八年级初二数学 数学二次根式的专项培优易错试卷练习题及答案

合集下载

八年级初二数学数学二次根式的专项培优易错试卷练习题含答案

八年级初二数学数学二次根式的专项培优易错试卷练习题含答案

一、选择题1.下列式子为最简二次根式的是( )A B C D 2.下列计算正确的是( )A 2=±B 3=-C .(25= D .(23=-3.下列计算正确的是( )A =B .2=C .1=D =4.下列计算正确的是( )A =B 3=C =D .21=5.已知:x ,y 1,求x 2﹣y 2的值( )A .1B .2C D .6.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y+--+的值是( ) A .3 B .13C .2D .537.设1199++S 的最大整数[S]等于( ) A .98B .99C .100D .1018.2= ) A .3B .4C .5D .69.下列各式中,不正确的是( )A ><C > D 5=10.A .﹣3B .3C .﹣9D .9二、填空题11.设4 a,小数部分为 b.则1a b- = __________________________.12.使函数212y x x=+有意义的自变量x 的取值范围为_____________13.将2(3)(0)3a a a a-<-化简的结果是___________________.14.已知112a b +=,求535a ab b a ab b++=-+_____. 15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 16.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).17.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.18.若2x ﹣3x 2﹣x=_____. 19.化简二次根式2a 1a +-_____. 20.28n n 为________.三、解答题21.(1111242-=112393-=113416-=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想. 【答案】(11142=52555-=115636-=;(22111n n n --=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.22.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.先将2x -x 的值,代入后,求式子的值. 【答案】答案见解析. 【解析】 试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义. 试题解析:原式==== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222226.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =. 【答案】(1)2)82-a,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)a ===b ===22221111()223122222a b a b ab ⎛⎫+=+-=+-⨯⨯=-= ⎪ ⎪⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C==,可以化简,故不是最简二次根式;D2故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.3.D解析:D 【分析】直接利用二次根式的加减运算法则计算得出答案. 【详解】解:AB 、无法计算,故此选项错误;C 、D ,正确. 故选:D . 【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.4.A解析:A 【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案. 【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误; 故应选:A 【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.5.D解析:D 【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可. 【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-== 故选:D . 【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.6.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0, a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数, ∴x >0,y <0. 将x=-y 代入原式得: 原式=()()()()2222313x x x x x x x x +---=--+-. 故选B . 【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.7.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n-+, ∴=1111111+11122399100-++-+++- =199+1100-=100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.8.C解析:C 【解析】2=,2222251510x x=-=--+=,5=.故选C.9.B解析:B 【解析】=-3,故A 正确;=4,故B 不正确;根据被开方数越大,结果越大,可知C 正确;5=,可知D 正确.故选B.10.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】﹣3|=3.故选B.二、填空题11.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12- 【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=22==1故填:12-. 【点睛】 此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.12.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 13..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.14.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】a b ∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 15.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.【分析】先根据题目中提供的三个式子,分别计算的值,用含n的式子表示其规律,再计算S的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题1n +【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 17.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.18.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.19.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为20.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初二数学《二次根式》竞赛培优精选题(含解析)

初二数学《二次根式》竞赛培优精选题(含解析)

二次根式竞赛培优题(含解析)一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.39940002.计算:=()A.B.C.D.3.的结果是()A.B.C.D.4.的值是()A.B.C.1D.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为.7.化简=.8.化简.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为.10.方程的解是x=11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=.12.计算:=(其中a>0)13.的值为.14.已知:对于正整数n,有,若某个正整数k满足,则k=.15.若n为整数,且是自然数,则n=.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为.17.若u、v满足v=,则u2﹣uv+v2=.18.已知a为实数,且与都是整数,则a的值是.19.使得++=1的一组正整数(a,b,c)为:.20.计算﹣20062的结果是.21.设=.22.若,,则x6+y6的值是.23.当时,的值为.24.已知,,则k=.25.当1≤x≤2时,经化简等于.26.计算=.27.已知x=,那么+1的值是.28.化简:,得到.29.=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).二次根式竞赛培优题(含解析)参考答案与试题解析一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.3994000【分析】设1998=a,把被开方数变形后,利用多项式的乘法法则计算后,加上a2再减去a2,前三项结合提取a2,剩下的三项利用完全平方公式化简,接着三项合并后提取2a,整体再利用完全平方公式化简,从而得到被开方数为一个数的完全平方,利用化简公式=|a|及a大于0即可得到最后结果.【解答】解:设1998=a,则1997×1998×1999×2000+1=(a﹣1)a(a+1)(a+2)+1=a4+2a3+a2﹣a2﹣a2﹣2a+1=a2(a+1)2﹣2a(a+1)+1=[a(a+1)﹣1]2,所以==1998×1999﹣1=3994001.故选:A.【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的化简公式=|a|的运用.2.计算:=()A.B.C.D.【分析】根据每个加数的特点,推出一般规律为,将所得式子化简,分别取n=1,2,3,…,40,寻找抵消规律,得出结论.【解答】解:∵=()=()=()=(﹣)∴分别取n=1,2,3, (40)原式=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)=.故选:B.【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.3.的结果是()A.B.C.D.【分析】把每个加数分母有理化,然后通分计算即可.【解答】解:=()=.故选:D.【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.4.的值是()A.B.C.1D.【分析】认真观察式子的特点,总结规律,可发现,,,据此作答.【解答】解:由题意可知第k项是∴原式=(++=1﹣=1﹣=.故选:B.【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律答题.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6【分析】找到1000<5×x2<2000中符合x的整数值即可得出答案.【解答】解:由题意得:与=20,是同类二次根的被开方数一定为5,由此及题意可:1000<5×x2<2000,x可取15、16、17、18、19,共5个.故选:C.【点评】本题考查同类二次根式的知识,有一定难度,关键是根据同类二次根式的形式得出的同类二次根式应该满足.二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为3998000.【分析】由等式可知=x1,=x2,…解得x1=x2=x3=…=x1999=2,由此代入求得数值即可.【解答】解:∵,∴=x1,=x2,…∴x1=x2=x3=…=x1999=2,∴x1+2x2+3x3+…+1999x1999=2×(1+2+3+ (1999)=2×(1999+1)×1999÷2=3998000.故答案为:3998000.【点评】此题考查二次根式的化简求值,解答此题的关键是找出对应关系,求出x1、x2、x3、…、x1999的值.7.化简=2011.【分析】先根据平方差公式和二次根式的性质得到=,然后根据同样的方法由内到外依次化简即可得到答案.【解答】解:∵=,∴原式=======2011.故答案为2011.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了平方差公式.8.化简后2.【分析】由于===﹣1,其他根式也可以进行同样的化简,然后合并同类二次根式即可求解.【解答】解:=﹣1+﹣++++++=3﹣1=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,解题的关键是利用完全平方公式化简二次根式从而达到化简题目的目的.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为10.【分析】利用不等式≤,结合S1+S2+S3+…+S n >10,解不等式即可.【解答】解:∵S i表示第i个三角形的面积,由不等式≤n,得≤n=n,而S1+S2+S3+…+S n=,S1+S2+S3+…+S n>10,∴n>10,即n2(n+1)>800,n为正整数,n的最小值为9.但n=9时,代入S1+S2+S3+…+S n<10,不符合题意,故n=10.【点评】本题考查了二次根式的运用.利用均值不等式和不等式的传递性解题.10.方程的解是x=2011【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.【解答】解:原方程化为:+++…+=,通分得=,解得x=2011.故答案为:2011.【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各分式的分母有理化,寻找抵消规律.11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=﹣.【分析】首先将M式中各个分式进行分母有理化,再求出N式的值,代入代数式求值即可解答.【解答】解:将M分母有理化可得M=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1.N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+(1993﹣1994)=﹣1×997=﹣997,∴==﹣.故答案为﹣.【点评】本题主要考查分母有理化的方法,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.12.计算:=4(其中a>0)【分析】仔细观察会发现有以下规律:第1项加上第8项等于1,第2项加上第7项等于1,依此类推最后求得的结果4.【解答】解:第一项与最后一项相加得:+,=+,=,=1,同理可得:第二项与倒数第二项的和也是1;第三项与倒数第三项的和也是1;所以原式=1+1+1+1=4.故应填:4.【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑思维能力,是一道不错的规律型问题.13.的值为1998999.5.【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设k=2000,将所求算式转化为关于k的算式,将被开方数配成完全平方式,开平方,再将k的值代入即可.【解答】解:设k=2000,原式=====,当k=2000时,原式=1998999.5.故本题答案为:1998999.5.【点评】本题考查了二次根式的化简求值,当算式数字较大,并且数字之间有联系时,用换元法解题,可使运算简便.14.已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.15.若n为整数,且是自然数,则n=﹣14或﹣7或﹣2或5.【分析】设=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n 的值即可.【解答】解:∵设=p(P为非负整数),则n2+9n+30=p2,∴4n2+36n+120=4p2,∴(2n+9)2+39=4p2,∴(2p+2n+9)(2p﹣2n﹣9)=39,∴或或或,解得或或或,∴n=﹣14或﹣7或﹣2或5.故答案为:﹣14或﹣7或﹣2或5.【点评】本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为2012.5.【分析】根据新定理得f()=,f()=,则f()+f()=1;f()=,f()=,则f()+f()=1,由此得到f()+f()=1(n≥2的整数),所以原式=+.【解答】解:f()=,∵f()==,f()=,则f()+f()=1,f()==,f()==,则f()+f()=1,∴f()+f()=1,∴=+=2012.5.故答案为2012.5.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了阅读理解能力.17.若u、v满足v=,则u2﹣uv+v2=.【分析】根号里面的式子大于等于0,从而可得≥0,﹣≥0,从而能得出u和v的值,继而可得出答案.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子大于等于0这个知识点比较关键.18.已知a为实数,且与都是整数,则a的值是或.【分析】由是正整数可得,a是含﹣2的代数式;再由是整数,可得化简后为﹣2的代数式分母有理化后,是1或﹣1,据此确定a的值.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.【点评】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.19.使得++=1的一组正整数(a,b,c)为:答案不唯一;如(288,8,8),(48,24,8).【分析】由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为()2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是﹣1,则第二个复合二次根式化简后必为﹣,第三个复合二次根式化简后必为,最后求的a,b,c的值.【解答】解:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y﹣2,(x,y为正整数,x>y),所以有=x+y,﹣=﹣2.∴a+1=(x+y)2,a=4xy,∴(x﹣y)2=1,即x﹣y=1.则每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后为﹣1,而要消掉,则第二个复合二次根式化简后必为﹣,要消掉,则第三个复合二次根式化简后必为.最后正好为﹣=1.所以=(﹣1)2=3﹣=3﹣,则a=8,同理得b=24,c=48.故得到一组正整数(a,b,c)为:8,24,48.故答案为8,24,48.【点评】本题考查了二次根式的性质和二次根式的化简:.20.计算﹣20062的结果是2005.【分析】先把“2005×2006×2007×2008+1=(20052+3×2005+1)2”化为完全平方的形式,再开平方,然后再来求值.【解答】解:∵2005×2006×2007×2008+1=2005×(2005+3)×(2005+1)(2005+2)+1=(20052+3×2005)×(20052+3×2005+2)+1=(20052+3×2005)2+2(20052+3×2005)+1=(20052+3×2005+1)2∴=20052+3×2005+1;∴﹣20062=20052+3×2005+1﹣20062=(2005+2006)(2005﹣2006)+3×2005+1=2005;故答案为:2005.【点评】本题主要考查了二次根式的化简求值.解答此题的难点是化“2005×2006×2007×2008+1”为完全平方的形式,并开平方,然后再利用平方差公式求出20052﹣20062=(2005+2006)(2005﹣2006)的值.21.设=.【分析】把已知条件的左边相乘得,这样出现了所求代数式,设=z,代入变形所得的等式,逐步变形,消去x、y,即可求得z.【解答】解:据条件式令=z,则(1)式化为:z+xy+=9,即有9﹣z=xy+,平方得,81﹣18z+z2=x2y2+(x2+1)(y2+4)+2xy(2),又由z2==x2(y2+4)+y2(x2+1)+2xy,代入(2)得,81﹣18z=4,所以.即=,故答案为:.【点评】此题考查二次根式的化简求值,难度较大,多次利用已知条件求解.22.若,,则x6+y6的值是40.【分析】根据题意可求出x2+y2,x2﹣y2,利用平方差公式可求得x4﹣y4,(x2﹣y2)(x4﹣y4)=x6+y6﹣x2y4﹣y2x4,由此可得答案.【解答】解:由题意得:x2+y2=2++2﹣=4,x2﹣y2=2+﹣(2﹣)=2,x4﹣y4=(x2+y2)(x2﹣y2)=8,又(x2﹣y2)(x4﹣y4)=x6+y6+x2y4+y2x4,∴可得:x6+y6=32﹣x2y2(x2+y2)=32+2×4=40.故答案为:40.【点评】本题考查二次根式的乘除法运算,有一定难度,关键是熟练运用平方差及完全平方公式.23.当时,的值为.【分析】利用完全平方公式对代数式化简再把代入化简的结果计算即可.【解答】解:原式=﹣,∵,∴=2005,∴x<,∴原式=﹣+x,=x,当时,原式=.故答案为.【点评】本题考查的是二次根式的化简求值和二次根式的性质=a(a≥0)的应用.24.已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.25.当1≤x≤2时,经化简等于2.【分析】先配成完全平方式,再根据二次根式的性质化简计算即可.【解答】解:∵1≤x≤2,∴=+=+1+1﹣=2.故答案为:2.【点评】考查了二次根式的性质,解题的关键是将根号内的式子配成完全平方式.26.计算=2010.【分析】因为=,=,=,…,可发现=1+=1+1﹣,=1+=1+﹣…,依此类推再把1+1﹣,1+﹣…相加可得问题答案.【解答】解:原式=++++…+,=1+1﹣+1+﹣+1+﹣+1+﹣…+1+﹣,=2010+(1﹣+﹣+﹣…+﹣),=2010+(1﹣),=2010.【点评】本题考查了二次根式的化简,在化简中注意有关数列的规律.27.已知x=,那么+1的值是2.【分析】先根据分母有理化得到x=﹣1,所以x+1=,然后将代数式化为含有(x+1)2的形式,把x+1的值代入求出代数式的值.【解答】解:∵x==﹣1,∴x+1=.原式=(3x3+10x2+5x+4)=[(3x3+6x2+3x)+3x2+(x2+2x+1)+3]=[3x(x+1)2+3x2+(x+1)2+3]=[3x•2+3x2+2+3]=[(3x2+6x+3)+2]=[3(x+1)2+2]=(3×2+2)=2.故答案是:2.【点评】本题考查的是二次根式的化简求值,先根据分母有理化把x的值化简,得到x+1=,再把代数式化成含有x+1的形式,然后代入代数式可以求出代数式的值.28.化简:,得到1.【分析】将被开方数的分子、分母提公因式,约分,再开平方,约分即可.【解答】解:原式=()1004=()1004()1004=1.【点评】本题考查了二次根式的化简求值,关键是将被开方数的分子、分母提公因式,约分.29.=﹣3.【分析】因为=,代入并通分计算即可.【解答】解:原式===﹣1﹣1﹣1=﹣3.故答案为:﹣3.【点评】此题考查二次根式的混合运算,关键是求=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).【分析】(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设=a,=b,=c,从而可将原式化简,继而可得出答案.【解答】解:(1)设n=1999,则原式===n2+3n+1,故原式=20002+1999;(2)原式=+++++++=﹣1+﹣+﹣+﹣+﹣+﹣+﹣+﹣,=﹣1,=3﹣1,=2;(3)原式=,=,=+,=﹣;(4)设=a,=b,=c,则原式=++,=,=0.【点评】本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.。

