德州仪器7、直拉法生长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引入籽晶作为非均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的方向长大。

1.籽晶熔接: 加大加热功率,使多晶硅完全熔化,并挥发一定时间后,将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液面接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这一步骤叫“引晶”,又称“下种”。

“缩颈”是指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。

其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈一般要长于20mm3.放肩:缩颈工艺完成后,略降低温度,让晶体逐渐长大到所需的直径为止。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>方向应有对称三条棱,<100>方向有对称的四条棱。

4.等径生长:当晶体直径到达所需尺寸后,提高拉速,使晶体直径不再增大,称为收肩。

收肩后保持晶体直径不变,就是等径生长。

此时要严格控制温度和拉速不变。

5.收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。

8、直拉法的两个主要参数:拉伸速率,晶体旋转速率悬浮区熔法倒角是使晶圆边缘圆滑的机械工艺9、外延层的作用EpitaxyPurpose1、Barrier layer for bipolar transistor2、Reduce collector resistance while keep high breakdown voltage.3、Improve device performance for CMOS and DRAM because much lower oxygen,4、carbon concentration than the wafer crystalEpitaxy application,bipolar transistorEpitaxy application, CMOS10、气相外延(CVD):在气相状态下,将半导体材料淀积在单晶片上,使它沿着单晶片的结晶轴方向生长出一层厚度和电阻率合乎要求的单晶层,这一工艺称为气相外延液相外延(LCD)是将溶质放入溶剂,并在一定温度下成为均匀溶液,然后使溶液在衬底上逐渐冷却,当超过饱和点后,便有固体析出,而进行晶体生长。

以GaAs 为例,是以Ga为溶剂,As为溶质溶解成溶液,布在衬底上,使之缓慢冷却,当溶液超过饱和点时,衬底上便析出GaAs而生成晶体。

金属有机物气相沉积(MOCVD):采用Ⅱ族,Ⅲ族元素的有机化合物和Ⅴ族,Ⅵ族元素的氢化物作为晶体生长的源材料,以热分解的方式在衬底上进行外延生长的方法分子束外延(MBE):在超高真空条件下,用分子束输运生长源进行外延生长的方法化学束外延(CBE): 用气态源进行MBE生长的方法蒸发(evaporation):在真空中,通过加热使金属、合金或化合物蒸发,然后凝结在器件表面上的方法溅射(Sputtering):利用高速正离子轰击靶材(阴极),使靶材表面原子以一定能量逸出,然后在器件表面沉积的过硅外延生长1.外延不同的分类方法以及每种分类所包括的种类按外延层性质:同质外延,异质外延按电阻率:正外延,反外延按生长方法:直接外延,间接外延按相变过程:气相,液相,固相外延2.硅气相外延分类,硅气相外延原料SiH4, SiH2CL2,(直接分解)SiHCL3,SiCL4,H2(氢还原法)3.用SiCL4外延硅的原理以及影响硅外延生长的因素以及优点基本原理:SiCL4+2H2===Si+4HCLSiCL4浓度,温度,气流速度,衬底晶向在电阻率极低的衬底上生长一层高电阻率外延层,器件制做在外延层上,高电阻的外延层保证管子有高的击穿电压,低电阻率的衬底又降低了基片的电阻,降低了饱和压降,4.硅的异质外延有哪两种在蓝宝石,尖晶石衬底上的SOS(Silicon On Sapphire, Silicon On Spinel)外延生长在绝缘衬底上进行的SOI(Silicon On Insulator)外延生长5.什么是同质外延,异质外延,直接外延,间接外延同质外延;衬底与外延层是同种材料异质外延;衬底与外延层是不同材料直接外延;用物理方法(加热,电场,离子轰击)将生长材料沉淀到衬底表面间接外延;用化学反应在衬底上沉淀外延层6.什么是自掺杂外掺杂抑制自掺杂的途径有哪些自掺杂:在外延生长过程中,衬底中的杂质进入气相中,再次掺入外延层的现象外掺杂:杂质不是来源于衬底,由人为控制的掺杂方式途径;减少杂质从衬底溢出采用减压生长技术外延的定义Sio2做掩埋层的原因,杂质在sio2中扩散速率远远小于在si中的扩散速率液相外延是将溶质放入溶剂,并在一定温度下成为均匀溶液,然后使溶液在衬底上逐渐冷却,当超过饱和点后,便有固体析出,而进行晶体生长。

