半导体物理学近十年高频考点串讲

合集下载

半导体物理知识归纳及习题讲解 2

半导体物理知识归纳及习题讲解 2

半导体物理绪 论 一、什么是半导体导体半导体 绝缘体 电导率ρ <310- 9310~10- 910> cm ∙Ω此外,半导体还有以下重要特性1、 温度可以显著改变半导体导电能力例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍2、 微量杂质含量可以显著改变半导体导电能力 例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C27 300K )时,电阻率由214000Ω降至0.2Ω3、 光照可以明显改变半导体的导电能力例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。

另外,磁场、电场等外界因素也可显著改变半导体的导电能力。

综上:● 半导体是一类性质可受光、热、磁、电,微量杂质等作用而改变其性质的材料。

二、课程内容本课程主要解决外界光、热、磁、电,微量杂质等因素如何影响半导体性质的微观机制。

预备知识——化学键的性质及其相应的具体结构晶体:常用半导体材料Si Ge GaAs 等都是晶体固体非晶体:非晶硅(太阳能电池主要材料)晶体的基本性质:固定外形、固定熔点、更重要的是组成晶体的原子(离子)在较大范围里(610-m )按一定方式规则排列——称为长程有序。

单晶:主要分子、原子、离子延一种规则摆列贯穿始终。

多晶:由子晶粒杂乱无章的排列而成。

非晶体:没有固定外形、固定熔点、内部结构不存在长程有序,仅在较小范围(几个原子距)存在结构有序——短程有序。

§1 化学键和晶体结构1、 原子的负电性化学键的形成取决于原子对其核外电子的束缚力强弱。

电离能:失去一个价电子所需的能量。

亲和能:最外层得到一个价电子成为负离子释放的能量。

(ⅡA 族和氧除外) 原子负电性=(亲和能+电离能)18.0⨯ (Li 定义为1)● 负电性反映了两个原子之间键合时最外层得失电子的难易程度。

● 价电子向负电性大的原子转移ⅠA 到ⅦA ,负电性增大,非金属性增强同族元素从上到下,负电性减弱,金属性增强2、 化学键的类型和晶体结构的规律性ⅰ)离子晶体:(NaCl)由正负离子静电引力形成的结合力叫离子键,由离子键结合成的晶体叫离子晶体(极性警惕)● 离子晶体的结构特点:任何一个离子的最近邻必是带相反电荷的离子。

中考物理半导体物理概念复习考点预测

中考物理半导体物理概念复习考点预测

中考物理半导体物理概念复习考点预测物理学是一门自然科学,研究物质的运动、相互作用以及能量的转换和传播的规律。

而在中考物理中,半导体物理是一个重要的考点。

本篇文章将为你详细介绍半导体物理的基本概念,并预测中考中可能涉及的相关考点。

一、半导体物理基本概念1. 半导体的概念半导体是介于导体和绝缘体之间的一类物质。

在半导体中,电子的能带结构会使得半导体分为价带和导带,两者之间存在能隙。

在绝缘体中,能隙较大,难以形成自由电子。

而在导体中,导带和价带之间几乎没有能隙,电子容易受到外界的激发而形成自由电子。

2. 半导体的掺杂半导体可以通过掺杂来改变其电学性质。

掺杂是将少量其他元素的原子引入半导体晶体中,改变半导体中的电子浓度和能带结构。

其中,施主掺杂引入的杂质原子增加了自由电子的浓度,使半导体呈现N型导电特性;而受主掺杂引入的杂质原子增加了空穴的浓度,使半导体呈现P型导电特性。

3. 半导体的P-N结P-N结是由P型半导体和N型半导体的接触形成的。

在P区和N区相接处,会形成一个电势垒。

当P-N结处无外界电压时,电势垒会阻止自由电子和空穴的扩散。

但如果在P-N结处加上正向电压,电势垒会变薄,自由电子和空穴可以穿过P-N结的电势垒而相互复合;如果在P-N结处加上反向电压,电势垒会变厚,从而增加阻止电流流动的能力。

