初中人教版七年级上册数学余角和补角课件PPT

合集下载

【课件】余角和补角++课件人教版七年级数学上册

【课件】余角和补角++课件人教版七年级数学上册

所以∠DOE= ∠BOD=75°.

所以∠COE=∠COD+∠DOE=90°+75°=165°.
②如图②所示,因为∠AOB=90°,∠COD=90°,
∠AOC=30°,
所以∠BOD=30°.
因为OE平分∠BOD,
所以∠DOE=15°.
所以∠COE=∠COD+∠DOE=90°+15°=105°.
故答案为165°或105°.
6.3.3 余角和补角
数学 七年级上册人教版
栏目导航
课堂互动
基 础 题
.
中 档 题
素 养 题
预习导学
1.如果两个角的和等于90°(直角),就说这两个角互为 余角 ,简称两个

互余
;如果两个角的和等于180°(平角),就说这两个角互为
补角
简称两个角
互补
.
2.同角(等角)的余角
相等;同角(等角)的补角 相等 .
解:(1)因为∠BOC=40°,所以∠AOC=140°.
因为 OE 是∠AOC 的平分线,

所以∠AOE= ∠AOC=70°.

(2)题图中与∠COE互余的角有∠COD,∠BOD.
(3)∠COE有补角吗?若有,请把它找出来,并说明理由.
解:(3)∠COE有补角.理由如下:
因为∠AOE=∠COE,∠AOE+∠BOE=180°,
补 角;如果∠3,∠4
知识点2 余角、补角的性质
例2
如图所示,直线AB,CD交于点O,因为∠1+∠3=180°,∠2+∠3=
180°,所以∠1=∠2的依据是(
)C
A.同角的余角相等
B.等角的余角相等

人教版数学七 年级上册4.3.3余角、补角的概念和性质ppt(共17张ppt)

人教版数学七 年级上册4.3.3余角、补角的概念和性质ppt(共17张ppt)

A
动动脑
C
B O
练一练
1、一个角的补角是它的余角的4倍,求这个 角的余角是多少度?
解另:解设:这设个这角个的角度的数余为角x的,度则数依为题x意,得
1则80它的x补角4(可90设为x()x 90) . x x 9060 4x
90 6x0=3300
答答::这这个个角角的的余余角角的的度度数数为为3300。。
余角与补角
学习目标
1、掌握余角与补角的概念和性质,并能熟 练应用性质进行求值运算。 2、会利用方位角来描述物体的方位。
观赏意大利名胜比萨斜塔
1和 2有什么关系?
1
2
1和 2有什么关系?
1
2
3和 4有什么关系?
43
3和 4有什么关系?
43
2 1
4 3
如果两个角的 和为90 ,就说这两个角互为余角。
互余的互角余是的否两一个定角是一锐定角都?是锐角。
3
1
2
4
如果两个角的 和为180 ,就说这两个角互为补角。
一个角的补角是否一定是钝角?
帮找朋友 的余角 的补角
80
10
100
45
70 39'
45
19 21'
90
135
109 2个角AOB ,但人不能进入围 墙,我们如何去测量这个角的大小呢?
B
CB
1 O
2 1
AO 3
A
D
2 3
2和 3都是1的余角,它们有什么关系?
同角的余角相等
例1 1与2互余,3与4互余,如果2=4, 那么1与3相等吗?为什么?
1 2
3 4
等角的余角相等

人教版七年级上册数学4.3.3余角、补角的概念与性质课件(23张ppt)

