2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房
2019年新个税6条专项附加扣除项目标准具体规定及注意事项与相关资料说明
![2019年新个税6条专项附加扣除项目标准具体规定及注意事项与相关资料说明](https://img.taocdn.com/s3/m/ffcfa8f20c22590103029d05.png)
纳税人赡养2个及以上老人的,不按老人人数加倍扣除。
扣除分摊协议
具体分摊方式和额度在一个纳税年度内不得变更
纳税人为非独生子女,与兄弟姐妹分摊每年24000元(每月2000元)
每一纳税人分摊的扣除额度不得超过每年12000元(每月1000元)
可以由赡养人均摊或者约定分摊,也可以由被赡养人制定分摊。约定或者指定分摊的须签书面分摊协议
住房租赁合同
其他市辖区户籍人口超过100万的城市,扣除标准为每月1100元
纳税人及其配偶不得同时享受住房贷款利息专项附加扣除和住房租金专项附加扣除
其他市辖区户籍人口不超过100万的城市,扣除标准为每月800元
6
赡养老人
每月2000元
纳税人赡养60岁(含)以上父母及其他法定赡养人的赡养支出,可以按照以下标准定额扣除:
夫妻双方约定,可以选择由其中一方扣除
首套房住房贷款合同、贷款还款支出凭证
1、具体扣除方式在一个纳税年度内不能变更;2、如果是夫妻,还需要夫妻双方约定扣除协议
非首套房住房贷款利息支出,纳税人不得扣除。
纳税人只能享受一套首套住房贷款利息扣除。
夫妻双方婚前分别购买住房发生的首套房贷款,其贷款利息支出,婚后可以选择其中一套购买的住房,由购买方按扣除标准的100%扣除,也可以由夫妻双方对各自购买的住房分别按扣除标准的50%扣除。
5
住房租金
每月800-1500元
纳税人本人及其配偶在纳税人的主要工作城市没有住房而发生的住房租金支出,可以按照以下标准扣除:
直辖市、省会城市、计划单列市以及国务院确定的其他城市住房,扣除标准为1500元;
夫妻双方主要工作城市相同的,只能由一方扣除住房租金支出。夫妻双方主要工作城市不相同的,且各自在其主要工作城市都没有住房的,可以分别扣除住房租金支出。
2019年高考专题:概率与统计试题及答案
![2019年高考专题:概率与统计试题及答案](https://img.taocdn.com/s3/m/5c95fa7c10661ed9ac51f303.png)
2019年高考专题:概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5 B .0.6 C .0.7 D .0.8 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35 C .25D .15【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B , 则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种,所以恰有2只做过测试的概率为63105=,故选B .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为 A .18B .14 C .38D .12【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 7.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A .32 B .33 C .41 D .42 【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A . 8.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A .100,10B .100,20C .200,10D .200,20【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=,抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .9.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( ) A .0.5B .0.75C .1D .1.25【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 10.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是( ) A .0.42B .0.28C .0.3D .0.7【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .11.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12 B .14 C .16 D .18【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A . 12.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .35,33,30B .36,32,30C .36,33,29D .35,32,31【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 13.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 14.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s ><【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .15.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=, 因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为300.650=, 因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.16.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.17.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.18.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M .19.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)女性用户和男性用户的频率分布直方图分别如下图所示:女性用户男性用户由图可得女性用户的波动小,男性用户的波动大.(2)由题可得22⨯列联表如下:则22500(14012018060)1255.208 2.70620030032018024K⨯⨯-⨯=≈>⨯⨯⨯=,所以有90%的把握认为“是否是评分良好用户”与性别有关.20.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)以200人中“热烈参与者”的频率作为概率,可得该市“热烈参与者”的人数约为40 200004000200⨯=.(2)由题可得22⨯列联表如下:则22200(35551055)1757.292 6.635401601406024K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.21.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.【解析】(1)依题意,根据频率分布直方图的性质,可得:50(0.00400.00500.00660.00160.0008)1m⨯+++++=,解得0.0020m=.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.00200.0040)500.30.5+⨯=<,前3组的频率之和为(0.00200.00400.0050)500.550.5++⨯=>,所以350400t <<,由0.30.0050(350)0.5t +⨯-=,得390t =.所以该校担任班主任的教师月平均通话时长的中位数为390分钟.(3)由题意,可得在[450,500)内抽取0.0016640.00160.0008⨯=+人,分别记为a b c d ,,,, 在[500,550]内抽取2人,记为,e f ,则6人中抽取2人的取法有:{,}a b ,{,}a c ,{,}a d ,{,}a e ,{,}a f ,{,}b c ,{,}b d ,{,}b e ,{,}b f ,{,}c d ,{,}c e ,{,}c f ,{,}d e ,{,}d f ,{,}e f ,共15种等可能的取法.其中抽取的2人恰在同一组的有{,}a b ,{,}a c ,{,}a d ,{,}b c ,{,}b d ,{,}c d ,{,}e f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率715P =. 22.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M 进行等级划分,具体如下表: 质量指标值M80M < 80110M ≤< 110M ≥ 等级 三等品 二等品 一等品现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M 进行统计分析,得到如图所示的频率分布直方图.(1)记A 表示事件“一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).【解析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”, 则事件B ,C 互斥,且由频率分布直方图估计()0.20.30.150.65P B =++=,()0.10.090.19P C =+=,又()()()()0.84P A P B C P B P C =+=+=,所以事件A 的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65,故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,故利润估计为190010650061600261200⨯+⨯+⨯=元.(3)因为在产品质量指标值M的频率分布直方图中,质量指标值90M<的频率为0.060.10.20.360.5++=<,质量指标值100M<的频率为0.060.1020.30.660.5+++=>,故质量指标值M的中位数估计值为0.50.369094.670.03-+≈.。