二、预测考点在中考物理半导体物理部分,以下几个内容较为常见且重要,有可能作为考点出现。

1. 半导体的导电性质中考可能会考察半导体的导电性质及其与掺杂的关系。

学生需要了解使用施主掺杂或受主掺杂可改变半导体导电性质的原理,并能解释P 型半导体和N型半导体导电特性的差异。

2. P-N结的特性考试中可能会涉及P-N结的形成原理以及其特性。

学生需要掌握P-N结的电势垒变化规律及其对电流流动的影响,理解正向偏置和反向偏置下电势垒的变化情况。

3. 半导体器件中考可能会要求学生对一些常见的半导体器件进行简单的了解。

例如,二极管的原理、工作特性以及应用;三极管的原理、工作特性以及放大作用等。

半导体物理考研知识点归纳

半导体物理考研知识点归纳

半导体物理考研知识点归纳半导体物理是研究半导体材料的物理性质及其在电子器件中的应用的学科。

在考研中,半导体物理的知识点主要包括以下几个方面:1. 半导体的基本性质- 半导体材料的分类,包括元素半导体和化合物半导体。

- 半导体的能带结构,包括导带、价带以及禁带的概念。

- 半导体的载流子类型,即电子和空穴。

2. 半导体的掺杂- 掺杂原理,包括n型和p型掺杂。

- 掺杂对半导体电导率的影响。

- 杂质能级和费米能级的移动。

3. 半导体的载流子运动- 载流子的漂移和扩散运动。

- 载流子的迁移率和扩散常数。

- 霍尔效应及其在半导体中的应用。

4. pn结和半导体器件- pn结的形成原理和特性。

- 正向和反向偏置下的pn结特性。

- 金属-半导体接触和肖特基势垒。

5. 半导体的光电效应- 本征吸收和杂质吸收。

- 光生载流子的产生和复合。

- 光电二极管和光电晶体管的工作原理。

6. 半导体的热电效应- 塞贝克效应和皮尔逊效应。

- 热电材料的热电性能。

7. 半导体的量子效应- 量子阱、量子线和量子点的概念。

- 量子效应对半导体器件性能的影响。

8. 半导体的物理量测量技术- 电阻率、载流子浓度和迁移率的测量方法。

- 光致发光和电致发光技术。

9. 半导体器件的制造工艺- 晶体生长技术,如Czochralski法和布里奇曼法。

- 光刻、蚀刻和掺杂工艺。

结束语半导体物理是一门综合性很强的学科,它不仅涉及到材料科学、固体物理,还与电子工程和微电子技术紧密相关。

掌握这些基础知识点对于深入理解半导体器件的工作原理和优化设计至关重要。

希望以上的归纳能够帮助考研学子们更好地复习和掌握半导体物理的相关知识。

半导体物理学复习提纲(重点)教学提纲

半导体物理学复习提纲(重点)教学提纲

第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。

几种常用半导体的禁带宽度; 本征激发的概念§1.3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k)~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。

§1.4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1.5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2.1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。

§2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3.1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。

1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。

3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。

半导体物理的知识点及重点习地的题目地总结

半导体物理的知识点及重点习地的题目地总结

半导体物理的知识点及重点习地的题⽬地总结基本概念题:第⼀章半导体电⼦状态1.1 半导体通常是指导电能⼒介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的⼩许多。

1.2能带晶体中,电⼦的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

1.2能带论是半导体物理的理论基础,试简要说明能带论所采⽤的理论⽅法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进⽽给出电⼦的薛定鄂⽅程。

通过该⽅程和周期性边界条件最终给出E-k关系,从⽽系统地建⽴起该理论。

单电⼦近似:将晶体中其它电⼦对某⼀电⼦的库仑作⽤按⼏率分布平均地加以考虑,这样就可把求解晶体中电⼦波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电⼦系统之间没有能量交换,⽽将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论⽅法答案:克龙尼克—潘纳模型是为分析晶体中电⼦运动状态和E-k关系⽽提出的⼀维晶体的势场分布模型,如下图所⽰VX克龙尼克—潘纳模型的势场分布利⽤该势场模型就可给出⼀维晶体中电⼦所遵守的薛定谔⽅程的具体表达式,进⽽确定波函数并给出E-k关系。