人教版七年级上册数学4.3.3余角、补角的概念与性质课件(23张ppt)
(简称互余)
2、什么叫互为补角?
如果两个角的和等于 180 ° ,那么这两个角互为补角。
(简称互补)
反之也成立
1、什么叫互为余角?
如果两个角的和等于 90°,那么这两个角互为余角 (简称互余)
几何语言: ∵∠1+∠2 = 90°, ∴∠1、∠2互为余角
2、什么叫互为补角? 如果两个角的和等于 180∠°1,+那∠么2 这= 两90个°角互为补角
180 ° - ∠AOC
= =
180 °- 115 °
65答° :这个角为
60°。90
°-
∠AOD
答:∠ BOC 的度数为 115 °
能力提升
如图,将两块三角板的直角顶点重叠在一起。
AD
C
20°
70 ° 70 °
O 图1 B
AD
C 40 °50°
40 °
O 图2 B
A
x 90C°- x
D
90 °- x
2、如图,点O为直线AB上的一点,OD平分∠AOB,
∠COE = 90 ° , 则∠BOC = ∠DOE ,
∠COD = ∠AOE .
E
D
C
A
O
B
D
C
1 2 34
E
A
O
B
综合运用
方程的思想
1、一个角的补角是它的余角的 4 倍,求这个角?
2、如图,A、O、B三点在一条直线上, 已知∠ AOD=25 ° ,∠COD=90 °, 求∠ BOC的度数?
D
25 ° O
A
B
C
强化练习,巩固提高
2、1已、如知图一∠,个AA、O角DO=、2的5B三°补点,在角∠一是C条OD直它=9线0的上°,余, 角的 4 倍,

人教版七年级数学上册4.余角和补角课件

人教版七年级数学上册4.余角和补角课件
A
D
解:OC平分AOB,
AOC BOC
C O
B
又AOC AOD 180,
BOC BOD 180
AOD BOD(等角的补角相等)
2、如图,EDC CDF 90 , 3 4, 1和2相等吗?为什么?
解:1 3 90, 2 4 90 3 4 1 2(等角的余角相等)
例1.如图,A,O,B在同一直线上,射线OD 和射线OE分别平分∠AOC和∠BOC,图中哪 些角互为余角?
探究 22:.已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,
那么∠2和∠4 有什么关系?为什么?
1
2
3
4
等角的补角相等.
归纳
补角的性质: 同角(等角 ) 的补角相 等.
探究3:
已知∠AOC=90°,∠BOD=90°,说出∠AOB的余角?
∠AOB的余角间有什么关系? C
B
∠BOC=∠AOD=90°-∠AOB O
若一个角的补角等于它的余角的4倍, 求这个角的度数。
解:设这个角的度数是 x ° ,
180-x = 4(90-x) x = 60
答:这个角的度数是60 °。
合作探究:
1、如图,已知 AO,B 利用直尺在图中画
出 AOB的补角?
A
2. AOB 的补角间有什么关系?
3.你能得到什么结论?
O
B
同角的补角相等.
32
4
1
如图,有两堵墙,小明想测量底面上所形成的 ∠AOB的度数,但他又不能进入围墙,只能站在 墙外,你能帮助他完成测量吗?
B B
O
O
这节课你收获了什么?
A
D
同角的余角相等.
探究 4:

人教版七年级数学上册《余角和补角》课件

人教版七年级数学上册《余角和补角》课件
那么∠2=∠4吗?
因为∠1+∠2= 90° ,
°
∠3+∠4= 90 ,
且∠1=∠3,
所以∠2=∠4.
等角的余角相等.
探索新知
如果∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那
么∠2=∠4吗?
∠2=∠4.
如何证明?
探索新知
已知:∠1与∠2互补,∠3与∠4互补,且∠1=∠3,
求证:∠2=∠4.
证明:因为∠1与∠2互补,
如果两个角的和等于180º(平角),就说这
两个角互为补角,即其中一个角是另一个角的补角.
性质:同角(等角)的余角相等.
同角(等角)的补角相等.
作业:
1. 完成习题4.3中第8,
9题;
2.完成练习册本课时的
习题。
谢谢
21世纪教育网(www.21cnjyX)
中小学教育资源网站
兼职招聘:
https://www.21cnjyX/recruitment/home/admin
方向上,同时,在它北偏东40°、南偏西10°、西北(即北偏西
45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔
方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.
D
西
北40° B
45°
O


60°
10°

A
巩固练习
练习1. 已知∠α=53°27′, ∠α与∠β互为余角,求∠β​​的度数
.
解: 因为∠与∠互为余角(已知),
所以∠ + ∠ = 90°(余角定义),
所以∠ = 90°-∠.
因为∠=53°27′,

