勾股定理的逆定理-课件
合集下载
勾股定理的逆定理-完整版课件
一、探究勾股定理的逆定理:
2、实验探究: (1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数 为边长画出三角形(单位:cm),它们是直角三角形吗? ① 2.5,6,6.5; ② 6,8,10. (2)量一量:用量角器分别测量上述各三角形的最大角的度数. (3)想一想:请判断这些三角形的形状,并提出猜想.
PQ=16×1.5=24,PR=12×1.5=18,QR=30. ∵24²+18²=30², 即PQ²+PR²=QR², ∴△PQR为直角三角形,即∠QPR=90°. ∵∠1=45°, ∴∠2=45°,即“海天”号沿西北方向航行.
练习4、如图,如图,南北向MN为我国领域,即MN以西为我国领海,以东 为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的 速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知 A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得离C艇 的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?
2
2
∴BE= AB•BC60.
B
AC 13
.
在Rt△BCE中,由勾股定理得,
N
∴CE= BC 2BE 2 12 2(60 )2144
13 13
∴最早进入时间≈0.85小时=51分钟.
.
9时50分+51分=10时41分.
答:走私艇最早在10时41分进入我国领海.
五、课堂小结:
1、利用勾股定理的逆定理判定是否为直角三角形的一般步骤: ①确定最大边长c; ②计算a2+b2和c2的值, 若a2+b2=c2,则此三角形是直角三角形; 若a2+b2<c2,则此三角形是钝角三角形; 若a2+b2>c2,则此三角形是锐角三角形. 2、互逆命题表明两个命题在形式上的关系,将一个命题的题设和结论互换 即可得到它的逆命题,当原命题成立时,它的逆命题不一定成立,即互逆 的两个命题不一定同真或同假. 3、已知一三角形的三边的长度时,首先应对该三角形进行判断,判断最长 边的平方是否等于其余两边的平方和,如何满足这一条件则此三角形为直 角三角形.
勾股定理的逆定理ppt课件
数学 八年级上册 SK
第
勾股定理
3
章
3.2 勾股定理的逆定理
-
3.2 勾股定理的逆定理
探究与应用
探 活动1 探索并应用勾股定理的逆定理,体会“数”与
究
“形”的内在联系
与
应 [思考探究]
用 1.写出“直角三角形两条直角边的平方和等于斜边的平方”
的逆命题.
解:如果一个三角形的两条边的平方和等于第三边的平方,那么
是钝角三角形;如果a2+b2>c2,那么这个三角形是锐角三角形.
探 究
[概括新知]
与 勾股定理的逆定理:如果三角形的三边长分别为a,b,c,且a2+
应
用 b2=c2,那么这个三角形是直角三角形.
探 归纳 勾股定理与勾股定理的逆定理的联系与区别
究
与
勾股定理
勾股定理的逆定理
应 用
在Rt△ABC中,∠C=90°, 在△ABC中,BC=a,AC=b, 条件
例2 C [解析] A项,82+52≠172,不能构成直角三角形,故不 是勾股数,不符合题意; B项,1.5,2,2.5不都是正整数,故不是勾股数,不符合题意; C项,52+122=132,且5,12,13都是正整数,故是勾股数,符合题 意; D项,32+42≠62,不能构成直角三角形,故不是勾股数,不符合 题意. 故选C.
根据勾股定理,可得A'B'2=a2+b2.
因为AB2=a2+b2,
所以A'B'2=AB2,所以A'B'=AB.
根据“SSS”,可证△ABC≌△A'B'C'.
于是,∠C=∠C'=90°,
第
勾股定理
3
章
3.2 勾股定理的逆定理
-
3.2 勾股定理的逆定理
探究与应用
探 活动1 探索并应用勾股定理的逆定理,体会“数”与
究
“形”的内在联系
与
应 [思考探究]
用 1.写出“直角三角形两条直角边的平方和等于斜边的平方”
的逆命题.
解:如果一个三角形的两条边的平方和等于第三边的平方,那么
是钝角三角形;如果a2+b2>c2,那么这个三角形是锐角三角形.