由此得到的能量分布在k空间上是周期函数,⽽且某些能量区间能级是准连续的(被称为允带),另⼀些区间没有电⼦能级(被称为禁带)。

从⽽利⽤量⼦⼒学的⽅法解释了能带现象,因此该模型具有重要的物理意义。

1.2导带与价带1.3有效质量有效质量是在描述晶体中载流⼦运动时引进的物理量。

它概括了周期性势场对载流⼦运动的影响,从⽽使外场⼒与加速度的关系具有⽜顿定律的形式。

其⼤⼩由晶体⾃⾝的E-k关系决定。

1.4本征半导体既⽆杂质有⽆缺陷的理想半导体材料。

1.4空⽳空⽳是为处理价带电⼦导电问题⽽引进的概念。

设想价带中的每个空电⼦状态带有⼀个正的基本电荷,并赋予其与电⼦符号相反、⼤⼩相等的有效质量,这样就引进了⼀个假想的粒⼦,称其为空⽳。

半导体物理学刘恩科知识点总结

半导体物理学刘恩科知识点总结

半导体物理学刘恩科知识点总结半导体是一种由大量导电粒子组成的具有特殊性质,特别是对电流敏感、且不易被杂质和缺陷所掺杂的物质。

半导体又称为绝缘体,但这只是相对而言,它仍然可以被看做导体。

从结构上来说,纯净的半导体也是由两种载流子:导带中的电子和价带中的空穴所组成;另外还存在着三种束缚态:即导带底中的自由电子,价带顶中的空穴和禁带中的空穴。

我们把这样的半导体叫做绝缘体。

现实生活中最常见到的半导体是硅( si)材料,其他常用的材料还包括砷化镓、磷化镓、锑化铟、锗( ge)等等。

硅属于金属氧族元素,化学符号为 Si,常温下硅以单质状态存在,常见的硅材料是一种具有金属光泽的灰黑色固体,无毒无味,比较柔软,容易切割,具有优良的导热性、导电性和延展性,在化工生产中应用很广泛。

硅材料具有“刚柔并济”的特点。

刚性表现在受力之后会马上断裂,如果加入氧、氮等元素,还会形成导电、导热性更好的材料。

柔性则是指当受压或受拉伸时,内部分子的排列顺序容易发生变化,使得分子间的连接变弱甚至断开,从而获得弹性。

总的来说,硅材料兼具导电、耐高温的性能。

此外,将硅与硼、铝等非金属元素掺合后,还可制成性能独特的多种半导体器件,例如红外探测器、光电倍增管、热释电探测器等。

所谓“特殊”就是不能再导电了!为什么呢?答案就在半导体中出现的各类缺陷中。

通俗地讲,半导体就像人体的血液一样,流动着各式各样的“细胞”,它们之间交换的信息都通过载流子传递给了外界环境。

在这些携带着数据信息的“小蝌蚪”(电子)中,除了少量与原料本身的性质直接相关之外,其余的大部分都起到调控作用。

为什么要选择硅作为原材料呢?主要基于几方面的考虑:第一、纯度较高,这里的纯度指的是没有掺杂杂质的硅;第二、物理特性稳定,不怕腐蚀;第三、导电性好,在电路设计中必须要求对电流比较敏感;第四、具有较低的价格。

第五、高温条件下仍然保持优良的稳定性,能够满足大规模集成电路芯片的需要。

正是由于具备了这些先天的优势,使得半导体材料从诞生伊始便迅速崛起,短短百年的时间已经取代了电子技术领域中许多重要的基础性元件。

2021年半导体物理学知识点

2021年半导体物理学知识点

2021年半导体物理学知识点第7章⾦属-半导体接触本章讨论与pn 结特性有诸多相似之处⾦-半肖特基势垒接触。

⾦-半肖特基势垒接触整流效应是半导体物理效应初期发现之⼀:§7.1⾦属半导体接触及其能级图⼀、⾦属和半导体功函数1、⾦属功函数在绝对零度,⾦属中电⼦填满了费⽶能级E F 如下所有能级,⽽⾼于E F 能级则所有是空着。