部编数学八年级下册二次根式的应用及探究材料大题专练(培优强化30题)2023复习备考【人教版】含答案

部编数学八年级下册二次根式的应用及探究材料大题专练(培优强化30题)2023复习备考【人教版】含答案

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题2.2二次根式的应用及探究材料大题专练(培优强化30题)A卷基础过关卷(限时30分钟,每题10分,满分100分)1.(2022秋•西安月考)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响,g≈10m/s2).(1)求从60m高空抛物到落地的时间.(结果保留根号)(2)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m),某质量为0.2kg 的玩具被抛出后经过3s后落在地上,这个玩具产生的动能会伤害到楼下的行人吗?请说明理由.(注:伤害无防护人体只需要65J的动能)【分析】(1)把60m代入公式t=即可;(2)先根据公式t=求出h,再代入动能计算公式求出这个玩具产生的动能,即可判断.【解答】解:(1)由题意知h=60m,∴t===2(s),故从60m高空抛物到落地的时间为2s;(2)这个玩具产生的动能会伤害到楼下的行人,理由:当t=3s时,3=,∴h=45,经检验,h=45是原方程的根,∴这个玩具产生的动能=10×0.2×45=90(J)>65J,∴这个玩具产生的动能会伤害到楼下的行人.【点评】本题考查二次根式的应用,通过具体情境考查二次根式,理解公式,正确运算代入求值是解决本题的关键.2.(2022春•赣州期末)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)截出的两块正方形木料的边长分别为 3dm , 4dm ;(2)求剩余木料的面积;(3)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出 2 块这样的木条.【分析】(1)由正方形的面积可得边长分别为dm和dm,再对二次根式进行化简即可;(2)矩形的长为7dm,宽为4dm,再求面积即可;(3)剩余木条的长为3dm,宽为dm,再由题意进行截取即可.【解答】解:(1)=3dm,=4dm,故答案为:3dm,4dm;(2)矩形的长为3+4=7(dm),宽为4dm,∴剩余木料的面积=(7×4)﹣18﹣32=56﹣18﹣32=6(dm2);(3)剩余木条的长为3dm,宽为4﹣3=(dm),∵3<3×1.5,>1,∴能截出2×1=2个木条,故答案为:2.【点评】本题考查二次根式的应用,熟练掌握二次根式的化简和运算,矩形的面积公式是解题的关键.3.(2019春•沂水县期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响)(1)从50m高空抛物到落地所需时间t1是多少s,从100m高空抛物到落地所需时间t2是多少s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?【分析】(1)将h=50代入t1=进行计算即可;将h=100代入t2=进行计算即可;(2)计算t2与t1的比值即可得出结论;(3)将t=1.5代入公式t=进行计算即可.【解答】解:(1)当h=50时,t1==(秒);当h=100时,t2===2(秒);(2)∵==,∴t2是t1的倍.(3)当t=1.5时,1.5=,解得h=11.25,∴下落的高度是11.25米.【点评】本题主要考查了二次根式的应用,二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.4.(2019秋•二道区期末)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出 2 块这样的木条.【分析】(1)根据二次根式的性质分别求出两个正方形的边长,结合图形计算得到答案;(2)求出3和范围,根据题意解答.【解答】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm2);(2)4<3<4.5,1<<2,∴从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出2块这样的木条,故答案为:2.【点评】本题考查的是二次根式的应用,掌握二次根式的性质、无理数的估算是解题的关键.5.(2018秋•太仓市期末)若一个三角形的三边长分别为a、b、c,设p=(a+b+c).记:Q=.(1)当a=4,b=5,c=6时,求Q的值;(2)当a=b时,设三角形面积为S,求证:S=Q.【分析】(1)先根据△ABC的三边长求出p的值,然后再代入三角形面积公式中计算;(2)设底边c上的高为h,根据三角形的面积公式得到S=c•h=c,代入Q=得到Q=c,于是得到结论.【解答】解:(1)∵a=4,b=5,c=6,∴p=(a+b+c)=,∴Q===;(2)∵a=b,∴设底边c上的高为h,∴h=,∴S=c•h=c,∵a=b,∴p=(a+b+c)=a+c,∴Q===c,∴S=Q.【点评】本题考查了二次根式的应用,三角形的面积公式,正确的化简二次根式是解题的关键.6.(2019秋•会同县期末)已知长方形的长a=,宽b=.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【分析】首先化简a==2,b==.(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.【解答】解:a==2,b==.(1)长方形的周长=(2+)×2=6;(2)正方形的周长=4=8,∵6=.8=,∵>∴6>8.【点评】此题考查二次根式的实际运用,掌握二次根式的化简方法以及长方形、正方形的周长与面积计算方法是解决问题的关键.7.(2021春•广陵区校级月考)一个三角形的三边长分别为10、x和.(1)求它的周长(要求结果化简)(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】(1)利用二次根式的性质进行化简,进而求值计算即可;(2)如果一个二次根式化简后为整数,则被开方数就是一个能开得尽方的数,适当取值即可.【解答】解:(1)因为x>0,所以三角形的周长为:10+x+=10×++2=2++2=5;(2)当x=5时,=5,为整数,此时,三角形的周长为5=5×5=25.【点评】本题考查了二次根式的化简,解题的关键是掌握二次根式的性质.8.(2021秋•长安区校级期末)某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)【分析】(1)根据长方形ABCD的周长列出算式,再利用二次根式的混合运算顺序和运算法则计算可得;(2)先计算出空白部分面积,再计算即可,【解答】解:(1)长方形ABCD的周长=2×()=2(8+7)=16+14(米),答:长方形ABCD的周长是16+14(米),(2)通道的面积==56﹣(13﹣1)=56(平方米),购买地砖需要花费=6×(56)=336﹣72(元).答:购买地砖需要花费336﹣72元;【点评】本题主要考查二次根式的应用,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及其性质.9.(2022春•海沧区校级期末)有一块矩形木板,木工采用如图沿虚线在木板上截出两个面积分别为12dm2和27dm2的正方形木板.(1)求原矩形木板的面积;(2)如果木工想从剩余的木块(阴影部分)中裁出长为1.5dm,宽为1dm的长方形木条,估计最多能裁出多少块这样的木条,请你计算说明理由.【分析】(1)根据二次根式的性质分别求出两个正方形的边长,结合图形计算得到答案;(2)求出2和的范围,根据题意解答.【解答】解:(1)∵两个正方形的面积分别为12dm2和27dm2,∴这两个正方形的边长分别为2dm和3dm,∴原矩形木板的面积为3(2+3)=45(dm2);(2)最多能裁出3块这样的木条.理由如下:∵2≈3.464,≈1.732,3.46÷1≈3(块),1.73÷1.5≈1(块),3×1=3(块).∴从剩余的木块(阴影部分)中裁出长为1.5dm,宽为1dm的长方形木条,最多能裁出3块这样的木条.【点评】本题考查的是二次根式的应用,掌握二次根式的性质、无理数的估算是解题的关键.10.(2022春•沂水县期中)座钟的钟摆摆动一个来回所需的时间称为一个周期,其计算公式为,其中r表示周期(单位:s),l表示摆长(单位:m),g为重力加速度且g=9.8m/s2,假如一台座钟的钟摆长为0.5m,它每摆动一个来回发出一次滴答声,那么在1min内,该座钟发出多少次滴答声?(≈3.16,π取3.14,结果保留整数)【分析】由给出的公式先计算出这个钟摆的周期,然后利用时间除周期得到滴答次数.【解答】解:当l=0.5m,g=9.8m/s2时,r=2π=2π=2π=,≈(s),∴在1min 内,该座钟发出滴答声的次数为:60÷1.42≈42,答:在1min 内,该座钟发出约42次滴答声.【点评】本题主要考查了二次根式的应用,计算出钟摆的周期是解决本题的关键.B 卷 能力提升卷(限时50分钟,每题10分,满分100分)11.(2022春•伊宁市校级期末)已知矩形的长为a ,宽为b 且,.(1)求矩形的周长;(2)当S 矩形=S 正方形时,求正方形的边长m 的值.(注:S 表示面积)【分析】(1)根据矩形的周长=2×(长+宽),列式计算即可;(2)设正方形的边长为m ,根据S 矩形=S 正方形,列出方程6×4=72,解方程求出m 的值.【解答】解:(1)∵矩形的长为a ,宽为b 且=6,=4.∴矩形的周长=2(a +b )=2(6+4)=20;(2)设正方形的边长为x ,则m >0.∵S 矩形=S 正方形,∴m 2=ab =6×4=72,∴m =6(负值舍去),∴正方形的边长m 为6.【点评】本题考查了二次根式的应用,掌握矩形、正方形的周长与面积公式是解题的关键.12.(2022秋•攸县期末)已知长方形长a =,宽b =.①求长方形的周长;②求与长方形等面积的正方形的周长,并比较长方形周长与正方形周长大小关系.【分析】①根据周长公式列出算式,再利用二次根式的混合运算顺序和运算法则计算可得;②先求出正方形的边长,再由周长公式求解可得.【解答】解:①长方形的周长为2×(+)=2×(2+)=6;②长方形的面积为×=2×=6,则正方形的边长为,∴此正方形的周长为4,∵6=,4=,且<,∴6>4,则长方形的周长大于正方形的周长.【点评】本题主要考查二次根式的应用,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及其性质.13.(2022秋•南昌期末)如图,长和宽分别是a,b的长方形纸片的四个角都剪去一个边长为x的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当a=20+2,b=20﹣2,x=,求剩余部分的面积.【分析】(1)用长方形的面积减去四周四个小正方形的面积列式即可;(2)根据(1)所列出的式子,再把a=20+2,b=20﹣2,x=代入即可求出答案.【解答】解:(1)剩余部分的面积为:ab﹣4x2;(2)把a=20+2,b=20﹣2,x=代入ab﹣4x2得:(20+2)(20﹣2)﹣4×()2=400﹣8﹣4×2=400﹣8﹣8=384.【点评】此题主要考查二次根式的应用,用代数式表示正方形、矩形的面积,需熟记公式,且认真观察图形,得出等量关系.14.(2023•源城区开学)如图,B地在A地的正东方向,两地相距km.A,B两地之间有一条东北走向的高速公路,且A,B两地到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A地的正南方向P处,至上午8:20,B地发现该车在它的西北方向Q处,该段高速公路限速为110km/h.问:该车是否超速行驶?【分析】根据题意得到AB=28,∠P=45°,∠PAC=90°,∠ABQ=45°,则∠ACP=45°,∠BCQ =45°,作AH⊥PQ于H,根据题意有AH=BQ,再证明△ACH≌△BCQ,得到AC=BC=AB=14,根据等腰直角三角形的性质得PC=AC=28,CQ==14,所以PQ =PC+CQ=42,然后根据速度公式计算出该车的速度=126(km/h),再与110km/h比较即可判断该车超速行驶了.【解答】解:如图,AB=28,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,∴∠BCQ=45°,作AH⊥PQ于H,则AH=BQ,在△ACH和△BCQ中,∴△ACH≌△BCQ(AAS),∴AC=BC,∴AC=BC=AB=14,∴PC=AC=28,CQ==14,∴PQ=PC+CQ=42,∴该车的速度==126(km/h)∵126km/h>110km/h,∴该车超速行驶了.【点评】本题考查了二次根式的应用:二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.15.(2022春•江都区期末)请阅读下列材料:问题:已知,求代数式x2﹣4x﹣7的值.小明的做法是:根据得(x﹣2)2=5,∴x2﹣4x+4=5,x2﹣4x=1.把x2﹣4x作为整体代入,得:x2﹣4x﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.仿照上述方法解决问题:(1)已知,求代数式x2+6x﹣8的值;(2)已知,求代数式x3+2x2的值.【分析】(1)根据x=﹣3求出x+3=,两边平方后求出x2+6x+9=10,求出x2+6x=1,再代入求出答案即可;(2)根据x=求出2x+1=,两边平方求出4x2+4x+1=5,求出x2+x=1,再变形后代入,即可求出答案.【解答】解:(1)∵x=﹣3,∴x+3=,两边平方得:(x+3)2=10,即x2+6x+9=10,∴x2+6x=1,∴x2+6x﹣8=1﹣8=﹣7;(2)∵x=,∴2x=﹣1,∴2x+1=,两边平方,得(2x+1)2=5,即4x 2+4x +1=5,∴4x 2+4x =4,即x 2+x =1,∴x 3+2x 2=x 3+x 2+x 2=x (x 2+x )+x 2=x ×1+x 2=x +x 2=1.【点评】本题考查了二次根式的化简求值,完全平方公式,整式的加减等知识点,能够整体代入是解此题的关键.16.(2016春•泰州校级期末)(1)阅读:若一个三角形的三边长分别为a 、b 、c ,设,则这个三角形的面积为.(2)应用:如图1,在△ABC 中,AB =6,AC =5,BC =4,求△ABC 面积.(3)引申:如图2,在(2)的条件下,AD 、BE 分别为△ABC 的角平分线,它们的交点为I ,求:I 到AB 的距离.【分析】(2)先根据三边长度求出p 的值,再代入公式计算可得;(3)过点I 作IF ⊥AB 、IG ⊥AC 、IH ⊥BC ,由角平分线性质可得IF =IH =IG ,再根据S △ABC =S △ABI +S △ACI +S △BCI 即可求得IF 的长.【解答】解:(1)如图:在△ABC中,过A作高AD交BC于D,设BD=x,那么DC=a﹣x,由于AD是△ABD、△ACD的公共边h2=c2﹣x2=b2﹣(a﹣x)2,解出x得x=,于是h=,△ABC的面积S=ah=a即S=,令p=(a+b+c),对被开方数分解因式,并整理得到;(2)由题意,得:a=4,b=5,c=6;∴p==;∴S===,故△ABC的面积是;(3)如图,过点I作IF⊥AB、IG⊥AC、IH⊥BC,垂足分别为点F、G、H,∵AD 、BE 分别为△ABC 的角平分线,∴IF =IH =IG ,∵S △ABC =S △ABI +S △ACI +S △BCI ,即=×6•IF +×5•IG +×4•IH ,∴3•IF +•IF +2•IF =,解得IF =,故I 到AB 的距离为.【点评】本题主要考查三角形面积的计算和角平分线的性质,熟练掌握角平分线的性质是解题的关键.17.(2022春•武江区校级期末)请阅读下列材料:问题:已知x =+2,求代数式x 2﹣4x ﹣7的值.小敏的做法是:根据x =+2得(x ﹣2)2=5,∴x 2﹣4x +4=5,得:x 2﹣4x =1.把x 2﹣4x 作为整体代入:得x 2﹣4x ﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x =﹣2,求代数式x 2+4x ﹣10的值;(2)已知x =,求代数式x 3+x 2+1的值.【分析】(1)根据完全平方公式求出x 2+4x =1,代入计算即可;(2)根据二次根式的乘法法则、完全平方公式计算,答案.【解答】解:(1)∵x =﹣2,∴(x +2)2=5,∴x 2+4x +4=5,∴x 2+4x =1,∴x 2+4x ﹣10=1﹣10=﹣9;(2)∵x =,∴x2=()2=,则x3=x•x2=×=﹣2,∴x3+x2+1=﹣2++1=.【点评】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的乘法法则是解题的关键.18.(2021春•石城县期末)在二次根式中如:,=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:,.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4﹣的有理化因式可以是 4+ ,分母有理化得 .(2)计算:①已知x=,求x2+y2的值;②.【分析】(1)找出各式的分母有理化因式即可;(2)①将x与y分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【解答】解:(1)4﹣的有理化因式可以是4+,==.故答案为:4+,;(2)①当x====2+,y====2﹣时,x2+y2=(x+y)2﹣2xy=(2++2﹣)2﹣2×(2+)×(2﹣)=14.②原式=﹣1+﹣+﹣+…+﹣=﹣1.【点评】此题考查了二次根式的化简求值,分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.19.(2021秋•洪江市期末)阅读并解答问题:==;==;==2﹣;……上面的计算过程叫做“分母有理化”,仿照上述计算过程,解答下列问题:(1)将的分母有理化;(2)已知a=,b=,求a+b的值;(3)计算+…++.【分析】(1)利用平方差公式进行二次根式分母有理化计算;(2)先利用平方差公式进行分母有理化计算,从而化简a和b的值,然后代入求值;(3)利用平方差公式进行分母有理化计算,然后通过观察数字变化的规律进行分析计算.【解答】解:(1)原式==﹣2;(2)a==﹣,b==,∴a+b==2;(3)原式=++...++=﹣1+﹣+...+﹣+﹣=10﹣1=9.【点评】本题考查二次根式的分母有理化计算,理解二次根式的性质,掌握平方差公式(a+b)(a﹣b)=a2﹣b2是解题关键.20.(2022秋•昌平区期中)我们已经学习了整式、分式和二次根式,当被除数是一个二次根式,除数是一个整式时,求得的商就会出现类似的形式,我们把形如的式子称为根分式,例如,都是根分式.(1)下列式子中①,②,③, ③ 是根分式(填写序号即可);(2)写出根分式中x的取值范围 x≥1且x≠2 ;(3)已知两个根分式,.①若M2﹣N2=1,求x的值;②若M2+N2是一个整数,且x为整数,请直接写出x的值: 1 .【分析】(1)根据根分式的定义进行判断即可;(2)根据二次根式的定义,分式有意义的条件进行分析即可;(3)①对式子进行化简,再进行求解即可;②对式子进行化简,结合分式有意义的条件及二次根式的定义进行求解即可.【解答】解:(1)①不是根分式,②不是根分式,③是根分式,故答案为:③;(2)由题意得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故x的取值范围是:x≥1且x≠2;故答案为:x≥1且x≠2;(3)当,时,①M2﹣N2=1,()2﹣()2=1,,,解得:x=1,经检验,x=1是原方程的解;②M2+N2=()2+()2=+===1+,∵M2+N2是一个整数,且x为整数,∴是一个整数,∴x﹣2=±1,解得:x=3或1,经检验,x=1符合题意,故答案为:1.【点评】本题主要考查二次根式的化简求值,分式有意义的条件,二次根式的定义,解答的关键是对相应的知识的掌握与运用.C卷培优压轴卷(限时80分钟,每题10分,满分100分)21.(2022•南京模拟)请阅读下面材料,并解决问题:海伦——秦九韶公式海伦(约公元50年),古希腊几何学家,在数学史上以解决几何测量问题闻名,在他的著作《度量》一书中证明了一个利用三角形的三条边长直接求三角形面积的公式:假设在平面内,有一个三角形的三条边长分别为a,b,c,记那么三角形的面积.这个公式称为海伦公式.秦九韶(约1202﹣1261年),我国南宋时期的数学家,曾提出利用三角形的三边长求面积的秦九韶公式.它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.通过公式变形,可以发现海伦公式和秦九韶公式实质是同一个公式,所以海伦公式也称海伦﹣秦九韶公式.问题:如图,在△ABC中,AB=6,AC=7,BC=8,请用海伦一秦九韶公式求△ABC的面积.【分析】已知三角形ABC的三边为整数,直接将其带入海伦公式求面积即可.【解答】解:根据材料,得a=6,b=7,c=8,∴,∴===.【点评】本题考查二次根式的应用,解题的关键是通过阅读理解材料中所给的定义以及概念,再运用材料中的知识点解决对应的问题即可.22.(2021秋•叙州区期末)已知△ABC三条边的长度分别是,,,记△ABC .的周长为C△ABC(1)当x=2时,△ABC的最长边的长度是(请直接写出答案);(用含x的代数式表示,结果要求化简);(2)请求出C△ABC(3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S=.其中三角形边长分别为a、b、c,三角形的面积为S.若x为整数,当C取得最大值时,请用秦九韶公式求出△ABC的面积.△ABC【分析】(1)把x=2代入三角形的三边中,分别计算,比较后即可求解;(2)把三角形的三边求和,利用二次根式的性质化简即可求解;(3)先根据x的取值范围,确定三角形周长的最大值及三角形各边的长,代入公式求出三角形的面积.【解答】解:(1)当x=2时,=,,,∴△ABC的最长边的长度是3;(2)由题知:,解得﹣1≤x≤4.∴,,=++=+5−x+x=+5;∴C△ABC(3)∵C=+5,﹣1≤x≤4,且x为整数,△ABC越大,∴x越大C△ABC∴当x=4时,C取得最大值,此时三边为,1,4,△ABC∵+1<4,∴不合题意舍去.当x=3时,三边为2,2,3,∴S====.【点评】本题主要考查了二次根式,掌握三角形的三边关系和二次根式的化简和性质是解决本题的关键.23.(2022秋•南山区校级期中)著名数学教育家G•波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例如:====1+.解决问题:(1)在括号内填上适当的数:==③①: 5 ,②: ,③ 3+ .(2)根据上述思路,化简并求出+的值.【分析】(1)模仿样例进行解答便可;(2)把28看成,7看成,借助完全平方公式将每个根号内化成完全平方数的形式,便可开方计算得结果.【解答】解:(1)由题意得,==3+,则①=5,②=,③=3+,故答案为:①5;②;③3+;(2)+===5﹣=7.【点评】本题考查了二次根式的性质,完全平方式的应用,关键是把被开方数化成完全平方数.24.(2022秋•临汾期中)阅读与思考阅读下列材料,并完成相应的任务:法国数学家爱德华•卢卡斯以研究斐波那契数列而著名,他曾给出了求斐波那契数列第n项的表达式,创造出了检验素数的方法,还发明了汉诺塔问题.“卢卡斯数列”是以卢卡斯命名的一个整数数列,在股市中有广泛的应用.卢卡斯数列中的第n个数F(n)可以表示为+,其中n≥1.(说明:按照一定顺序排列着的一列数称为数列)任务:(1)卢卡斯数列中的第1个数F(1)= 2 ,第2个数F(2)= 1 ;(2)卢卡斯数列有一个重要特征:当n≥3时,满足F(n)=F(n﹣﹣1)+F(n﹣2).请根据这一规律写出卢卡斯数列中的第6个数F(6).【分析】(1)根据F(n)=+,将n=1,2分别代入计算即可求解;(2)根据当n≥3时,满足F(n)=F(n﹣1)+F(n﹣2),先求出F(4),F(5),再进一步求出F(6).【解答】解:(1)F(1)=1+1=2,第2个数F(2)=+=1.故答案为:2;1;(2)∵F(n)=F(n﹣1)+F(n﹣2),∴F(3)=F(2)+F(1)=1+2=3;F (4)=F(3)+F(2)=3+1=4,F (5)=F(4)+F(3)=4+3=7,∴F(6)=F(5)+F(4)=7+4=11.【点评】本题考查了二次根式的应用,关键是掌握“卢卡斯数列”.25.(2022春•南城县校级月考)观察下列等式:;;…你根据观察得到的结论,解答下列各题:(1)猜想:= ;(2)解方程:.【分析】(1)根据阅读部分提供的方法直接可得答案;(2)根据阅读部分的方法把方程化为x=3,再解方程即可.【解答】解:(1)由题意可得:.故答案为:;(2)∵,∴,∴x=3,解得:x===.【点评】本题属于阅读题,考查分母有理化,二次根式的化简,理解题意,根据阅读部分提供的信息解题是关键.26.(2022秋•杏花岭区校级月考)小明在解决问题:已知a=.求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+;(2)比较﹣ > ﹣;(填“>”或“<”)(3)A题:若a=+1,则a2﹣2a+3= 4 .B题:若a=,则4a2﹣4a+7= 5 .【分析】(1)根据分母有理化的方法化简即可;(2)先将和化简,比较大小,从而可比较﹣和﹣;(3)A题:由a=+1,可得a﹣1=,(a﹣1)2=2,从而可得a2﹣2a=1,进一步求解即可;B题:由a=,可得a=,从而可得2a﹣=1,两边同时作平方,可得,进一步求解即可.【解答】解:(1)+++…+=…+==;(2)=,=,∵<,∴﹣>﹣,故答案为:>;(3)A题:∵a=+1,∴a﹣1=,∴(a﹣1)2=2,即a2﹣2a+1=2,∴a2﹣2a=1,∴a2﹣2a+3=4,故答案为:4;B题:∵a=,∴a=,∴2a﹣=1,∴=1,即,∴,∴4a2﹣4a+7=5,故答案为:5.【点评】本题考查了二次根式的化简求值,规律型,完全平方公式和平方差公式等,熟练掌握分母有理化的方法是解题的关键.27.(2022春•赤坎区校级期末)阅读下面的材料,解答后面给出的问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,+1与﹣1.这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,====.(1)请你写出3+的有理化因式: 3﹣ ;(2)请仿照上面的方法化简(b≥0且b≠1);(3)已知a=,b=,求的值.【分析】(1)根据有理化因式的定义即可解答;(2)根据一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法进行化简;(3)通过分母有理化可化简a、b,从而求出a+b、ab,根据=,将a+b,ab的值代入即可求解.【解答】解:(1)∵(3+)(3﹣)=9﹣11=﹣2,∴3﹣是3+的有理化因式,故答案为:3﹣;(2)===1+;(3)∵a==﹣﹣2,b==2﹣,∴a+b=﹣2,ab=﹣1,∴====4.【点评】本题主要考查了二次根式分母有理化的知识,解题的关键是熟练掌握分母有理化的方法.28.(2022秋•皇姑区校级期中)阅读理解:已知x=+1,求代数式x2﹣2x﹣5的值.王红的做法是:根据x=+1得(x﹣1)2=2,∴x2﹣2x+1=2,得:x2﹣2x=1.把x2﹣2x作为整体代入:得x2﹣2x﹣5=1﹣5=﹣4.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x=﹣2,求代数式x2+4x﹣5的值;(2)已知x=,求代数式x3+x2+1的值.【分析】(1)仿照阅读材料解答即可;(2)把已知变形可得x2+x=1,代入即可求出答案.【解答】解:(1)∵x=﹣2,∴x+2=,∴(x+2)2=()2,∴x2+4x=﹣1,∴x2+4x﹣5=﹣6;(2)∵x=,∴2x+1=,∴(2x+1)2=()2,变形整理得:x2+x=1,∴x3+x2+1=x(x2+x)+1=x+1=+1=.【点评】本题考查二次根式的化简求值,解题的关键是读懂题意,能将已知式子适当变形.29.(2022春•南部县校级月考)在《九章算术》中有求三角形面积公式“底乘高的一半”,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(1208年﹣1261年)提出了“三斜求积术”,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元62年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前287年﹣公元前212年)得出的,故我国称这个公式为海伦﹣秦九韶公式.它的表述为:三角形三边长分别为a、b、c,则三角形的面积.(公式里的p为半周长即周长的一半)请利用海伦﹣秦九韶公式解决以下问题:(1)三边长分别为3、6、7的三角形面积为 .(2)四边形ABCD中,AB=3,BC=4,CD=7,AD=6,∠B=90°,四边形ABCD的面积为 .(3)五边形ABCDE中,AB=BC=,CD=6,DE=8,AE=12,∠B=120°,∠D=90°,求出五边形ABCDE的面积.【分析】(1)根据题意应用二次根式的计算解答即可;(2)根据二次根式的计算解答即可;(3)根据二次根式的混合计算解答即可.【解答】解:(1)三边长分别为3、6、7的三角形面积为;故答案为:;(2)∵四边形ABCD中,AB=3,BC=4,∠B=90°,∴AC=5,∴△ABC的面积=,∴△ACD的面积=,∴四边形ABCD的面积为:,故答案为:;(3)∵五边形ABCDE中,AB=BC=,CD=6,DE=8,AE=12,∠B=120°,∠D=90°,∴AC=6,∴△ABC的面积=,∴CE=10,∴△CDE的面积为:,∴AC=6,AE=12,CE=10,∴△ACE的面积=,∴五边形ABCDE的面积为.【点评】此题考查二次根式的应用,关键是根据三角形的面积公式解答.。