探 究
[概括新知]
与 勾股定理的逆定理:如果三角形的三边长分别为a,b,c,且a2+
应
用 b2=c2,那么这个三角形是直角三角形.
探 归纳 勾股定理与勾股定理的逆定理的联系与区别
究
与
勾股定理
勾股定理的逆定理
应 用
在Rt△ABC中,∠C=90°, 在△ABC中,BC=a,AC=b, 条件
例2 C [解析] A项,82+52≠172,不能构成直角三角形,故不 是勾股数,不符合题意; B项,1.5,2,2.5不都是正整数,故不是勾股数,不符合题意; C项,52+122=132,且5,12,13都是正整数,故是勾股数,符合题 意; D项,32+42≠62,不能构成直角三角形,故不是勾股数,不符合 题意. 故选C.
根据勾股定理,可得A'B'2=a2+b2.
因为AB2=a2+b2,
所以A'B'2=AB2,所以A'B'=AB.
根据“SSS”,可证△ABC≌△A'B'C'.
于是,∠C=∠C'=90°,
勾股定理的逆定理第二课件
45°
即“海天”号沿西北方向航行.
变式运用:
“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上行驶的速度不得超过70千米/时,一辆小汽车在一条城市街路的直道上行驶,某一时刻刚好行驶在路边车速检测仪的北偏东30°距离30米处,过了2秒后行驶了50米,此时测得小汽车与车速检测仪间的距离为40米. 问:2秒后小汽车在车速检测仪的哪个方向?这辆小汽车超速了吗?
判定直角三角形
作用:
逆定理:
应用举例:
港口
例1: “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
P
E
Q
R
N
应用举例:
A
B
C
D
20
15
7
24
A
B
C
D
4
E
3
60°
60°
如图BE⊥AE, ∠A=∠EBC=60°,AB=4,BC= CD= , DE=3,求证:AD⊥CD
应用举例:
A
B
D
C
F
E
例4、如图:边长为4的正方形ABCD中,F是DC的中点, 且
,求证:AF⊥EF.
4
2
2
4
4
4
1
?
3
5
∴AF⊥EF.
车速检测仪
小汽车
30米
50米
2秒后
30°
北
40米
60°
小汽车在车速检测仪的北偏西60°方向
25米/秒=90千米/时 >70千米/时∴小汽车超速了
即“海天”号沿西北方向航行.
变式运用:
“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上行驶的速度不得超过70千米/时,一辆小汽车在一条城市街路的直道上行驶,某一时刻刚好行驶在路边车速检测仪的北偏东30°距离30米处,过了2秒后行驶了50米,此时测得小汽车与车速检测仪间的距离为40米. 问:2秒后小汽车在车速检测仪的哪个方向?这辆小汽车超速了吗?
判定直角三角形
作用:
逆定理:
应用举例:
港口
例1: “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
P
E
Q
R
N
应用举例:
A
B
C
D
20
15
7
24
A
B
C
D
4
E
3
60°
60°
如图BE⊥AE, ∠A=∠EBC=60°,AB=4,BC= CD= , DE=3,求证:AD⊥CD
应用举例:
A
B
D
C
F
E
例4、如图:边长为4的正方形ABCD中,F是DC的中点, 且
,求证:AF⊥EF.
4
2
2
4
4
4
1
?
3
5
∴AF⊥EF.
车速检测仪
小汽车
30米
50米
2秒后
30°
北
40米
60°
小汽车在车速检测仪的北偏西60°方向
25米/秒=90千米/时 >70千米/时∴小汽车超速了
《勾股定理的逆定理》勾股定理PPT精品课件
问题3 古埃及人用来画直角的三边满足这个等式吗?
∵32+42=52,∴满足.
猜想:
命题2:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直
角三角形。
这个命题和前面学的命题1(勾股定理)之间有什么关系吗?