以GaAs为例,是以Ga为溶剂,As为溶质溶解成溶液,布在衬底上,使之缓慢冷却,当溶液超过饱和点时,衬底上便析出GaAs而生成晶体。

介电强度衡量材料耐压能力大小的,单位是V/cm,表示单位厚度的SiO2所能承受的最大击穿电压介电常数,高K,低K高K:MOS器件中电介质要求具有较大的介电常数,栅氧化层电容要大,1、减小电容器的体积和重量 2、增大电荷容量提高电学性能低K:器件和衬底间的寄生电容要小SiO2在集成电路制造中的用途1.扩散,离子注入的(有时与光刻胶、Si3N4层一起使用) 掩蔽层(阻挡,屏蔽层不准确)2.器件表面保护和钝化层器件的组成部分--栅介质4.电容介质5.器件隔离用的绝缘层6.多层布线间的绝缘层Gate oxide and capacitor dielectric in MOS devicesIsolation of individual devices (STI)Masking against implantation and diffusionPassivation of silicon surface集成电路的隔离有PN结隔离和介质隔离两种,SiO2用于介质隔离.,漏电流小,岛与岛之间的隔离电压大,寄生电容小STI(Shallow Trench Isolation)热氧化分为干氧氧化、湿氧氧化、水气氧化以及掺氯氧化、氢氧合成等热氧化化学反应虽然非常简单,但氧化机理并非如此,因为一旦在硅表面有二氧化硅生成,它将阻挡O原子与Si原子直接接触,所以其后的继续氧化是O原子通过扩散穿过已生成的二氧化硅层,向Si一侧运动到达界面进行反应而增厚的通过一定的理论分析可知,在初始阶段氧化层厚度(X)与时间(t)是线性关系,而后变成抛物线关系。

通常来说,小于1000埃的氧化受控于线性机理。

这是大多数MOS 栅极氧化的范围。

无论是干氧或者湿氧工艺,二氧化硅的生长都要消耗硅,如图所示。

硅消耗的厚μm 的硅消耗(干、优点:1.杂质浓度不变,并100%激活.2.残留晶格缺陷少,均匀性和重复性好.3.加工效率高,可达200~300片/h.4.设备简单,成本低.5.温度较高(1200℃),升温速度较快(75~200 ℃/sec)6.掺杂物的扩散最小化快速加热工艺主要是用在离子注入后的退火,目的是消除由于注入带来的晶格损伤和缺陷目前的栅氧化层厚度大概在3nm 左右退火(Annealing )实际上这个工艺主要是针对离子注入的原 理:利用热能(Thermal Energy ),将物体内产生内应力的一些缺陷加以消除。

所施加的能量将增加晶格原子及缺陷在物体内的振动及扩散,使得原子的排列得以重整(b) 氧化后的硅片(a)氧化前的硅片离子注入过程是一个非平衡过程,高能离子进入靶后不断与原子核及其核外电子碰撞,逐步损失能量,最后停下来。

停下来的位置是随机的,一部分不在晶格上,因而没有电活性 ,需要退火激活不在晶格位置而在晶格间隙的杂质离子;同时修复晶格注入损伤主要的退火制程有:1.后离子注入(Post Ion Implantation);2.金属硅化物(Silicide)的退火。

主要硅化金属材料有:WSix, TiSi2(用于Salicide制程), MoSi2, CoSi2等。

退火后,金属硅化物电阻率可降到只有原来的10%。

——硼磷硅玻璃(Boro phospho silicate Glass)二氧化硅原有的有序网络结构由于硼磷杂质(B2O3,P2O5)的加入而变得疏松,在高温条件下某种程度上具有像液体一样的流动能力(Reflow)。

因此BPSG薄膜具有卓越的填孔能力,并且能够提高整个硅片表面的平坦化,从而为光刻及后道工艺提供更大的工艺范围(Spin-On Glass)旋涂式玻璃1.局部氧化隔离法隔离(LOCOS----local oxidation of silicon)传统的μm工艺以上的器件隔离方法是硅的局部氧化。

它利用了氧在Si3N4中扩散非常缓慢的性质,从而使得被氮化硅覆盖的硅层在氧化过程中极难生成氧化物。

氮化硅将作为氧化物阻挡层保持不变杂质在氮化硅中的扩散系数小于在二氧化硅中的衬垫氧化层的作用1缓冲氮化硅的高应力张力2预防应力产生硅的缺陷鸟嘴效应对工艺的影响1二氧化硅内部的横向扩散引起的2在氮化硅层下生长3鸟嘴”区属于无用的过渡区,既不能作为隔离区,也不能作为器件区,浪费许多硅表面区域,这对提高集成电路中的集成度极其不利4局域氧化层的高度对后道工艺中的平坦化也不利,影响光刻制程和薄膜沉积抑制鸟嘴效应,最普遍的方法就是多晶硅缓冲PBL(poly buffered LOCOS)制程。

使用一层多晶硅(500A)来缓冲氮化硅的应力,这样,衬垫氧化层的厚度就能从大约500A减小到100A,这样就可以大大减少氧化物的侵入。

相关文档
最新文档