初二数学二次根式提高题与常考题与培优题(含解析)

初二数学二次根式提高题与常考题与培优题(含解析)

二次根式提升题与常考题型压轴题(含解读)一.选择题(共13 小题)1.二次根式中x的取值范围是()A.x>3B.x≤3 且 x≠ 0 C.x≤3 D.x<3 且 x≠02.计算:﹣,正确的选项是()A.4B.C.2D.3.如图,在长方形ABCD中无重叠放入面积分别为16cm2和 12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣ 12+8C. 8﹣ 4D. 4﹣ 24.若 1<x< 2,则的值为()A.2x﹣4 B.﹣ 2 C. 4﹣ 2x D. 25.以下计算正确的选项是()A.=2B.=C.=x D.=x6.以下各式变形中,正确的选项是()A.x2?x3=x6 B.=| x|C.(x2﹣)÷ x=x﹣1D.x2﹣ x+1=(x﹣)2+7.以下二次根式中,与是同类二次根式的是()A.B.C.D.8.化简+﹣的结果为()A.0 B.2C.﹣ 2D.29.已知, ab>0,化简二次根式 a的正确结果是()A.B.C.﹣D.﹣10. a的小数部分,b的小数部分.的()A.+ 1 B.+1 C.1D.++111.把中根号外面的因式移到根号内的果是()A.B.C.D.12.假如=2a 1,那么()A.a B.a≤C.a D.a≥13.已知: a=,b=,a与b的关系是()A.ab=1B.a+b=0 C.a b=0 D.a2=b2二.填空(共17 小)14.假如代数式存心,那么x的取范.15.在数上表示数 a 的点如所示,化+| a 2| 的果.16.算:=.17.察以下等式:第 1个等式: a1=,=1第 2个等式: a2=,=第 3个等式: a3=2,=第 4个等式: a4==2,按上述律,回答以下:(1)写出第 n 个等式: a n=;(2) a1+a2+a3+⋯+a n=.18.算 2的果是.19.算(+)()的果等于.20.化简:(0<a<1)=.21.假如最简二次根式与能够归并,那么使存心义的x 的取值范围是.22.已知 a,b 是正整数,且知足是整数,则这样的有序数对( a,b)共有对.23.对正实数 a,b 作定义 a*b=﹣a,若 2*x=6,则 x=..已知x+y=, x﹣y=4﹣y4.24,则 x=25.已知=﹣(x,y 为有理数),则 x﹣ y=.26.已知是正整数,则实数 n 的最大值为.27.三角形的三边长分别为3、m、 5,化简﹣=.28.若实数 m 知足=m+1,且 0<m<,则m的值为.29.计算以下各式的值:;;;.察看所得结果,总结存在的规律,应用获得的规律可得=.30.察看以下各式:=11+3×1+1,=22+3×2+1,=32+3× 3+1,猜想:=.三.解答题(共10 小题)31.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.32.若 1< a<2,求+的值.33.已知 x, y 都是有理数,而且知足,求的值.34.先化简,再求值:,此中x=﹣3﹣(π﹣3)0.35.( 1)已知 | 2012﹣x|+=x,求 x﹣ 20132的值;( 2)已知 a>0,b>0 且(+)=3(+5).求的值.36.察看以下各式及其考证过程:( 1)依据上述两个等式及其考证过程的基本思路,猜想的变形结果并进行考证;(2)针对上述各式反响的规律,写出用 n( n 为随意自然数,且 n≥ 2)表示的等式,并说明它建立.37.先化简,再求值:(+)÷,此中a=+1.38.求不等式组的整数解.39.阅读与计算:请阅读以下资料,并达成相应的任务.古希腊的几何学家海伦在他的《胸怀》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:假如一个三角形的三边长分别为a、 b、c,设p=,则三角形的面积 S=.我国南宋有名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):假如一个三角形的三边长分别为 a、b、c,则三角形的面积 S=.(1)若一个三角形的三边长分别是 5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.40.已知: y=++ ,求﹣的值.二次根式提升题与常考题型压轴题(含解读 )参照答案与试卷解读一.选择题(共13 小题)1.(2017 春?启东市月考)二次根式中x的取值范围是()A.x>3B.x≤3 且 x≠ 0 C.x≤3 D.x<3 且 x≠0【剖析】依据二次根式存心义的条件和分式存心义的条件得出3﹣x≥0 且 x≠ 0,求出即可.【解答】解:要使存心义,一定3﹣x≥0且x≠ 0,解得: x≤3 且 x≠ 0,应选 B.【评论】本题考察了二次根式存心义的条件和分式存心义的条件等知识点,能根据题意得出 3﹣x≥0 且 x≠ 0 是解本题的重点.2.(2017 春?萧山区校级月考)计算:﹣,正确的选项是()A.4B.C.2D.【剖析】直接化简二次根式从而归并求出答案.【解答】解:﹣=2﹣=.应选: D.【评论】本题主要考察了二次根式的加减运算,正确化简二次根式是解题重点.3.( 2017 春?嵊州市月考)如图,在长方形 ABCD中无重叠放入面积分别为16cm2和 12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣ 12+8C. 8﹣ 4D. 4﹣ 2【剖析】依据正方形的面积求出两个正方形的边长,从而求出AB、BC,再依据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和 12cm2,∴它们的边长分别为=4cm,=2 cm,∴AB=4cm,BC=( 2 +4) cm,∴空白部分的面积 =( 2 +4)× 4﹣12﹣ 16,=8 +16﹣ 12﹣16,2=(﹣ 12+8)cm.【评论】本题考察了二次根式的应用,算术平方根的定义,解题的重点在于依据正方形的面积求出两个正方形的边长.4.(2016?呼伦贝尔)若 1<x<2,则的值为()A.2x﹣4 B.﹣ 2 C. 4﹣ 2x D. 2【剖析】已知 1<x<2,可判断 x﹣3<0,x﹣1>0,依据绝对值,二次根式的性质解答.【解答】解:∵ 1<x<2,∴x﹣3<0,x﹣1>0,原式 =| x﹣3|+=| x﹣3|+| x﹣1|=3﹣x+x﹣1=2.【评论】解答本题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0 时,表示 a 的算术平方根;当 a=0 时, =0;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=| a| .5.(2016?南充)以下计算正确的选项是()A.=2B.=C.=x D.=x【剖析】直接利用二次根式的性质分别化简求出答案.【解答】解: A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=| x| ,故此选项错误;应选: A.【评论】本题主要考察了二次根式的化简,正确掌握二次根式的性质是解题重点.6.(2016?杭州)以下各式变形中,正确的选项是()A.x2?x3=x6 B.=| x|C.(x2﹣)÷ x=x﹣1D.x2﹣ x+1=(x﹣)2+【剖析】直接利用二次根式的性质以及同底数幂的乘法运算法例和分式的混淆运算法例分别化简求出答案.【解答】解: A、x2?x3=x5,故此选项错误;B、=| x| ,正确;C、(x2﹣)÷ x=x﹣,故此选项错误;D、x2﹣ x+1=( x﹣)2+,故此选项错误;【评论】本题主要考察了二次根式的性质以及同底数幂的乘法运算和分式的混淆运算等知识,正确掌握有关运算法例是解题重点.7.(2016?巴中)以下二次根式中,与是同类二次根式的是()A.B.C.D.【剖析】直接利用同类二次根式的定义分别化简二次根式求出答案.【解答】解: A、 =3 ,与不是同类二次根式,故此选项错误;B、 = ,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;应选: B.【评论】本题主要考察了同类二次根式,正确化简二次根式是解题重点.8.(2016?营口)化简+﹣的结果为()A.0B.2C.﹣ 2D.2【剖析】依据根式的开方,可化简二次根式,依据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,应选: D.【评论】本题考察了二次根式的加减,先化简,再加减运算.9.(2016?安徽校级自主招生)已知, ab> 0,化简二次根式a的正确结果是()A.B.C.﹣D.﹣【剖析】直接利用二次根式的性质从而化简得出答案.【解答】解:∵ ab>0,∴ a=a×=﹣.【评论】本题主要考察了二次根式的性质与化简,正确应用二次根式的性质是解题重点.10.(2016?邯郸校级自主招生)设 a 为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1 C.﹣﹣1D.++1【剖析】第一分别化简所给的两个二次根式,分别求出a、b 对应的小数部分,而后辈、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣=== ,∴ a 的小数部分 =﹣1;∵﹣===,∴ b 的小数部分 =﹣ 2,∴﹣====.应选 B.【评论】该题主要考察了二次根式的化简与求值问题;解题的重点是灵巧运用二次根式的运算法例来剖析、判断、解答.11.( 2016?柘城县校级一模)把中根号外面的因式移到根号内的结果是()A.B.C.D.【剖析】先依据被开方数大于等于 0 判断出 a 是负数,而后平方后移到根号内约分即可得解.【解答】解:依据被开方数非负数得,﹣>0,解得 a<0,﹣ a==.应选 A.【评论】本题考察了二次根式的性质与化简,先依据被开方数大于等于0 求出 a 的取值范围是解题的重点,也是本题最简单犯错的地方.12.( 2016?杨浦区三模)假如=2a﹣1,那么()A.a B.a≤C.a D.a≥【剖析】由二次根式的化简公式获得1﹣ 2a 为非正数,即可求出 a 的范围.【解答】解:∵=| 1﹣ 2a| =2a﹣ 1,∴1﹣ 2a≤0,解得: a≥ .应选 D【评论】本题考察了二次根式的性质与化简,娴熟掌握二次根式的化简公式是解本题的重点.13.(2016?临朐县一模)已知: a=,b=,则a与b的关系是()A.ab=1B.a+b=0C.a﹣b=0 D.a2=b2【剖析】先分母有理化求出a、b,再分别代入求出ab、a+b、 a﹣ b、 a2、b2,求出每个式子的值,即可得出选项.【解答】解: a===2+,b===2﹣,A、ab=( 2+)×(2﹣)=4﹣3=1,故本选项正确;B、a+b=(2+)+(2﹣)=4,故本选项错误;C、a﹣b=(2+)﹣(2﹣)=2,故本选项错误;D、∵ a2=( 2+)2=4+4+3=7+4,b2=(2﹣)2=4﹣4+3=7﹣4,∴a2≠b2,故本选项错误;应选 A.【评论】本题考察了分母有理化的应用,能求出每个式子的值是解本题的重点.二.填空题(共17 小题)14.(2017?静安区一模)假如代数式存心义,那么x的取值范围为x>﹣2.【剖析】依据二次根式存心义的条件、分式存心义的条件列出不等式,解不等式即可.【解答】解:由题意得, x+2>0,解得, x>﹣ 2,故答案为: x>﹣ 2.【评论】本题考察的是二次根式存心义的条件,掌握二次根式中的被开方数一定是非负数是解题的重点.15.( 2016?乐山)在数轴上表示实数 a 的点如下图,化简+| a﹣2| 的结果为3.【剖析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a﹣5<0,a﹣2> 0,则+| a﹣2|=5﹣a+a﹣2=3.故答案: 3.【点】此主要考了二次根式的性以及的性,正确掌握掌握有关性是解关.16.( 2016?聊城)算:=12.【剖析】直接利用二次根式乘除运算法化求出答案.【解答】解:=3×÷=3=12.故答案: 12.【点】此主要考了二次根式的乘除运算,正确化二次根式是解关.17.( 2016?黄石)察以下等式:第 1个等式: a1=,=1第 2个等式: a2==,第 3个等式: a3=2,=第 4个等式: a4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;;=( 2) a1+a2+a3+⋯+a n1.=【剖析】(1)依据意可知, a12=3==1,a =, a ==2,a4==2,⋯由此得出第 n 个等式: a n==;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a1==1,第 2个等式: a2==,第 3个等式: a3=2,=第 4个等式: a4==2,∴第 n 个等式: a n==;( 2) a1+a2+a3+⋯+a n=(1)+()+(2)+(2)+⋯+()=1.故答案=;1.【点】此考数字的化律以及分母有理化,要修业生第一剖析意,找到律,并行推得出答案.18.( 2016?哈)算 2的果是2.【剖析】先将各个二次根式化成最二次根式,再把同二次根式行归并求解即可.【解答】解:原式 =2×3= 3= 2 ,故答案: 2 .【点】本考了二次根式的加减法,解答本的关在于掌握二次根式的化与同二次根式归并.19.( 2016?天津)算(+)()的果等于 2 .【剖析】先套用平方差公式,再依据二次根式的性算可得.【解答】解:原式 =()2()2=5 3=2,故答案为: 2.【评论】本题考察了二次根式的混淆运算的应用,娴熟掌握平方差公式与二次根式的性质是重点.20.( 2016?博野县校级自主招生)化简:(0<a<1)=﹣a.【剖析】联合二次根式的性质进行化简求解即可.【解答】解:==| a﹣| .∵0< a<1,∴ a2﹣1<0,∴ a﹣ =<0,∴原式 =| a﹣| =﹣( a﹣)=﹣a.故答案为:﹣a.【评论】本题考察了二次根式的性质与化简,解答本题的重点在于娴熟掌握二次根式的性质及二次根式的化简.21.(2016?绵阳校级自主招生)假如最简二次根式与能够归并,那么使存心义的 x 的取值范围是x≤ 10.【剖析】依据二次根式可归并,可得同类二次根式,依据同类二次根式,可得 a 的值,依据被开方数是非负数,可得答案.【解答】解:由最简二次根式与能够归并,得3a﹣8=17﹣2a.解得 a=5.由存心义,得20﹣2x≥0,解得 x≤10,故答案为: x≤ 10.【评论】本题考察了同类二次根式,利用同类二次根式得出对于 a 的方程是解题重点.22.( 2016?温州校级自主招生)已知a,b 是正整数,且知足是整数,则这样的有序数对( a, b)共有7对.【剖析】 A, B 只好是 15n2,而后分别议论及的取值,最后可确立有序数对的个数.【解答】解: 15 只好约分红3, 5那么 A,B 只好是 15n2先考虑 A 这边:①,那么 B 能够这边能够是 1 或许,此时有:(15,60),( 15,15),(60,15),②,只好 B 这边也是,此时有:(60,60),③,那么 B 这边也只好是,∴2×( + )=1,此时有:(240, 240)④的话,那么 B 这边只好是,那么 2( + ) =1,此时有:(135, 540),(540,135).综上可得共有 7 对.故答案为: 7.【评论】本题考察二次根式的化简求值,难度较大,重点是依据题意分别议论及的取值.23.( 2016?福州自主招生)对正实数a,b 作定义 a*b=﹣a,若2*x=6,则x= 32.【剖析】依据定义把 2*x=6 化为一般方程,求解即可.【解答】解:∵a*b=﹣a,∴2*x=﹣2,∴方程 2*x=6 可化为﹣2=6,解得x=32,故答案为: 32【评论】本题主要考察二次根式的化简,利用新定义把方程化为一般方程是解题的重点.24(.2016?黄冈校级自主招生)已知 x+y=,x﹣y=,则 x4﹣y4=.【剖析】把所给式子两边平方再相加可先求得x2+y2,再求得 x2﹣y2,可求得答案.【解答】解:∵ x+y=,x﹣y=,∴( x+y)22+2xy+y2()2+,(﹣y)2 2﹣2xy+y2=x==x=x=()2=﹣,∴ x2+y2=,又 x2﹣ y2= ( x+y )( x ﹣ y ) = ()() ==1,∴ x4﹣y4(2+y2)( x2﹣y2)=,=x故答案为:.【评论】本题主要考察二次根式的化简,利用乘法公式分别求得x2+y2和 x2﹣ y2的值是解题的重点.25.( 2016?黄冈校级自主招生)已知=﹣(x,y为有理数),x y= 1 .【剖析】把已知条件两平方,整理可获得 x+y 2,合x、y均有理数,可求得 x、y 的,可求得答案.【解答】解:∵=,∴()2=()2,即23= x+ y 2,∴ x+y 2=2= +2,∵ x,y 有理数,∴x+y= + ,xy= ×,由条件可知 x>y,∴x= ,y= ,∴x y=1,故答案: 1.【点】本主要考二次根式的化,由条件求得 x、 y 的是解的关.26.( 2016 春?固始期末)已知是正整数,数n 的最大11.【剖析】依据二次根式的意可知 12 n≥0,解得 n≤12,且 12 n 开方后是正整数,切合条件的 12 n 的有 1、4、9⋯,此中 1 最小,此 n 的最大.【解答】解:由意可知 12 n是一个完整平方数,且不 0,最小 1,所以 n 的最大 12 1=11.【点】主要考了二次根式存心的条件,二次根式的被开方数是非数.27.(2016?山西模)三角形的三分3、m、5,化=2m 10 .【剖析】先利用三角形的三关系求出m 的取范,再化求解即可.【解答】解:∵三角形的三分3、m、5,∴2< m<8,∴﹣=m﹣2﹣( 8﹣m) =2m﹣10.故答案为: 2m﹣10.【评论】本题主要考察了二次根式的性质与化简及三角形三边关系,解题的重点是熟记三角形的三边关系.28.( 2016?武侯区模拟)若实数m知足=m+1,且 0<m<,则m的值为.【剖析】直接利用二次根式的性质化简从而得出对于m 的等式即可得出答案.【解答】解:∵=m+1,且 0< m<,∴ 2﹣ m=m+1,解得: m=.故答案为:.【评论】本题主要考察了二次根式的性质与化简,正确开平方是解题重点.29.( 2016?龙岩模拟)计算以下各式的值:;;;.察看所得结果,总结存在的规律,应用获得的规律可得=102016.【剖析】直接利用已知数据计算得出结果的变化规律从而得出答案.【解答】解:=10;=100=102;=1000=103;=10000=104,可得=102016.故答案为: 102016.【评论】本题主要考察了二次根式的性质与化简,正确得出结果变化规律是解题重点.30.(2016?丹东模拟)察看以下各式:=11+3×1+1,=22+3×2+1,=32+3×3+1,猜想:= 20112+3×2011+1.【剖析】依据题意得出数字变换规律从而得出答案.【解答】解:由题意可得:=20112+3× 2011+1.故答案为: 20112+3× 2011+1.【评论】本题主要考察了二次根式的化简,正确得出数字变化规律是解题重点.三.解答题(共10 小题)31.( 2017 春?临沭县校级月考)计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.【剖析】(1)先进行二次根式的除法运算,而后化简后归并即可;(2)利用完整平方公式和平方差公式计算.【解答】解:(1)原式 =3 ﹣ 2 +=3 ﹣2 +2=3;( 2)原式 =1﹣5+1+2+5=2+2.【评论】本题考察了二次根式的混淆运算:先把各二次根式化简为最简二次根式,而后进行二次根式的乘除运算,再归并即可.32.( 2017 春?沂源县校级月考)若 1< a< 2,求+的值.【剖析】依据 a 的范围即可确立a﹣ 2 和 a﹣1 的符号,而后依据算术平根的意义进行化简求值.【解答】解:∵ 1<a<2,∴a﹣ 2<0, a﹣1>0.则原式=+=+=﹣1+1=0.