重点关注!办理个税专项附加扣除,都得填这份信息表和留存资料!
![重点关注!办理个税专项附加扣除,都得填这份信息表和留存资料!](https://img.taocdn.com/s3/m/bac9bc3290c69ec3d5bb75ae.png)
重点关注!办理个税专项附加扣除,都得填这份信息表和留存资料!国家税务总局发布了《个人所得税专项附加扣除操作办法(试行)》,自2019年1月1日起施行。
明确了纳税人办理子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人专项附加扣除的操作办法。
《个人所得税专项附加扣除信息表》填表说明1、子女教育填报资料:配偶及子女姓名、身份证件类型及号码、子女当前受教育阶段及起止时间、子女就读学校、本人与配偶之间扣除分配比例等留存资料:子女在境外接受教育的,应留存境外学校录取通知书、留学签证等佐证资料。
子女姓名、身份证件类型及号码:填写纳税人子女的姓名、有效身份证件名称及号码。
出生日期:填写纳税人子女的出生日期,具体到年月日。
当前受教育阶段:选择纳税人子女当前的受教育阶段。
区分“学前教育阶段、义务教育、高中阶段教育、高等教育”四种情形,在对应框内打“√”。
当前受教育阶段起始时间:填写纳税人子女处于当前受教育阶段的起始时间,具体到年月。
当前受教育阶段结束时间:纳税人子女当前受教育阶段的结束时间或预计结束的时间,具体到年月。
子女教育终止时间:填写纳税人子女不再接受符合子女教育扣除条件的学历教育的时间,具体到年月。
就读国家(或地区)、就读学校:填写纳税人子女就读的国家或地区名称、学校名称。
本人扣除比例:选择可扣除额度的分摊比例,由本人全额扣除的,选择“100%”,分摊扣除的,选“50%”,在对应框内打“√”。
2、继续教育填报资料:接受学历(学位)继续教育的,填报起止时间、教育阶段等;接受职业资格继续教育的,填报证书名称、编号、发证机关、发证时间等。
留存资料:纳税人接受职业资格继续教育的,应留存职业资格证书等资料。
当前继续教育起始时间:填写接受当前学历(学位)继续教育的起始时间,具体到年月。
当前继续教育结束时间:填写接受当前学历(学位)继续教育的结束时间,或预计结束的时间,具体到年月。
学历(学位)继续教育阶段:区分“专科、本科、硕士研究生、博士研究生、其他”四种情形,在对应框内打“√”。
专项扣除项目及标准2024
![专项扣除项目及标准2024](https://img.taocdn.com/s3/m/593648677275a417866fb84ae45c3b3567ecdd1a.png)
专项扣除项目及标准2024全文共四篇示例,供读者参考第一篇示例:根据国家政策和税法规定,自2019年起,我国开始实施个人所得税专项扣除政策,旨在减轻广大纳税人的负担,提高个人所得税的公平性和透明度。
专项扣除项目及标准的确定对于每个纳税人来说至关重要,因为它直接影响着个人所得税的计算和缴纳。
截至2024年,我国的专项扣除项目已经明确,并且相应的标准也有所调整,以下是2024年的专项扣除项目及标准:1. 子女教育支出,每个子女每年可扣除3000元。
这一项目的扣除标准相对较低,但是对于有子女的纳税人来说,可以在一定程度上减轻子女教育的费用负担。
2. 继续教育支出,每年可扣除3000元。
在现代社会,继续教育已经成为一种趋势,这一项目的设立对于提升个人素质和提高就业竞争力起着积极作用。
3. 住房租金支出,每年可扣除12000元。
高昂的住房租金一直是城市居民的一大负担,通过这一项目的扣除,可以减轻租房者的压力。
5. 赡养老人支出,每年可扣除24000元。
随着人口老龄化的加剧,赡养父母已经成为很多家庭的一项重要责任,这一项目的设立可以在一定程度上减轻纳税人的赡养负担。
6. 大病医疗支出,按实际情况扣除。
大病医疗支出是家庭财务压力的一个重要来源,通过这一项目的扣除,可以帮助纳税人减轻医疗费用的负担。
8. 其他专项支出,按照法律法规规定执行。
对于一些特殊情况下的支出,税务部门会依据法律法规进行具体的规定和扣除。
需要注意的是,对于每个专项扣除项目,纳税人必须能够提供相关有效证明材料,并且这些支出必须真实有效。
如果发现有虚假申报行为,税务部门将依法进行处罚,甚至追究法律责任。
2024年的专项扣除项目及标准在一定程度上可以帮助纳税人减轻个人所得税的压力,提高税收公平性。
纳税人也需要注意合理利用这些专项扣除项目,在遵守法律的前提下减少个人所得税的支付。
希望相关政策能够得到更好的实施和执行,为广大纳税人带来更多实实在在的福利和便利。
2023年高职单独招生考试数学试卷(答案) (7)
![2023年高职单独招生考试数学试卷(答案) (7)](https://img.taocdn.com/s3/m/671df57a842458fb770bf78a6529647d272834ac.png)
2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共10小题,每小题3分,共60分)1.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有()A.9个B.8个C.5个D.4个2.球面上有三点,其中任意两点的球面距离都等于球的大圆周长的经过这三点的小圆的周长为4π,则这个球的表面积为()A.64πB.48πC.24πD.12π3.要将两种大小不同的钢板截成A、B、C 三种规格,每张钢板可同时截得三种规格的小钢板块数如下表:A 规格B 规格C 规格第一种钢板211第二种钢板123今需A、B、C 三种规格的成品各15、18、27块,所需两种规格的钢板的张数分别为m、n(m、n 为整数),则m+n 的最小值为()A.10B.11C.12D.134.如果直线y=kx+1与圆x2+y2+kx+my-4=0交于M、N 两点,且M、N 关于直线x+y=0对称,则不等式组:表示的平面区域的面积是()A.B.C.1D.2,61⎪⎩⎪⎨⎧≥≤-≥+-0001y my kx y kx 41215.有一条生产流水线,由于改进了设备,预计第一年产量的增长率为150%,以后每年的增长率是前一年的一半,同时,由于设备不断老化,每年将损失年产量的10%,则年产量最高的是改进设备后的()A.第一年B.第三年C.第四年D.第五年6.设ΔABC的三边a、b、c满足an+bn=cn(n>2),则ΔABC是()A.钝角三角形B.锐角三角形C.等腰直角三角形D.非等腰的直角三角形7.已知集合A={x|x2-11x-12<0},集合B={x|x=2(3n+1),n Z},则A∩B等于()A.{2}B.{2,8}C.{4,10}D.{2,4,8,10}8.展开式中不含项的系数的和为(B)A.-1B.0C.1D.29.函数的定义域是(B)A. B. C. D.10.展开式中不含项的系数的和为(B)A.-1B.0C.1D.2二、填空题(共10小题,每小题3分;共计30分)1.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,则m∥α;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,m⊂α,n⊂β,则m∥n;④若α⊥β,α∩β=m,n⊂α,m⊥n,则n ⊥β;其中正确命题的序号为_______.2.已知函数f(x),若关于x 的方程f(x)=kx 有两个不同的实根,则实数k 的取值范围是_______.3.已知关于x 的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A 中共含有n 个整数,则当n 最小时实数a 的值为_______.4、不等式2340x x --+>的解集为______.(用区间表示)5、不等式422<-xx的解集为______..(用区间表示)6、函数()35lg -=x y 的定义域是______.(用区间表示)7、函数y=)9(log 2-x 的定义域是______.(用集合表示)8、不等式062<--x x 的解集是______.(用集合表示)9、不等式0125>--x 的解集为______.(用集合表示)10、已知函数)1(log )(2-=x x f ,若f(α)=1,则α=______.三、大题:(满分30分)1.我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目A B C D E F子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.2.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26πB ⎛⎫+ ⎪⎝⎭的值.参考答案:1-5题答案:ABCAD 6-10题答案:BBBBB 二、填空题:1、④;2、(0,12);3、﹣2;4、(-4,1);5、(-1,2);6、⎪⎭⎫⎢⎣⎡∞+,54;7、}9{>x x ;8、{}32<<-x x ;9、}32{><x x x 或;10、3。
新个税改革6项专项附加扣除重点难点问题探讨
![新个税改革6项专项附加扣除重点难点问题探讨](https://img.taocdn.com/s3/m/4987717f76232f60ddccda38376baf1ffd4fe34c.png)
新个税改革6项专项附加扣除重点难点问题探讨近日,新个税法正式实施,自2019年1月1日起,国内将实行新的个人所得税制度。
此次个税改革主要是以加强个税专项扣除为核心内容,力图降低居民的税负压力。
其中,最重要的内容就是新增了6项专项附加扣除,包括:提高子女教育、继续教育、大病医疗、住房租金、赡养老人、住房贷款利息专项附加扣除标准。
而这些专项附加扣除又都是以一定的限额为基础进行计算的,因此在认真了解新政策后,每个纳税人需要综合考虑自己的各项具体情况,以选择最优的方式进行登录申报。
下面,我们来看看这些专项附加扣除方面的重点难点问题。
一、子女教育子女教育方面,新政策规定了每个子女每年的扣除金额为1.2万,不可叠加。
也就是说,每个纳税人每年最多可以扣除2.4万元。
需要注意的是,扣除的时间不是按学年,而是按自然年。
难点问题:1. 子女是否必须是在校学生?答:不是。
根据新规定,子女无需是在校学生也能够享受教育附加扣除。
2. 扣除为什么是按自然年?答:这是因为政府想要激发家庭教育、培养科学兴趣的潜力。
如果按学年进行扣除,那么就意味着有些孩子的教育时间会得到合理补偿,但也会有个别人的教育时间因时间差的原因而无法得到合理补偿。
二、继续教育继续教育方面,新政策规定了每个纳税人每年可以扣除学费和教材费的金额,不可叠加,以一个子女的实际支付金额为准,但是最高不超过4000元。