所以∠​​ = 90°-​∠​=90°-53°27

人教版数学七年级上册4.余角和补角课件

人教版数学七年级上册4.余角和补角课件

16 . (8 分 ) 如 图 , 已 知 直 线 AB 和 CD 相 交 于 点 O , OM 平 分 ∠ BOD , ON⊥OM,∠AOC=50°. (1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2)∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC=2∠AOF, ∠BOC=2∠BOE. (1)∠1与∠2互余吗?
解:如图:
19.(12分)如图甲所示,∠AOB,∠COD都是直角. (1)试猜想∠AOD与∠COB在数量上是相等、互余、还是互补的关 系,你能用推理的方法说明你的猜想是否成立吗? (2)当∠COD绕点O旋转到图乙的位置时,你本来的猜想还成立吗?
方位的表示方法
在表示方向时,要先在观测点画出方位图,然后测量出角度并在图 上表示出来,注意表示时要先写北还是南,再写偏东或偏西,偏多
少度,如图4-3-28,OA是表示北偏东30°的 一条射线,OB是表示南偏西50°的一条射线; 特别地,射线OC表示北偏西45°可写成西北 方向,OD表示东南方向.
例题
小结
1. 余角和补角的定义:
如果两个角的和等于
,就说这两个角互为余角;如果两个
角的和为
,就说这两个角互为补角.
2. 余角和补角的性质: 同角(等角)的补角________,同角(等角)的余角_________.
3. 如图,O是直线AB上的点,OC是∠AOB的平分线. (1)∠AOD的补角是__∠__B_O__D___,余角是__∠__C_O__D__; (2)∠DOB的补角是__∠__A__O_D_____. 4. 已 知 ∠ α = 20° , 则 ∠ α 的 余 角 为 _______70,° ∠ α 的 补 角 为 ______1_6_0.° 5. ∠A的补角为130°,则∠A的余角为________4.0°

6.3.3 余角和补角 课件 人教版数学七年级上册

6.3.3 余角和补角   课件  人教版数学七年级上册
∴∠BOC+∠AOE=90°.
∵∠BOC∶∠AOE=3∶1,

∴∠BOC= ×90°=67.5°.

又∵∠BOD=90°,
∴∠COD=90°-67.5°=22.5°.
(2)图中有哪几对角互为余角?
(2)∠COB与∠COD,∠COB与∠AOE,
∠DOE与∠COD,∠DOE与∠AOE.
(3)图中有哪几对角互为补角?

3.若一个角的余角是它的补角的 ,则这个角的补角是

( D )
A.30° B.60° C.120° D.150°
4.(1)已知∠α=24°30',则它的余角等于
65°30' ;

(2)一个角的余角比这个角的补角的 还小10°,求这个

Байду номын сангаас
角的余角及这个角的补角.
解:设这个角为x°,则这个角的余角为(90-x)°,这


∴∠BOE=∠COE+∠BOC=54°+72°=126°.
因为∠1+∠2=90°,
∠3+∠2=90°,
所以∠1=∠3.
等角的补角相等:
因为∠1+∠2=180°,
∠3+∠4=180°,
∠1=∠3,
所以∠2=∠4.
注意:①互余、互补指的是两个角的数量关系,互余、
互补的两个角只与它们的和有关,而与它们的位置无
关.
②一般地,锐角α的余角可以表示为(90°-α),一个
(3)∠AOC与∠BOC,∠AOC与∠DOE,
∠AOE与∠BOE,∠DOC与∠BOE,
∠AOD与∠BOD,∠AOD与∠EOC,
∠BOD与∠EOC.

人教版七年级数学上册PPT优秀课件-..余角和补角PPT优秀课件

人教版七年级数学上册PPT优秀课件-..余角和补角PPT优秀课件

人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件 人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件
人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件 人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件
人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件 人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件
人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件 人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件
人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件 人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件
人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件 人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件
人教版七年级数学上册教学课件-4.3. 3余角 和补角 人教版七年级数学上册教学课件-4.3. 3余角 和补角
人教版七年级数学上册教学课件-4.3. 3余角 和补角 人教版七年级数学上册教学课件-4.3. 3余角 和补角
人教版七年级数学上册教学课件-4.3. 3余角 和补角 人教版七年级数学上册教学课件-4.3. 3余角 和补角
人教版七年级数学上册P教PT学优课秀件课-4件.3-. 3.余角 和补角P PT优秀 课件 人教版七 和补角P PT优秀 课件