【评论】本题考察了二次根式的化简求值,正确理解算术平方根的意义,理解=| a| 是重点.33(.2017 春?启东市月考)已知 x,y 都是有理数,而且知足,求的值.【分析】观察式子,需求出x , y的值,所以,将已知等式变形:,x,y 都是有理数,可得,求解并使原式存心义即可.【解答】解:∵,∴.∵x,y 都是有理数,∴ x2+2y﹣ 17 与 y+4 也是有理数,∴解得∵存心义的条件是x≥y,∴取 x=5,y=﹣4,∴.【评论】此类问题求解,或是变换式子,求出各个未知数的值,而后辈入求解.或是将所求式子转变为已知值的式子,而后整体代入求解.34.( 2016?锦州)先化简,再求值:,此中x=﹣3﹣(π﹣ 3)0.【剖析】先依据分式混淆运算的法例把原式进行化简,再把化简后 x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4 ﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入获得:==.即=.【评论】本题考察的是分式的化简求值,在解答此类题目时要注意通分及约分的灵巧应用.35.( 2016?湖北校级自主招生)( 1)已知 | 2012﹣x|+=x,求 x﹣ 20132的值;( 2)已知 a>0,b>0 且( + )=3 ( +5).求的值.【剖析】( 1)由二次根式存心义的条件可知 x≥2013,而后化简得=2012,由算术平方根的定义可知:x﹣2013=20122,最后联合平方差公式可求得答案.( 2)依据单项式乘多项式的法例把( +)=3(+5)进行整理,得出 a﹣2﹣ 15b=0,再进行因式分解得出(﹣5)(+3)=0,而后依据 a>0,b>0,得出﹣5 =0,求出 a=25b,最后辈入要求的式子约分即可得出答案.【解答】解:(1)∵ x﹣2013≥0,∴x≥2013.∴ x﹣2012+=x.∴=2012.∴x﹣2013=20122.∴x=20122+2013.∴x﹣20132=20122﹣20132+2013 =﹣(2012+2013)+2013 =﹣2012.( 2)∵(+ )=3(+5 ),∴ a+=3+15b,∴a﹣ 2﹣15b=0,∴(﹣5)(+3)=0,∵a> 0,b> 0,∴ ﹣5 =0,∴ a=25b,∴原式 ===2.【评论】本题主要考察的是二次根式的混淆运算,用到的知识点是二次根式存心义的条件、绝对值的化简、算术平方根的性质、平方差公式的应用,第(1)题求得 x﹣2013=20122,第( 2)求出 a=25b 是解题的重点.36.( 2016?山西模拟)察看以下各式及其考证过程:( 1)依据上述两个等式及其考证过程的基本思路,猜想的变形结果并进行考证;(2)针对上述各式反响的规律,写出用 n( n 为随意自然数,且 n≥ 2)表示的等式,并说明它建立.【剖析】依据察看,可得规律,依据规律,可得答案.【解答】解:(1)5=考证: 5====;( 2) n=,证明: n====.【评论】本题考察了二次根式的性质与化简,运用n=的规律是解题重点.37.( 2016?仙游县校级模拟)先化简,再求值:(+)÷,此中a=+1.【剖析】利用通分、平方差公式等将原式化简为,代入 a 的值即可得出结论.【解答】解:原式 =(+)÷,=?,=?,=.当 a= +1 时,原式 ==.【评论】本题考察了分式的化简求值,解题的重点是将原式化简成.本题属于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据求值是重点.38.( 2016?高邮市一模)求不等式组的整数解.【剖析】第一解不等式组,注意系数化“1时”,这两个不等式的系数为负数,不等号的方向要改变.还要注意题目的要求,按要求解题.【解答】解:整理不等式组,得∴∴∴;∴不等式组的整数解为﹣2,﹣ 1,0.【评论】本题考察了一元一次不等式组的解法.要注意系数化“1时”,系数是正仍是负,正不等号的方向不变,负不等号的方向改变.还要注意审题,依据题意解题.39.( 2016?太原一模)阅读与计算:请阅读以下资料,并达成相应的任务.古希腊的几何学家海伦在他的《胸怀》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:假如一个三角形的三边长分别为a、 b、c,设p=,则三角形的面积 S=.我国南宋有名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):假如一个三角形的三边长分别为 a、b、c,则三角形的面积 S=.( 2)若一个三角形的三边长分别是,求这个三角形的面积.【剖析】(1)把 a、 b、 c 的长代入求出 S2,再开方计算即可得解;2( 2)把 a、b、c 的长代入求出 S ,再开方计算即可得解.【解答】解:(1)p===9,S===6.答:这个三角形的面积等于6.(2) S=====.答:这个三角形的面积是.故答案为: 6.【评论】本题考察了二次根式的应用,难点在于对各项整理利用算术平方根的定义计算.40.( 2016 春?饶平县期末)已知: y=++,求﹣的值.【剖析】第一依据二次根式中的被开方数一定是非负数,求出x 的值是多少,进而求出 y 的值是多少;而后把求出的x、y 的值代入化简后的算式即可.【解答】解:∵+存心义,∴,解得 x=8,∴ y=++=++=0+0+=∴﹣=﹣=﹣=﹣=﹣=【评论】本题主要考察了二次根式存心义的条件,要娴熟掌握,解答本题的重点是要明确:二次根式中的被开方数一定是非负数,不然二次根式无心义.。

八年级初二数学 数学二次根式的专项培优练习题(附解析

八年级初二数学 数学二次根式的专项培优练习题(附解析

一、选择题1.下列式子中,属于最简二次根式的是()A.9B.13C.20D.72.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A.(8﹣3cm2B.(4﹣3cm2C.(16﹣3cm2D.(﹣3)cm232的倒数是()A2B.22C.2-D.22-4.下列各式是二次根式的是()A3B1-C35D4π-5.已知:x3,y31,求x2﹣y2的值()A.1 B.2 C3D.36.设a3535+-b633633+-21b a-的值为()A621+B621+C621D621 7.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.013323)=5;④如果点P(3-2n,1)到两坐标轴的距离相等,那么n=1,其中假命题的有()A.1个B.2个C.3个D.4个8.以下运算错误的是()A3535⨯=B.2222⨯=C169+169D2342a b ab b=a>0)9.使式子212 4xx+-x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x>﹣2,且x≠2D.x≥﹣2,且x≠210.x ≥3是下列哪个二次根式有意义的条件( ) A .3x +B .13x - C .13x + D .3x -二、填空题11.已知2216422x x ---=,则22164x x -+-=________.12.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.13.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.14.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 15.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.=_______.18.mn =________.19.n 为________.20.能合并成一项,则a =______.三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=5==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,故答案为5=256;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据直角二次根式满足的两个条件进行判断即可. 【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确. 故选D . 【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.2.D解析:D 【分析】根据正方形的面积求出边长AB =4cm ,BC =()cm ,利用四边形ABCD 的面积减去两个阴影的面积即可列式求出答案. 【详解】∵两张正方形纸片的面积分别为16cm 2和12cm 2,4cm=cm,∴AB=4cm,BC=(+4)cm,∴空白部分的面积=()×4﹣12﹣16,=﹣12﹣16,=(﹣)cm2,故选:D.【点睛】此题考查正方形的性质,二次根式的化简,二次根式的混合计算,正确理解图形中空白面积的计算方法是解题的关键.3.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】,;2故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 4.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.5.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.6.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.7.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.8.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x-40≠,2x∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.10.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A 、x+3≥0,解得:x≥-3,故此选项错误;B 、x-3>0,解得:x >3,故此选项错误;C 、x+3>0,解得:x >-3,故此选项错误;D 、x-3≥0,解得:x≥3,故此选项正确,故选D .【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.二、填空题11.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.12.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).13.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.14.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.15.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<< ∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.18.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

八年级初二数学数学二次根式的专项培优易错试卷练习题及解析

八年级初二数学数学二次根式的专项培优易错试卷练习题及解析

一、选择题1.( )A .1B .﹣1C .D -2.下列各式中,运算正确的是( )A =﹣2B +C 4D .=23.下列运算中,正确的是( )A =B 1=C =D 2=4.下列计算或判断:(1)±3是27的立方根;(2;(32;(4;(5) A .1个 B .2个 C .3个 D .4个5.已知:,,则a 与b 的关系是( ) A .相等B .互为相反数C .互为倒数D .平方相等 6.以下运算错误的是( )A =B .2= CD 2=a >0)7.若|x 2﹣4x+4|x+y 的值为( )A .3B .4C .6D .98.设0a >,0b >=的值是( ) A .2 B .14 C .12D .3158 9.下列二次根式中是最简二次根式的是( )A B CD 10.下列运算错误的是( )A BC .D 1=二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.将(0)a a -<化简的结果是___________________.13.2==________.14.观察下列等式:第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, …按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________15.已知函数1x f x x ,那么1f _____.16.已知:可用含x =_____.17.已知,n=1的值________.18_____.19.已知x ,y ,则x 2+xy +y 2的值为______.20.已知2x =243x x --的值为_______.三、解答题21.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.22.计算:(1)11(233÷【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】解:)1131-=233÷3==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.23.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y x x y+ 【答案】(1)72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xy xy+-,然后利用整体代入的方法计算. 【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+=(x+y )2-3xy,=2132-⨯=72; (2)y x x y +=2212()22812x y xy xy -⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.24.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.25.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.26.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.27.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c 为实数且2c =2c ab -的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可;(2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可.【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩,∴3a =,1b =-,∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.28.计算:(1;(2)))213 【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】解:原式=故选C .2.C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C.【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.3.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;==,故此选项错误;D2故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.4.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(1a=正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知=,故=,故(48(5)正确.故选B.5.C【解析】 因为1a b ⨯==,故选C. 6.C解析:C【分析】利用二次根式的乘法法则对A 、B 进行判断;利用二次根式的化简对C 、D 进行判断.【详解】A .原式=所以A 选项的运算正确;B .原式=所以,B 选项的运算正确;C .原式==5,所以C 选项的运算错误;D .原式=2,所以D 选项的运算正确.故选C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.A解析:A【解析】根据题意得:|x 2–4x ,所以|x 2–4x +4|=0,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .8.C解析:C【分析】= 变形后可分解为:)=0,从而根据a >0,b >0可得出a 和b 的关系,代入即可得出答案.【详解】由题意得:a =+15b ,∴+)=0,=,a =25b ,12. 故选C .本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.9.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A是最简二次公式,故本选项正确;BCD=故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.10.D解析:D【分析】根据二次根式的乘法法则对A进行判断;根据分母有理化对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断.【详解】AB计算正确,不符合题意;C、计算正确,不符合题意;D11=≠符合题意;故选:D.【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.13.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.14.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题15.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx ,所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 16.【解析】 ∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x.解析:211166x x -+ 【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 17.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.18.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可. 【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键. 19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初二数学二次根式和一元二次方程综合培优(最新整理)