具体计算办法为:若实际支付金额不超过4000元,则可扣除实际支付金额。
若实际支付金额超过4000元,则只能扣除4000元。
这里需要注意的是,可扣除的金额包括了学费和教材费的总金额,教材费不得单独计算。
1. 何种类型的继续教育费用可以抵扣?答:继续教育的范围包括非学历教育、技能培训、业余技术培训等,可以选择在线学习、面授培训等形式。
答:可以提供学校开给的费用发票、证书和相关教育机构出具的收费凭证。
三、大病医疗大病医疗方面,新政策规定在纳税人本人或其扶养子女、配偶、父母在患有特殊疾病时,可扣除医药费用和住院伙食补助费用的一部分,线上票据均可认证。
下列不属于个人所得税专项附加扣除项目的是
![下列不属于个人所得税专项附加扣除项目的是](https://img.taocdn.com/s3/m/a388897a195f312b3069a544.png)
下列不属于个人所得税专项附加扣除项目的是下列不属于个人所得税专项附加扣除项目的是()A. 子女教育B. 继续教育C. 住房公积金D. 大病医疗正确答案:C【解析】个人所得税专项附加扣除,是指《个人所得税法》规定的子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等6项专项附加扣除。
除了这规定的6项外,其他的都是不属于个人所得税专项附加扣除项目的。
由此可知,我国对于个人所得税的专项附加扣除采取的是“正向列举”的方法,即只要不属于明确列举的扣除,都应缴纳。
【拓展链接】个人所得税专项附加扣除暂行办法第一章总则第一条根据《中华人民共和国个人所得税法》(以下简称个人所得税法)规定,制定本办法。
第二条本办法所称个人所得税专项附加扣除,是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等6项专项附加扣除。
第三条个人所得税专项附加扣除遵循公平合理、利于民生、简便易行的原则。
第四条根据教育、医疗、住房、养老等民生支出变化情况,适时调整专项附加扣除范围和标准。
第二章子女教育第五条纳税人的子女接受全日制学历教育的相关支出,按照每个子女每月1000元的标准定额扣除。
学历教育包括义务教育(小学、初中教育)、高中阶段教育(普通高中、中等职业、技工教育)、高等教育(大学专科、大学本科、硕士研究生、博士研究生教育)。
年满3岁至小学入学前处于学前教育阶段的子女,按本条第一款规定执行。
第六条父母可以选择由其中一方按扣除标准的100%扣除,也可以选择由双方分别按扣除标准的50%扣除,具体扣除方式在一个纳税年度内不能变更。
第七条纳税人子女在中国境外接受教育的,纳税人应当留存境外学校录取通知书、留学签证等相关教育的证明资料备查。
第三章继续教育第八条纳税人在中国境内接受学历(学位)继续教育的支出,在学历(学位)教育期间按照每月400元定额扣除。
同一学历(学位)继续教育的扣除期限不能超过48个月。
个人所得税6项专项附加扣除解读
![个人所得税6项专项附加扣除解读](https://img.taocdn.com/s3/m/659e83ed80c758f5f61fb7360b4c2e3f57272502.png)
个人所得税6项专项附加扣除解读2019年1月1日起,纳税人计算个税应纳税所得额时,在5000元基本减除费用扣除和“三险一金”等专项扣除外,还可以享受子女教育、继续教育、大病医疗、住房贷款利息或住房租金,以及赡养老人等6项专项附加扣除.今天,我们来讲解6项专项附加扣除到底怎么扣的。
个税6项专项附加扣除·子女教育篇●子女教育的扣除主体是子女的法定监护人,也就是说包括生父母、继父母、养父母,父母之外的其他人担任未成年人的监护人的,都适用于扣除规定。
●子女的范围不仅包括婚生子女,还包括非婚生子女、养子女、继子女,同时也包括未成年但受到本人监护的非子女.●扣除的标准按照每个子女每年12000元(每月1000元)的标准定额扣除。
父母可以选择由其中一方按扣除标准的100%扣除,即一人每月1000元扣除,也可以选择由双方分别按扣除标准的50%扣除,即一人每月500元扣除.●若是父母两人扣除分配选定后,还想进行分配变更,改成一方扣除或者双方平摊,则需要等待一个纳税年度之后进行,扣除方式在一个纳税年度内不能变更。
●子女教育专项附加扣除采取定额扣除方式,无论子女在民办学校孩子在境外学校接受教育都可以享受扣除,假如纳税人子女在境内接受教育,享受子女教育专项扣除不需留存任何资料,假如纳税人子女在境外接受教育的,一定要留存境外学校录取通知书、留学签证等相关教育的证明资料备查。
个税6项专项附加扣除·继续教育篇●继续教育专项附加扣除的扣除范围包括:纳税人在中国境内接受学历(学位)继续教育的支出,在学历(学位)教育期间按照每月400元定额扣除。
同一学历继续教育的扣除期限不能超过48个月。
纳税人接受技能人员职业资格继续教育、专业技术人员职业资格继续教育支出,在取得相关证书的当年,按照3600元定额扣除。
●继续教育专项附加扣除的扣除标准是:(1)纳税人在中国境内接受学历(学位)继续教育的支出,在学历(学位)教育期间按照每月400元定额扣除。
2021-2022学年上海市高桥中学高二上学期期末数学试题(解析版)
![2021-2022学年上海市高桥中学高二上学期期末数学试题(解析版)](https://img.taocdn.com/s3/m/7150395a0a1c59eef8c75fbfc77da26925c596e6.png)
2021-2022学年上海市高桥中学高二上学期期末数学试题一、填空题1.若圆柱的高、底面半径均为1,则其表面积为___________. 【答案】4π【分析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径, 1h =1r =则表面积. ()24S r r h ππ=+=故答案为:4π2.我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除,某单位老年、中年、青年员工分别为人、80100人、人,现采用分层随机抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受12015情况,则应该从青年员工中抽取的人数为________. 【答案】6【分析】根据分层抽样的性质即可求解. 【详解】应该从青年员工中抽取的人数为人.120156********⨯=++故答案为:63.袋中装有形状与质地相同的个球,其中黑色球个,记为,白色球个,记为,4212B B 、212W W 、从袋中任意取个球,请写出该随机试验一个不等可能的样本空间:_____. 2Ω=【答案】(答案不唯一)121121{},,B B BW B W 【分析】先写出袋中任取个球,共有的情况,再写出一个不等可能的样本空间即可. 2【详解】从袋中任取个球,2共有如下情况.121112212212,,,,,B B BW BW B W B W WW 其中一个不等可能的样本空间为,121121Ω},,{B B BW B W =此样本空间中两个黑球的情况有1个,一黑一白的情况有2个,是不等可能的样本空间. 故答案为:.(答案不唯一)121121Ω},,{B B BW B W =4.已知圆锥的底面半径为,侧面积为,则母线与底面所成角的大小为_____. 1cm 22cm π【答案】3π【解析】由圆锥的底面半径为和侧面积,求出圆锥的母线长,即可求得答案.1cm 22cm π【详解】设底面半径为,母线长为,底面中心为, r SA l O 如图:12S rl l πππ==⋅⋅=圆锥侧面积解得:2l =在中, SOA Rt ∆1cos 2OA SAO SA ∠==∴3SAO π∠=故母线与底面所成角的大小为:.3π故答案为:.3π【点睛】本题主要考查了求母线和底面夹角,解题关键是掌握圆锥的特征,考查了空间想象能力和计算能力,属于基础题.5.某公司决定利用随机数表对今年新招聘的名员工进行抽样调查他们对目前工作的满意程800度,先将这名员工进行编号,最后一位编号为,从中抽取名进行调查,下图提供随机数80080080表的第行到第行:4632 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04 32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从表中第行第列开始向右依次读取个数据,则抽到的第名员工的编号是_____. 5636【答案】328【分析】根据随机数表的抽法及所给数表依次抽取即可.【详解】前名员工的编号是:,其中超过和与前面重复的去掉不算, 6253,313457,736,007,328,800故抽到的第名员工的编号是. 6328故答案为:3286.某中学高三年级从甲、乙两个班级各选出名学生参加数学赛,他们取得的成绩(满分分)8100的茎叶图如图所示,其中甲班学生成绩的平均分是,乙班学生成绩的中位数是,则的值8683x y +为________.【答案】10【分析】根据茎叶图可计算平均数和中位数即可求解.【详解】甲班平均分()18678798285868094968x =⨯++++++++解得,乙班中位数是第个数和第个数的平均数, 8x =45即,解得,所以. 8084832y ++=2y =10x y +=故答案为:107.圆台的轴截面上、下底边长分别为和,母线长为,则圆台的体积是______. 462【分析】由题可得圆台上下底面的半径分别为和,结合母线长可得圆台的高,后由圆台体积公23式可得答案.【详解】由题可得圆台上底面半径,下底面半径.又母线l 长为, 2r =3R =2则圆台的高h ===故圆台的体积.()()222211223333V h r rR R =⋅++=+⨯+=ππ8.某创业公司共有名职工,为了了解该公司职工的年龄构成情况,随机采访了位代表,得到369的数据分别为.若用样本估计总体.则公司中年龄在内的人数占36,36,37,37,40,43,43,44,44(),x s x s -+总人数的百分比是__________. (其中是平均数,为标准差,结果精确到) x s 1%【答案】56%【分析】先求得平均数和方程,根据题意求得正确答案. 【详解】因为,363637374043434444409x ++++++++==,即,2161699099161610099s ++++++++==103s =, 110130,33x s x s -=+=所以年龄在内的人数为, 110130,33⎛⎫⎪⎝⎭5所以年龄在内的人数占公司总人数的百分比约为. 110130,33⎛⎫⎪⎝⎭5100%56%9⨯≈故答案为:56%9.如图,在棱长为的正方体中,为底面内(包括边界)的动点,满31111ABCD A B C D -P ABCD足:直线与直线所成角的大小为,则线段扫过的面积为__________. 