等比数列求和ppt-沪教版PPT优选课件

合集下载

等比数列求和公式PPT教学课件

等比数列求和公式PPT教学课件

解:当x≠0,x≠1,y≠1时
(x 1 ) (x2 1 ) ... (xn 1 )yΒιβλιοθήκη y2yn(x
x2
...
xn
)
(1 y
1 y2
...
1 yn
)
x(1 xn ) 1 x
1 y
(1
1 yn
)
1 1
y
x xn1 1x
yn 1 yn1 yn
练习: 求下式的和
(2 35) (4 352 ) (6 353) ... (2n 35n )
=a1+q(a1+a1q+…+a1qn-2)
=a1+q(Sn-an)
sn
a1 anq 1q
当公比q 1时,Sn na1
Sn
a1
(1 q 1 q
n
)
(q
1)
na1(q 1)
an a1qn1
Sn
a1 anq 1 q
(q
1) .
na1(q 1)
Sn
a1
(1 q 1q
n
)
(q
(1) (2)
(2) (1)得:1 q2n
1 qn
82
1 q2n 821 qn 82 1 qn
qn 81 q 1
a1 0, q 1 {an}是递增数列
an 54
a1q n1
54
a1 q
qn
54
a1
2 3
q由 a1(1 81) 1 q
80得:
a1 2,q 3
例4:已知Sn是等比数列{an }的前n项和, S3, S9 , S6成等差数列,
求证:a , a , a 成等差数列。 285

等比数列求和(1)PPT课件

等比数列求和(1)PPT课件
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
例题 分析
例3:求和: Sn 1 a a2 a3 an1(a 0)
解: ①当a=1时,Sn 11 1 n
n个1
②当a≠1时,
1• (1 an ) 1 an
Sn
1 a
1 a
n
(a 1)
学以
致用
Sn
1 an
1 a
(a 1)
求和:(x
1) (x2 y
1 y2
)
(
x
n
1 yn

上式有何特点?
求和首先就是要消去… …,如何消呢?
如果①式两边同乘以2得
2S64=2+22+23+···+263+264 ② 分析、 比较①、②两式,有什么特征?
两式有很多项完全相同
你有什么办法消去这些相同项?所得结论如何?
错位相减法﹗
S64 1 2 22 23 263. (1)
2S64 2(1 2 22 23 263).
⑴即-⑵2S同64 学 2们能22否给23这种求 2和63方法26取4. 一个(名2)字 S64 2S64 1 264

等比数列求和公式的推导与应用PPT

等比数列求和公式的推导与应用PPT
公比对等比数列求和有影响 当公比为1时,等比数列为常数列,其和等于首项与末项之差 等比数列求和公式推导 利用错位相减法,将等比数列的和表示为无穷级数,然后通过数学运算进 行化简得到 应用公比调整等比数列和 根据实际问题,适当调整公比,可以更准确地计算等比数列的和
02
等比数列求和公式的推导 过程
利用错位相减法进行推导
错位相减法的基本原理
将一个数列分为两部分,分别求和后再 相减,得到新的数列。
等比数列的特性
若一个数列为等比数列,则任意两项之比为公比且 不为零。
错位相减法的应用
利用错位相减法,可以简化等比数列的 求和运算。
利用等比中项的性质进行推导
定义等比数列 等比数列是一种数列,其中任意两个连续项的比都是相同的常数。 等比中项性质 若a、b、c成等比数列,则a^2=bc。 求和公式推导 根据等比数列求和公式Sn=a1(1-q^n)/(1-q),将等比中项性质a^2=bc代入可得。 应用实例 例如,对于等比数列{1,2,4,8,...},当q=2时,求其前五项之和为31。
01
等比数列基本概念与性质
定义与通项公式
等比数列求和公式 等比数列求和公式为S=a1(1-q^n)/(1-q),其中a1是首项,q是公比,n是项数。 应用定义 等比数列的应用广泛,例如在金融领域,复利计算就基于等比数列的求和公式。
等比中项与等比数列的判定
01
02
03
04
等比数列定义明确
等比数列是每一项与它 前一项的比为同一常数, 这个常数称为公比。
在实际Байду номын сангаас活中的应用
等比数列求和公式的推导 通过等差数列与等比数列的关系,将复杂的等比数列问题转化为简单的等差数列问题,简化了计算过程。 生活中的应用:金融投资 在复利投资中,投资收益的计算就是一个典型的等比数列求和问题。假设年化收益率为p,初始投资额为A,投资n年,总收益S=A(1+p)^n。 生活中的应用:细菌繁殖 细菌繁殖是典型的指数增长模型,即每次繁殖后的数量为上一次的k倍,可以用等比数列求和公式来预测n代后的总数量。