初二数学二次根式和一元二次方程综合培优(最新整理)
9.(泉州校级质检)如图,在△ABC 中,∠ACB=90°,AC=BC=6cm,正方形 DEFG 的边长 为 2cm,其一边 EF 在 BC 所在的直线 L 上,开始时点 F 与点 C 重合,让正方形 DEFG 沿直 线 L 向右以每秒 1cm 的速度作匀速运动,最后点 E 与点 B 重合. (1)请直接写出该正方形运动 6 秒时与△ABC 重叠部分面积的大小; (2)设运动时间为 x(秒),运动过程中正方形 DEFG 与△ABC 重叠部分的面积为 y (cm2).在该正方形运动 6 秒后至运动停止前这段时间内,求 y 与 x 之间的函数关系式;
5.(上海)关于 x 的一元二次方程 mx2﹣(3m﹣1)x+2m﹣1=0,其根的判别式的值为 1,求 m 的 值及该方程的解
6.(睢宁县校级期中)因为
,结果是有理的,则称

互为有理化因式.在进行二次根式的计算时,利用有理化因式,有时可以化去
分母中的根号.
例:
仿照上例,请计算:

7.(镇江校级期中)如图,在△ABC 和△ADE 中,点 E 在 BC 边上,∠BAC=∠DAE,∠B=∠D, AB=AD. (1)求证:△ABC≌△ADE; (2)如果∠AEC=75°,将△ADE 绕着点 A 旋转一个锐角后与△ABC 重合,求这个旋转角的 大小.
5.(宜兴市校级期中)计算:
= .
6.(上海)如果关于 x 的方程 x2﹣2x+m=0(m 为常数)有实数根,那么 m 的最大值
为 .
7.(奉贤区期中)若 x<2,化简
+|3﹣x|的正确结果是 .
8.(宜兴市校级期中)若 的整数部分和小数部分分别是 a 与 b,则 a+b= .
初二数学二次根式和一元二次方程综合培优

鲁教版2020八年级数学下册第七章二次根式期中复习培优练习题2(附答案)

鲁教版2020八年级数学下册第七章二次根式期中复习培优练习题2(附答案)

鲁教版2020八年级数学下册第七章二次根式期中复习培优练习题2(附答案)1.若(x+1)2+=0,则(x+y )2019的值为( ) A .1 B .﹣1 C .2019 D .﹣20192.下列各式中计算正确的是( )A .31322=B .2733=C .211x x +=+D .21293= 3.计算:312÷313-23的结果为( ) A .-23 B .3 C .6-23 D .36-23 4.下列算式中,正确的是( )A .3223-=B .4913+=C .2(32)526-=-D .824÷=5.下列各式互为有理化因式的是( )A .a b + 和a b -B .-a 和aC .52-和52-+D .x a y b +和x a y b + 6.下列各式中,正确的是( )A .366=±B .1116442=C .()2-33= D .3621010-=- 7.下列根式中是最简二次根式的是( ) A . B . C . D .8.下列计算正确的是( )A .2×2=2B 235C .22=3D 829.计算:20172018(223)(223)⨯=__________10.若()1401a a a+=<<a a =______. 11.观察下列各式:221111*********⎛⎫++=+=+- ⎪⨯⎝⎭, 2211111111232323⎛⎫++=+=+- ⎪⨯⎝⎭, 2211111111343434⎛⎫++=+=+- ⎪⨯⎝⎭, L请利用你发现的规律,计算:2222222211111111111112233420182019+++++++++⋯+++,其结果为____.12.①3×5=________;②13×27=_________. 13.二次根式x 5-有意义的最小整数是______ .14.一般地,二次根式加减时,可以先将二次根式化成____________ 二次根式,再将____________ 相同的二次根式进行合并.15.已知11y x x =---,则x y +的值为________.16.若分式1x +有意义,则x 的取值范围为_____. 17.41010773----+ 18.计算:(1)(2)19.计算:(1)18-83131 (232112320.化简求值:已知:212122121x y x y y x -+==+++-求的值.21+13,3x y ==.22))11x x +-23.计算:(11)5)-+(2)2⨯--24.计算(1) (2)2-;参考答案1.A【解析】【分析】首先根据已知条件,可判定,,即可得出,代入即可得解.【详解】解:由题意,可得得将其代入所求式子,即得1故答案为A.【点睛】此题主要考查利用平方数和二次根式有意义的性质,求解参数,熟练掌握即可解题.2.D【解析】【分析】根据二次根式的分母有理化以及去根号的运算法则分别计算四个选项中的式子,即可判断出哪个是正确的的.【详解】解:A. 33326=22222=⨯,故A错误;B. 27339==,故选项B错误;C. 21x+C错误;D. 222129339=D选项正确.故答案选D.【点睛】本题主要考察二次根式的化简以及分母有理化,运用二次根式的计算法则,先将二次根式内的式子能计算的先计算,不能计算的就把分子分母的根号分开,之后再利用分母有理化即可得出结果.3.C【解析】【分析】先化简,再合并同类项解答即可.【详解】解:原式=6-.故选C.【点睛】本题考查根式化简,掌握相关计算方式是解答本题的关键.4.C【解析】【分析】根据二次根式的混合运算法则逐一计算即可判断.【详解】解:A.=,此选项错误;C.25=-,此选项错误;故选:C .【点睛】本题考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.5.B【解析】【分析】根据有理化因式的定义进行判断即可.【详解】解:A. =∴两根式不互为有理化因式,故本选项错误;B. ∵a =-,∴两根式互为有理化因式,故本选项正确;C.∵(7⋅=-+∴两根式不互为有理化因式,故本选项错误;D.∵((222x a y b ⋅=++∴两根式不互为有理化因式,故本选项错误;故选:B.【点睛】本题考查的是分母有理化,熟知两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式称作互为有理化因式是解答此题的关键.6.C【解析】【分析】利用二次根式的化简法则进行判断.【详解】解: 6= ,A.错误= B.错误= ,C.正确2110=,D.错误 故选:C.【点睛】本题考查了根式的化简,理解算术平方根和立方根的意义是本题的解题关键.7.D【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、,不是最简二次根式,本项错误;B、,不是最简二次根式,本项错误;C、,不是最简二次根式,本项错误;D、是最简二次根式,本项正确;故选择:D.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.D【解析】【分析】根据二次根式的运算即可求出答案.【详解】(A)原式=6×2=12,故A错误;(B23B错误;(C)原式=2,故C错误;故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9.223--【解析】【分析】首先根据乘方的意义和积的乘方化简,再进一步计算得出答案即可.原式=()()201733⎡⎤⎣⎦=()20171- +3)=3-故答案为3-.【点睛】本题考查二次根式的混合运算。

八年级数学上----二次根式培优练习题

八年级数学上----二次根式培优练习题

八年级数学上--——二次根式培优练习题1、二次根式:1。

有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 .4. 当__________x 是二次根式。

5。

2x =,则x 的取值范围是 。

6. 若1a b -+互为相反数,则()2005_____________a b -=。

7。

2x =-,则x 的取值范围是 .8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( ) A. 2个 B 。

3个 C. 4个 D. 5个13、 下列各式一定是二次根式的是(。

14、 若23a ,则-)A 。

52a -B 。

12a -C 。

25a -D 。

21a -15。

若A ==( )A 。

24a + B. 22a + C 。

()222a + D 。

()224a +16、 若1a ≤ )A 。

(1a -B. (1a -C. (1a - D 。

(1a -17. =x 的取值范围是( ) A. 2x ≠ B 。

0x ≥ C 。

2xD. 2x ≥18)A. 0B. 42a- C. 24a- D. 24a-或42a-19. 下面的推导中开始出错的步骤是()A。

()1 B. ()2 C。

()3 D. ()4()()()()231233224==-==∴=-∴=-202440y y-+=,则xy= 。

21. 当a取值时,代数式1取值最小,并求出这个最小值是。

22。

去掉下列各根式内的分母:())10x())21x23。

已知2310x x-+=,.24。

已知,a b(10b-=,求20052006a b-的值。

2 、二次根式的乘除:1。

当0a ≤,0b时__________=。

(完整版)《二次根式》培优试题及答案

(完整版)《二次根式》培优试题及答案

《二次根式》提高测试〔一〕判断题:〔每题1分,共5分〕1.ab 2)2(-=-2ab .…………………〔〕【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.〔 〕【提示】231-=4323-+=-〔3+2〕.【答案】×.3.2)1(-x =2)1(-x .…〔〕【提示】2)1(-x =|x -1|,2)1(-x =x -1〔x ≥1〕.两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4.ab 、31b a 3、bax 2-是同类二次根式.…〔 〕【提示】31b a 3、ba x 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.〔 〕29x +是最简二次根式.【答案】×.〔二〕填空题:〔每题2分,共20分〕6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a =_.【答案】-2aa .【点评】注意除法法那么和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】〔a -12-a 〕〔________〕=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=〔 〕2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2〔x -1〕=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11.a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab 〔ab >0〕,∴ ab -c 2d 2=〔cd ab +〕〔cd ab -〕.12.比拟大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比拟28,48的大小,再比拟281,481的大小,最后比拟-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________. 【提示】(-7-52)2001=(-7-52)2000·〔_________〕[-7-52.] 〔7-52〕·〔-7-52〕=?[1.]【答案】-7-52. 【点评】注意在化简过程中运用幂的运算法那么和平方差公式. 14.假设1+x +3-y =0,那么(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数局部和小数局部,那么2xy -y 2=____________.【提示】∵ 3<11<4,∴_______<8-11<__________.[4,5].由于8-11介于4与5之间,那么其整数局部x =?小数局部y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数局部和小数局部时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数局部和小数局部就不难确定了. 〔三〕选择题:〔每题3分,共15分〕16.233x x +=-x 3+x ,那么………………〔 〕〔A 〕x ≤0 〔B 〕x ≤-3 〔C 〕x ≥-3 〔D 〕-3≤x ≤0【答案】D . 【点评】此题考查积的算术平方根性质成立的条件,〔A 〕、〔C 〕不正确是因为只考虑了其中一个算术平方根的意义.17.假设x <y <0,那么222y xy x +-+222y xy x ++=………………………〔 〕〔A 〕2x 〔B 〕2y 〔C 〕-2x 〔D 〕-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C . 【点评】此题考查二次根式的性质2a =|a |.18.假设0<x <1,那么4)1(2+-x x -4)1(2-+xx 等于………………………〔〕〔A 〕x 2 〔B 〕-x 2〔C 〕-2x 〔D 〕2x【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】此题考查完全平方公式和二次根式的性质.〔A 〕不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19.化简aa 3-(a <0)得………………………………………………………………〔 〕〔A 〕a - 〔B 〕-a 〔C 〕-a - 〔D 〕a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………〔 〕〔A 〕2)(b a + 〔 B 〕-2)(b a -〔C 〕2)(b a -+-〔D 〕2)(b a ---【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】此题考查逆向运用公式2)(a =a 〔a ≥0〕和完全平方公式.注意〔A 〕、〔B 〕不正确是因为a <0,b <0时,a 、b 都没有意义.〔四〕在实数范围内因式分解:〔每题3分,共6分〕21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】〔3x +5y 〕〔3x -5y 〕. 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.〔五〕计算题:〔每题6分,共24分〕23.〔235+-〕〔235--〕; 【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.〔a 2m n -m ab mn +m n n m 〕÷a 2b 2mn; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=〔a 2m n-mab mn +mn n m 〕·221b a nm=21b n m m n ⋅-mab 1n m m n ⋅+22b ma n n m n m ⋅ =21b -ab 1+221b a =2221ba ab a +-. 26.〔a +ba abb +-〕÷〔b ab a ++a ab b --ab b a +〕〔a ≠b 〕. 【提示】此题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=b a ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】此题如果先分母有理化,那么计算较烦琐. 〔六〕求值:〔每题7分,共14分〕27.x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将条件化简,再将分式化简最后将条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】此题将x 、y 化简后,根据解题的需要,先分别求出“x +y 〞、“x -y 〞、“xy 〞.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22a x +=22a x +〔22a x +-x 〕,x 2-x22a x +=-x 〔22a x +-x 〕.【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】此题如果将前两个“分式〞分拆成两个“分式〞之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x1. 七、解答题:〔每题8分,共16分〕29.计算〔25+1〕〔211++321++431++…+100991+〕.【提示】先将每个局部分母有理化后,再计算. 【解】原式=〔25+1〕〔1212--+2323--+3434--+…+9910099100--〕=〔25+1〕[〔12-〕+〔23-〕+〔34-〕+…+〔99100-〕] =〔25+1〕〔1100-〕 =9〔25+1〕.【点评】此题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.假设x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值.【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x -=|xy y x +|-|xy y x -|∵ x =41,y =21,∴ y x <x y .∴ 原式=x y y x+-y x xy+=2yx 当x =41,y =21时,原式=22141=2.【点评】解此题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

(完整版)二次根式专题练习(含答案).doc

(完整版)二次根式专题练习(含答案).doc

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。

最新人教版八年级下册数学培优训练第十六章二次根式第一节第二课时 二次根式的性质

最新人教版八年级下册数学培优训练第十六章二次根式第一节第二课时 二次根式的性质

新知基本功
8.【教材P5习题T2变式】计算: (1)【2021·柳州】|-3|- 9 +1;
解:原式=3-3+1=1.
(2)-12
22+
-122;
原式=14×2+12=1.
(3) (π-4)2+ (π-3)2.
原式=4-π+π-3=1.
新知基本功
9.用基本运算符号(基本运算包括加、减、乘、除、乘方和 开方)把_数__或__表__示__数__的__字__母___连接起来的式子,我们称 这样的式子为代数式.
新知基本功
10.下列式子中,属于代数式的有( A )
①0; ②x; ③x+2; ④2x;
⑤x=2; ⑥x>2; ⑦
x2;+1⑧x≠2.
A.5个
B.6个
C.7个
D.8个
新知基本功
11.【2021·自贡】已知x2-3x-12=0,则代数式-3x2+9x
+5的值是( B )
A.31
B.-31
C.41
D.-41
人教版 八年级下
第十六章 二次根式
16.1 二次根式 第2课时 二次根式的性质
习题链接
提示:点击 进入习题
1 本身;平方 2B
3D 4 ≥0;≤0;-a;|a| 5A
6B
答案显示
7A 8 见习题
9 数或表示数的字母
10 A
习题链接ห้องสมุดไป่ตู้
11 B 12 2n+1 13 见习题 14 D 15 D
16 见习题 17 见习题
精彩一题
解: (x+1)2=|x+1|, (x-2)2=|x-2|, 令 x+1=0,得 x=-1, 令 x-2=0,得 x=2, ∴ (x+1)2的零点值为-1, (x-2)2的零点值为 2.