在⼀定温度下,只有E F 附近少数电⼦受到热激发,由低于E F 能级跃迁到⾼于E F 能级上去,但仍不能脱离⾦属⽽逸出体外。

要使电⼦从⾦属中逸出,必要由外界给它以⾜够能量。

因此,⾦属中电⼦是在⼀种势阱中运动,如图7-1所⽰。

若⽤E 0表达真空静⽌电⼦能量,⾦属功函数定义为E 0与E F 能量之差,⽤W m 表达:FM M E E W -=0它表达从⾦属向真空发射⼀种电⼦所需要最⼩能量。

W M 越⼤,电⼦越不容易离开⾦属。

⾦属功函数普通为⼏种电⼦伏特,其中,铯最低,为1.93eV ;铂最⾼,为5.36 eV 。

图7-2给出了表⾯清洁⾦属功函数。

图中可见,功函数随着原⼦序数递增⽽周期性变化。

2、半导体功函数和⾦属类似,也把E 0与费⽶能级之差称为半导体功函数,⽤W S 表达,即FS S E E W -=0由于E FS 随杂质浓度变化,因此W S 是杂质浓度函数。

图7-1 ⾦属中电⼦势阱图7-2 某些元素功函数及其原⼦序数与⾦属不同,半导体中费⽶能级普通并不是电⼦最⾼能量状态。

如图7-3所⽰,⾮简并半导体中电⼦最⾼能级是导带底E C 。

E C 与E 0之间能量间隔C E E -=0χ被称为电⼦亲合能。

它表达要使半导体导带底电⼦逸出体外所需要最⼩能量。

运⽤电⼦亲合能,半导体功函数⼜可表达为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费⽶能级与导带底能量差。

表7-1 ⼏种半导体电⼦亲和能及其不同掺杂浓度下功函数计算值材料χ (eV)W S (eV)N D (cm-3)N A (cm-3)10141015 1016 1014 1015 1016 Si 4.05 4.37 4.31 4.25 4.87 4.93 4.99 Ge 4.13 4.43 4.37 4.31 4.51 4.57 4.63 GaAs4.074.294.234.175.205.265.32⼆、有功函数差⾦属与半导体接触把⼀块⾦属和⼀块半导体放在同⼀种真空环境之中,两者就具备共同真空静⽌电⼦能级,两者功函数差就是它们费⽶能级之差,即W M -W S =E FS -E FM 。

半导体物理知识点总结

半导体物理知识点总结

一、半导体物理知识大纲➢核心知识单元A:半导体电子状态与能级〔课程根底——掌握物理概念与物理过程、是后面知识的根底〕→半导体中的电子状态〔第1章〕→半导体中的杂质和缺陷能级〔第2章〕➢核心知识单元B:半导体载流子统计分布与输运〔课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法〕→半导体中载流子的统计分布〔第3章〕→半导体的导电性〔第4章〕→非平衡载流子〔第5章〕➢核心知识单元C:半导体的根本效应〔物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用〕→半导体光学性质〔第10章〕→半导体热电性质〔第11章〕→半导体磁和压阻效应〔第12章〕二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。