等差和等比数列的通项及求和公式PPT教学课件(1)

等差和等比数列的通项及求和公式PPT教学课件(1)

an
SS1n
S n 1
n n
1 2
3.在等差(比)数列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S(k-1)n… 成等差(比)数列.其中Sn为前n项的和.
返回
课前热身
1.在某报《自测健康状况》的报道中,自测血压结果与相应 年龄的统计数据如下表,观察表中数据的特点,用适当的数 填入表中空白( )内.
S’n .
【解题回顾】
一般地,数列{an}与数列{|an|}的前n项和Sn与Sn:当ak≥0 时,有 Sn Sn;当ak<0时,Sn Sn ( k =1,2,…,n).若在
a1,a2,…,an中,有一些项不小于零,而其余各项均小于零 ,设其和分别为S+、S-,则有Sn=S++S-,所以
Sn S S 2S Sn Sn 2S
He can play football, play table tennis, ride a bike and speak English.
What can’t Tony do?
He can’t swim . He can’t speak Chinese.
Listen and repeat
Betty can play the piano. Tony can play table tennis.
年龄(岁) 收缩压(水银柱 毫米) 舒张压(水银柱 毫米)
30 35 40 45 50 55 110 115 120 125 130 135 70 73 75 78 80 83
60 65 ( 140) 145
( 85 ) 88
2.已知等差数列{an}的前n项和为Sn,若a4=18-a5,则S8等 于( D )
Sports

等比数列求和公式及性质课件PPT

等比数列求和公式及性质课件PPT
的符号相反。
公比为负数的等比数列求和公式: S = a_1 * (1 - q^n) / (1 - q)
公比为负数的等比数列具有特殊 的性质,如对称性、周期性等。
公比为1的性质
当公比q=1时,等比 数列退化为等差数列, 各项相等。
公比为1的等比数列 具有特殊的性质,如 对称性、周期性等。
公比为1的等比数列 求和公式:S = n * a_1
研究电磁波的传播特性
在研究电磁波的传播特性时,常常需要用到等比 数列求和公式来求解与波动相关的数学模型。
在经济中的应用
分析股票价格波动
评估投资回报
在股票市场中,股票价格常常呈现一 定的波动规律,利用等比数列求和公 式可以分析股票价格的波动规律。
在投资领域中,利用等比数列求和公 式可以评估投资回报的长期收益,为 投资者提供参考。
4. 在等比数列中,两个相同项之间的项数可以确定为n, 那么这两项之间的所有项的和可以表示为a_n * (q^n - 1) / (q - 1)。
等比数列的通项公式
总结词
等比数列的通项公式是用来表示等比数列中每一项的数学表达式。
详细描述
等比数列的通项公式为a_n = a_1 * q^(n-1),其中a_1是首项,q是公比,n是 项数。这个公式可以用来计算等比数列中的任何一项,只要知道首项、公比和 项数。
差数列、等比数列的性质、通项公式等。
在物理中的应用
1 2 3
解决与周期性运动相关的问题
等比数列求和公式在物理学中有广泛的应用,如 求解与周期性运动相关的问题,如简谐运动、波 动等。
分析量子力学中的概率幅
在量子力学中,概率幅常常以等比数列的形式出 现,利用等比数列求和公式可以方便地计算出概 率幅之和。

等比数列的求和公式第一课时ppt

等比数列的求和公式第一课时ppt

11 2n 1 2
n 1
×
1 2 4 8 16 ( 2)

1 1 2n 1 2
×
a a (3)a
n个
例1、已知 a n 是等比数列,求出下列各量
1 1 (1)已知 a1 2 , q 2 , n 5 ,求
(1 q)Sn a1 a1q
n
n
a a q a ( 1 q ) 1 n 当q≠1时, S 1 n 1 q 1 q