部编数学八年级下册二次根式材料阅读题大题提升训练(重难点培优30题)【拔尖特训】2023年培优含答案

部编数学八年级下册二次根式材料阅读题大题提升训练(重难点培优30题)【拔尖特训】2023年培优含答案

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.7二次根式材料阅读题大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一.解答题(共30小题)1.(2022秋•驻马店期中)阅读材料:(一)如果我们能找到两个正整数x ,y 使x +y =a 且xy =b ,这样“和谐二次根式”,则上述过程就称之为化简“和谐二次根式”.=1+(二)在进行二次根式的化简与运算时,我们有时还会碰上如2样的式子,其实我们还可以将其进一=−121.那么我们称这个过程为分式的分母有理化.根据阅读材料解决下列问题:(1)化简“和谐二次根式”:+2 ;= 2−(2)已知m =n ,求m−nm n 的值.【分析】(1)根据阅读材料(一)化简“和谐二次根式”即可;(2)先根据阅读材料(一)化简m 与n 的分母,再根据阅读材料(二)进行分母有理化即可.【解答】(1)解:=2;=2+2;2(2)解:∵m =11n =11=∴m ﹣nm +n =+∴m−n m n ==2.(2022秋•长安区期中)求代数式a +其中a =﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 小亮 的解法是错误的;(2)求代数式a a=4【分析】(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.【解答】解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=43=10,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=46﹣(42+3.(2022秋•仪征市期中)阅读下面材料,回答下列问题:构造法是依据问题的条件和结论给出的信息,把问题做适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而疏通解题思路的方法.构造方程是常用的一种构造方法,它能使得问题被简化,得以迅速解决.材料:已知x=,求代数式x2x−1−(1+1x2−x)的值;分析:这道题如果将代数式化简,再直接将x 代入求值比较困难,观察x 的值,发现x =x =−b 2a ,不难发现x 是方程x 2﹣5x +1=0的根,所以x 2=5x ﹣1,x 2+1=5x ,所以原式=5x−1x−1−5x−1x−1−4x x(x−1)=5x−1x−1−4x−1=5(x−1)x−1=5.(1)以2,﹣3为根的方程可以是 2(x ﹣2)(x +3)=0 ;(2)已知x =−x 32(3)求代数式32+的值.【分析】(1)写出一个满足条件的方程即可;(2)x 是方程x 2++1=0的根,可得x 2+=−1,把所求式子变形再整体代入即可;(3)设x =x 是方程x 2﹣x +a =0的根,可得x 2﹣x =﹣a ,再代入可得答案.【解答】解:(1)以2,﹣3为根的方程可以是2(x ﹣2)(x +3)=0,故答案为:2(x ﹣2)(x +3)=0,(2)∵x =∴x =∴x 是方程x 2++1=0的根,∴x 2+=−1,∴−x 32=−x(x 2=−x ⋅=(3)设x =∴32+=x 3−x 2+ax−2,∵x =∴x 是方程x 2﹣x +a =0的根,∴x 2﹣x =﹣a ,∴x 3﹣x 2+ax ﹣2=x (x 2﹣x )+ax ﹣2=﹣ax +ax ﹣2=﹣2.4.(2022秋•永安市期中)在解决问题“已知a =2a 2﹣8a +1的值”时,小明是这样分析与解答的:∵a =1∴a ﹣2=a ﹣2)2=3,a 2﹣4a +4=3∴a 2﹣4a =﹣1,∴2a 2﹣8a +1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:3;(2)若a2a 2+4a ﹣1的值.【分析】(1,然后利用平方差公式计算;(2)先分母有理化得到a =1,再移项平方得到a 2+2a =1,接着把2a 2+4a ﹣1变形为2(a 2+2a )﹣1,然后利用整体代入的方法计算.【解答】解:(1+(2)∵a =1==1,∴a +1=∴(a +1)2=2,即a 2+2a +1=2,∴a 2+2a =1,∴2a 2+4a ﹣1=2(a 2+2a )﹣1=2×1﹣1=1.5.(2022秋•昌平区期中)我们已经学习了整式、分式和二次根式,当被除数是一个二次根式,除数是一个式.(1)下列式子中①aa 21,, ③ 是根分式(填写序号即可);(2x 的取值范围 x ≥1且x ≠2 ;(3)已知两个根分式M N ①若M 2﹣N 2=1,求x 的值;②若M 2+N 2是一个整数,且x 为整数,请直接写出x 的值: 1 .【分析】(1)根据根分式的定义进行判断即可;(2)根据二次根式的定义,分式有意义的条件进行分析即可;(3)①对式子进行化简,再进行求解即可;②对式子进行化简,结合分式有意义的条件及二次根式的定义进行求解即可.【解答】解:(1)①aa 21不是根分式,故答案为:③;(2)由题意得:x ﹣1≥0,x ﹣2≠0,解得:x ≥1,x ≠2,故x 的取值范围是:x ≥1且x ≠2;故答案为:x ≥1且x ≠2;(3)当M N =①M 2﹣N 2=1,22=1,(x−2)−2x−1(x−2)2=1,x 2−8x 8(x−2)2=1,解得:x =1,经检验,x =1是原方程的解;②M 2+N 22+2=x 2−6x 7(x−2)2+2x−1(x−2)2 =x 2−4x 6(x−2)2(x−2)=1+2(x−2)2,∵M 2+N 2是一个整数,且x 为整数,∴2(x−2)2是一个整数,∴x ﹣2=±1,解得:x =3或1,经检验,x =1符合题意,故答案为:1.6.(2022秋•市中区期中)观察下列一组等式,解答后面的问题:1)1)=1,1,1,=1,(1)根据上面的规律:(2)计算:(1+11⋯1)×1).(3)若a =1,则求a 3﹣4a 2﹣2a +1的值.【分析】(1)①根据平方差公式得出答案即可;②先分母有理化,再求出答案即可;(2)根据得出的规律进行计算,再根据二次根式的加减法法则进行计算,最后根据二次根式的乘法法则和平方差公式进行计算即可;(3)求出a 的值,再求出a 2的值,再代入多项式a 3﹣4a 2﹣2a +1,最后根据二次根式的运算法则进行计算即可.【解答】解:(1)=5﹣故答案为:5﹣(2)(111+⋯+1)×+1)1++•+×+1)1)×+1)2﹣12=2022﹣1=2021;(3)∵a1,∴a 21)2=2﹣1=3﹣∴a 3﹣4a 2﹣2a +1=(3﹣×1)﹣4×(3﹣2×1)+1=3﹣+2+1=16.7.(2022秋•隆昌市校级月考)【阅读材料】阅读下列材料,然后回答问题:①在进行二次根式的化简与运算时,我们有时会碰上如2一样的式子,其实我们还可以将其进一步−1,以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a +b =2,ab =﹣3,求a 2+b 2.我们可以把a +b 和ab 看成是一个整体,令x =a +b ,y =ab ,则a 2+b 2=(a +b )2﹣2ab =x 2﹣2y =4+6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1⋯(2)m 是正整数,a =b =2a 2+1823ab +2b 2=2019,求m ;(31【分析】(1)先把每一个二次根式进行分母有理化,然后再进行计算即可解答;(2)先利用分母有理化化简a ,b ,从而求出a +b =4m +2,ab =1,然后根据已知可得a 2+b 2=98,再利用完全平方公式进行计算即可解答;(3)利用完全平方公式,进行计算即可解答.【解答】解:(1)11+1+⋯+1++...+=12×1++...+(2)∵a b∴a2,b=2,∴a +b 2++2=2(2m +1)=4m +2,ab22=[]2=(m +1﹣m )2=1,∵2a 2+1823ab +2b 2=2019,∴2a 2+1823+2b 2=2019,∴2a 2+2b 2=196,∴a 2+b 2=98,∴(a +b )2﹣2ab =98,∴(4m +2)2﹣2=98,∴(4m +2)2=100,∴4m +2=±10,∴4m +2=10或4m +2=﹣10,∴m 1=2,m 2=﹣3(不合题意,舍去),∴m 的值为2;(3=1,2=1,∴15+x 2﹣+26﹣x 2=1,=20,22=12+4×20=1+80=81,≥0≥0,+9.8.(2022秋•南海区期中)在数学课外学习活动中,小明和他的同学遇到一道题:已知a =2a 2﹣8a +1的值.他是这样解答的:∵a =12a ﹣2=∴(a ﹣2)2=3,a 2﹣4a +4=3∴a 2﹣4a =﹣1,∴2a 2﹣8a +1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)1−1 ;(2)化简1+1+1+⋯+1;(3)若aa 4﹣10a 3+a 2﹣20a +5的值.【分析】(1)根据小明的解答过程即可进行计算;(2)结合(1)进行分母有理化,再合并即可得结果;(3)根据平方差公式,可分母有理化,根据整体代入,可得答案.【解答】解:(1)1,1;(2++...+= =12﹣1=11;(3)∵a =1=+5,∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a +25=26.∴a 2﹣10a =1,∴a 4﹣10a 3+a 2﹣20a +5=a 2(a 2﹣10a +1)﹣20a +5=a 2×(1+1)﹣20a +5=2(a 2﹣10a )+5=2+5=7.答:a 4﹣10a 3+a 2﹣20a +5的值为7.9.(2022秋•杏花岭区校级月考)小明在解决问题:已知a =1.求2a 2﹣8a +1的值,他是这样分析与解的:∵a2a ﹣2=∴(a ﹣2)2=3,a 2﹣4a +4=3∴a 2﹣4a =﹣1∴2a 2﹣8a +1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1⋯+1;(2(填“>”或“<”)(3)A 题:若a =+1,则a 2﹣2a +3= 4 .B 题:若a4a 2﹣+7= 5 .【分析】(1)根据分母有理化的方法化简即可;(2(3)A 题:由a =+1,可得a ﹣1=(a ﹣1)2=2,从而可得a 2﹣2a =1,进一步求解即可;B 题:由a =1,可得a 2a 1,两边同时作平方,可得4a 2=−2,进一步求解即可.【解答】解:(1⋯=+⋯==;(2=1故答案为:>;(3)A 题:∵a =1,∴a ﹣1=∴(a ﹣1)2=2,即a 2﹣2a +1=2,∴a 2﹣2a =1,∴a 2﹣2a +3=4,故答案为:4;B 题:∵a∴a∴2a 1,∴2=1,即4a 2+3=1,∴4a 2=−2,∴4a 2﹣+7=5,故答案为:5.10.(2022秋•高新区校级月考)阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(2(21,3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的=母有理化.解决问题:(1)4 4+ .(2)计算:①111+⋯1.②已知:x =y 求x 2+y 2的值.【分析】(1)根据有理化因式的定义确定4(2)①先分母有理化,然后合并即可;②先利用分母有理化得到x =2y =2+x +y =4,xy =1,然后利用完全平方公式得到x 2+y 2=(x +y )2﹣2xy ,最后利用整体代入的方法计算.【解答】解:(1)44+=故答案为:4(2)①原式1+•=1=1;②∵x=2y 2+∴x +y =4,xy =1,x 2+y 2=(x +y )2﹣2xy =42﹣2×1=14.11.(2022秋•揭阳期中)阅读理解题:已知a =小明同学是这样解答的:a =1请你参考小明的化简方法,解决如下问题:(1(2)计算:1+11⋯⋯+1;(3)若a =1,求2a 2+8a +1的值.【分析】(1)直接分母有理化即可;(2)把分式变形,然后裂项相消即可;(3)先对a 进行分母有理化,然后化简2a 2+8a +1,代入求值即可.【解答】解:(1)1=;(2⋯⋯+=+++……+=﹣1+(3)a =−(2+,2a 2+8a +1=2(a 2+4a +4)﹣7=2(a +2)2﹣7,将a =﹣(22×2−7=3.12.(2022秋•南召县月考)阅读下面的材料,解答后面提出的问题:在二次根式计算中我们常常遇到这样的情况:(2+×=1,×=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式的除法可以这样解:1=7+像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决问题:(1)4+ 4−(2)已知x =y ,则1x +1y = 10 .(3+++⋯++【分析】(1)根据有理化因式的概念解答;(2)利用二次根式的乘法法则计算;(3)根据分母有理化、二次根式的加法法则计算.【解答】解:(1)∵(4+(416﹣7=9,∴44故答案为:4(2)∵x =∴1x2=5﹣同理,1y =∴1x+1y =5﹣=10,故答案为:10;(3)原式=1++⋯+=10﹣1=9.13.(2022秋•新城区校级月考)爱动脑筋的小明在做二次根式的化简时,发现一些二次根式的被开方数是二次三项式,而且这些二次三项式正好是完全平方式的结构,于是就可以利用二次根式的性质:a 2=|a|=a(a ≥0),−a(a <0)来进一步化简.=|x +1|,∴当x +1≥0即x ≥﹣1时,原式=x +1;当x +1<0即x <﹣1时,原式=﹣x ﹣1.(1(2)判断甲、乙两人在解决问题:“若a =9,求a +”时谁的答案正确,并说明理由.甲的答案:原式=a =a +(1−a)=1;乙的答案:原式=a =a +(a−1)=2a−1=2×9−1=17.(3)化简并求值:|x−1|x =【分析】(1)仿照上面的例子,分类讨论即可化简;(2)根据a =9,得1﹣a <0,即可判断出答案;(3)根据x =x ﹣1>0,2﹣x <0,即可化简求值.【解答】解:(1==|m −12|,∴当m −12≥0即m ≥12时,原式=m −12,当m −12<0即m <12时,原式=﹣m +12.(2)∵a =9,∴1﹣a <0,∴原式=a =a +(a−1)=2a−1=2×9−1=17.∴乙的答案正确.(3)∵x =∴x ﹣1>0,2﹣x <0,∴|x−1|=x ﹣1+=x ﹣1+x ﹣2=2x ﹣3=3.14.(2022秋•清水县校级月考)阅读下列材料,然后回答问题.①化简:21,以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a +b =2,ab =−3,求a 2+b 2.我们可以把a +b 和ab 看成是一个整体,令x =a +b ,y =ab ,则a 2+b 2=(a +b )2−2ab =x 2−2y =4+6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1)计算:1+11⋯⋯+1;(2)m 是正整数,a =b 2a 2+1823ab +2b 2=2019.求m .(31【分析】(1)根据阅读材料的方法先进行分母有理化,再提取公因数12,继而两两相消,进一步计算即可;(2)先求出a +b =2(2m +1),ab =1,再将所求代数式化简为(a +b )2﹣2ab =98,然后代入计算即可;(3)=20,那么2212+4×20=81,进而求解即可.【解答】解:(1)原式=+⋯⋯+=12(1+⋯⋯+=12(1)(2)∵a 2,b =2,∴a +b 2++2=2(2m +1),ab =1.∵2a 2+1823ab +2b 2=2019,∴2(a 2+b 2)+1823=2019,∴a 2+b 2=98,∴(a +b )2﹣2ab =98,∴4(2m +1)2﹣2=98,∴m =2或﹣3,∵m 是正整数,∴m =2;(3=1,2=1,∴15+x 2﹣+26﹣x 2=1,20,22=12+4×20=81,≥0≥0,+9.15.(2022春•东莞市期中)阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.=1解决问题:(1=⑤,①: 9 ,②: 5 ,③ 3 ,④⑤: 3+(2【分析】(1)根据阅读材料将根式内的数配成完全平方的形式去一层根号即可;(2)根据阅读材料将根式内的数配成完全平方的形式去一层根号即可.【解答】解:(1====3故答案为:①:9,②:5,③:3,④⑤:3(2)原式====516.(2022春•交城县期中)阅读下面的材料,并解决问题.1=1;1=…(1(2)观察上述规律并猜想:当n 是正整数时1n 的式子表示);(3)请利用(2)的结论计算:(11+⋯+1)×+1).【分析】(1)仿照阅读材料,分母有理化即可;(2)仿照阅读材料,分母有理化即可;(3)先将各二次根式分母有理化,算出括号内的,再用平方差公式计算即可.【解答】解:(1)1(2(31++...+×1)1)×1)=361﹣1=360.17.(2022春•赤坎区校级期末)阅读下面的材料,解答后面给出的问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因11.这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘(1)请你写出3+的有理化因式: 3−(2)请仿照上面的方法化简1−b(b ≥0且b ≠1);(3)已知ab =【分析】(1)根据有理化因式的定义即可解答;(2)根据一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法进行化简;(3)通过分母有理化可化简a 、b ,从而求出a +b 、ab =a +b ,ab 的值代入即可求解.【解答】解:(1)∵(3+(39﹣11=﹣2,∴33故答案为:3(2)1−b=1(3)∵a2,b 2∴a +b =﹣ab =﹣1,====4.18.(2022春•呼和浩特期末)(1+0;(2)已知x =(7+x 2+(2++(3)先化简,再求值:(3−2x 1)÷x =.【分析】(1)根据二次根式的加减法法则、零指数幂的性质计算;(2)先根据完全平方公式求出x 2,再根据二次根式的乘法法则计算即可;(2)根据分式的混合运算法则把原式化简,把x 的值代入计算即可.【解答】解:(1)原式=1+1(2)∵x=2∴x2=(22=4﹣3=7﹣则原式=((7﹣+(2(2+=49﹣48+4﹣3+=2(3)原式=(3x3x1−2x1)•x1x(3x1)=3x1x1•x1x(3x1)=1 x ,当x+1时,原式=1=19.(2022春•临汾期末)(1)计算:6+1)1).(2)下面是夏红同学对题目的计算过程,请认真阅读并完成相应的任务.题目:已知x x+1−x2x−1的值.原式=(x1)(x−1)−x2x−1⋯第一步=x2−1−x2x−1⋯第二步=−1x−1.…第三步把x原式=−1⋯第四步第五步=﹣1…第六步任务一:填空:①在化简步骤中,第 一 步是进行分式的通分.②第 五 步开始出错,这一错误的原因是+1) .任务二:请直接写出该题计算后的正确结果.【分析】(1)根据平方差公式将题目中的式子展开,然后合并同类项即可;(2)任务一:①根据题目中的解答过程可以解答本题;②根据题目中的解答过程可以发现哪一步出错了,并写出错因即可;任务二:根据分式的计算方法和二次根式分母有理化的方法可以解答本题.【解答】解:(1)6++1)1)=6+5﹣1=10;(2)任务一:填空:①在化简步骤中,第一步是进行分式的通分.故答案为:一;②+1),+1);任务二:﹣1计算过程为:原式=(x 1)(x−1)−x 2x−1=x 2−1−x 2x−1=−1x−1.当x =−1==−120.(2022春•章贡区期末)阅读并完成下面问题:==1;②1试求:(1)下列各数中,与2 A .A .2+B .2CD .2(2+(3)若x =x 2﹣2x 的值.【分析】(1)观察已知等式确定出2(2(3)原式利用完全平方公式化简后,把x 分母有理化代入计算即可求出值.【解答】解:(1)与22+故选:A ;(2+的倒数为1=(3)∵x =1,∴原式=(x ﹣1)2﹣11﹣1)2﹣1=2﹣1=1.21.(2021秋•赫山区期末)“分母有理化”是我们常见的一种化简的方法.除此之外,我们也可以平方之后再开方的方式来化简一些有特点的无理数.解:设x =x >0.由于x 22=2+2=2.解得x =3【解答】解:设x =x <0,由于x 22=3+3+=2,所以x =所以原式(3=17﹣=17﹣22.(2018秋•天河区校级期中)小马在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(1+2,善于思考的小明进行了如下探索:设a+=(m+2,(其中a、b、m、n均为正整数)则有a+=m2+2+2n2.∴a=m2+2n2,b=2mn.这样,小马找到了把部分a+请你仿照小明的方法探索并解决问题:(1)当a,b,m,n均为正整数时,若a+(m+2,用含m,n的式子分别表示a,b得,a= m2+3n2 ,b= 2mn .(2)利用所探索的结论,找一组正整数a,b,m,n填空: 13 +=( 1 +2.(3)设x=x(要写出必要过程)【分析】(1)已知等式右边利用完全平方公式展开,表示出a与b即可;(2)令m=1,n=2,确定出a与b的值即可;(3)先把已知条件变形得到x x2﹣+2=3,然后用x【解答】解:(1)∵(m+2=m2+2+3n2,而a+=(m+2,∴a=m2+3n2,b=2mn;故答案为m2+3n2,2mn;(2)令m=1,n=2,则a=m2+3n2=1+3×4=13,b=2mn=4,∴(2;故答案为13,4,1,2;(3)∵x=∴x=∴(x2=3,∴x2﹣+2=3,=x2−1 2.23.先阅读下面的材料.再解答下面的问题.a﹣b,∴a﹣b特别地.×1,∴1当然也可以利用12﹣11=1得1=12﹣11,故1+这种变形也是将分母有理化.利用上述的思路方法解答下列问题:(1)计算:1−11−11;(2)计算:5−【分析】(1)先把每一部分分母有理化,化简后合并同类二次根式即可;(2)先把每一部分分母有理化,化简后合并同类二次根式即可.【解答】解:(1)原式==3+2=3﹣2=1;(2)原式=43)=43+=1.24.(2020春•安庆期中)阅读材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”,即分母和分子都乘以分子的有理化因式,从而消掉分子中的根式.=1.分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较+再例如,求y解:由x +2≥0,x ﹣2≥0可知x ≥2,而y =4.当x =2+2.所以y 的最大值是2.利用上面的方法,完成下述两题:(1(2)求y =+3的最大值.【分析】(1)先将两数变形为1、1,再由得出答案;(2)根据二次根式有意义的条件得出x ≥1+y ==2+3的最大值.【解答】解:(11,++(2)∵x +1≥0,x ﹣1≥0,∴x ≥1,∵y +3=2+3,当x =1+∴y3.25.(2020秋•吴江区期中)⋅2;=2;=3⋯两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式.爱动脑筋的小明同学在进行二次根式计算时,利用有理化因式化去分母中的根号.(1)1=(2=3+勤奋好学的小明发现:可以用平方之后再开方的方式来化简一些有特点的无理数.(3解:设x=x>0.由:x2=3+2.解得x请你解决下列问题:(1)(2(3【分析】(1)找出原式的有理化因式即可;(2)原式各式分母有理化,计算即可求出值;(3)设x=x小于0,将左右两边平方求出x的值即可.【解答】解:(1)+故答案为:+(2)原式=1+2=+3;(3)设x=x<0,由题意得:x2=6﹣=12﹣6=6,解得:x=则原式=26.(2019秋•郫都区期末)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(1+2,善于思考的小明进行了以下探索:设a=(m+)2(其中a、b、m、n均为正整数),则有a+=m2+2n2,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+=(m+)2,用含m、n的式子分别表示a、b,得:a= m2+6n2 ,b= 2mn ;(2)若a=(m)2,且a、m、n均为正整数,求a的值;(3【分析】(1)利用完全平方公式展开得到(m)2=m2+6n2,从而可用m、n表示a、b;(2)直接利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.【解答】解:(1)∵(m+)2=m2+6n2,a=(m+)2,∴a=m2+6n2,b=2mn.故答案为m2+6n2,2mn;(2)∵(m+)2=m2+3n2,a=(m)2,∴a=m2+3n2,mn=2,∵m、n均为正整数,∴m=1、n=2或m=2,n=1,∴a=13或7;(3+1,====1.27.(2021春•长兴县月考)阅读下列材料,解答后面的问题:在二次根式的学习中,我们不仅要关注二次根式本身的性质、运算,还要用到与分式、不等式相结合的一些运算.如:①a﹣2≥0,解得:a≥2;②则需计算1+1n2+1(n1)2,而1+1n2+1(n1)2=n2(n1)2(n1)2n2n2(n1)2=n2(n1)2n22n1n2n2(n1)2=n2(n1)22n22n1n2(n1)2=n2(n1)22n(n1)1n2(n1)2=[n(n1)1]2n2(n1)2,=n(n 1)1n(n 1)=1+1n(n 1)=1+1n −1n 1.(1a 的取值范围;(2)利用①中的提示,请解答:如果b =+1,求a +b 的值;(3)利用②中的结论,⋯【分析】(1)根据二次根式成立的条件求解即可;(2)根据二次根式成立的条件求出a ,b 的值,进而求解即可;(3)利用②中的结论求解即可.【解答】解:(1)由题意得,a +2≥03−a >,∴﹣2≤a <3;(2)由题意得,a−2≥02−a ≥0,∴a =2,∴b 1=0+0+1=1,∴a +b =2+1=3;(3)原式=(1+11−12)+(1+12−13)+⋯+(1+12020−12021)=1×2020+1−12021=202020202021.28.(2020秋•梁平区期末)阅读下述材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”:分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比大小.可以先将它们分子有理化.如下1,+再例如:求y解:由x +2≥0,x ﹣2≥0可知x ≥2,而y =当x =2+2,所以y 的最大值是2.解决下述问题:(1)比较4和(2)求y =【分析】(1)利用分母有理化得到4=2,2,利用+4>+可判断4<(2)根据二次根式有意义的条件得到由1+x ≥0,x ≥0,则x ≥0,利用分母有理化得到y由于x =01,从而得到y 的最大值.【解答】解:(1)∵4==2,==2,而4∴+4>∴4<(2)由1+x ≥0,x ≥0得x ≥0,而y∵x =01,∴y 的最大值为1.29.(2021春•朝阳区校级期中)数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则”.材料一:平方运算和开方运算是互逆运算.如a 2±2ab +b 2=(a ±b )2,那=|a ±b|5±2±2=±2=材料二:在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ')给出如下定义:若y ′=y(x ≥0)−y(x <0),则称点Q 为点P 的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).请选择合适的材料解决下面的问题:(1)点的“横负纵变点”点−2)的“横负纵变点”(2(3)已知a 为常数(1≤a ≤2),点M (m )且m,点M '是点M的“横负纵变点”,则点M '的坐标是 (−【分析】(1)根据“横负纵变点”的定义解答;(2)根据材料一,模仿解答;(3)先化简m 得到点M 的坐标,再根据点M '是点M 的“横负纵变点”,求出点M ′的坐标.【解答】解:(1≥0,∴点的“横负纵变点”;∵﹣0,∴点−2)的“横负纵变点”为(﹣2);故答案为:;(﹣2).(2====(3)∵1≤a ≤2,∴0≤a ﹣1≤1,∴01,1≤0.∴m =1(+=1(|)+=1×2=∴M(,∵0,∴M′(.故答案为:(.30.(2021秋•高州市期末)一些含根号的式子可以写成另一个式子的平方,如=(1+2.设a+=(m+2(其中a、b、m、n均为正整数),则有a+m2+2n2+2a=m2+2n2,b=2mn.这样可以把部分a+请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+(m+2,用含m、n的式子分别表示a、b,得:a = m2+3n2 ,b= 2mn .(2)利用所探索的结论,找一组正整数a、b、m、n填空: 21 +=( 1 +2;(3)化简1−1【分析】(1)将(m+2用完全平方公式展开,与原等式左边比较,即可得答案;(2)设a+=(m+2,则(m+2=m2+25n2,比较完全平方式右边的值与a+可将a和b用m和n表示出来,再给m和n取特殊值,即可得答案;(3)利用题中描述的方法,将要化简的双重根号,先化为一重根号,再利用分母有理化化简,再合并同类二次根式和同类项即可.【解答】解:(1)∵a+=(m+2,(m+2=m2+23n2∴a=m2+3n2,b=2mn故答案为:m2+3n2,2mn.(2)设a+=(m+2则(m+2=m2+25n2∴a=m2+5n2,b=2mn若令m=1,n=2,则a=21,b=4故答案为:21,4,1,2.(3=1−1=32+23=13 6。