主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。

阐述本征半导体的导电机构,引入了空穴散射的概念。

最后,介绍了Si、Ge和GaAs的能带结构。

在1.1节,半导体的几种常见晶体结构及结合性质。

〔重点掌握〕在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。

介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此根底上引入本征激发的概念。

〔重点掌握〕在1.3节,引入有效质量的概念。

讨论半导体中电子的平均速度和加速度。

〔重点掌握〕在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。

〔重点掌握〕在1.5节,介绍盘旋共振测试有效质量的原理和方法。

〔理解即可〕在1.6节,介绍Si、Ge的能带结构。

〔掌握能带结构特征〕在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。

〔掌握能带结构特征〕本章重难点:重点:1、半导体硅、锗的晶体结构〔金刚石型结构〕及其特点;三五族化合物半导体的闪锌矿型结构及其特点。

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结

半导体物理知识点及重点习题总结半导体物理是现代电子学中的重要领域,涉及到半导体材料的电学、热学和光学等性质,以及半导体器件的工作原理和应用。

本文将对半导体物理的一些重要知识点进行总结,并附带相应的重点习题,以帮助读者更好地理解和掌握相关知识。

一、半导体材料的基本性质1. 半导体材料的能带结构半导体材料的能带结构决定了其电学性质。

一般而言,半导体材料具有禁带宽度,可以分为导带(能量较高)和价带(能量较低)。

能量在禁带内的电子处于被限制的状态,称为束缚态,能量在导带中的电子可以自由移动,称为自由态。

2. 掺杂和杂质掺杂是将少量的杂质原子引入纯净的半导体材料中,以改变其导电性质。

掺入价带原子的称为施主杂质,掺入导带原子的称为受主杂质。

施主杂质会增加导电子数,受主杂质会增加载流子数。

3. P型和N型半导体掺入施主杂质的半导体为P型半导体,施主杂质的电子可轻易地跳出束缚态进入导带,形成载流子。

掺入受主杂质的半导体为N型半导体,受主杂质的空穴可轻易地跳出束缚态进入价带,形成载流子。

二、PN结和二极管1. PN结的形成和特性PN结是P型和N型半导体的结合部分,形成的原因是P型半导体中的空穴与N型半导体中的电子发生复合。

PN结具有整流作用,使得电流在正向偏置时能够通过,而在反向偏置时被阻止。

2. 二极管的工作原理二极管是基于PN结的器件,正向偏置时,在PN结处形成正电压,使得电子流能够通过。

反向偏置时,PN结处形成反电压,使得电流无法通过。

3. 二极管的应用二极管广泛用于整流电路、电压稳压器、振荡器和开关等领域。

三、晶体管和放大器1. 晶体管的结构和工作原理晶体管是一种三端器件,由三个掺杂不同的半导体构成。

其中,NPN型晶体管由N型掺杂的基区夹在两个P型掺杂的发射极和集电极之间构成。

PNP型晶体管的结构与之类似。

晶体管的工作原理基于控制发射极和集电极之间电流的能力。

2. 放大器和放大倍数晶体管可以作为放大器来放大电信号。

半导体物理知识点汇总总结

半导体物理知识点汇总总结

半导体物理知识点汇总总结一、半导体物理基本概念半导体是介于导体和绝缘体之间的材料,它具有一些导体和绝缘体的特性。

半导体是由单一、多层、回交或互相稀释的混合晶形的二元、三元或多元化合物所组成。

它的特点是它的电导率介于导体和绝缘体之间,是导体的电导率∗101~1015倍,是绝缘体的电导率÷102~103倍。

半导体材料具有晶体结构,对它取决于结晶度的大小,织排效应特别大。

由于它的电导率数值在半导体晶体内并不等同,所以它是隔离的,具有相当大的飞行束度,并且不容易受到外界的干扰。

二、半导体晶体结构半导体是晶体材料中最均匀最典型的材料之一,半导体的基本结构是一个由原子排成的一种规则有序的晶体结构。

半导体原子是立方体的晶体,具有600个原子的立方体晶体结构,又称之为立方的晶体结构。

半导体晶体结构的代表性六面体晶体结构,是一种由两个或两个以上的六面全部说构成的立方晶体。

半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶体包围构成,是由两个或两个以上的六面全部说构成的立方晶体。

半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶点构成,是由两个或两个以上的六面全部说构成的晶点构成。

三、半导体的能带结构半导体的能带“带”是指其电子是在“带”中运动的,是光电子带,又称作价带,当其中的自由电子都填满时另一种平面,又称导电带,当其中的自由电子并不填满时其另一种平面在有一些能够使电子轻易穿越的东西。

半导体的能带是由两个非常临近的能带组成的,其中价带的最上一层电子不足,而导电带的下一层电子却相当到往动能,这一些动能可能直到加到电子摆脱它自己体原子,变成自由电子,并且在整体晶体里自由活动。

四、半导体的导电机理半导体的导电机理是在外加电压加大时一部分自由电子均可以在各自能带中加速骚扰,从而增加在给导电子处所需要的电压增大并最终触碰到另一种平面上产生电流就可以。

五、半导体的掺杂掺杂是指在纯净半导体中加入某些以外杂质元素的行为。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理知识点梳理简介半导体物理学是研究半导体材料的电子结构、载流子动力学和半导体器件工作原理的学科。