1D P 1CC π6DP【答案】3π4【分析】根据题意确定与直线所成角的大小为,从而得到,即可求解. 1D P 1DD π6DP =【详解】由题意得,要使直线与直线所成角的大小为, 11//DD CC 1D P 1CC π6只需与直线所成角的大小为, 1D P 1DDπ6所以绕以夹角旋转为锥体的一部分,如图所示: 1D P 1DD π6,所以1π6tan DP DD=DP =点的轨迹是以 PD 所以在上扫过的面积为. DP ABCD 213ππ44⨯⨯=故答案为:. 3π410.从正方体的八个顶点中随机选取3个点,这3个点可以构成直角三角形的概率为___________ 【答案】67【分析】求出基本事件的总数,考虑表面和对角面求出可以构成三角形的基本事件的个数,由古典概率公式即可求解.【详解】从正方体的八个顶点中随机选取3个点,共有,38876C 56321⨯⨯==⨯⨯正方体有个面和个对角面都是正方形或矩形,每个图形中都有个直角三角形, 6634C 所以有个直角三角形, 3412C 48⨯=所以所求的概率为, 486567=故答案为:. 6711.现对某批电子元件的寿命进行测试,因此使用随机数法从该批次电子元件中抽取200个进行加速寿命试验,测得的寿命(单位:h )结果如下表所示: 寿命(h ) 100 120 140 160 180 200 220 240 个数 1032443424261218试估计这批电子元件的第60百分位数____________ 60P =【答案】170【分析】根据条件及百分位数的含义即得. 【详解】∵,1032443460200100+++=故这批电子元件的第60百分位数160. 160180601702P +==故答案为:170.12.甲、乙两位同学参加元旦抽奖活动,老师在不透明箱子内放入形状与质地相同的个球,其20中有个红球,个白球,每人每次只能抽取一个球.规定:①抽取后放回;②甲同学只能抽取一1010次,乙同学可以抽取两次;③红球抽取个数较多的同学可以获得奖品.则乙同学获得奖品概率是________. 【答案】##0.512【分析】列出乙同学红球抽取个数较多的所有情况,计算出概率之和.【详解】甲乙抽取一次抽到红球或者白球的概率都是,每次摸球相互独立,乙同学要获得奖品的12话,需要比甲同学抽取的红球多,可能的情况有:①甲红乙两红,概率为;111222⨯⨯②甲白乙先红后白,概率为;111222⨯⨯③甲白乙先白后红,概率为;111222⨯⨯④甲白乙两红,概率为,111222⨯⨯所以乙获胜的概率是.111142222⨯⨯⨯=故答案为:12二、单选题13.现要完成下列项抽样调查:2①从盒饼干中抽取盒进行食品卫生检查;4②某中学共有名教职工,其中一般教师名,行政人员名,后勤人员名,为了了解教3602805525职工对学校在校务公开方面的意见,拟抽取一个容量为的样本,较为合理的抽样方法是( ) 72A .①简单随机抽样,②分层抽样 B .①简单随机抽样,②简单随机抽样 C .①分层抽样,②分层抽样 D .①分层抽样,②简单随机抽样 【答案】A【分析】根据简单随机抽样和分层抽样的特征判断抽样方法. 【详解】①总体中的个体数较少,宜用简单随机抽样; ②总体是由差异明显的几部分组成,宜用分层抽样. 故选:A.14.接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有不会感染这种病毒,若有人接种了这种疫苗,则最多人被感染的概率为80%41( ) A .B .C .D .5126252566251136251625【答案】A【分析】最多人被感染即4人没有人感染和4人中恰好有1人被感染,利用独立重复试验的概率1和互斥事件的概率求解.【详解】由题得最多人被感染的概率为. 1041344414256256512(()()555625625C C ++==故选:A【点睛】方法点睛:求概率常用的方法:先定性(确定所求的概率是六种概率(古典概型的概率、几何概型的概率、互斥事件的概率、独立事件的概率、独立重复试验的概率、条件概率)的哪一种),再定量.15.如图,已知正方体,M ,N 分别是,的中点,则( )1111ABCD A B C D -1A D 1D BA .直线与直线垂直,直线平面 1A D 1DB //MN ABCD B .直线与直线平行,直线平面 1A D 1D B //MN 11BDD BC .直线与直线相交,直线平面 1AD 1D B //MN ABCD D .直线与直线异面,直线平面 1A D 1D B //MN 11BDD B 【答案】A【分析】连接,由三角形中位线定理可得,再由线面平行的判定定理可得∥平面1AD ∥MN AB MN ,由线面垂直的判定定理可证得平面,从而得.ABCD 1A D ⊥1ABD 11A D D B ⊥【详解】连接,在正方形中,由M 为的中点,可知,且M 为1AD 11ADD A 1A D 11AD A D M = 1A D 的中点,.11AD A D ⊥又∵N 为D ,B 的中点,∴. ∥MN AB ∵平面,平面, AB ⊂ABCD MN ⊄ABCD ∴∥平面.MN ABCD ∵平面,平面, AB ⊥11ADD A 1A D ⊂11ADD A ∴,1AB A D ⊥∵,平面,1AB AD A = 1,AB AD ⊂1ABD∴平面, 1A D ⊥1ABD ∵平面, 1D B ⊂1ABD ∴,故A 正确. 11A D D B ⊥故选:A16.如图两正方形,所在的平面垂直,将沿着直线旋转一周,则直线与ABCD CDFE EFC ∆FC EC 所成角的取值范围是( )ACA .B .C .D .5,1212ππ⎡⎤⎢⎥⎣⎦7,1212ππ⎡⎤⎢⎥⎣⎦,122ππ⎡⎤⎢⎥⎣⎦,62ππ⎡⎤⎢⎥⎣⎦【答案】C【分析】可证得,故,,当沿着直线旋转一周,AF AC CF ==3ACF π∠=4ECF π∠=EFC ∆FC ,且,结合线线角的取值范围即得解.CEA ECF FCA ∠≤∠+∠CEF ACF ECF ∠≥∠-∠【详解】如下图所示,连接,因为正方形和,则,,又因为面AF ABCD CDFE AD CD ⊥FD CD ⊥AD DC DF ==面,面面,ABCD ⊥CDFE ABCD ⋂CDFE CD =则面, AD ⊥CDFE 因此.AD DF ⊥因此,,, 222AF AD DF =+222AC AD DC =+222CF CD DF =+则, AF AC CF ==因此 3ACF π∠=因为,4ECF π∠=则当沿着直线旋转一周, EFC ∆FC 712CEA ECF FCA π∠≤∠+∠=,12CEF ACF ECF π∠≥∠-∠=当为锐角或直角时,直线和所成角的等于 CEF ∠EC AC CEF ∠当为钝角时,直线和所成的角等于的补角CEF ∠EC AC CEF ∠因此直线和所成的角的取值范围是EC AC ,122ππ⎡⎤⎢⎥⎣⎦故选:C .【点睛】本题考查了空间中直线与直线的夹角,考查了学生空间想象,转化划归,数学运算的能力,属于较难题.三、解答题17.如图,圆锥的底面直径与母线长均为4,PO 是圆锥的高,点C 是底面直径AB 所对弧的中点,点D 是母线PA 的中点.(1)求该圆锥的体积;(2)求直线CD 与平面PAB 所成角的大小.【答案】(2)4π【分析】(1)根据圆锥的体积公式计算出圆锥的体积.(2)作出直线CD与平面PAB所成角,解直角三角形求得角的大小.【详解】(1)依题意可知圆锥的底面半径,高2 r=OP==所以圆锥的体积为.2123π⨯⨯⨯=(2)连接,由于是的中点,所以,OD D PA122OD PA==由于是弧的中点,所以,C AB OC AB⊥根据圆锥的几何性质可知,,OC OP AB OP O⊥⋂=所以平面,所以是直线CD与平面PAB所成角的平面角.OC⊥PAB ODC∠在中,,所以.Rt ODC,22COD OD OCπ∠===4ODCπ∠=即直线CD与平面PAB所成角的大小为.4π18.某学校对任课教师的年龄状况和接受教育程度(学历)做调研,其部分结果(人数分布)如表:学历35岁以下35~50岁50岁以上本科80 30 20研究生x 20 y(1)用分层抽样的方法在35~50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;(2)若按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求x 、y 的值.【答案】(1)(2)x =40,y =5 710【详解】试题分析:(1)由题意得:抽到35岁至50岁本科生3人,研究生2人,由此利用列举法能求出从中任取2人,至少有l 人的学历为研究生的概率.(2)由题意得:,由此能求出10539N =N ,从而能求出x ,y 的值试题解析:(1)用分层抽样的方法在35~50岁中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴,解得m =3.∴抽取了学历为研究生的2人,学历为本科的3人, 分别记作S 1、S 2;B 1、B 2、B 3.从中任取2人的所有基本事件共10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2), (B 2,B 3),(B 1,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3), (S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人的教育程度为研究生的概率为(2)依题意得:,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20.∴ ,解得x =40,y =5.∴x =40,y =5.【解析】古典概型及其概率计算公式19.在长方体中,,,,为棱的中点.1111ABCD A B C D -2AB =2BC =14CC =M 1CC(1)求证:平面;BM ⊥11A B M (2)求异面直线和所成的角的大小. BM 1B A【答案】(1)证明见详解;(2)【分析】(1)由题中长度关系,可以证明,即,由平面22211BB BM B M =+1BM B M ⊥11A B ⊥11BCC B ,可以证明,即得证;11A B BM ⊥(2)取为中点,有,异面直线和所成的角的大小即为,利用余'M 1DD '//AM BM BM 1B A 1'B AM ∠弦定理可得解【详解】(1)由题意,,,,为棱的中点. 