1.题设和结论正好相反的两个命题,叫做互逆命题。
2.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
勾股定理的逆定理
1、理解勾股定理的逆定理。
2、了解逆命题的概念,知道原命题为真命题,它的逆命题不一
定为真命题。
3、应用勾股定理的逆定理解决实际问题。
学习目标
学习目标
1.理解勾股定理的逆定理及证明过程。
2.能简单的运用勾股定理的逆定理判定直角三角形。
3.利用勾股定理逆定理解决实际问题
重点
运用勾股定理的逆定理判定直角三角形。
命题2是正确的吗?你能试着证明吗?
利用勾股定理逆定理判断直角三角形
下面以a,b,c为边长的三角形是不是直角三角形?
1)a=15 ,b=8 ,c=17
2)a=13 ,b=14 ,c=15
解:∵152+82=289,172=289,
∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形。
∴∠QPR=90°。
P
由“远航”号沿东北方向航行可知,∠QPS=45°。 ∴∠RPS=45°,
即“海天”号沿西北方向航行。
E
利用勾股定理逆定理判断直角三角形
满足下列条件的△ABC不是直角三角形的是(
A.BC=1,AC=2,AB=
C.BC:AC:AB=3:4:5
)
B.BC=1,AC=2,AB=
∵32+42=52,∴满足.
猜想:
命题2:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直
角三角形。
这个命题和前面学的命题1(勾股定理)之间有什么关系吗?
1.题设和结论正好相反的两个命题,叫做互逆命题。
2.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
勾股定理的逆定理
1、理解勾股定理的逆定理。
2、了解逆命题的概念,知道原命题为真命题,它的逆命题不一
定为真命题。
3、应用勾股定理的逆定理解决实际问题。
学习目标
学习目标
1.理解勾股定理的逆定理及证明过程。
2.能简单的运用勾股定理的逆定理判定直角三角形。
3.利用勾股定理逆定理解决实际问题
重点
运用勾股定理的逆定理判定直角三角形。
命题2是正确的吗?你能试着证明吗?
利用勾股定理逆定理判断直角三角形
下面以a,b,c为边长的三角形是不是直角三角形?
1)a=15 ,b=8 ,c=17
2)a=13 ,b=14 ,c=15
解:∵152+82=289,172=289,
∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形。
∴∠QPR=90°。
P
由“远航”号沿东北方向航行可知,∠QPS=45°。 ∴∠RPS=45°,
即“海天”号沿西北方向航行。
E
利用勾股定理逆定理判断直角三角形
满足下列条件的△ABC不是直角三角形的是(
A.BC=1,AC=2,AB=
C.BC:AC:AB=3:4:5
)
B.BC=1,AC=2,AB=
勾股定理的逆定理课件
详细描述
在勾股定理的逆定理的证明中,反证 法是通过假设三角形不是直角三角形 ,然后利用勾股定理的逆定理推导出 矛盾的结论,从而证明三角形一定是 直角三角形。
证明方法二:直接证明法
总结词
直接证明法是一种直接根据已知 条件和定理,通过逻辑推理得到 结论的证明方法。
详细描述
在勾股定理的逆定理的证明中, 直接证明法是通过直接利用勾股 定理的条件和结论,推导出三角 形一定是直角三角形。
对于任意的整数a、b、c,都存在无穷多 个整数x、y、z,满足x²+y²=z²,且x、y 、z互质。
勾股定理的逆定理与欧几里得公设的关系
勾股定理的逆定理是 欧几里得公设的一个 推论。
勾股定理的逆定理证 明了欧几里得公设的 正确性。
欧几里得公设是勾股 定理逆定理的基础。
05 勾股定理的逆定理的挑战 和问题
勾股数的性质
唯一性
对于任何一个正整数n,都存在唯 一的一组整数a、b、c,满足 n=a²+b²=c²。
自然数性
勾股数的三边长可以都是自然数。
无穷多性
对于任意正整数n,都存在无穷多个 勾股数。
勾股数的扩展
广义勾股数
如果三个整数的平方和等于另一个整数 的平方,则这三个数被称为广义勾股数 。
VS
勾股数的组合
勾股定理的逆定理课件
目录