八年级初二数学下学期二次根式单元 易错题难题专题强化试卷学能测试

八年级初二数学下学期二次根式单元 易错题难题专题强化试卷学能测试

一、选择题1.已知2a =,2b =的值为( ) A .4B .5C .6D .72.下列各式中,无意义的是( )A B C D .310-3.)5=( )A .5+B .5+C .5+D .4.下列各式计算正确的是( )A =B 6=C .3+=D 2=-5.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y+--+的值是( ) A .3B .13C .2D .536.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤47.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c |-( )A .2c -bB .2c -2aC .-bD .b8.设0a >,0b >=的值是( )A .2B .14C .12D .31589.x ≥3是下列哪个二次根式有意义的条件( )A B C D10.下列运算中正确的是( )A .=B===C 3===D 1==二、填空题11.若mm 3﹣m 2﹣2017m +2015=_____.12.计算(π-3)0-21-2()的结果为_____.13.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.14.观察下列等式:第1个等式:a 11=,第2个等式:a2=,第3个等式:a 3,第4个等式:a 42=, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________15.10=,则222516x y +=______.16的最小值是______.17.若2x ﹣x 2﹣x=_____.18.已知:可用含x =_____.19.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积S =ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.阅读下面问题: 阅读理解:==1;==2==-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,()()()()()()()()()()2-13-24-399-98100-99=+++++1+22-12+33-23+44-398+9999-9899+100100-99,=2-1+3-2+4-3++99-98+100-99,=100-1, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.阅读下列材料,然后解答下列问题: 在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简: (一)53533333⨯==⨯; (二)231)=3131(31)(31)-=-++-(; (三) 22(3)1(31)(31)=3131313131-+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简5+3:①参照(二)式化简5+3=__________. ②参照(三)式化简5+3=_____________ (2)+315+37+599+97+【答案】见解析. 【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】解:(1)①;②; (2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.23.3222x xx x--x 的值,代入后,求式子的值. 【答案】答案见解析. 【解析】 试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义. 试题解析: 原式2221222x x x x x x --==--22x x x x -=-= 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.a aba b+)÷ab b +ab a -ab )(a ≠b ).【答案】a b 【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论. 试题解析:解:原式=a ab b ab a b++-+÷()()()()a aa b b ba b a b a b aba ba b--+-+-=a b+÷()()2222a a ab b ab b a b ab a b a b ----++-=a b +·()()()ab a b a b ab a b -+-+=-a b +.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12. 【答案】原式=2a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)a ===12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果. 【详解】解:∵2a =,2b =, ∴227a b ++2252527 55454745425=∴255故选:B . 【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键2.A解析:A 【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案. 【详解】AB ,有意义,不合题意;CD 、33110=10-,有意义,不合题意; 故选A. 【点睛】此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.3.B解析:B 【分析】根据乘法分配律可以解答本题. 【详解】)5=5+ 故选:B . 【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.B解析:B 【分析】根据二次根式的加减法对A 、C 进行判断;根据二次根式的乘法法则对B 进行判断;根据a =对D 进行判断 .【详解】解:A不能合并,所以A选项错误;B6=,正确,所以B选项正确;C、3不能合并,所以C选项错误;D22=--=(),所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.5.B解析:B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a(y-a)≥0和a-y≥0可以得到a≤0,所以a只能等于0,代入等式得,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.6.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.7.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.8.C解析:C【分析】=变形后可分解为:)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a=+15b,∴+)=0,=,a=25b,1.2故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.9.D解析:D【分析】根据二次根式有意义的条件逐项求解即可得答案.【详解】A、x+3≥0,解得:x≥-3,故此选项错误;B、x-3>0,解得:x>3,故此选项错误;C、x+3>0,解得:x>-3,故此选项错误;D、x-3≥0,解得:x≥3,故此选项正确,故选D.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.10.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B.【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.二、填空题11.4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可. 【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m,整理要求的式子,将m的值代入要求的式子计算即可.【详解】mm,∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)pp a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.13.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.14.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.解:∵第1个等式:a11=,第2个等式:a2=,第3个等式:a3,第4个等式:a42=,……∴第n==(2)123(21)(32)(23)(1) na a a a n n+++=-+-+-+++-=121n+++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题15.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.16.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。

初中数学二次根式的应用培优练习题1(附答案详解)

初中数学二次根式的应用培优练习题1(附答案详解)

初中数学二次根式的应用培优练习题1(附答案详解) 1.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是2.已知a 为实数,则代数式227122a a -+的最小值为( ) A .0B .3C .33D .93.设S=2222222211111111111112233499100++++++++++++L ,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1014.公元3世纪,我国古代数学家刘徽就能利用近似公式2a r +≈a +2ar得到2的近似值.他的算法是先将2看成21+1,由近似公式得到2≈1+121⨯=32;再将2看成231+-24()() ,由近似公式得到2≈32+1-4322⨯ =1712;…依此算法,所得2的近似值会越来越精确.当2取得近似值577408时,近似公式中的a 是________,r 是________.5.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=22]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 6()2223x x --= _______7.设42 a,小数部分为 b.则1a b- = __________________________. 8.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.9.下面是一个按某种规律排列的数阵:11第行32 5 62第行根据数阵排列的规律,第5行从左向右数第3个数是,第n (n3≥且n是整数)行从左向右数第n2-个数是(用含n的代数式表示).10.先阅读下列解答过程,然后再解答a、b,使得a+b=m,ab=n,2+)2=ma>b>0)例如:仿照上述方法化简下列各式(1(2.11.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数a=,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,24====+进行分母有理化.(3)利用所需知识判断:若a =2b =则a b ,的关系是 .(4)直接写结果:)1+= .12.已知1,2y =. 13.阅读材料,请回答下列问题材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:S …①(其中a ,b ,c 为三角形的三边长,S 为面积)而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S ②(其中p =2a b c++) 材料二:对于平方差公式:a 2﹣b 2=(a +b )(a ﹣b ) 公式逆用可得:(a +b )(a ﹣b )=a 2﹣b 2, 例:a 2﹣(b +c )2=(a +b +c )(a ﹣b ﹣c )(1)若已知三角形的三边长分别为3、4、5,请试分别运用公式①和公式②,计算该三角形的面积;(2)你能否由公式①推导出公式②?请试试. 14.观察下列各式:①=②=③= (1)第④个式子为____________________; (2)第n-1个式子为____________________; (3)证明你所得的结论.15.观察下面的式子:S 1=1+221112+,S 2=1+221123+,S 3=1+221134+…S n =1+2211(1)n n ++(1= ,= ;猜想= (用n 的代数式表示);(2)计算:n 的代数式表示). 16.附加题17.求不等式组(11{53(1)x x x <+>+的整数解.18.我们知道平方运算和开方运算是互逆运算,如:2222()a ab b a b ±+=±,那么a b =±,那么如何将双重二次根式(0,0,0)a b a >>±>化简呢?如能找到两个数,m n (0,0)m n >>,使得22a +=即m n a +==即m n b ⋅=,那么222a ±=+±==,双重二次根式得以化简;;312=+Q 且212=⨯,223∴+=++1=,(0,0)m n m n >>使得m n a +=,且m n b ⋅=,那么这个双重二次根式一定可以化简为一个二次根式.请同学们通过阅读上述材料,完成下列问题:(1=_________________=__________________;(2)化简:(319.先观察下列等式,再回答问题:=1+1=2;1 2=212;=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n 为正整数)表示的等式,并用所学知识证明.20.阅读下列材料,然后回答问题:在进行二次根式的化简与运算时,我们有时会碰上一样的式子,其实我们还可以将其进一步化简:3==;3==;1===以上这种化简的步骤叫做分母有理化.(1)=;=;=;(2L;(3)已知x=y=,求y xx y+的值.21.(1)发现.12=;3=;=……写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.22.若3x y z+++=,求()y zx y z-++的值.23.阅读下列材料:材料1:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号.如:322-=222(1)(2)212(12)|12|21+-⨯⨯=-=-=-;材料2: 配方法是初中数学思想方法中的一种重要的解题方法。

部编数学八年级下册专题二次根式的乘除专项提升训练【拔尖特训】2023年培优(解析版)【人教版】含答案

部编数学八年级下册专题二次根式的乘除专项提升训练【拔尖特训】2023年培优(解析版)【人教版】含答案

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.2二次根式的乘除专项提升训练班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•平阴县期中)下列二次根式中是最简二次根式的是( )A.1B C D.1【分析】根据最简二次根式的定义:被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,分母不能带根号,逐一判断即可解答.【解答】解:A、1不是二次根式,故A不符合题意;B B符合题意;C C不符合题意;DD不符合题意;故选:B.2.(2022秋•北碚区校级期中)下列计算中,正确的是( )A.2=−2B=−2C D×4【分析】根据二次根式的乘除法则进行计算即可.【解答】解:(2=2≠﹣2,故A错误;=2≠﹣2,故B错误;C错误;=4,故D正确.故选D.3.(2022秋•辉县市校级月考)计算:3÷1的值为( )A B.3C D.9【分析】直接利用二次根式的乘除运算法则化简,进而得出答案.【解答】解:3÷=×1故选:A .4.(2022秋•渝中区校级月考)下列计算正确的是( )A =−3B =2C 213D .2=10【分析】直接利用二次根式的乘除运算法则分别计算,进而判断得出答案.【解答】解:A =3,故此选项不合题意;B 2,故此选项符合题意;C ==D .(﹣2=20,故此选项不合题意;故选:B .5.(2022秋•小店区校级月考)下列各式的化简正确的是( )A ⋅=(﹣2)×(﹣7)=14B =C==D 【分析】根据二次根式的乘除运算法则即可求出答案.【解答】解:A 、原式=×=2×7=14,故A 不符合题意.B 、原式==B 不符合题意.C 、原式C 符合题意.D 、原式D 不符合题意.故选:C.6.(2022•吴中区模拟)实数a,b|a+b|结果为( )A.2a﹣b B.﹣2a﹣b C.﹣b D.3b【分析】利用二次根式的性质,绝对值的意义化简即可.【解答】解:由题意:b<a<0,∴a<0,a+b<0.|a+b|=﹣a﹣a﹣b=﹣2a﹣b,故选:B.7.(2022春•遵义期中)当x=﹣3时,m等于( )A B C D【分析】把x=﹣3代入解答即可.【解答】解:当x=﹣3时,原式==∵∴m=故选:B.8.(2022春•x的取值范围是( )【分析】根据二次根式和分式有意义的条件进行解答即可.【解答】解:由题意得:x−2≥0x>0,解得:x≥2,故选:D.9.(2022春•云阳县期中)若2<a<3A.5﹣2a B.1﹣2a C.2a﹣5D.2a﹣1【分析】先根据2<a<3把二次根式开方,得到a﹣2﹣(3﹣a),再计算结果即可.【解答】解:∵2<a<3,=a﹣2﹣(3﹣a)=a﹣2﹣3+a=2a﹣5.故选:C.10.(2022春•长兴县月考)已知a=2020×2022﹣2020×2021,b=c=则a,b,c的大小关系是( )A.a<b<c B.b<a<c C.a<c<b D.b<c<a【分析】分别将a、b、c分别平方,再利用完全平方公式化简后对平方进行比较即可.【解答】解:∵a=2020×2022﹣2020×2021=2020×(2022﹣2021)=2020,∴a2=20202,∵b∴b2=20232﹣4×2022=(2022+1)2﹣4×2022=(2022﹣1)2=20212,∵c∴c2=20212﹣1,∵20202<20212﹣1<20212,即a2<c2<b2,∵a、b、c都是大于0的数,∴a<c<b.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•朝阳区期中)计算:2= 13 .【分析】直接利用二次根式的性质计算得出答案.【解答】解:2=13.故答案为:13.12.(2022秋• .【分析】根据二次根式的性质计算即可.13.(2022秋•3﹣x 成立,则x 满足的条件是 x ≤3 .3﹣x ,得到x ﹣3≤0,然后解不等式即可.3﹣x ,∴x ﹣3≤0,解得x ≤3.故答案为:x ≤3.14.(2022秋•嘉定区校级月考)计算: −【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式==−13×=故答案为:15.(2022秋•= 2a .【分析】根据二次根式的性质以及绝对值的性质即可求出答案.【解答】解:∵b <a <0<﹣a <2<﹣b ,∴a +2>0,b ﹣2<0,a ﹣b >0,∴原式=|a +2|﹣|b ﹣2|+|a ﹣b |=a +2+(b ﹣2)+a ﹣b=a +2+b ﹣2+a ﹣b=2a ,故答案为:2a .16.(2022•南京模拟)若a <b 可化简为 b ﹣a .−a(a<0)化简即可.【解答】解:∵a<b,∴a﹣b<0,=b﹣a,故答案为b﹣a.17.(2022春•x的取值范围为 −12≤x<1 .【分析】根据商的算术平方根的性质即可得到结果.∴2x+1≥0 1−x>0,解得:−12≤x<1,故答案为:−12≤x<1.18.(2022春•==…=a,b为正整数),则a+b= 73 .n≥1的正整数),令n=8求出a与b的值,即可确定出a+b的值.【解答】解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•清水县校级月考)把下列二次根式化成最简二次根式:(1(2(3(4【分析】依据二次根式的性质以及分母有理化进行化简,即可得到最简二次根式.【解答】解:(1(2=(3=(4)1.20.(2022春•宁武县期末)计算:(1×;(2×.【分析】(1)根据二次根式的乘法运算即可求出答案.(2)根据二次根式的乘除运算法则即可求出答案.【解答】解:(1)原式=23(﹣=23×2(﹣×(﹣=﹣(2)原式=×(=(×(=−23.21.(2022春•赵县月考)化简:(1(2(3(4【分析】(1)根据二次根式的乘法运算法则即可求出答案.(2)根据二次根式的性质即可求出答案.(3)根据二次根式的乘除运算法则即可求出答案.(4)根据二次根式的性质即可求出答案.【解答】解:(1)原式=12×2(2)原式==(3)原式(4)原式=22.(2022春•江阴市校级月考)计算或化简:(1)2(2)如图,实数a、b【分析】(1)根据二次根式的性质、二次根式的乘除法法则计算即可;(2)根据数轴求出a、b的范围,根据二次根式的性质、绝对值的性质计算即可.【解答】解:(1)原式=4=(2)由数轴可知:﹣1<a<0,0<b<1,则原式=﹣a﹣b﹣(b﹣a)=﹣a﹣b﹣b+a=﹣2b.23.(2022秋•新蔡县校级月考)发现①2= 2 ,2= 23 ;② 2 ;= 23 ;总结通过①②2(a≥0)与a a的数量关系规律,请用自己的语言表述出来;应用2的值.【分析】发现:①利用有理数的乘方的计算方法进行计算即可;②利用算术平方根的定义进行计算即可;总结:根据有理数的乘方的计算方法以及算术平方根的定义进行总结即可;应用:根据数m在数轴上的位置,确定m+2,m﹣1的符号,再根据上述结论进行解答即可.【解答】解:发现:①2=2,2=2 3,故答案为:2,2 3;|2|=2=|−23|=23,故答案为:2,2 3;总结:2=a(a≥0)=|a|=a(a≥0)−a(a<0);应用:由数m在数轴上的位可知,﹣2<m<﹣1,∴m+2>0,m﹣1<0,3﹣m>0,∴原式=2(m+2)+1﹣m+3﹣m=8,2=8.24.(2022秋•=x,y为正整数).材料二:观察、思考、解答:)2=2−2×1×12=+1=3﹣==)2.∴3﹣)2;1.(1(2a,b,m,n均为正整数),用含m、n的代数式分别表示a和b;(3)由上述m、n与a、b的关系,当a=4,b=3时,求m2+n2的值.【分析】(1)把6写成5+1,利用上面的材料可得结论;(2)观察上面的两个材料得结论;(3)根据(2)先得到m、n与a、b的关系,再利用完全平方公式的变形得结论.【解答】解:(1====1.(2a,b,m,n均为正整数),则m+n=a,mn=b.(3)由于m、n、a、b=a,b,m,n均为正整数),∴m+n=4,mn=3.∴m2+n2=(m+n)2﹣2mn=16﹣2×3=10.。

