高中数学1.3函数的基本性质教案新人教版必修1

合集下载

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案_11

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案_11

教学准备
1. 教学目标
1.知识与技能:
理解函数的最大(小)值及其几何意义.
学会运用函数图象理解和研究函数的性质.
2.过程与方法:
通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的
纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识.3.情态与价值
利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发
学生学习的积极性.
2. 教学重点/难点
教学重点:函数的最大(小)值及其几何意义
教学难点:利用函数的单调性求函数的最大(小)值.
3. 教学用具
4. 标签
教学过程
四.教学思路
(一)创设情景,揭示课题.
画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什
么特征?
(二)研探新知
1.函数最大(小)值定义
2.利用函数单调性来判断函数最大(小)值的方法.
①配方法②换元法③数形结合法
(三)质疑答辩,排难解惑.
例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值.
解(略)
例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?。

新课标高中数学人教A版必修一全册课件1.3函数的基本性质——最大值

新课标高中数学人教A版必修一全册课件1.3函数的基本性质——最大值
第八页,编辑于星期日:十三点 十一分。
讲授新课
函数最小值概念:
第九页,编辑于星期日:十三点 十一分。
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
第十页,编辑于星期日:十三点 十一分。
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≥M.
第二页,编辑于星期日:十三点 十一分。
复习引入
问题2 函数f (x)=-x2. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.
第三页,编辑于星期日:十三点 十一分。
讲授新课
函数最大值概念:
第四页,编辑于星期日:十三点 十一分。
讲授新课
函数最大值概念:
1.3 函数的基本性质
——最大(小)值
第一页,编辑于星期日:十三点 十一分。
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是减函数, 在[0, +∞)上是增函数. 当x≤0时,f (x)≥f (0),
x≥0时, f (x)≥f (0). 从而x∈R,都有f (x) ≥f (0). 因此x=0时,f (0)是函数值中的最小值.
第十一页,编辑于星期日:十三点 十一分。
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I.
如果存在实数M,满足:
(1)对于任意x∈I,都有f (x)≥M. (2)存在x0∈I,使得f (x0)=M.
第十二页,编辑于星期日:十三点 十一分。
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≥M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最小值.

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

1.3 函数的基本性质(人教版高中数学必修1 第1章集合与函数概念)

必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
2. f(x)为奇函数 f(-x)=-f(x)
f(x)为偶函数 f(-x)=f(x)
定义域
x≠0
3. f(x)为奇函数,且f(x)在 x=0 处有定义 f(0)=0
f(x)为奇函数,则f(-x)=-f(x) 当 x=0 时,有 f(0) = -f(0),因此有f(0)=0
函数的奇偶性
5. 根据函数奇偶性的特征,可以简化函数图象的画法.
偶函数图象关于 y轴 对称. 奇函数图象关于 原点 对称.
例3、已知函数 y=f(x) 是偶函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
y
相等
0
x
例3、已知函数 y=f(x) 是奇函数,它在 y 轴右边的图象如下 图,画出在 y 轴左边的图象.
即f ( x 1 ) < f ( x 2 ) 所以,函数 f ( x ) = 3x+2 在 R上是单调增函数。
练习1 证明:函数 f ( x ) = x2+3 在 (0,+∞)上是单调增函数.
练习2 证明函数 y 1 在 (0,+∞)上是单调性. x
证明:设x1, x2是(0,+∞)上任意两个实数,且x1<x2,则
若函数在此区间上是增函数,则区间为单调递增区间