• 勾股定理的逆定理的概述 • 勾股定理的逆定理的证明 • 勾股定理的逆定理的应用 • 勾股定理的逆定理的扩展 • 勾股定理的逆定理的挑战和问题 • 勾股定理的逆定理的案例分析
01 勾股定理的逆定理的概述
什么是勾股定理的逆定理
勾股定理的逆定理定义
如果一个三角形的三条边满足两边的平方和等于第三边的平方,那么这个三角形 是直角三角形。
在勾股定理的逆定理的证明中,反证 法是通过假设三角形不是直角三角形 ,然后利用勾股定理的逆定理推导出 矛盾的结论,从而证明三角形一定是 直角三角形。
证明方法二:直接证明法
总结词
直接证明法是一种直接根据已知 条件和定理,通过逻辑推理得到 结论的证明方法。
详细描述
在勾股定理的逆定理的证明中, 直接证明法是通过直接利用勾股 定理的条件和结论,推导出三角 形一定是直角三角形。
对于任意的整数a、b、c,都存在无穷多 个整数x、y、z,满足x²+y²=z²,且x、y 、z互质。
勾股定理的逆定理与欧几里得公设的关系
勾股定理的逆定理是 欧几里得公设的一个 推论。
勾股定理的逆定理证 明了欧几里得公设的 正确性。
欧几里得公设是勾股 定理逆定理的基础。
05 勾股定理的逆定理的挑战 和问题
勾股数的性质
唯一性
对于任何一个正整数n,都存在唯 一的一组整数a、b、c,满足 n=a²+b²=c²。
自然数性
勾股数的三边长可以都是自然数。
无穷多性
对于任意正整数n,都存在无穷多个 勾股数。
勾股数的扩展
广义勾股数
如果三个整数的平方和等于另一个整数 的平方,则这三个数被称为广义勾股数 。
VS
勾股数的组合
勾股定理的逆定理课件
目录
• 勾股定理的逆定理的概述 • 勾股定理的逆定理的证明 • 勾股定理的逆定理的应用 • 勾股定理的逆定理的扩展 • 勾股定理的逆定理的挑战和问题 • 勾股定理的逆定理的案例分析
01 勾股定理的逆定理的概述
什么是勾股定理的逆定理
勾股定理的逆定理定义
如果一个三角形的三条边满足两边的平方和等于第三边的平方,那么这个三角形 是直角三角形。
勾股定理的逆定理初中数学原创课件
逆定理
如果三角形的三边长a、b、c满足
a2 + b2 = c2
那么这个三角形是直角三角形.且边c所对的角为直角.
勾股定理
互逆命题
定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
a2 + b2 = c2
定理与逆定理
如果一个定理的逆命题经过证明是真命题,那么它是一个定
理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆
勾股定理的逆命题
构造法
已知:在△ABC中,AB=c,BC=a,CA=b,且a2+b2=c2.
求证:△ ABC是直角三角形.
证明:作Rt△A′B′C′,使
∠ C′=90°, B′C′=a, C′A′=b.
c
A
A'
b
b
∵ ∠C′=90°,
∴ A′B′2= a2+b2 .
B
a
C
∵ a2+b2=c2,
∵ 边长取正值,
(1) a=15 , b =8 , c=17; (2) a=13 , b =15 , c=14.
解: (1) ∵152+82=289,
172=289,
∴ 152+82=172 .
故此三角形是直角三角形.
(2) ∵132+142=365,
152=225,
∴ 132+142≠152 .
故此三角形不是直角三角形.
第十七章 勾股定理
17.2 勾股定理的逆定
理
•古埃及人曾用下面的方法得到直角:
用13个等距的结,把一根绳子分成等
长的12段,然后分别以3段,4段,5
段的长度为边长,用木桩钉成一个
三角形,其中一个角便是直角.
如果三角形的三边长a、b、c满足
a2 + b2 = c2
那么这个三角形是直角三角形.且边c所对的角为直角.
勾股定理
互逆命题
定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
a2 + b2 = c2
定理与逆定理
如果一个定理的逆命题经过证明是真命题,那么它是一个定
理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆
勾股定理的逆命题
构造法
已知:在△ABC中,AB=c,BC=a,CA=b,且a2+b2=c2.