6.3.3 余角和补角 课件(共21张PPT) 人教版七年级数学上册

6.3.3   余角和补角 课件(共21张PPT)  人教版七年级数学上册
请同学们完成课本177页练习2,3题.
小组展示
我提问
我回答
我补充
我质疑
提疑惑:你有什么疑惑?
越展越优秀
1.余角:(1)定义:如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角.(2)数学语言:若∠1+∠2=90°,则说∠1是∠2的余角或∠2是∠1的余角或∠1与∠2互余.
1.我们学习了哪些知识?
余角
补角
定义
如果两个角的和为90°,就说这两个角互余,其中一个角是另一个角的余角
如果两个角的和为180°,就说这两个角互补,其中一个角是另一个角的补角
性质
同角(等角)的余角相等
同角(等角)的补角相等
常见图形
作用
说明两个角相等的重要依据
2.用到了哪些方法和思想?
知识点2:余角和补角的性质(难点)
【题型一】余角和补角的定义
例1:若∠A=23°,则∠A的余角的度数是( ) A.57° B.67° C.77° D.157°
B
变式:已知一个角的余角是这个角的补角的 ,求这个角的度数以及这个角的余角和补角的度数.
例2:如图所示,直线AB,CD相交于点O,因为∠1+∠3= 180°,∠2+∠3=180°,所以∠1=∠2.其推理依据是( )A.同角的余角相等 B.等角的余角相等C.同角的补角相等 D.等角的补角相等
请同学们准备一张长方形纸片,沿一个角折叠后,找出折痕与长方形的边形成的角。例:如图长方形纸片的折痕与长方形的边形成了4个角,思考:(1)∠1与∠2有什么数量关系?(2)∠3与∠4有什么数量关系?
活动导入
同学们,你们打过台球吗?请同学们观看一段视频:
视频导入

6.3.3 余角和补角(课件)人教版(2024)数学七年级上册

6.3.3 余角和补角(课件)人教版(2024)数学七年级上册

等角的补角相等
归纳:
类型
性质
数学语言
余角
①如果∠1+∠2=90°,∠1+∠3=90°,
同角(等角) 那么∠2=∠3; 的余角相等 ②如果∠1+∠2=90°,∠3+∠4=90°,
且∠1=∠3,那么∠2=∠4
补角
①如果∠1+∠2=180°,∠1+∠3=180°, 同角(等角) 那么∠2=∠3;
的补角相等 ②如果∠1+∠2=180°,∠3+∠4=180°, 且∠1=∠3,那么∠2=∠4
所以∠3= 180°-∠1, 根据等式的性质,∠2=∠3.
同角的补角相等
思考4:已知:∠1与∠2互为补角,∠3与∠4互为补角, 如果∠1=∠3,那么∠2与∠4相等吗?为什么?
解:因为∠1与∠2互为补角,
所以∠2= 180°-∠1,
又∠3与∠4互为补角,
所以∠4= 180°-∠3,
因为∠1=∠3 根据等式的性质,∠2=∠4.
解:它的余角是 19°21′,补角是 109°21′.
【选自教材P177 练习 第3题】
5. ∠α的补角是它的3倍,∠α是多少度?
解:设∠α= x.则 3x=180°-x,解得 x=45°.所以∠α是 45°
【选自教材P177 练习 第4题】
6.如图,要测量两堵围墙所形成的∠AOB的度数,但人不 能进入围墙,如何测量?
【选自教材P177 练习 第1题】
3.图中给出的各角中,哪些互为余角?哪些互为补角?
解:互为余角的角是 10°和 80°、30°和 60°,互 为补角的角是10°和 170°、30°和 150°、60°和 120°、80°和 100°.
【选自教材P177 练习 第2题】