等比数列an 的前n项和需要进行分类讨论 当q=1时,等比数列an an 0 为一个常数 列,前n项的和 Sn na1
a1 (1 q n ) 当q≠1时, Sn 1 q
a1 1 q n q 1 Sn 1 q na q 1 1
a1 an q 1 q Sn na 1 q 1 q 1
判断下列数列 an 的求和是否正确
( 1) 1 2 2 2
2n
2
乘公比 错位相减
等比数列的 前n项和公式
q≠1,q=1 分类讨论
数学 源于生活
数学 用于生活
a1 a n q a1 (1 q n ) q 1 1q 1 q Sn 或 Sn na na q 1 1 1
知三求二 方 程 思 想
q 1 q 1
3 a3 例2、已知在等比数列an 中, 2 1
S 3 4 ,求 a 1 2
思考:
1 1 1 1 求数列 1 , 2 , 3 , 4 , 的前n项的和. 2 4 8 16
• 例3.在等比数列 an 中,a1 an 66 , • a2 an1 128 且 sn 126 ,求项数 • n 和公比 q

高一数学等比数列求和2(PPT)3-1

高一数学等比数列求和2(PPT)3-1
则有am an ap aq
木卫二(Europa):希腊神话中腓尼基(Phoenicia)公主欧罗巴(Europa),阿革诺耳(Agenor)的女儿。大神宙斯(Zeus)化作一头白色的公牛将 其劫至克里特岛(Crete),并与她生下了三个儿子:弥诺斯(Minos)、拉达曼堤斯(Rhadamanthys)和萨耳佩冬(Sarpedon)。欧罗巴是希腊神话 中的一位美丽的腓尼基公主,其他三颗伽利略卫星也被马里乌斯以希腊神话人物分别命名为伊奥(Io,木卫一)、盖尼米德(Ganymede,木卫三)和卡利 斯托(Callisto,木卫四),这四个人物皆以俊美著称。但是在世纪中叶以前,相当长的一段时期内,这一套命名并未被天文学家所认可。早期的文献中多 以位置编号将“欧罗巴”称作“木卫二”。89年发现了木卫五,比之前已知的所有木星卫星都更靠内。979年旅行者号探测器又发现了三颗内侧卫星,至此, “欧罗巴”的位置排到了第六。尽管如此,编号名仍然; / ;承袭下来,并偶有使用中文因对音等问题,亦通行以“木 卫二”指称“Europa”。行星特征编辑组成木卫二与木卫一的组成与类地行星相似:主要由硅酸盐岩石组四颗伽利略卫星四颗伽利略卫星成。但是与木卫一 不同,木卫二有一个薄薄的冰外壳。从伽利略号发回的数据表明木卫二有内部分层结构,并可能有一个小型金属内核。但是木卫二的表面不像一个内层太阳 系的东西,它极度的光滑:只能看到极少的数百米高的地形。凸出的记号看来只是反照率特性或是一些不大的起伏。外观木卫二的表面照片与地球海洋上的 冰的照片相似。这可木卫二十字纹木卫二十字纹能是因为木卫二表面的冰以下有一层液态的水,或许有千米深,由引潮力带来的热量保持液态。若假设成立, 这将是除地球之外,太阳系中唯一一个有大量的液态水存在的地方。木卫二最醒目的外观是遍布全球的一串串十字条纹。较大的一个向外扩散到淡色物质地 带,长近千米。最近的有关它们的起源理论是:它们由一连串火山喷出物或喷泉产生。来自伽利略号两次接近木卫二发回的看来验证了早期的理论:木卫二 上的环形山很少,只发现三个直径大于千米的环形山。这表明它有一个年轻又活跃的表面。然而,旅行者号做了一小部分的表面高清晰度地图,木卫二的表 面精确年龄是一个悬而未决问题。[]但一些活动很显然正在发生,有些区域看来很像春天到来时两极海洋处冰块融化的情景。木卫二表面和内部的确切性质 还不很清楚,但有一个表面“海洋”的确切证据。木卫二是太阳系中另一颗与众不同的卫星。木卫二是太阳系中最。

等比数列求和公式PPT教学课件(1)