求证:△ ABC是直角三角形.
证明:作Rt△A′B′C′,使
∠ C′=90°, B′C′=a, C′A′=b.
c
A
A'
b
b
∵ ∠C′=90°,
∴ A′B′2= a2+b2 .
B
a
C
∵ a2+b2=c2,
∵ 边长取正值,
(1) a=15 , b =8 , c=17; (2) a=13 , b =15 , c=14.
解: (1) ∵152+82=289,
172=289,
∴ 152+82=172 .
故此三角形是直角三角形.
(2) ∵132+142=365,
152=225,
∴ 132+142≠152 .
故此三角形不是直角三角形.
第十七章 勾股定理
17.2 勾股定理的逆定
理
•古埃及人曾用下面的方法得到直角:
用13个等距的结,把一根绳子分成等
长的12段,然后分别以3段,4段,5
段的长度为边长,用木桩钉成一个
三角形,其中一个角便是直角.
人教版八年级下册数学:17.2.2-勾股定理的逆定理课件
过了2秒后行驶了50米,此时测得小汽车与车速检测仪
间的距离为40米. 问:2秒后小汽车在车速检测仪的哪
个方向?这辆小汽车超速了吗?
小汽车在车 速检测仪的2秒后
你觉的此题解对了吗?
50米
小汽车
北偏西60° 方向 25米/秒=90千米/时 40米 >70千米/时∴小汽车超速了
30米 北 30°
60°
车速检测仪
∠B=90°
B
答:C在B地的正北方向.
13cm
A 12cm
2、有一电子跳蚤从坐标原点O出发向正东方向跳1cm,
又向南跳2cm,再向西跳3cm,然后又跳回原点,问电
子跳蚤跳回原点的运动方向是怎样的?所跳距离是多
少厘米?
y
电子跳蚤跳回原点 的运动方向是
东北方向;
所跳距离是 2 2 厘
米.
O1 x
22 2 2 2
(1)类似这样的关系6,8,10;9,12,15是否 也是勾股数?如何验证?
(2)通过对以上勾股数的研究,你有什么样的 猜想?
结论:若a,b,c是一组勾股数,那么ak,bk,ck (k为正整数)也是一组勾股数.
北
Q
30
R S 东 12×1.5=1485° 16×1.5=24 P
港口
解:根据题意画图,如图所示:
N
PQ=16×1.5=24
Q
PR=12×1.5=18
30
S
QR=30 ∵242+182=302,
R
16×1.5=24
12×1.5=18 45°45°
即 PQ2+PR2=QR2 ∴∠QPR=900
P
E
3
3、小明向东走80m后,又向某一方向走60m后,再沿
八年级数学下册教学课件《勾股定理的逆定理》(第2课时)
3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,
同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,
2h后同时停下来,这时A,B两组相距30km.此时,A,B两组
行进的方向成直角吗?请说明理由.
解:∵出发2小时,A组行了12×2=24(km),
A
B组行了9×2=18(km),
2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东 25°的方向,且到医院的距离为300 m,公园到医院的距离为 400 m,若公园到超市的距离为500 m,则公园在医院的 ( B ) A.北偏东75°的方向上 B.北偏东65°的方向上 C.北偏东55°的方向上 D.无法确定
课堂检测
17.2 勾股定理的逆定理
17.2 勾股定理的逆定理
利用勾股定理的逆定理解答面积问题
如图,四边形ABCD中,AB⊥AD,已知AD=3cm,
AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.
D
解:连接BD.
在Rt△ABD中,由勾股定理得 BD2=AB2+AD2,
∴BD=5cm.又∵ CD=12cm,BC=13cm, B
学习目标
17.2 勾股定理的逆定理
3. 将实际问题转化成用勾股定理的逆定理解决的数 学问题.
2. 进一步加深对勾股定理与其逆定理之间关系的 认识.
1. 应用勾股定理的逆定理解决实际问题.