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。

2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。

3. 实现函数的简单变换,例如平移、伸缩和反转等。

4. 能够应用函数的基本性质,解决实际问题。

教学重点:1. 理解函数的概念以及函数的各种表达方式。

2. 掌握函数的基本性质,实现函数的简单变换。

3. 能够应用函数的基本性质,解决实际问题。

教学难点:1. 如何理解函数的概念以及函数的各种表达方式。

2. 如何应用函数的基本性质,解决实际问题。

教学方法:一、讲授法。

二、探究法。

三、案例分析法。

教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。

二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。

$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。

2. 函数的图像:函数可以通过绘制它们的图像进行可视化。

函数的图像是平面直角坐标系上的一条曲线。

3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。

例如$f(x)=x^2$就是一种表示方式。

三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。

四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。

五. 应用函数的基本性质(10分钟):1. 求函数的最值。

高中数学必修一《函数的基本性质》优质教案

高中数学必修一《函数的基本性质》优质教案

高中数学必修一《函数的基本性质》优质教案教材分析《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.教学目标与素养课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。

重难点重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、 情景导入前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质.画出并观察函数的图像,你能发现这两个函数图像有什么共同特征码?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、 预习课本,引入新课阅读课本82-84页,思考并完成以下问题1.偶函数、奇函数的概念是什么?2.奇偶函数各自的特点是?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、 新知探究1.奇函数、偶函数(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.2、奇偶函数的特点(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。

高中数学《1.3.2函数的性质-最值》教案 新人教A版必修1

高中数学《1.3.2函数的性质-最值》教案 新人教A版必修1

第三单元 §1.3.1 函数的基本性质----函数的最值课型:新授课 日期:2012.8 第一部分:【三维目标】 问题,第二部分:【自主性学习】1.旧知识铺垫(1)求函数223y x x =--最小值。

(2)求函数223y x x =--在0,3⎡⎤⎣⎦上的最大值、最小值。

2.新知识预览精读本节课本内容,思考下列问题:(1)函数最值的定义○1最大值: ○2最小值: (2)函数单调性与最值的关系。

○1若函数在闭区间,a b ⎡⎤⎣⎦上是减函数,则f(x)在,a b ⎡⎤⎣⎦上的最大为 ,最小值为 。

○2若函数在闭区间,a b ⎡⎤⎣⎦上是增函数,则f(x)在,a b ⎡⎤⎣⎦上的最大为 ,最小值为 。

○3若函数f(x)在,a b ⎡⎤⎣⎦上是增(减)函数,在,b c ⎡⎤⎣⎦上是减(增)函数,则f(x)在,a c ⎡⎤⎣⎦上的最大(小)值是 ,最小(大)值是f(a)与f(c)中较小(大)的一个。

3. 我的疑难问题:第三部分:【重难点解析】题型一 利用函数的单调性求最值例1.已知函数2()1f x x =-(2,6x ⎡⎤∈⎣⎦),求函数的最大值和最小值。

变式训练:求32y x =-在区间3,6⎡⎤⎣⎦上的最大值和最小值。

题型二 最值在生活中的应用例2.某厂商制造一张CD 的成本为4元,如果一张CD 的定价为10元,可卖出1000张,如果每提高1元,售出张数就会减少20,当一张CD 定价为多少时,利润最大?并求最大值。

变式训练:某公司在甲乙两地销售一种品牌车,利润(万元)分别为21 5.060.15y x x =-和22y x =,其中x 为销售量(辆),若该公司在这两地共销售15辆车,则能获得的最大利润为( ) A.45.6万元 B.45.606万元 C.45.56万元 D.45.51万元【知识结构】第四部分:限时训练一、选择题1.定义在区间1,3⎡⎤-⎣⎦上的函数()y f x =是减函数,则它的最大值是( )A.f(-1)B.f(3)C.-1D.3 2.函数1(),1,21f x x x ⎡⎤=∈⎣⎦+的最小值是( ) A.f(1) B.f(2) C.f(0) D.不存在3.函数223y x x =--在0,3⎡⎤⎣⎦上的最大值,最小值为( )A.-3,0B.-4,0C.0,-3D.0,-4二、填空题4.函数()2f x x =-+在0,1⎡⎤⎣⎦上的最大值为a ,最小值为b ,则a-b= .[来源:学_科_网Z_X_X_K]三、解答题5.已知函数2()41f x x mx =-+在(),2-∞-上递减,在)2,⎡-+∞⎣上递增,求f(x)在1,2⎡⎤⎣⎦上的值域。

高中数学人教A版必修1课件:1.3函数的基本性质

高中数学人教A版必修1课件:1.3函数的基本性质
②“对于…”,“任意…”,“都有…”,“ 对于”即两个自变量x1,x2,必须取自给定的 区间;“任意”即不能用特殊值代替;“都有 ”即只要x1<x2,就必须有f(x1)<f(x2)或f(x1)> f(x2).
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.