2AB =2BC =14CC =M 1CC故114BM B M BB =====即:222111BB BM B M BM B M =+∴⊥又长方体,故平面 1111ABCD A B C D -11A B ⊥11BCC B 平面,BM ⊂11BCC B 11A B BM ∴⊥又1111A B B M B = 平面BM ∴⊥11A B M (2)取为中点,连接,故 'M 1DD 'MM '////MM CD AB 且'MM CD AB ==故四边形为平行四边形'ABMM 故,即异面直线和所成的角的大小即为'//AM BM BM 1B A 1'B AM ∠连接,11B D11''B A AM B M======2221111''cos'2'AB AM B MB AMAB AM+-∠==⋅1'B AM∴∠=因此异面直线和所成的角的大小为BM1B A【点睛】本题考查了线面垂直的证明和异面直线的夹角的求解,考查了学生综合分析,逻辑推理,数学运算能力,属于基础题20.如图所示为M、N两点间的电路,在时间T内不同元件发生故障的事件是互相独立的,它们发生故障的概率如下表所示:元件1K2K1L2L3L概率0.6 0.5 0.4 0.5 0.7(1)求在时间T内,与同时发生故障的概率;1K2K(2)求在时间T内,由于或发生故障而使得电路不通的概率;1K2K(3)求在时间T 内,由于任意元件发生故障而使得电路不通的概率. 【答案】(1)0.3; (2)0.8; (3)0.94【分析】(1)利用独立事件概率公式即求;(2)利用互斥事件概率公式及独立事件概率公式即求;(3)设表示发生故障,由题可得,即得. i B (1,2,3)i L i =()()()32122P P P B P B P B =+【详解】(1)设表示发生故障, i A (1,2)i K i =则,()()120.6,0.5P A P A ==单位时间T 内,与同时发生故障的概率:1K 2K .()()1120.60.50.3P P A P A ==⨯=(2)在时间T 内.由于或发生故障而影响电路的概率:1K 2K . ()()()()()()2121212P P A P A P A P A P A P A =++0.60.50.40.50.60.50.8=⨯+⨯+⨯=(3)设表示发生故障,则i B (1,2,3)i L i =,()()()1230.4,0.5,0.7P B P B P B ===在时间T 内,任一元件发生故障而影响电路的概率:()()()32122P P P B P B P B =+0.80.40.50.7=+⨯⨯.0.94=21.前些年有些地方由于受到提高的影响,部分企业只重视经济效益而没有树立环保意识,GDP 把大量的污染物排放到空中与地下,严重影响了人们的正常生活,为此政府进行强制整治,对不合格企业进行关闭、整顿,另一方面进行大量的绿化来净化和吸附污染物.通过几年的整治,环境明显得到好转,针对政府这一行为,老百姓大大点赞.(1)某机构随机访问50名居民,这50名居民对政府的评分如下表:分数[70,75)[75,80)[80,85)[85,90)[90,95)[95,100]频数 2 3 11 14 11 9请在答题卡上作出居民对政府的评分频率分布直方图:(2)当地环保部门随机抽测了2018年11月的空气质量指数,其数据如下表: 空气质量指数()AQI 0-50 50-100 100-150 150-200天数2 18 8 2用空气质量指数的平均值作为该月空气质量指数级别,求出该月空气质量指数级别为第几级?(同一组数据用该组数据的区间中点值作代表,将频率视为概率)(相关知识参见附表)(3)空气受到污染,呼吸系统等疾病患者最易感染,根据历史经验,凡遇到空气轻度污染,小李每天会服用有关药品,花费50元,遇到中度污染每天服药的费用达到100元.环境整治前的2015年11月份小李因受到空气污染患呼吸系统等疾病花费了5000元,试估计2018年11月份(参考(2)中表格数据)小李比以前少花了多少钱的医药费? 附:空气质量指数()AQI 0-50 50-100 100-150 150-200 200-300300 空气质量指数级别 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 空气质量指数优良轻度污染中度污染重度污染严重污染【答案】(1)见解析(2)指数为第Ⅱ级,属于良(3)相比2015年11月份,小李少花费了4400元的医药费【分析】(1)由题可计算出频率/组距的值分别为0.008,0.012,0.044,0.056,0.044,0.036,然后画图.(2)由题计算得该月空气质量指数平均值为,)指数为第Ⅱ级,属于良91.667100<(3)2018年11月份轻度污染有8天,中度污染有2天,则可计算该月的药费,从而得到答案. 【详解】解:(1)由评分表可知,相应区间频率/组距的值分别为0.008,0.012,0.044,0.056,0.044,0.036,其频率分布直方图如图所示:(2)由题得,该月空气质量指数平均值为 .22518758125217591.66710030⨯+⨯+⨯+⨯≈<对照表格可知,该月空气质量指数为第Ⅱ级,属于良. (3)2018年11月份轻度污染有8天,中度污染有2天, 所以小李花费的药费为元. 8502100600⨯+⨯=又元,50006004400-=所以相比2015年11月份,小李少花费了4400元的医药费. 【点睛】本题由图表计算即可,属于简单题.。
(易错题)高中数学必修第二册第四单元《统计》检测(包含答案解析)
![(易错题)高中数学必修第二册第四单元《统计》检测(包含答案解析)](https://img.taocdn.com/s3/m/b12772e2580216fc710afd7a.png)
一、选择题1.甲、乙两名同学8次数学测验成绩如茎叶图所示,12,x x 分别表示甲、乙两名同学8次数学测验成绩的平均数,12,s s 分别表示甲、乙两名同学8次数学测验成绩的标准差,则有A .12x x >,12s s <B .12x x =,12s s <C .12x x =,12s s =D .12x x <,12s s >2.某高中一年级两个数学兴趣小组平行对抗赛,满分100分,每组20人参加,成绩统计如图:根据统计结果,比较甲、乙两小组的平均成绩及方差大小( )A .x x <甲乙,22S S >甲乙 B .x x >甲乙,22S S <甲乙 C .x x <甲乙,22S S <甲乙D .x x >甲乙,22S S >甲乙3.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10日,每天新增疑似病例不超过7人”.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下: 甲地:总体平均数为3,中位数为4; 乙地:总体平均数为1,总体方差大于0; 丙地:总体平均数为2,总体方差为3; 丁地:中位数为2,众数为3;则甲、乙、两、丁四地中,一定没有发生大规模群体感染的是( ) A .甲地B .乙地C .丙地D .丁地4.已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是A .63、64、66B .65、65、67C .65、64、66D .64、65、645.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A.B.C.D.6.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为()A.280 B.320 C.400 D.1000A B C D E F G. 7.某个产品有若干零部件构成,加工时需要经过7道工序,分别记为,,,,,,其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序Y必须要在工序X完成后才能开工,则称X为Y的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:工序A B C D E F G加工时间3422215紧前工序无C无C,A B D,A B现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是()(假定每道工序只能安排在一台机器上,且不能间断.)A.11个小时B.10个小时C.9个小时D.8个小时8.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()年之间出生,80前指1979年及以前注:90后指1990年及以后出生,80后指19801989出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多9.某体校甲、乙两个运动队各有6名编号为1,2,3,4,5,6的队员进行实弹射击比赛,每人射击1次,击中的环数如表:学生 1号 2号 3号 4号 5号 6号 甲队 6 7 7 8 7 7 乙队676797则以上两组数据的方差中较小的一个为2s (= ) A .16B .13C .12D .1第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案10.统计某校n 名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成六组:[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150,绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n 的值是( )A .800B .900C .1200D .100011.我国古代数学名著《九章算术》中有如下问题“今有北乡八千七百五十八,西乡七千二百三十六,南乡八千三百五十六,凡三乡,发役三百七十八人,欲以算数多少出之,何各几何?”意思是:北乡有8758人,西乡有7236人,南乡有8356人,现要按人数多少从三乡共征集378人,问从各乡征集多少人?在上述问题中,需从西乡征集的人数是 ( ) A .102B .112C .130D .13612.设样本数据1210,,,x x x 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =,则1210,,,y y y 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +13.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为0m ,平均值为x ,则( )A.e m=0m=x B.e m=0m<xC.e m<0m<x D.0m<e m<x二、解答题14.某高级中学今年高一年级招收“国际班”学生720人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这720人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:第一批次第二批次第三批次女m n72男180132k已知在这720名学生中随机抽取1名,抽到第一批次、第二批次中女学生的概率分别是0.25,0.15.m n k的值;(1)求,,(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取6名同学问卷调查,则三个批次被选取的人数分别是多少?