它是现代微电子工业的基础和前提,包含了多种复杂的物理过程和电子器件设计原理。

在集成电路中,半导体物理学的研究对于我们理解电子器件的工作原理和提高器件性能至关重要。

一、半导体材料的电子结构1. 能带能带是指材料中的能量电子集合,可以被电子占据或空出来。

常见的能带包括价带和导带。

价带中的电子与原子核共享一个价电子对,导带则含有未占据的电子。

导带和价带之间的区域称为禁带,其中没有可用的能级,这使得该区域没有自由电子。

禁带宽度决定了材料的导电性质。

2. 牛顿力学与量子力学经典物理学,如牛顿力学,不能完全描述电子在原子中的行为,因此计算价带和导带的能量需要借助量子力学。

量子力学通过考虑波粒二象性和不确定性原理,说明电子存在于这两个能带中,以及它们的位置和能量。

3. 材料的类型半导体凭借其调谐电子运动的能力而成为电子器件的主要材料之一。

半导体材料通常可以划分为晶体(单晶或多晶)和非晶体,前者由规则排列的原子构成,后者则表现为无序空间结构。

二、载流子动力学1. 载流子类型在材料中,载流子是指负电荷(电子)或正电荷(空穴),它们的运动是电流传导的主要过程。

半导体中的载流子种类包括电子和空穴。

这些载流子的输运以及它们的沟通将直接影响材料的电学行为。

2. 拉曼散射与荷质比拉曼散射是一种通过材料中的声子色散特性筛选其材料类型和结构的方法。

这可以帮助确定载流子的荷质比,荷质比是电荷与带负荷的质量之比。

荷质比是半导体的一个关键参数,它决定了载流子的涵盖区域和速度。

3. 面掺杂多数半导体材料中的电子和空穴浓度是非常低的,这导致了它们的电导率较低。

通过面掺杂,半导体的电导率可以得到提高。

面掺杂涉及向材料表面引入杂质原子,这些原子具有带电性质以及能影响材料电荷载流子浓度的能力。

三、半导体器件工作原理1. 篱截型场效应晶体管篱截型场效应晶体管(MESFET)是一种单极型晶体管器件,它是通过在材料中形成门结构,控制源引线到漏引线通道上电子流的芯片。

半导体物理学知识重点总结(精)

半导体物理学知识重点总结(精)

半導體物理知識點總結附重要名詞解釋是过剩硅离子。

霍尔效应将通有 x 方向电流的晶体置于 z 方向的磁场中,则在洛仑磁力作用下在 y 方向会产生附加电场,这种现象被称为霍尔效应。

霍尔角在磁场作用下,半导体中的电流可能与电场不在同一方向上,两者间的夹角称为霍尔角。

以 p 型半导体为例,简要说明霍耳效应的形成机理。

若半导体沿 x 方向通电流,z 方向加磁场,则在 y 方向将产生横向电场,该现象称为霍耳效应产生的横向电场称为霍耳电场 Ey,它与 x 方向电流密度 Jx 和 z 方向磁感应强度 Bz 成正比,比例系数成为霍耳系数。

是由于运动电荷受落仑兹力作用的结果。

稳定条件下,横向电流为零,则由此可得:显然,对于 p 型半导体:简并半导体&非简并半导体:若费米能级进入了导带,说明 n 型杂质掺杂浓度很高(即ND 很大;也说明了导带底附近的量子态基本上被电子所占据了。

若费米能级进入了价带,说明 P 型杂质掺杂浓度很高(即 NA 很大;也说明了价带顶附近的量子态基本上被空穴所占据了。

此时要考虑泡利不相容原理,而玻尔兹曼分布不适用,必须用费米分布函数。

这此情况称为载流子的简并化。

发生载流子简并化的半导体称为简并半导体. 简并化的标准重要名詞解釋 161. 有效质量: 粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。

2. 费米能级: 费米能级是 T=0 K 时电子系统中电子占据态和未占据态的分界线,是 T=0 K 时系统中电子所能具有的最高能量。

3. 准费米能级: 半导体处于非平衡态时,导带电子和价带空穴不再有统一的费米能级,但可以认为它们各自达到平衡,相应的费米能级称为电子和空穴的准费米能级。

4. 金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。

每个原子周围都有4 个最近邻的原子,组成一个正四面体结构。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理考点归纳一· 1.金刚石 1) 结构特点:a. 由同类原子组成的复式晶格。