高中数学 1.3函数的基本性质教案 新人教版必修1

高中数学 1.3函数的基本性质教案 新人教版必修1

函数的奇偶性教学设计一、教材分析:函数的奇偶性选自《普通高中课程标准实验教科书数学必修1》B版第二章第一节函数的第四小节,安排为一课时。

从在教材中的地位与作用来看,函数是高中数学学习中的重点和难点,函数的思想贯穿整个高中数学。

而函数的奇偶性是函数的重要性质之一,它与现实生活中的对称性密切联系,为接下来学习指数函数、对数函数和幂函数以及三角函数的性质奠定了坚实的基础。

奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。

因此,本节课的内容是十分重要的。

二、概念解析纵观中学数学的函数体系,函数的知识网络象一棵大树:函数的概念是“根”,函数的性质是“干”,函数的重要命题以及基本函数则是树干上生出的主要枝杈。

其中,奇函数与偶函数的性质,它们一方面相互对立,另一方面又相互依存,相互联系和相互贯通。

注意到奇函数与偶函数“本是同根生”的关系,由偶函数性质引出的命题,与由奇函数性质引出的相应的命题,在具有鲜明个性的同时,又会“具有惊人的相似之处”。

认知函数奇偶性的本质,揭示函数图象的对称性与函数之间的联系,审题时便会目光犀利,入骨三分;解题时自然转换灵活,得心应手。

三、学情分析知识结构:学生已经学习过函数、轴对称和中心对称等知识;经历了单调性的定义的形成过程;学生已经学习过了函数单调性的知识,对函数的增减性与图象和解析式只间的关系有了一定认识。

能力结构:通过对函数单调性的学习,学生已经具备了一定的图象分析能力,抽象归纳的能力和语言转换能力。

学生特点:所教班级为昌平三中高一5、6班学生,大多数学生的知识基础比较薄弱,具有一定的观察能力,但抽象归纳能力、逻辑思维能力、计算能力以及语言互化能力等比较欠缺。

四、教学目标及重难点(一)教学目标1.知识与技能目标:通过本节课,使学生从数和形两方面理解奇偶性的概念,掌握判断函数奇偶性的方法;2. 过程与方法目标:通过实例观察、具体函数分析、数形结合、定性与定量的转换,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。

新人教A版必修1高中数学§1.3函数的基本性质学案

新人教A版必修1高中数学§1.3函数的基本性质学案

高中数学 §1.3函数的基本性质学案 新人教A 版必修1学习目标:1. 掌握函数的基本性质(单调性、最大值或最小值、奇偶性);2. 能应用函数的基本性质解决一些问题;3. 学会运用函数图象理解和研究函数的性质.学习难点:函数的基本性质的综合运用学习重点:函数的基本性质(单调性、最大值或最小值、奇偶性);预习案:(复习教材P 27~ P 36,找出疑惑之处)复习1:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?复习2:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?例题剖析:例1判断函数y =x 2-2|x |-3的奇偶性,并作出图象指出单调区间及单调性.例2 已知f (x )是偶函数,且在(0,+∞)上是减函数,判断f (x )的(-∞,0)上的单调性,并给出证明.小结:定义在R 上的奇函数的图象一定经过 . 由图象对称性可以得到,奇函数在关于原点对称区间上单调性 ,偶函数在关于原点对称区间上的单调性例3 已知()f x 是定义在(1,1)-上的减函数,且(2)(3)0f a f a ---<. 求实数a 的取值范围.当堂检测:1、 已知f (x )是奇函数,且在[3,7]是增函数且最大值为4,那么f (x )在[-7,-3]上是 函数,且最 值为 .2、函数2y x bx c =++((,1))x ∈-∞是单调函数时,b 的取值范围 ( ).A .2b ≥-B .2b ≤-C .2b >-D . 2b <-3、下列函数中,在区间(0,2)上为增函数的是( ).A .1y x =-+B .y .245y x x =-+ D .2y x =4、 已知函数y =2ax bx c ++为奇函数,则( ).A. 0a =B. 0b =C. 0c =D. 0a ≠课后作业:1、设()f x 在R 上是奇函数,当x ≥0时,()(1)f x x x =+,画出函数的图象并求出()f x 的表达式是什么?2、判别下列函数的奇偶性:(1)y = (2)y =22(0)(0)x x x x x x ⎧-+>⎪⎨+≤⎪⎩.3、课本第44页8、9、10。