(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.15.全国中小学生的体质健康调研最新数据表明我国小学生近视眼发病率为22.78%,初中生为55.22%,高中生为70.34%.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视.除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图:(1)写出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.16.某微商对某种产品每天的销售量(x件)进行为期一个月的数据统计分析,并得出了该月销售量的直方图(一个月按30天计算)如图所示.假设用直方图中所得的频率来估计相应的事件发生的概率.(1)求频率分布直方图中的a的值;(2)求日销量的平均值(同一组中的数据用该组区间的中点值作代表);(3)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.17.为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:序号()i分组(分数)组中值()i G频数(人数)频率()i F60,7065①0.121[)70,807520②2[)80,9085③0.243[)90,10095④⑤4[]合计501(1)填充频率分布表中的空格;(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的S的值.18.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.项目员工A B C D E F 子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金 × × ○ × × × 赡养老人○○×××○(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 19.近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中4a b =.(I )求,a b 的值;(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;(Ⅲ)若按照分层抽样从[)50,60,[)60,70中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[)50,60的概率.20.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q 镇2009~2018年梅雨季节的降雨量(单位:mm )的频率分布直方图,试用样本频率估计总体概率,解答下列问题:()1“梅实初黄暮雨深”.请用样本平均数估计Q 镇明年梅雨季节的降雨量;()2“江南梅雨无限愁”.Q 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(kg /亩)与降雨量的发生频数(年)如22⨯列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小? (完善列联表,并说明理由). 亩产量\降雨量 [)200,400[)[]100,200400,500⋃合计<6002600≥1合计10()20P K k ≥ 0.50 0.40 0.25 0.15 0.10 0k0.4550.7081.3232.0722.703(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)21.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.对服务好评 对服务不满意 合计 对商品好评8040120(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)22.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.23.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 24.语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如下:(Ⅰ)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. (附参考公式)若2(,)XN μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=.25.青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率[50,60)20.0480.16[60,70)10[70,80)[80,90)140.28[90,100]合计1.00(1)填写答题卡上频率分布表中的空格,并补全频率分布直方图;(2)试估计该年段成绩在[70,90)段的有多少人?(3)请你估算该年段的平均分.26.某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m、n、t的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据茎叶图中的数据,计算出甲、乙同学测试成绩的平均数与方差、标准差,即可得出结论 【详解】由茎叶图可知,甲的成绩分别为:78,79,84,85,85,86,91,92. 乙的成绩分别为:77,78,83,85,85,87,92,93. ∴11(7879848585869192)858x =+++++++=,22222211171[(7885)(7985)00(8685)(9185)(9285)]88s =-+-+++-+-+-=;21(7778838585879293)858x =+++++++=,22222221230[(7785)(7885)00(8785)(9285)(9385)]88s =-+-+++-+-+-=∴12x x =,12s s < 故选B. 【点睛】本题考查了茎叶图、平均数与方差的应用问题,是基础题.众数即出现次数最多的数据,中位数即最中间的数据,平均数即将所有数据加到一起,除以数据个数,方差是用来体现数据的离散程度的.2.A解析:A 【分析】由茎叶图可得甲乙两个小组中的20个数据,利用平均数公式求解x 甲与x 乙并比较大小,再由茎叶图的集中程度比较2S 甲与2S 乙的大小,则答案可求.【详解】由茎叶图可得甲小组中的20个数据分别为:45,49,51,58,61,63,71,73,76,76,77,77,77,80,82,83,86,86,90,93.x 甲=120(45+49+51+58+61+63+71+73+76+76+77+77+77+80+82+83+86+86+90+93)=72.7.由茎叶图可得乙小组中的20个数据分别为: 53,63,66,71,72,74,75,75,75,77,78,78,78,79,81,84,85,86,93,94.x 乙=120(53+63+66+71+72+74+75+75+75+77+78+78+78+79+81+84+85+86+93+94)=76.85. 则x x <甲乙,再由茎叶图可知,甲小组的数据比较分散,乙小组的数据集中在茎7上,相对集中,故22S S >甲乙.故选:A . 【点睛】本题考查茎叶图,考查学生读取图表的能力及运算能力,考查平均数与方差的求解,是基础题.3.C解析:C 【分析】平均数与中位数,不能限制极端值的出现,因而可能会出现超过7人的情况;方差体现的是数据的离散情况,不知道方差的具体值,不能判断是否出现超过7人的情况;众数是出现次数多的数据,不能限制极端值的大小. 【详解】对于甲地, 总体平均数为3,中位数为4.平均数与中位数,不能限制极端值的出现,因而可能会出现超过7人的情况,所以甲地不符合要求;对于乙地, 总体平均数为1,总体方差大于0.没有给出方差具体的大小,如果方差很大,有可能出现超过7人的情况,所以乙地不符合要求;对于丁地:中位数为2,众数为3. 中位数与众数不能限制极端值的大小,因而可能出现超过7人的情况,所以丁地不符合要求; 对于丙地,根据方差公式()()()2222123110s x x x x x x ⎡⎤=-+-+-+⋅⋅⋅⎢⎥⎣⎦.若出现大于7的数值m ,则()()()22222312 3.610s m x x x x ⎡⎤=-+-+-+⋅⋅⋅>⎢⎥⎣⎦,与总体方差为3矛盾,因而不会出现超过7人的情况出现. 综上可知,丙地符合要求. 故选:C 【点睛】本题考查了平均数、众数、中位数与方差表示数据的特征,对数据整体进行估算,属于中档题. 4.B解析:B【分析】①在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;②中位数是所有小长方形的面积和相等的分界线;③平均数是各小长方形底边中点的横坐标与对应频率的积的和.【详解】解:由频率直方图可知,众数=60+70=652;由100.03+50.04=0.5⨯⨯,所以面积相等的分界线为65,即中位数为65;平均数=550.3+650.4+750.15+850.1+950.05=67⨯⨯⨯⨯⨯.故选B.【点睛】本题主要考查频率直方图的众数、中位数、平均数,需理解并牢记公式.5.B解析:B【解析】【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。
新个税专项附加扣除标准(2019)-
![新个税专项附加扣除标准(2019)-](https://img.taocdn.com/s3/m/246575bd541810a6f524ccbff121dd36a32dc493.png)
专项附加扣除 — 子女教育
• 其他规定 • 1. 纳税人可以选择由其中一方按扣除标准的100%扣
除, 即每月1000元 扣除, 也可以选择由配偶双方分别 按扣除标准的50%扣除, 即一人每月500元扣除。 选 定扣除方式后在一个纳税年度内不能变更。 • 2. 纳税人子女在中国境外接受教育的, 纳税人应当留 存境外学校录取通知书、留学签证等相关教育的证明 资料备查。
中、中等职业教育、技工教育)、高等教育(大学专科、大学本科、 硕士研究生、博士研究生教育)
起止时间