等比数列求和公式PPT教学课件(1)
拉余着强我一饮同三喝酒大。我白勉而强喝别了。三大杯就告别。
问问他其们姓的姓氏名,,原是是金金陵陵人在人此,地作客客此。 。
及下船,舟子喃喃曰:“莫说相公痴,更有痴似相 公我走者上。自己”船的时候,替我驾船的人喃喃自语地说:“不要说先生痴,还有像你一样
痴的人 。”
思考:
叙事是本文的线索,请同学们在文中找出记叙文 的要素——看雪的时间、目的地、人物、事件?
解:由已知,每年的产量组成了一个首 项为5,公比为1.1
5(11.1n ) 30,整理得1.1n 1.6 11.1
的等比数列。故有
两边取对数:
n lg1.1 lg1.6,即n
lg 1.6 lg 1.1
0.20 0.04
( 5 年).
典型练习题
1.已知数列lgx+lgx2+ lgx3+…+ lgx10=11
一、知识回顾:
1等比数列的an定 1 义 q : an
2通项公式a:n a1qn1
3等比中项:
a,G,b成等比 G2 ab G ab
二、等比数列求和公式 :
1+2+22+23+24+…+263=?
S64=1+2+4+8+…+262+263
①① 2得到:
2S64=2+4+8+16…+263+264 ②对①、②进行比较.
(强饮三大白)自己本不善饮,但对此景,当此 时逢此人,却不可不饮,而且连饮三大杯,由此 我们可以想象“酒逢知己千杯少”的名惊喜、愉 悦(湖中焉得更有此人)这一惊叹虽发之于二客, 实为作者的心声,但见作者笔之巧。也可感受到 作者的惆怅。知己难觅,难求。为此古人曾发 “人生得一知己足矣”的感慨,而我不经意之间, 却遇到了,但紧接着却又是无奈的分别并且难有 后约之期。想及如此,怎能不令人惆怅、怅惘!

等比数列前n项和的求和公式 PPT课件

等比数列前n项和的求和公式 PPT课件

当 n 1时,有 a1 2a1 1 , 即 a1 1 ;
当 n 2时,有 a1 a2 2a2 1, 即 a2 2 ;

q a2 2 2 ,
a1 1
因此
an
a q n1 1
1 2 n1
2 n 1
.
.
11
小试牛刀
求下列数列前n项的和. (1) 3, 11, 111,217,
4 8 16 32
了······
这猴子是不是 又在耍我
.
4
算一算
这笔交易
是猪八戒占大便宜, 还是孙悟空有谋略,在欺负他呢
.
5
我们知道:
猪八戒收到的资金:
1003030(0万 0 )元
需返还孙悟空的资金:
? 1 2 2 2 2 3 2 2 9
.
6
倒序相加法
S n a 1 ( a 1 d ) ( a 1 ( n 2 ) d ) ( a 1 ( n 1 ) d ) (1) S n ( a 1 ( n 1 ) d ) ( a 1 ( n 2 ) d ) ( a 1 d ) a 1 (2)
(2)11, 31, 51,71 , 2 4 8 16
.
12
等差、等比数列对比
ana1(n1)d
ana1qn1 (a1,q0)
Sn
n(a1 2
an )
na1
n(n 1) 2
d
倒序相加法
n 1a
q 1 ;
S n a 1 ( 1 1 q q n ) a 1 1 a q n q q 1 .
.
1
师兄弟都成亿万富翁啦! 我也要成立一个“高老
庄集团”
.
2
猴哥, 能不能 帮帮 我······
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:数列
Sn n
为等比数列.
2020/10/18
5
例3.已知数 an的 列首a1项 32,an1a2nan1,
(1)证明:a数 1n 1列 是等比数列。
(2)求数an列 的通项公式?
2020/10/18
6
例 4.设二次 anx方 2an程 1x10有两根
与 ,且6满 2足 63
( 1)试 an表 用a示 n1?
(2)证明:数 an列 32是等比数列。
(3)当a176时,求 an数 的列 通项公
2020/10/18
7
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXX 日期:20XX年XX月XX日
则a1n
的前n项和(为
)
1
1
S
qn
A. S
B.qnS
18
3
例1. 已知数列{an}的前n项和Sn=2an+1. 求证:数列{an}是等比数列,并求出其 通项公式.
2020/10/18
4
2. 已知数列{an}的前n项和为Sn,a1=1,
a n 1 n n2S n(n 1 ,2 ,3 , ).
2020/10/18
1
练习:
1.若等比数列{an}中,Sn=m·3n+1,则 实数m=__________.
2. 等比数列中,S4=10,S8=30,则 S12=_______.
2020/10/18
2
3.等比数a列 n的首项1, 为公比q为 ,前n项和
为S ,由原数列各项的成 倒一 数个 组新数 a1n列 ,
相关文档
最新文档