探究新知
17.2 勾股定理的逆定理
知识点 1 利用勾股定理的逆定理解答角度问题 如图,某港口P位于东西方向的海岸线上. “远航”号、“海
2秒后小汽车在车速检测仪的哪个方向?这辆小汽小车汽车超速了吗?
解:小汽车在车速检测仪
勾股定理的逆定理 展示课说课课件
4
1
实验
3
证明
1 设置情境,提出问题
通过回忆勾股定理的内容,以及勾股定理的数学符号语言如何表 受到勾股定理揭示了直角三角形可以由“形”的特殊性得到其“三 —即由“形→数”,使学生在已体会到由“形→数”的情况下,有 的置疑,完成提问“如果三角形的三边长a,b,c,且满足a²+b²=c², 三角形吗?”培养学生的逆向思维,以及发现和提出问题的能力.
(2)了解原命题、逆命题的 进一步加(1)要求经历勾股定 的探究过程,了解证明几何命题 法,同时体会“构造法”证明数 基本思想,并能应用勾股定理的 判断一个三角形是不是直角三角形
教第学一章 目标解析
目标(2)要求知道互逆命题 点,能根据原命题写出它的逆命题 命题为真命题时,逆命题不一定为 理解用“举反例”来判断逆命题为 方法.
02
03
“全等”
根据学生的几何 知识基础和学习经验, 启发他们想到可以利 用“三角形”中的 “全等三角形”.
“构造”
根据问题中已 知条件,通过尺规 作图构造一个直角 三角形.
这是本节课的难点.教师一定要给足时 生充分讨论,提出解决问题的方法.如果学生 和解决办法,可适时点拔以下关键点:
(1)从已知条件不能直接证明△ABC是直角 办?
(2)我们至今学过哪些几何知识?有哪些 题的方法和经验?
由此启发学生想到可以利用“三角形” 三角形”,而至少要有两个三角形才能考虑 能顺理成章地想到可先构造一个直角三角 △ABC与这个直角三角形全等即可,从而突破 学难点.
5 运用定理
通过练习把陈述性的定理转化为认知操作,学会用 理判断一个三角形是不是为直角三角形,规范地示范解 勾股数的概念.
作第一业章 布置 教科书第33页练习第1,2; 习题17.2第4,5题.
苏教版八年级数学上册:3.2勾股定理的逆定理 课件(共14张PPT)
拓展延伸:
设△ABC的3条边长分别是a、b、c,且
a=n2-1,b=2n,c=n2+1.问:△ABC是 直角三角形吗?
思考.如图,判断△ABC的形状,并说明理 由。
Aห้องสมุดไป่ตู้
B
C
如图,以△ABC的三边为直径向外作半圆, 且S1+S3=S2,试判断△ABC的形状?
探索规律
像3,4,5; 6,8,10; 5,12,13等满足 a2+b2=c2的一组正整数,称为勾股数. (1)填表:
简单应用:
学科网
如图, △ABC中,AB=5,AC=4,BC=3, △ABC是直角三角形吗?请说明理由。
试一试
1. 下列各数组中,不能作为直角三角形的三边长的 是( ). A.3,4,5; B.10,6,8; C.4,5,6; D.12,13,5. 2.若△ABC的两边长为8和15,则能使△ ABC为直 角三角形的第三边的平方是 。 3. △ABC的三边分别为a、b、c,且 a2+b2≠c2, 则△ABC ( ) A、一定不是直角三角形 B、可能是直角三角形
zxxk
表1
a b
3 4
6 8 10 5
12 13
9 12 15
7
12 16
… …
3n 4n 5n
… …
c
a
5
3 4 5
20
9 40
…
11
表2
b c
24
25
60
61
41
…
作业
例1: 已知一三角形的三边长分别为9cm,12cm, 15cm,求这个三角形的面积。
例2: 已知AD是△ABC的中线,AB=13, BC=10,AD=12,求AC长。
八年级数学勾股定理的逆定理课件-应用
人教版
第2课时勾股定理的逆定 理(二) —— 应用
(2)在图2中,画一个三边长分别为3,2, 13的三角形,一共可以画 16 个这样的三角形. 解析:如图2,一共可以画16个这样的三角形.