其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成b. 属面心晶系,具立方对称性,共价键结合四面体。

c. 配位数为4,较低,较稳定。

(配位数:最近邻原子数)d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。

2) 代表性半导体:族的C ,,等元素半导体大多属于这种结构。

2.闪锌矿 1) 结构特点:a. 共价性占优势,立方对称性;b. 晶胞结构类似于金刚石结构,但为双原子复式晶格;c. 属共价键晶体,但有不同的离子性。

2) 代表性半导体:等三五族元素化合物均属于此种结构。

3.电子共有化运动:原子结合为晶体时,轨道交叠。

外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。

4.布洛赫波:kxi k k e x u x πϕ2)()(=晶体中电子运动的基本方程为: ,K 为波矢,(x)为一个与晶格同周期的周期性函数, 5.布里渊区:禁带出现在2a 处,即在布里渊区边界上;允带出现在以下几个区: 第一布里渊区:-1/2a<k<1/2a (简约布里渊区)第二布里渊区:-1<k<-1/2a,1/2a<k<1E(k)也是k 的周期函数,周期为1,即E(k)(),能带愈宽,共有化运动就更强烈。

6.施主杂质:V 族杂质在硅,锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n 型杂质 7.施主能级:将施主杂质束缚的电子的能量状态称为施主能级,记为。

施主能级离导带很近。

8.受主杂质:族杂质在硅,锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或P 型杂质。

9.受主能级:把被受主杂质所束缚的空穴的能量状态称为受主能级,记)()(na x u x u k k +=为。

半导体物理学简答题及答案知识讲解

半导体物理学简答题及答案知识讲解

此文档仅供收集于网络,如有侵权请联系网站删除第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2. 描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3. 一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4. 有效质量对能带的宽度有什么影响,有人说:" 有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带, 1 ( k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5. 简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

物理学中的半导体物理知识点

物理学中的半导体物理知识点

物理学中的半导体物理知识点半导体物理学是物理学领域中的一个重要分支,研究半导体材料及其性质与行为。

本文将介绍几个半导体物理学中的知识点,包括半导体的基本概念、载流子行为、PN结及其应用。

一、半导体的基本概念半导体是一种介于导体和绝缘体之间的材料。

它的导电能力介于导体和绝缘体之间,可以通过控制外加电场或温度来改变其电导率。

根据能带理论,半导体材料中存在一个禁带,将价带和导带分开,如果半导体材料的价带被填满,而导带是空的,那么半导体就没有导电能力;当半导体材料的温度升高或者施加电场时,一些电子会跃迁到导带中,形成可以导电的载流子。

二、载流子行为在半导体中,载流子是指能够输送电流的带电粒子,可以分为自由电子和空穴两种类型。

1. 自由电子:自由电子是指在半导体晶格中脱离原子束缚的电子,它具有负电荷。

在纯净的半导体中,自由电子的数量较少。

2. 空穴:空穴是指由于半导体中某个原子缺少一个电子而形成的一个正电荷,可以看作是受激发的价带上的空位。

载流子的行为受到材料的类型和掺杂等因素的影响。

三、PN结及其应用PN结是半导体中最基本的器件之一,由P型半导体和N型半导体的结合构成。

P型半导体中的空穴浓度较高,N型半导体中的自由电子浓度较高,当这两种类型的半导体材料接触时,自由电子和空穴会发生复合,形成一个耗尽区域。

PN结的特性使得它在半导体器件中有着广泛的应用,例如:1. 整流器:利用PN结的单向导电性质,将交流电信号转换为直流电信号。

2. 发光二极管(LED):在PN结中注入电流可以激发电子跃迁,从而产生光线,实现发光效果。

3. 晶体管:晶体管是一种基于PN结的三端口器件,通过调控PN结的导电状态,实现信号放大和开关控制。

PN结的应用广泛且多样化,是现代电子技术中不可或缺的一个元件。

总结:半导体物理学作为物理学中的重要分支,研究的是半导体材料及其性质与行为。

本文介绍了半导体的基本概念,包括能带理论和禁带,以及载流子行为,其中自由电子和空穴是半导体中的两种重要载流子。

半导体物理学总复习课

半导体物理学总复习课
先求多子(空穴)浓度 先求多子(空穴)浓度
n0 = N D − N A + p0 ni2 p0 = n0
( N D − N A ) + (( N D − N A ) 2 + 4ni2 )1/2 = 2
强 n0 = ni + N A − ND 电 ≈ N A − ND 离 再求少子浓度 区
ni2 n0 = p0
载流子浓度的乘积
EC − EV n 0 p 0 = N C NV exp- k0T Eg = N C NV exp- kT 0
3/2
m∗ m∗ Eg n p 31 3 n 0 p 0 = 2.33 × 10 T exp- 2 kT m0 0
− t
τ
∆n(t ) = ∆n(0)e