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案

教学准备1. 教学目标求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的定义域;④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用平均不等式求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域;⑨几何意义法:由数形结合,转化斜率、距离等求值域。

2. 教学重点/难点求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的定义域;④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用平均不等式求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域;⑨几何意义法:由数形结合,转化斜率、距离等求值域。

3. 教学用具4. 标签教学过程一.知识点1.函数的值域的定义在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

2.确定函数的值域的原则①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合;②当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合;③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。

3.求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的定义域;④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用平均不等式求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域;⑨几何意义法:由数形结合,转化斜率、距离等求值域。

高中数学《函数的基本性质—最大(小)值》教案3_新人教A版必修1

高中数学《函数的基本性质—最大(小)值》教案3_新人教A版必修1

1.3.1.函数的基本性质--最大(小)值贵州师范大学2013届毕业生 卢 立一、教学目标 1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.(2)理解函数的最大(小)值是在定义域上研究函数.体会函数单调性在求函数最值方面的应用.2.过程与方法借助函数的单调性,结合函数图象,形成函数最值的概念; 培养应用函数的单调性求解函数最值问题.3.情感、态度与价值观在学生获取知识的过程中培养学生的数形结合思想,感知数学问题求解途径与方法,探究的基本技巧,享受成功的快乐. 二、教学重点与难点重点:应用函数单调性求函数大(小)值;难点:理解函数大(小)值的几何意义. 三、过程与方法合作讨论式教学法: 通过师生合作、讨论,在示例分析、探究的过程中,获得最值的概念. 从而掌握应用单调性求函数最值这一基本方法. 四、教学过程 (一)、复习函数的单调 (二)、问题1.函数f (x ) = x 2 ,x 取多少时有最小值?有最大值吗?在( – ∞,0)上是减函数,在[0,+∞)上是增函数. 当x ≤0时,f (x )≥f (0), x ≥0时, f (x )≥f (0). 从而x ∈R. 都有f (x ) ≥f (0).因此x = 0时,f (0)=0是函数值中的最小值. (三)、函数最大值概念:一般地,设函数y = f (x )的定义域为I. 如果存在实数M 满足:(1)对于任意x 都有f (x ) ≤M . (2)存在x 0∈I ,使得f (x 0) = M .那么,称M 是函数y = f (x ) 的最大值.函数最小值概念:一般地:设函数y = f (x )的定义域为I ,如果存在实数M ,满足:(1)对于任意x ∈I ,都有f (x )≥M . (2)存在x 0∈I ,使得f (x 0) = M .那么,称M 是函数y = f (x )的最小值.(四)、例题分析1、例1.例1 “菊花”烟花是最壮观的烟花之一. 制造时一般是期望在它达到最高点时爆裂. 如果烟花距地面的高度h m 与时间t s 之间的关系为h (t ) = – 4.9t 2 + 14.7t + 18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确1m )? 例1解:作出函数h (t ) = – 4.9t 2 + 14.7t + 18的图象(如图). 显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t ) = – 4.9t 2 + 14.7t +18,我们有: 当t =14.72( 4.9)-⨯-=1.5时,函数有最大值h =24( 4.9)1814.74( 4.9)⨯-⨯-⨯-≈29.于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29m.例2.已知函数y =21x -(x ∈[2,6]),求函数的最大值和最小值. 分析:由函数y =21x -(x ∈[2,6])的图象可知,函数y =21x -在区间[2,6]上递减. 所以,函数y =21x -在区间[2,6]的两个端点上分别取得最大值和最小值. 解:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1) – f (x 2) =122211x x --- =21122[(1)(1)](1)(1)x x x x -----=21122()(1)(1)x x x x ---.由2≤x 1<x 2≤6,得x 2 –x 1>0,(x 1–1) (x 2–1)>0,于是 f (x 1) – f (x 2)>0, 即 f (x 1)>f (x 2). 所以,函数y =21x -是区间[2,6]上是减函数. 因此,函数y =21x -在区间[2,6]的两个端点上分别取得最大值与最小值, 即在x =2时取得的最大值,最大值是f (2)= 2,在x = 6时的最小值,最小值是f (6) =0.4.(10分钟)3、小结并布置作业.(1)最值的概念应,(2)用图象和单调性求最值的一般步骤。