• 子女处于学前教育阶段的, 为年满3岁当月至小学入学前一月 • 接受学历教育的, 为接受全日制学历教育的当月至结束的当月 • 施教机构按规定组织实施的寒暑假连续计算 • 因病或其他非主观原因休学且学籍继续保留的休学期间连续计算
• 个人接受本科及以下学历(学位)继续教育, 符合本办法规定 扣除条件的, 可以选择由其父母扣除, 也可以选择由本人扣除。
起止 时间
• 纳税人参加学历继续教育的, 为入学当月至教育结束的当月, 最 长不得超过48个月
• 纳税人参加职业资格教育的, 为取得相关职业资格证书的当年
专项附加扣除 — 继续教育
算 扣除额
• 在一个纳税年度内, 纳税人发生的与基本医保相关的医药费用 扣多少? 支出, 扣除医保报销后个人负担(指医保目录范围内的自付部
分)累计超过15000元的部分, 由纳税人在办理年度汇算清缴 时, 在80000元限额内据实扣除 。
什么时 候扣除
• 大病医疗扣除, 只能由纳税人在年度终了后办理综合所得汇算 清缴时扣除。
专项附加扣除 —赡养老人
其他规定
• 1. 被赡养人范围: • 一是年满60岁(含)的父母;二是子女已经去世的祖父母、外祖父
【数学】2019年高考真题——天津卷(文)(精校版)
![【数学】2019年高考真题——天津卷(文)(精校版)](https://img.taocdn.com/s3/m/270863cff01dc281e43af075.png)
2019年普通高等学校招生全国统一考试(天津卷)文科数学第Ⅰ卷一、选择题1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B 等于( ) A .{2} B .{2,3} C .{-1,2,3} D .{1,2,3,4}答案 D解析 由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.2.设变量x ,y 满足约束条件{x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 画出可行域如图中阴影部分(含边界)所示,作出直线-4x +y =0,并平移,可知当直线过点A 时,z 取得最大值.由{x =-1,x -y +2=0,可得{x =-1,y =1,所以点A 的坐标为(-1,1),故z max =-4×(-1)+1=5.3.设x ∈R ,则“0<x <5”是“|x -1|<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由|x -1|<1可得0<x <2,所以“|x -1|<1的解集”是“0<x <5的解集”的真子集.故“0<x <5”是“|x -1|<1”的必要不充分条件.4.阅读如图所示的程序框图,运行相应的程序,输出S的值为()A.5 B.8 C.24 D.29答案B解析执行程序框图,S=1,i=2,j=1,S=1+4=5,i=3,S=8,i=4,满足i≥4,输出的S=8.5.已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<cC.b<c<a D.c<a<b答案A解析∵a=log27>log24=2,b=log38<log39=2且b>1,c=0.30.2<0.30=1,∴c<b<a.6.已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.√2B.√3C.2 D.√5答案D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±bax.将x=-1代入y=±ba x,得y=±ba,所以点A,B的纵坐标的绝对值均为ba.由|AB|=4|OF|可得2ba=4,即b=2a,b2=4a2,故双曲线的离心率e=ca =√a2+b2a2=√5.7.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(π4)=√2,则f(3π8)等于()A.-2 B.-√2 C.√2D.2答案C解析∵函数f(x)为奇函数,且|φ|<π,∴φ=0.又f (x )的最小正周期为π,∴2πω=π,解得ω=2,∴f (x )=A sin 2x . 由题意可得g (x )=A sin x ,g (π4)=√2,即A sin π4=√2,解得A =2.故f (x )=2sin 2x . ∴f (3π8)=2sin3π4=√3.8.已知函数f (x )={2√x,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( ) A.[54,94] B.(54,94] C. (54,94]∪{1} D. [54,94]∪{1}答案 D 解析 如图,画出函数y =f (x )的图象,而y =-14x +a 的图象是一条斜率为-14的直线,在y 轴的截距为a .①先研究当0≤x ≤1时,直线y =-14x +a 与y =2√x 的图象只有一个交点的情况. 当直线y =-14x +a 过点B (1,2)时,2=-14+a ,解得a =94,所以0≤a ≤9144;②再研究当x >1时,直线y =-14x +a 与y =1x 的图象只有一个交点的情况.当直线与y =1x 的图象相切时,由y ′=-1x 2=-14,得x =2,此时切点为(2,12),可得a =1. 当直线与y =1x的图象相交时,由图象可知直线y =-14x +a 从过点A 向上平移时与y =1x的图象只有一个交点.直线过点A (1,1)时,1=-14+a ,解得a =54.所以a ≥54.结合图象可得,所求实数a 的取值范围为[54,94]∪{1}.第Ⅱ卷 二、填空题9.i 是虚数单位,则|5−i1+i |的值为________. 答案 √13 解析 方法一5−i1+i =(5−i)(1−i)(1+i)(1−i)=4−6i 2=2-3i ,故|5−i1+i |=√4+9=√13.方法二 |5−i 1+i|=|5−i 1+i|=√25+11+1=√26√2=√13. 10.设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. 答案 (−1,23)解析 3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为(−1,23).11.曲线y =cos x -x2在点(0,1)处的切线方程为________. 答案 x +2y -2=0解析 y ′=-sin x -12,将x =0代入,可得切线斜率为-12.所以切线方程为y -1=-12x ,即x +2y -2=0.12.已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________. 答案 π4解析 由题意可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为√5−1=2,故圆柱的高为1,所以圆柱的体积为π×(12)2×1=π4. 13.设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为________.答案 92 解析 (x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy.∵x >0,y >0且x +2y =4,∴4≥2√2xy (当且仅当x =2,y =1时取等号), ∴2xy ≤4,∴1xy ≥12,∴2+5xy≥2+52=92.14.在四边形ABCD 中,AD ∥BC ,AB =2√3,AD =5,∠A =30°,点E 在线段CB 的延长线上,且AE =BE ,则BD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =________. 答案 -1解析 方法一 在等腰△ABE 中,易得∠BAE =∠ABE =30°,故BE =2,则BD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(AD ⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )A =AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ 2-AB ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =5×2√3×cos 30°+5×2×cos 180°-12-2√3×2×cos 150°=15-10-12+6=-1.方法二 在△ABD 中,由余弦定理可得BD =√AD 2+AB 2−2×AD ×AB ×cos∠BAD =√7,所以cos ∠ABD =AB 2+BD 2−AD 22×AB×BD=-√2114,则sin ∠ABD =5√714.设BD ⃗⃗⃗⃗⃗⃗ 与AE⃗⃗⃗⃗⃗ 的夹角为θ,则cos θ=cos(180°-∠ABD +30°)=-cos(∠ABD -30°)=-cos ∠ABD ·cos 30°-sin ∠ABD ·sin 30°=-√714,在△ABE 中,易得AE =BE =2,故BD ⃗⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =√7×2×(−√714)=-1. 三、解答题15.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.解 (1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{B ,C },{B ,D },{B ,E },{B ,F },{C ,D },{C ,E },{C ,F },{D ,E },{D ,F },{E ,F },共15种.②由表格知,符合题意的所有结果为{A ,B },{A ,D },{A ,E },{A ,F },{B ,D },{B ,E },{B ,F },{C ,E },{C ,F },{D ,F },{E ,F },共11种. 所以,事件M 发生的概率P (M )=1115.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C . (1)求cos B 的值; (2)求sin (2B +π6)的值. 解 (1)在△ABC 中,由正弦定理b sinB=csinC,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,又sin C ≠0,所以3b =4a .又因为b +c =2a ,所以b =43a ,c =23a ,由余弦定理可得cos B =a 2+c 2−b 22ac=a 2+49a 2−169a 22∙a∙23a=-14.