图2
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
10.在某小区在社区工作人员及社区居民的共同努力之下,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
8.如图,明明在距离水面高度为5 m的岸边C处,用绳子拉船 靠岸,开始时绳子BC的长为13 m.若明明收绳6 m后,船到 达D处,则船向岸边A处移动了多少米?
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
解:∵开始时绳子BC的长为13 m,明明收绳6 m后,船到达D处,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
知识点 勾股定理逆定理的应用 【例题】如图,甲船以5海里/时的速度离开港口O沿南偏东 30°方向航行,乙船同时同地沿某方向以12海里/时的速度 航行.已知它们离开港口2小时后分别到达B,A两点,且AB =26海里.你知道乙船是沿哪个方向航行的吗?
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
第十七章 勾股定理
17.2 勾股定理的逆定理 第2课时勾股定理的逆定理(二) —— 应用
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
八年级数学下册教学课件《勾股定理的逆定理》
勾股定理的逆定理
活动一:引用故事,导入新课
【故事导入】
据说,古埃及人用右图的方法画直 角:把一根长绳打上等距离的 13 个结, 然后以 3 个结间距、4 个结间距、5 个 结间距的长度为边长,用木桩钉成一个 三角形,其中一个角便是直角.
你知道为什么吗?今天我们就来学习其中的原因.
活动二:问题引入,自主探究
B
C a
① A′
c b
直角三角形吗?
B′
C′
a
②
根据勾股定理,A′B′2 = B′C′2 + A′C′2 = a2 + b2 = c2. ∴ A′B′ = c .在△ABC 和△A′B′C′ 中,
A c
b
BC = a = B′C′,AC = b = A′C′, AB = c = A′B′, ∴△ABC ≌△ A′B′C′(SSS). ∴∠C=∠C′=90°,
探究点 1 勾股定理的逆定理
类似古埃及人画直角的故事,我们准备三根绳子来模仿 操作,看看能否得到和古埃及人相同的结果.
(1)让一根绳子的一端与 0 刻度线重合,分别在 3 cm,
7 cm,12 cm 处做标记,得到长度分别为 3 cm,4 cm,5 cm
的三段,然后以这三段为边围成一个三角形,量量看是不是
求四边形 ABCD 的面积.
解:∵AD = 8,AB = 6,BD = 10,CD = 26,BC = 24,
∴ AB2 +AD2 = BD2, BD2 +BC2 = CD2 .
∴△ABD 和△BDC 都是直角三角形,
且∠A = 90°,∠DBC = 90°.
∴ S四边形ABCD = S△ABD + S△BDC =
活动一:引用故事,导入新课
【故事导入】
据说,古埃及人用右图的方法画直 角:把一根长绳打上等距离的 13 个结, 然后以 3 个结间距、4 个结间距、5 个 结间距的长度为边长,用木桩钉成一个 三角形,其中一个角便是直角.
你知道为什么吗?今天我们就来学习其中的原因.
活动二:问题引入,自主探究
B
C a
① A′
c b
直角三角形吗?
B′
C′
a
②
根据勾股定理,A′B′2 = B′C′2 + A′C′2 = a2 + b2 = c2. ∴ A′B′ = c .在△ABC 和△A′B′C′ 中,
A c
b
BC = a = B′C′,AC = b = A′C′, AB = c = A′B′, ∴△ABC ≌△ A′B′C′(SSS). ∴∠C=∠C′=90°,
探究点 1 勾股定理的逆定理
类似古埃及人画直角的故事,我们准备三根绳子来模仿 操作,看看能否得到和古埃及人相同的结果.
(1)让一根绳子的一端与 0 刻度线重合,分别在 3 cm,
7 cm,12 cm 处做标记,得到长度分别为 3 cm,4 cm,5 cm
的三段,然后以这三段为边围成一个三角形,量量看是不是
求四边形 ABCD 的面积.