tБайду номын сангаас
τ
平衡时
n0、 p0
光注入后从非平 衡到平衡的过程
n = n0 + ∆n p = p0 + ∆p
σ=( n0+∆n ) qµn+( p0+∆p) qµp
= (n 0 qµ n +p 0 qµ p ) + (∆nqµ n +∆pqµ p )
= σ 0 (原光电导) ∆σ + (附加光电导)
N E F= E i + k 0Tarcsh D 2n i
EF= EC + ED k0T N D + ln 2N 2 2 C
EC + ED k0T N D EF= ln + 2N 2 2 C
ND EF=EC + k0Tln N C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

906半导体物理学真题说明
一、名词解释(背资料)二、填空题:考查概念、推论、特点、原理、条件、小计算(细看书)
三、简答题:考查名称解释、形成机制、原因分析、结构特点(背资料)
四、公式考查(近年考得少了):
推导n型半导体低温弱电离区的费米能级、电子浓度表达式,过渡区的电子浓度;
试写出半导体中描述非平衡空穴变化规律的一维连续性方程,并指出每一项意义
推导n、p型半导体的爱因斯坦关系式;
推导平衡pn结接触电势差与掺杂浓度的关系;突变、缓变Pn结的电场电势分布及结区宽度;
推导MIS结构中表面强反型的形成条件;
推导pn结中光生伏特效应输出电压和电流的关系。

五、画图:
1、画出绝缘体、半导体和导体的能带示意图,并从能带角度说明三者的差异;
2、能量、速度和有效质量与波矢的关系,说明电子有效质量的物理意义和性质;
3、大致画出硅、锗和砷化镓的能带结构,并语言描述之;
4、画出并描述杂质的补偿作用示意图;
5、画出n、p型半导体费米能级和载流子浓度随温度的变化曲线(见906半导体物理答案(计算题、填空题、判断题));
6、硅电阻率与温度关系示意图,并作相应的描述;
7、直流光电导测少子寿命装置示意图并说明其原理(906半导体物理答案(计算题、填空题、判断题));
8、描述平衡pn结形成过程,画出其能带图、电势图、电势能图。

正、反偏压时pn结势垒变化和费米能级图;突、缓变结的杂质、电荷、电场、电势、电势能图;
9、画出理想pn结的J-V曲线、反向偏压下的J-V曲线、隧道结的电流电压特性曲线;
10、金属和n、p型半导体接触时的能带示意图(共四个);
11、n、p型理想MIS结构:堆积、平带、耗尽、弱反型、强反型示意图,并标明表面势与外加电压情况;
12、n、p型理想MIS结构:表面电荷面密度与表面势函数关系、C-V特性曲线;
13、测量频率、金半功函数差、绝缘层中电荷(可动钠离子、固定电荷)对C-V 特性曲线的影响。

说明:名词解释主要背超级重点名词解释,但是非超级重点也得会;填空题出
得有点点细,这个主要靠看书,要看的很细,这部分在考场可以适当放弃,把真题中的填充题背背即可;简答题也是背资料,重点背那些真题中出现过的题目,这部分重复率很高;至于公式考查只要会推以上那几个重点就行,不会也没关系,这三年来几乎不考了。

以上画图题都是重点,必须全会。

其中5、6、8、10、11、12是超级重点,死都要会画得那种。

还有计算题,真题中的计算题主要来自田敬民的半导体习题,真题中的计算题必须会,有些难得可以不会,计算题分数也就10分以内。

看完每一章再看视频后,可适当做做课后题目,及田敬民的半导体习题,相应真题,有助理解,但是计算题考试考得少,所以不要沉迷计算题。

相关文档
最新文档