人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件

人教版七年级数学上  4.3.3《余角和补角》课件(共18张PPT)课件

理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m

人教版数学七年级上册4.3余角与补角-课件

人教版数学七年级上册4.3余角与补角-课件
6、一个锐角为X度 ,它的余角为(_9_0_-__X_) 度 ,它的补角为(_1_8_0__-__X)度,则它的补角比 余角大_9_0_度.
余角的性质
探究1
等角的余角相等
如图∠1 与∠2互余,∠3 与∠4互余 ,如 果∠1=∠3,那么∠2与∠4相等吗?为什么?
答:∠2与∠4相等。 理由如下:
∵ ∠1 与∠2互余,∴ ∠2=90°-∠1 , ∵ ∠3与∠4互余 ,∴ ∠4=90°-∠3
几何语言表示为:
若∠1+∠2=180°,则∠1与∠2互为
补角
∠1 = 180°—∠2
反过来说也成立:若∠1与∠2互为补角, 那么∠1+∠2=180°
图中给出的各角,那些互为补角?
10o
30o
60o
80o
100o
120o
150o
170o
练一练
判断题:
1、如果一个角有补角,那么这个角一定是
钝角( )
(1) 等角的余角相等; (2) 等角的补角相等;
请认真观察下图,回答下列问题:
(1)图中有哪几对互余的角?
C
∠A+∠B=90°
∠A+∠2=90°
2
∠1+∠B=90° ∠1+∠2=90° A
DB
(2)图中哪几对角是相等的角(直角除外)? 为什么?
∠B=∠2 (同角的余角相等) ∠A=∠1 (同角的余角相等)
A
C
A
B
2 AOB=∠O2=1800-∠1
C
1
B
O
3、若一个角的补角等于它的余角的4 倍, 求这个角的度数。
解: 设这个角是x度,则它的补角是 ( 180-x)度,余角是(90-x) 度。根据 题意,得:180-x= 4 (90-x)

人教版七年级数学上册《余角和补角》课件(共21张PPT)

人教版七年级数学上册《余角和补角》课件(共21张PPT)
=27°28′
∠ 的补角=180o -∠ ∠ 的补角=180o - 62°32′
=117°28′ 答:这个角的余角为27°28′,补角117°28′。
2、余角和补角的性质。
(1)余角的基本性质:
∠ 的余角=90°- ∠
∠ 的余角=90°- ∠
若∠ = ∠
则90°- ∠ =90°- ∠
AC
解:∠BOC=∠AOB -∠AOC =90°- ∠AOC
D
∠AOD= ∠AOB -∠BOD
B
=90°- ∠AOC
O
例4、如图∠AOC= ∠BOC=∠DOE=90°,则 图中与∠3互余的角是__∠__2_, _∠__4_, 图中与∠4互余的角是_∠__3_, __∠__1_, 图中有与∠3互补的角吗?_∠__B_O__D___.
答:这个角是60°.
练习2、(1)如果∠的余角是∠的2
倍,求 ∠的度数。
(2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠的余角是∠的2 倍, 求 ∠的度数。
解:设∠的度数为x度,则 ∠的余
角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
x=30(度)
答:∠ 的度数为30度。
即∠ 的余角= ∠ 的余角
同角或等角的余角相等。
图形一
(2)补角的基本性质:
∠ 的补角= 180o -∠
∠ 的补角= 180o -∠
若∠=∠
则 180o -∠=180o -∠
即∠ 的补角= ∠的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠, 问有哪两个锐角相等?
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7

人教版七年级数学上册 6.3.3 余角和补角 PPT

人教版七年级数学上册  6.3.3 余角和补角  PPT

合作探究
(1) 若∠1与∠2,∠3都互为补角,∠2与∠3的大小有什么关系? (2) 若∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那么∠2与∠4的大小有 什么关系?
我们得到关于补角的一个性质: 同角(等角)的补角相等.
对于余角也有类似的性质: 同角(等角)的余角相等.
迁移应用
重点
迁移应用
1.若∠ α =29°45′,则∠ α的余角等于( B )
迁移应用
难点
例4.如图,已知∠AOB和∠COD都是∠BOC的余角,OE,OF分别为∠AOB和∠COD 的平分线,且∠AOD=130°. (1)求∠BOC的度数;(2)求∠EOF的度数.
迁移应用 1.如图,∠AOB和∠AOD分别是∠AOC的余角和补角,且OC是∠BOD的平分线, 求∠COD的度数.
故这个锐角的度数为45°.
迁移应用
重点
例2: 如图6.3-15,点A,O,B在同一条直线上,射线 OD 和射线 OE 分别平分∠AOC 和∠BOC.图中哪些角互为余角?
迁移应用
1.已知∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那么( C )
A.∠2>∠4 B.∠2<∠4 C.∠2=∠4 D.∠2与∠4的大小不确定
解:如图②所示,点A为少年宫的位置.
迁移应用
如图,点O是学校所在位置,A村位于学校南偏东42°方向上,B村位于学校北 偏东25°方向上,C村位于学校北偏西65°方向上,在B村和C村之间有一条公 路OE(射线)平分∠BOC. (1)求∠AOE的度数. (2)公路OE上的车站D相对于学校0的方位是什么? (以正北、正南方向为基准)
3.如图,已知射线OA与射线OB的夹角为90°, 射线0A表示北偏西25°的方
向,则射线OB表示的方向为___北__偏__东__6_5_°___.