函数的基本性质一单调性

函数的基本性质一单调性
取值
定号
变形
作差
判断
1、法二:作商的方法
由x1<x2时, 大于或小 于1来比较f(x1)与f(x2) 的 大小,最后得出结论。
y
x
o
讨论
2、由图象知:函数在 上不具有单调性。
y
x
o
y=kx+b (k>0)
y
x
o
y=kx+b (k<0)
讨论一般性
问题:
1 任取x1,x2∈D,且x1<x2;
01
利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:
5 下结论(即指出函数f(x)在给定的区间D上的单调性).
05
思考?
思考:画出反比例函数的图象. 这个函数的定义域是什么? 它在定义域I上的单调性怎样?证明你的结论.
证明:函数f(x)=1/x 在(0,+∞)上是减函数。
y
o
x
o
y
x
y
o
x
y
o
x
y
o
x
在 增函数 在 减函数
在 增函数 在 减函数
在(-∞,+∞)是减函数
在(-∞,0)和(0,+∞)是减函数
在(-∞,+∞)是增函数
在(-∞,0)和(0,+∞)是增函数
y
o
16

1.增函数
一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.
函数单调性定义
一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间D上是减函数 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性教学设计
一、教材分析:
函数的奇偶性选自《普通高中课程标准实验教科书数学必修1》B版第二章第一节函数的第四小节,安排为一课时。

从在教材中的地位与作用来看,函数是高中数学学习中的重点和难点,函数的思想贯穿整个高中数学。

而函数的奇偶性是函数的重要性质之一,它与现实生活中的对称性密切联系,为接下来学习指数函数、对数函数和幂函数以及三角函数的性质奠定了坚实的基础。

奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。

因此,本节课的内容是十分重要的。

二、概念解析
纵观中学数学的函数体系,函数的知识网络象一棵大树:函数的概念是“根”,函数的性质是“干”,函数的重要命题以及基本函数则是树干上生出的主要枝杈。

其中,奇函数与偶函数的性质,它们一方面相互对立,另一方面又相互依存,相互联系和相互贯通。

注意到奇函数与偶函数“本是同根生”的关系,由偶函数性质引出的命题,与由奇函数性质引出的相应的命题,在具有鲜明个性的同时,又会“具有惊人的相似之处”。

认知函数奇偶性的本质,揭示函数图象的对称性与函数之间的联系,审题时便会目光犀利,入骨三分;解题时自然转换灵活,得心应手。

三、学情分析
知识结构:学生已经学习过函数、轴对称和中心对称等知识;经历了单调性的定义的
形成过程;
学生已经学习过了函数单调性的知识,对函数的增减性与图象和解析式只间的关系有了一定认识。