解:∵AD = 8,AB = 6,BD = 10,CD = 26,BC = 24,
∴ AB2 +AD2 = BD2, BD2 +BC2 = CD2 .
∴△ABD 和△BDC 都是直角三角形,
且∠A = 90°,∠DBC = 90°.
∴ S四边形ABCD = S△ABD + S△BDC =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳
判定一个三角形是否是直角三角形有几种方法
方法一:可以根据角的度数来判断 方法二:如果三角形的三边长a,b,c满足
a2b2 c2
那么这个三角形是直角三角形
总结提升
• 本节你学会了哪些内容?试着向同学们说 一说。
• 勾股定理的逆定理你会用了吗? • 本节中你最大的收获是什么?
布置作业
• 课堂作业 • 习题18.2 2、3;第4题选择做. • 家庭作业 基训:18.2 (1),(2).
18.2勾股定理的逆定理
• 学习目标:
• 1.会用勾股定理的逆定理解决实际问题。 • 2.树立数形结合的思想。 • 3.探究勾股定理逆定理在实际问题中的应
用,感受它的应用方法。
• 重点:勾股定理逆定理的应用。 • 难点:实际问题向数学问题的转化。
预学检测
1、你知道勾股定理逆定理的内容吗? 2、勾股定理逆定理的应用条件是什么?
勾股定理的逆定理主要用于判断三角形
。是否为直角三角形
• 当堂训练:
• 一、P59页1、2、3、4.
• 二、习题18.2 1、5、6、7
知识应用
D A
B
C
三.已知a.b.c为△ABC的三边,满
足 a 2 c2 b 2 c2 a 4 b 4,试判断
△ABC的形状.
解 ∵ a2c2- b2c2 = a4 – b4
a2b2c2
那么这个三角形是直角三角形.
• 请与你的同伴合作,看看可以找出多少 组能够组成直角三角形的边长。
• 例题分析;
• 例1 题略。
• 例2 已知:在△ABC中,三条边长分别为 a=n2-1,b=2n,c=n2+1(n﹥1).求证: △ABC 为直角三角形。
• 勾股数
勾股定理的逆定理的主要应用
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月27日星期 六2021/2/272021/2/272021/2/27
•
15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/272021/2/272021/2/272/27/2021
•
16、业余生活要有意义,不要越轨。2021/2/272021/2/27Februar y 27, 2021
•他们真的能够得到直角三角形吗?
动手画一画
• 下面的三组数分别是一个三角形的三 边长a,b,c:
5,12,13; 6,8,10; 3,4,5。
(1)这三组数都满足a2b2c2吗?
(2)分别以这三组数为边长作出三角 形,用量角器量一量,它们都是直角 三角形吗?
猜想命题2
如果三角形的三边长a,b,c满足
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/272021/2/272021/2/272021/2/27
谢谢观赏
You made my day!
我们,还在路上……
(1)
∴ c2(a2 – b2) = (a2+ b2) (a2- b2) (2)
∴
c2 = a2 + b2
(3)
∴ △ABC是直角三角形
问: (1) 上述解题过程,从哪一步开始出现错误?请写出该
步的代号_3__
(2) 错误原因是__a2_- b_2可_能_是_0__ (3) 本题正确的结论是_直_角_三_角_形_或_等_腰三角形
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/272021/2/27Saturday, Februa最杰出 的人谈 话。2021/2/272021/2/272021/2/272/27/2021 8:38:30 PM
•
11、越是没有本领的就越加自命不凡 。2021/2/272021/2/272021/2/27Feb-2127-Feb-21
勾股定理: 如果直角三角形的两直角边长分 别为a,b,斜边长为c,那么a2+b2=c2.
b
a c
a2+b2=c2
满足a2 +b2=c2的三个正整数,称为勾股数。
情境体验
• 古埃及人曾用下面的方法画直角:他们把 一根长绳打上等距离的13个结,然后以3 个结、4个结、5个结的长度为边长,用木 桩钉成一个三角形,其中一个角便是直角 。
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/272021/2/272021/2/27Satur day, February 27, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/272021/2/272021/2/272021/2/272/27/2021