2020-2021学年八年级数学人教版下册《第16章二次根式》综合培优训练(附答案)

2020-2021学年八年级数学人教版下册《第16章二次根式》综合培优训练(附答案)

2020-2021年度人教版八年级数学下册《第16章二次根式》综合培优训练(附答案)1.下列计算正确的是()A.=﹣5B.4﹣3=1C.×=D.÷=9 2.下列二次根式中,是最简二次根式的为()A.B.C.D.3.已知:a+b=﹣5,ab=1,则+的值为()A.5B.﹣5C.25D.5或﹣54.如图,从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,则余下的面积为()A.16cm2B.40 cm2C.8cm2D.(2+4)cm2 5.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣46.若a=2﹣,则代数式2a2﹣8a﹣1的值等()A.1B.﹣1C.4+4D.﹣27.把a中根号外面的因式移到根号内的结果是.8.已知x=+1,y=﹣1,则x2﹣5xy+y2+6=.9.实数的整数部分a=,小数部分b=.10.化简:()2﹣=.11.已知y=+5,则的值为.12.已知a,b,c在数轴上的位置如下图:化简代数式﹣|a+b|++|b+c|的值为13.设a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣ac﹣bc=.14.若m满足关系式=,则m=.15.如图,D是等边三角形ABC中AC延长线上一点,连接BD,E是AB上一点,且DE =DB,若AD+AE=5,BE=,则BC=.16.已知+=a,则a﹣20192=.17.已知b>0,化简=.18.已知+=y﹣2,则代数式﹣=.19.已知a、b满足=a﹣b+1,则ab的值为.20.已知实数a、b在数轴上的对应点如图所示,化简+|a+b|+|﹣a|﹣.21.已知x=,求(x+)2+2(x+)+2的值.22.(1)已知﹣=2,求+的值(2)已知﹣=2,求+的值.23.(1)计算(﹣2+3)×(2)已知a=+2,b=﹣2.求a2b+ab2的值24.计算:(1)(++5)÷﹣×﹣;(2)﹣﹣+(﹣2)0+.25.观察下列各式:①=2,②=3;③=4,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.26.观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:(仿照上式写出过程)参考答案1.解:A、=5,故此选项错误;B、4﹣3=,故此选项错误;C、×=,故此选项正确;D、÷=3,故此选项错误;故选:C.2.解:A、是最简二次根式,符合题意;B、=3不是最简二次根式,不符合题意;C、=|x|,不是最简二次根式,不符合题意;D、=,不是最简二次根式,不符合题意.故选:A.3.解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,又∵a+b=﹣5,ab=1,∴原式=﹣=5;故选:A.4.解:从一个大正方形中裁去面积为16cm2和24cm2的两个小正方形,大正方形的边长是+=4+2,留下部分(即阴影部分)的面积是(4+2)2﹣16﹣24=16+16+24﹣16﹣24=16(cm2).故选:A.5.解:去分母得,﹣m+2(x﹣1)=3,解得,x=,∵关于x的分式方程有正数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣3∴m≠﹣3,∵有意义,∴2﹣m≥0,∴m≤2,因此﹣5<m≤2且m≠﹣3,∵m为整数,∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,故选:D.6.解:∵a=2﹣,∴2a2﹣8a﹣1=2(a﹣2)2﹣9=2(2﹣﹣2)2﹣9=2×5﹣9=1.故选:A.7.解:原式=﹣=﹣,故答案为:﹣8.解:∵x=+1,y=﹣1,∴x﹣y=+1﹣(﹣1)=2,xy=1,∴x2﹣5xy+y2+6=(x﹣y)2﹣3xy+6=22﹣3+6=7;故答案为:7.9.解:==,∵4<7<9,∴2<<3,∴<<3,即实数的整数部分a=2,则小数部分为﹣2=.故答案为:2;.10.解:根据题意得3﹣x≥0,解得x≤3,所以原式=3﹣x﹣=3﹣x﹣(3﹣x)=0.故答案为0.11.解:∵y=+5,∴x=3,y=5.∴==2.故答案为:2.12.解:根据数轴可以得到:b<a<0<c,且|b|>|c|,∴a+b<0,c﹣a>0,b+c<0,∴﹣|a+b|++|b+c|,=|a|﹣|a+b|+|c﹣a|+|b+c|,=﹣a+(a+b)+(c﹣a)﹣(b+c),=﹣a+a+b+c﹣a﹣b﹣c,=﹣a.故答案为:﹣a.13.解:∵a﹣b=2+,b﹣c=2﹣,两式相加得,a﹣c=4,原式=a2+b2+c2﹣ab﹣bc﹣ac======15.14.解:由题可得,,∴,∴x+y=199,①∴+=0,∴3x+5y﹣2﹣m=0,②2x+3y﹣m=0,③联立①②③,解得,∴m的值为201.故答案为:201.15.解:过D作DF⊥AB于F,交BC于G,∵DE=DB,∴EF=BF=,设AE=x,∴AD=5﹣x,AF=AE+EF=x+,∵△ABC是等边三角形,∴∠A=60°,∴∠ADF=30°,∴AD=2AF,即5﹣x=2(x+),∴x=,∴BC=AB=+=,故答案为:.16.解:∵要使有意义,必须a﹣2020≥0,解得:a≥2020,∵+=a,∴a﹣2019+=a,即=2019,两边平方得:a﹣2020=20192,∴a﹣20192=2020,故答案为:2020.17.解:∵b>0,﹣a3b2>0,∴a<0,∴原式=|ab|,=﹣ab,故答案为:﹣ab.18.解:根据题意得,解得x=2,当x=2时,y﹣2=0,解得y=2,所以原式=﹣=﹣=2﹣0=2.故答案为2.19.解:∵=a+3,若a≥2,则a﹣2=a+3,不成立,故a<2,∴2﹣a=a+3,∴a=﹣,∵=a﹣b+1,∴a﹣b+1=1或0,∴b=﹣或,∴ab=±.故答案为:±.20.解:由数轴可知a<b<0,且|a|>|b|,∴a+b<0,∵>0,∴﹣a>0、b﹣<0,则原式=|a|﹣(a+b)+﹣a﹣|b﹣|=﹣a﹣a﹣b+﹣a+(b﹣)=﹣3a﹣b++b﹣=﹣3a.21.解:∵x=,∴x=+,=﹣.∴x+=2.∴原式=(2)2+2×2+2=12+4+2=14+4.22.解:(1)∵﹣=2,∴(﹣)(+)=2(+),∴39+x2﹣15﹣x2=2(+),∴24=2(+),∴+=12;(2)∵﹣=2,∴(﹣)2=4,∴,∴,∴(+)2==44+2×20=84,∴+=.23.解:(1)原式=(2﹣+)×=2×=4;(2)当a=+2,b=﹣2时,原式=ab(a+b)=(+2)(﹣2)(+2+)=(3﹣4)×2=﹣2.24.解:(1)原式=(+1+)﹣﹣=3+﹣2﹣=3﹣2;(2)原式=3﹣﹣(1+)+1+(﹣1)=﹣1﹣+1+﹣1=﹣1.25.解:(1)=5;(2)=(n+1);(3)====(n+1).故答案为:(1)=5;(2))=(n+1).26.解:(1)=1=1;故答案为:1;(2)=1+=1+;故答案为:=1+;(3).。

2020年八年级数学下册 二次根式化简求值 重难点培优练习(含答案)

2020年八年级数学下册 二次根式化简求值 重难点培优练习(含答案)

2020年八年级数学下册二次根式化简求值重难点培优练习1.设a,b,c为△ABC的三边,化简:++﹣.2.已知,,,其中A,B都是最简二次根式,且A+B=C,分别求出a和x的值.3.已知点A(5,a)与点B(5,-3)关于x 轴对称,b为的小数部分,求:(1)a+b的值;(2)化简:4.已知a=,b=,分别求下列各式的值.(1)a2+b2;(2)5.先化简,再求值:,其中.6.已知,求的值.7.先化简,再求代数式的值:,其中.8.已知:a=﹣2,b=+2,分别求下列代数式的值:(1)a2+2ab+b2(2)a2b﹣ab2.9.先化简,再求值:其中10.化简求值:(a+b)2+(a-b)(2a+b)-3a2.其中.11.先化简,再求值: ,其中.12.已知a2+b2-6a-2b+10=0,求代数式的值.13.观察下列各式:,请你猜想:(1)_______,.(2)计算(请写出推导过程):(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来:14.观察下列各式及其验证过程:(1)按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.15.阅读下列材料,然后回答问题.在进行二次根式乘除时,我们有时会碰上如一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简.①参照(三)式得=______;②参照(四)式得=______.(2)化简:.参考答案1.解:根据a,b,c为△ABC的三边,得到a+b+c>0,a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,则原式=|a+b+c|+|a﹣b﹣c|+|b﹣a﹣c|+|c﹣b﹣a|=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.2.解:,,A,B都是最简二次根式,,且A+B=C,,解得:a=2,,,,,,,x=8.3.解:有题意可知:a=3,b=,所以(1)a+b=;(2).4.解:5.解:.6.解:.7.解:;8.解:当a=﹣2,b=+2时,(1)a2+2ab+b2=(a+b)2=(﹣2++2)2=(2)2=12;(2)a2b﹣ab2=ab(a﹣b)=(﹣2)(+2)(﹣2﹣﹣2),=[()2﹣22]×(﹣4),=﹣1×(﹣4),=4.9.解:原式当时,10.解:原式=3.11.解:原式.把代入中,有12.解:(a-3)2+(b-1)2=0,所以a=3,b=1.所以原式=.13.解:(1);;(2)原式===,14.解:(1)(2)15.解:(1)①== ;②====.(2)∵==,∴=;=;…;=,∴+++…+=++…+=.。

《易错题》初中八年级数学下册第十六章《二次根式》复习题(专题培优)(1)

《易错题》初中八年级数学下册第十六章《二次根式》复习题(专题培优)(1)

一、选择题1.已知2252a b ab +=,且a >b >0,则a b a b +-的值为( ) A .3 B .3± C .2 D .2±2.是同类二次根式的是( )A B C D 3.下列计算正确的是( )A =±B .=C =D 2= 4.若x=,则2x 2x -=( )A B .1 C .2D 15.已知x ,y 为实数,y 2=,则y x 的值等于( ) A .6 B .5C .9D .8 6.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=7.下列式子中无意义的是( )A .B .C .D .8. ) A .1个B .2个C .3个D .4个 9.下列运算中错误的是( )A =B =C .=D -=10.下列二次根式中,最简二次根式是( )A B C D 11.下列计算正确的是( )A 9=-B .1=C .-=-D .=12.下列各式中,正确的是( )A .2(3)9-=B .2(3)3-=-C .93-=-D .93= 13.下列计算正确的是( )A .336a a a +=B .2331-=C .()325x x =D .642b b b ÷= 14.下列二次根式:4、12、50、12中与2是同类二次根式的个数为( ) A .1个 B .2个 C .3个 D .4个15.下列运算正确的是( ) A .628+= B .66-= C .623÷= D .()266-=二、填空题16.已知关于x 的不等式(2)2a x a +>+的解集为1x <,化简2(2)a +的结果为______.17.已知223y x x =-+-+,则xy 的值为__________.18.23()a -=______(a≠0),2(3)-=______,1(32)--=______. 19.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示2-,点B 表示1,那么点C 表示的数是________.20.13a a+=,则1a a +=______. 21.计算:()()202020203232+⨯-=___________22.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___. 23.已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________24.)30ab a ->=______.25.1x -在实数范围内有意义,则x 的取值范围是______. 26.3124=________. 三、解答题27.(1)计算2011(20181978)|22-⎛⎛⎫⨯---- ⎪ ⎝⎭⎝⎭ (2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 28.计算:(1(2(3))0π(4))(21- 29.计算:(1 (2)(x ﹣2y+3)(x+2y+3).30.计算:(1(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学 数学二次根式的专项培优易错试卷练习题及答案一、选择题1.若 3x - 有意义,则 x 的取值范围是 ( )A .3x >B .3x ≥C .3x ≤D .x 是非负数2.下列各式中,无意义的是( ) A .23-B .()333-C .()23-D .310-3.下列二次根式中,是最简二次根式的是( ) A .12B .0.1C .12D .21a +4.下列式子中,属于最简二次根式的是( ) A .4B .3C .12D .205.要使2020x -有意义,x 的取值范围是( ) A .x≥2020B .x≤2020C .x> 2020D .x< 2020 6.下列各式中正确的是( ) A .36=±6B .2(2)2--=-C .8=4D .2(7)-=77.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:()()()S p p a p b p c =---,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( ) A .3154 B .3152C .352D .3548.设,n k 为正整数,()()1314A n n =+-+,()2154A n A =++,()3274A n A =++,()4394A n A =++,…()1214k k A n k A -=+++,….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .40119.已知2225152x x ---=,则222515x x -+-的值为( ) A .3B .4C .5D .610.下列计算不正确的是 ( )A .35525-=B .236⨯=C 774=D 363693=+==11.下列二次根式中是最简二次根式的是( ) A 6B 18C 27D 1212.下列根式中是最简二次根式的是( ) A .23B .10C .9D .3a二、填空题13.将2(3)(0)3a a a a-<-化简的结果是___________________.14.化简并计算:()()()()()()()1111...112231920xx x x x x x x ++++=+++++++________.(结果中分母不含根式) 15.已知13x x+=,且01x <<,则2691x x x =+-______.16.已知()230m m --≤,若整数a 满足52m a +=,则a =__________. 17.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.18.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______. 19.使式子32xx -+有意义的x 的取值范围是______. 20.12a 1-能合并成一项,则a =______.三、解答题21.1123124231372831-+-533121【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】2-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.解:设x222x =++2334x =+,x 2=10∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x . 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.24.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.计算:(1)+(2(33+-【答案】(1)2) -10 【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可. 【详解】解:(1)+===(2(33+-=5+9-24=14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.26.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.27.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可; (2)根据完全平方公式进行计算即可; (3)根据二次根式的乘除法法则进行计算即可; (4)先进行乘法运算,再合并即可得到答案. 【详解】解:==(2)2=22-=63-=9-=1;(4)=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1.分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.29.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.30.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.2.A解析:A 【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案. 【详解】AB ,有意义,不合题意;CD 、33110=10-,有意义,不合题意; 故选A. 【点睛】此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.3.D解析:D 【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案. 【详解】ABC ,不是最简二次根式,故本选项不符合题意;D 故选:D . 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.4.B解析:B 【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可. 【详解】解:A =2,不是最简二次根式,故本选项错误;BC =D =,不是最简二次根式,故本选项错误; 故选:B .【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.5.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.6.D解析:D【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A,故A错误;B12=,故B错误;C=C错误;D、2(=7,故D正确;故选:D.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.7.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b cp+++==∴其面积为S ====故选:A .【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.8.A解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A 1,A 2,A 3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n 2+2n-3+4=n 2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k =n+(2k-1)∴A 100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A 1,A 2,A 3,从而找出规律写出规律的表达式是解题的关键.9.C解析:C【解析】2=,2222251510x x =-=--+=,5=.故选C.10.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;==,故正确;根据二次根式的性质和化简,2根据二次根式的加减,不是同类二次根式,故不正确.故选D.11.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A是最简二次公式,故本选项正确;BCD=故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.12.B解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A、被开方数含分母,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B符合题意;C被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:B.【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.二、填空题13..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.14.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式====220400x x x-.故答案为220400x x x-. 【点睛】 此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.15..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运. 【分析】,再把它们相乘得到1x x -,再对原式进行变形凑出1x x-的形式进行计算. 【详解】3=,∴221239xx =++==,∴17x x+=,∴212725x x =-+=-=, ∵01x <<,=,∴1x x =-=-∴原式====.. 【点睛】 本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.16.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.17.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a a c c b b=()aa cbc b =aa cbc b=-2a . 【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.18.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.19.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

相关文档
最新文档