能力结构:通过对函数单调性的学习,学生已经具备了一定的图象分析能力,抽象归纳的能力和语言转换能力。

学生特点:所教班级为昌平三中高一5、6班学生,大多数学生的知识基础比较薄弱,具有一定的观察能力,但抽象归纳能力、逻辑思维能力、计算能力以及语言互化能力等比较欠缺。

四、教学目标及重难点
(一)教学目标
1.知识与技能目标:
通过本节课,使学生从数和形两方面理解奇偶性的概念,掌握判断函数奇偶性的方法;
2. 过程与方法目标:
通过实例观察、具体函数分析、数形结合、定性与定量的转换,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。

3.情感态度与价值观目标:
在经历概念形成的过程中,培养学生归纳、概括的能力,使学生养成善于观察、用于探索的良好习惯和严谨的科学态度。

(二)重难点
1.重点:函数奇偶性概念的形成和函数奇偶性的判断。

2.难点:形成函数奇偶性概念的过程中,如何从图象对称的直观认识过渡到函数奇偶性的数学符号语言表述。

理解函数奇偶性的概念,掌握判断函数奇偶性的方法。

五、教学方式、教学手段
1.教学方式
通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

2.教学手段
利用多媒体投影和计算机来辅助教学.几何画板从形和数两个方面丰富学生对“对称”概念以及“奇偶性”概念的认识,增强学生的学习兴趣。

六、教学流程图
七、教学过程
(一)创设情境,引入新课
情景1:生活中,哪些几何图形体现着对称美?
情景2:我们学过的函数图象中有没有体现着对称的美呢?
(二)尝试归纳,形成概念
考察下列两个函数:
(1) (2)
思考1:这两个函数的图象有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?
思考3:怎样定义偶函数?
偶函数:设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有 ,且f(-x)=f(x),则这个函数叫做偶函数
学生类比探究
奇函数:设函数y=f(x)的定义域为D。

如果对D内的任意一个x,都有 ,且f(-x)=-f(x),则这个函数叫做奇函数
(三)概念辨析,理解概念
①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个,则也一定是定义域内的一个自变量(即定义域关于原点对称).
③偶函数的图象关于轴对称;奇函数的图象关于原点对称.
思考:函数是偶函数吗?
是奇函数吗?
奇函数定义域是[a,2a+3],则a=_____.
(四)概念应用,例题解析
1.通过例题讲解判断函数奇偶性的方法:先求定义域,后化简,再判断
例:(1)(2)
(3)(4)
让学生按照前来那个例题的求解过程完成(3)和(4)。

2.学生练习,加深理解
3. 试用定义判断下列函数的奇偶性
f(x)=x+1 f(x)=1 f(x)=0
非奇非偶偶函数既奇又偶
小结:根据函数的奇偶性,函数可以分为奇函数、偶函数、非奇非偶函数、既奇又偶函数。

利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定;
③作出相应结论:
若;
若.
(五)归纳小结,布置作业
小结:
1.奇函数和偶函数的概念及图象性质
2.判断函数奇偶性的方法及基本步骤
作业:
1.教材第49页1题
2.补充题:设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+1,求x<0时,f(x)的解析式.
八、教学设计的特点分析
新课程的标准要求,教学过程不仅要重视基础知识教学,更要关注知识形成的过程与方法的教学,同时也要兼顾学生情感态度价值观的培养。

教师要站在系统的高度设计教学,设法让学生积极参与、主动思考,使学生获得不仅仅是知识,更是获取知识的能力。

为了实现本节课的教学目标,
在本节课的设计中通过大生活中对称的例子和学生已掌握的对称函数的图象来创设问题情境,启发学生自主思考,归纳共同点,从而调动学生主体参与的积极性。

在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念,在给出偶函数的定义之后,让学生类比得出奇函数的定义。

在经历概念形成的过程中,培养了学生归纳、概括的能力。

精美句子
1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。

一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。

一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。

8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。

相关文档
最新文档