6.3.3 余角和补角课件人教版数学七年级上册

6.3.3 余角和补角课件人教版数学七年级上册

由题意得,90°-x=14(180°-x). 所以x=60°.
所以这个角的度数是60°.
知识点 余角、补角的性质及计算
1.如果∠1和∠2互为补角,且∠1>∠2,那么∠2的余角为 ( D )
A.12(180°-∠1)
B.12∠1
C.12(∠1+∠2)
D.12(∠1-∠2)
【解析】因为12(∠1-∠2)+∠2=12(∠1+∠2)=90°,所以∠2的余角为12(∠1-∠2).
【解析】180°-46°35'
=179°60'-46°35'
=133°25'.
4.如果∠α和2∠β互补,且∠α<2∠β,给出下列四个式子:①90°-∠α;②2∠β-90°;
③∠β-12∠α;④∠β+12∠α.其中可以表示∠α余角的式子有( ) B
A.4个
B.3个
C.2个
D.1个
【解析】因为∠α与2∠β互补,
5.如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,则 ∠COE的余角是_____∠_C__O_D__,∠__A_O_D___. 【解析】因为射线OD和射线OE分别平分∠AOC和∠BOC, 所以∠AOD=∠COD=12∠AOC,∠COE=∠BOE=12∠BOC. 因为∠AOC+∠BOC=180°, 所以∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°, 所以∠COE+∠AOD=90°, 所以∠COE的余角是∠COD,∠AOD.
(2)因为OE平分∠BOD,OF平分∠AOC, 所以∠DOE=∠EOB=12∠BOD, ∠COF=∠FOA=12∠AOC. 因为∠AOD=k∠BOC,∠EOF=14∠BOC, 即∠BOC=4∠EOF, 所以∠AOD=4k∠EOF. 因为∠BOC=∠BOD+∠AOC-∠AOD,∠BOD=2∠BOE,∠AOC=2∠COF, ∠BOE+∠COF-∠BOC=∠EOF, 所以4∠EOF=2(∠EOF+4∠EOF)-4k∠EOF,k=32.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此 录入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此 录入上述图表的综合描述说明。
您的内容打在这里,或者通过复制您 的文本 后,在 此框中 选择粘 贴,并 选择只 保留文 字。在 此录入 上述图 表的综 合描述 说明。 您的内容打在这里,或者通过复制您 的文本 后,在 此框中 选择粘 贴,并 选择只 保留文 字。在 此录入 上述图 表的综 合描述 说明。

●B
40°
西
●O

60°
C ●10°
●A

练一练
费俊龙、聂海胜乘坐”神舟”六号遨游太空时,我国当时 派出远望一号~四号船队,跟踪检测,其中远望一、二号停在太 平洋洋面上,某一时刻,分别测得神舟六号在北偏东●60°和 北偏东30°的方向,你能在下图中画出当时神舟六号所处的 位置吗?
60 ●°
远望一号
B 西
C
北 A
40°
65
O° 70

45 20° °°
南D
例4 如图,货轮O在航行过程中,发现灯塔A在它南
偏东60°的方向上.同时,在它北偏东40°,南偏西10°,
西北(即北偏西45°)方向上又分别发现了客轮B,货轮
C和海岛D.仿照表示灯塔方位 的方法画出表示客轮B,货 ● D 轮C和海岛D方向的射线.
(2)西北方向:__射__线__O_E__
A东
西南方向:__射__线__O_F__
东南方向:__射__线__O_G__
东北方向:__射__线__O_H__ G
例3. 如图,说出下列方位 (1)射线OA表示的方向 为 北偏东40.° (2)射线OB表示的方向 为 北__偏_ 西6_5°. (3)射线OC表示的方向 为_南__偏_ 西4_5.°(西南) (4)射线OD表示的方向 为_南__偏_ 东_2_0.°
观察可得结论: 同一个锐角的补角比它的余角大___9_0_°___.
二 余角和补角的性质
思考: ∠1与∠2,∠3都互为补角, ∠2与∠3的大小有什么关系?
1
2
结论:
∠2=180°-∠1
同角(等角)的补角相等
类似的可以得到:
同角(等角)的与角相等
3 ∠3=180°-∠1
例2 如图,点A,O,B在同一直线 D
O
课堂小结
两角间的 数量关系
互余
1 2 90
(1 90 2)
互补
1 2 180 (1 180 2)
对应图形
性质
同角或等角的 余角相等
同角或等角的 补角相等
以下赠品教育通用模板
前言
您的内容打在这里,或者通过复制您 的文本 后,在 此框中 选择粘 贴,并 选择只 保留文 字。在 此录入 上述图 表的综 合描述 说明。 您的内 容打在 这里, 或者通 过复制 您的文 本后, 在此框 中选择 粘贴, 并选择 只保留 文字。 在此录 入上述 图表的 综合描 述说明 。 您的内容打在这里,或者通过复制您 的文本 后,在 此框中 选择粘 贴,并 选择只 保留文 字。在 此录入 上述图 表的综 合描述 说明。 您的内 容打在 这里, 或者通 过复制 您的文 本后。
与2互余,1=(6x 8) , 2 (4x 8) , 则1 _6_2_°__, 2 _2_8_°__ .
2.如图, ∠COD= ∠EOD=90°, C、O、E在一条直 线上, 且∠2= ∠4, 请说出∠1与∠3之间的关系?并试着 说明理由?
∠1与∠3相等(等角的余角相等).
C
上,射线OD和射线OE分别平分∠AOC
E
和∠BOC,图中哪些角互为余角?
A
O
B
解:因为点A,O,B在同一直线上,
所以∠AOC和∠BOC互为补角.
又因为射线OD和射线OE分别平分∠AOC和∠BOC,
所以∠COD+∠COE=1/2∠AOC+1/2∠BOC
=1/2(∠AOC+∠BOC)=90°.
所以∠COD和∠COE互为余角,
根据题意,得 180°-x°= 4 (90°-x°) 解得 x=60
答:这个角的度数是60 °.
做一做
∠α 5° 32° 45° 77° 62°23′ x°(x<90)
∠α的余角 85° 58° 45° 13° 27°37′ 90° x°
∠α的补角 175°
148° 135° 103° 117°37′ 180° x°
3 1
讲授新课
一 余角和补角的概念
2
1
定义: 如果两个角的和等于90°(直角),就说这两个角
互为余角(简称互余). 如图,可以说∠1是∠2的余角或∠2是∠1的余角.
图中给出的各角,那些互为余角?
15o
24o
46.2o
75o
66o
43.8o
4
定义: 如果两个角的和等于180°(平角),就说这两个
角互为补角(简称互补).
3 如图,可以说∠3是∠4的余角或∠4是∠3的补角.
图中给出的各角,那些互为补角?
10o
30o
60o
80o
100o
120o
150o
170o
典例精析
例1. 若一个角的补角等于它的余角的4 倍, 求这个角的度数.
解:设这个角是x°,则它的补角是(180° -x°),余角是(90°-x°) .
七年级数学上(RJ) 教学课件
第四章 图形初步认识
4.3 角
4.3.3 余角和补角
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解余角、补角的概念,掌握余角和补角的形质.(重点) 2.了解方位角,并能用方位角知识解决一些简单的实际问 题.(难点)
导入新课
情境引入
2
比 萨 斜 塔
1
比 萨 斜 塔
同理∠AOD和∠0BOE,∠AOD和∠COE,
∠AOD和∠BOE也互为余角.
练一练
如图,已知∠AOB=90°, ∠AOC= ∠BOD, 则与∠AOC互余的角有__∠__B_O_C__和__∠__A__O_D___.
AC D
B O
三 方位角
北 D
E
45° 45°
西
C
O
F
B

八大方位
H (1)正东,正南,正西,正北 射线 OA OB OC OD
目录
01
单击添加标题
02
单击添加标题
03
单击添加标题
04
单击添加标题
01 点击添加文字
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此 录入上述图表的综合描述说明。
点击此处添加标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。在此 录入上述图表的综合描述说明。
相关文档
最新文档