(2)由(1)可得sin B =√1−cos 2B =√154, 从而sin 2B =2sin B cos B =-158,cos 2B =cos 2B -sin 2B =-78, 故sin (2B +π6)=sin 2B cos π6+cos 2B sin π6=-√158×√32-78×12=-3√5+716. 17.如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面P AC ⊥平面PCD ,P A ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面P AD ; (2)求证:P A ⊥平面PCD ;(3)求直线AD 与平面P AC 所成角的正弦值. (1)证明 连接BD ,易知AC ∩BD =H ,BH =DH . 又由BG =PG ,故GH ∥PD .又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)证明 取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC .又因为平面P AC ⊥平面PCD ,平面P AC ∩平面PCD =PC ,DN ⊂平面PCD , 所以DN ⊥平面P AC .又P A ⊂平面P AC ,所以DN ⊥P A .又已知P A ⊥CD ,CD ∩DN =D ,CD ,DN ⊂平面PCD , 所以P A ⊥平面PCD .(3)解 连接AN ,由(2)中DN ⊥平面P AC ,可知∠DAN 为直线AD 与平面P AC 所成的角. 因为△PCD 为等边三角形,CD =2且N 为PC 的中点, 所以DN =√3.又DN ⊥AN ,在Rt △AND 中,sin ∠DAN =DN AD=√33,所以直线AD 与平面P AC 所成角的正弦值为√33.18.设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,q >0. 依题意,得{3q =3+2d ,3q 2=15+4d ,解得{d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =[n ×3+n(n−1)2×6]+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1 =-3(1−3n )1−3+n ×3n +1=(2n−1)3n+1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n=3n 2+3×(2n−1)3n+1+32=3(n−1)3n+2+6n 2+92 (n ∈N *).19.设椭圆x 2a2+y 2b2=1(a >b >0)的左焦点为F ,左顶点为A ,上顶点为B .已知√3|OA |=2|OB |(O 为原点).(1)求椭圆的离心率;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l相切,圆心C 在直线x =4上,且OC ∥AP .求椭圆的方程.解 (1)设椭圆的半焦距为c ,由已知有√3a =2b ,又由a 2=b 2+c 2,消去b 得a 2=(√32a)2+c 2,解得ca =12.所以椭圆的离心率为12.(2)由(1)知,a =2c ,b =√3c ,故椭圆方程为x 24c2+y 23c 2=1.由题意,F (-c,0),则直线l 的方程为y =34(x +c ). 点P 的坐标满足{x 24c 2+y 23c 2=1,y =34(x +c ),消去y 并化简,得到7x 2+6cx -13c 2=0, 解得x 1=c ,x 2=-13c 7.代入到l 的方程,解得y 1=32c ,y 2=-914c . 因为点P 在x 轴上方,所以P (c,32c).由圆心C 在直线x =4上,可设C (4,t ). 因为OC ∥AP ,且由(1)知A (-2c,0), 故t4=32c c+2c ,解得t =2.因为圆C 与x 轴相切,所以圆C 的半径为2. 又由圆C 与l 相切,得|34(4+c )−2|√1+(34)2=2,可得c =2.所以,椭圆的方程为x 216+y 212=1.20.设函数f (x )=ln x -a (x -1)e x ,其中a ∈R . (1)若a ≤0,讨论f (x )的单调性; (2)若0<a <1e .①证明:f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2. (1)解 由已知,f (x )的定义域为(0,+∞), 且f ′(x )=1x -[a e x +a (x -1)e x ]=1−ax 2e xx.因此当a ≤0时,1-ax 2e x >0,从而f ′(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知,f ′(x )=1−ax 2e xx.令g (x )=1-ax 2e x ,由0<a <1e ,g ′(x )=-ax ·e x (x +2)<0,可知g (x )在(0,+∞)内单调递减.又g (1)=1-a e >0,且g (ln 1a )=1-a (ln 1a )2·1a =1-(ln 1a )2<0, 故g (x )=0在(0,+∞)内有唯一解, 从而f ′(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln 1a .当x ∈(0,x 0)时,f ′(x )=g(x)x>g(x 0)x=0,所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f ′(x )=g(x)x<g(x 0)x=0,所以f (x )在(x 0,+∞)内单调递减, 因此x 0是f (x )的唯一极值点. 令h (x )=ln x -x +1,则当x >1时,h ′(x )=1x -1<0, 故h (x )在(1,+∞)内单调递减, 从而当x >1时,h (x )<h (1)=0, 所以ln x <x -1,从而f (ln 1a )=ln (ln 1a )-a (ln 1a −1)eln 1a =ln (ln 1a )-ln 1a +1=h (ln 1a )<0. 又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点. 又f (x )在(0,x 0)内有唯一零点1. 从而,f (x )在(0,+∞)内恰有两个零点. ②由题意,可得{f ′(x 0)=0,f (x 1)=0,即{ax 02e x 0=1,lnx 1=a (x 1−1)e x 1,从而ln x 1=x−1x 02e x 1−x0, 即ex 1−x 0=x 02lnx 1x 1−1.因为当x >1时,ln x <x -1, 又x 1>x 0>1, 故e x 1−x 0<x 02(x 1−1)x 1−1=x 02,两边取对数,得ln e x 1−x 0<ln x 02,于是x 1-x 0<2ln x 0<2(x 0-1), 整理得3x 0-x 1>2.。
黑龙江省齐齐哈尔市实验中学2023-2024学年高二下学期7月期末考试数学试题(含答案)
![黑龙江省齐齐哈尔市实验中学2023-2024学年高二下学期7月期末考试数学试题(含答案)](https://img.taocdn.com/s3/m/47fa2719bf1e650e52ea551810a6f524cdbfcb00.png)
齐齐哈尔市实验中学2023-2024学年高二下学期7月期末考试数学试题一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 复数在复平面内对应的点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知非零向量,满足,且,则与夹角为( )AB.C.D.3. 我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除,某单位老年、中年、青年员工分别有80人、100人、120人,现采用分层随机抽样的方法,从该单位上述员工中抽取30人调查专项附加扣除的享受情况,则应该从青年员工中抽取的人数为( )A. 8人B. 10人C. 12人D. 18人4. 若数据的平均数为,方差为,则的平均数和标准差分别为( )A. ,sB. 4-3,sC. 4-3,4sD. 4-3,5. 在△ABC中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( )A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形6. 函数是A. 奇函数,且最大值为2 B. 偶函数,且最大值为2C. 奇函数,且最大值为D. 偶函数,且最大值为7. 如图,圆O 所在平面,是圆O 的直径,是圆周上一点其中,则与平面所成角的正弦值为( )的.2i13i --a b 2a b = ()a b b -⊥ a bπ6π32π35π612,,n x x x x 2s 1243,43,,43n x x x --- x x x x ()cos cos 2f x x x =-9898PA ⊥AB C 3,4,5AC PA BC ===PB PACA.B.C.D.8. 已知函数.若,,,则a ,b ,c 的大小关系为( )A. B. C. D. 二、多项选择题(本大题共3个小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的的得0分)9. 甲、乙两个口袋中装有除了编号不同以外其余完全相同的号签.其中,甲袋中有编号为的三个号签;乙袋有编号为的六个号签.现从甲、乙两袋中各抽取1个号签,从甲、乙两袋抽取号签的过程互不影响.记事件A :从甲袋中抽取号签1;事件B :从乙袋中抽取号签6;事件C :抽取的两个号签和为3;事件D :抽取的两个号签编号不同.则下列选项中,正确的是( )A. B. C. 事件与事件C 相互独立D. 事件A 与事件D 相互独立10. 已知函数的图象的一个对称中心为,则下列说法正确的是( )A. 直线是函数的图象的一条对称轴B. 函数在上单调递减122()2||5f x x x =-+2(log 5)a f =-0.8(2)b f =5()2c f =a b c<<c b a<<b a c<<b c a<<123、、123456、、、、、()118P AB =()19P C =A ()cos 2cos sin 2sin f x x x ϕϕ=-π02ϕ⎛⎫<< ⎪⎝⎭,06π⎛⎫ ⎪⎝⎭5π12x =()f x ()f x π0,6⎡⎤⎢⎥⎣⎦C. 函数的图象向右平移个单位可得到的图象D. 函数在上最小值为-111. 如图,在正方体中,点在线段上运动,有下列判断,其中正确的是( )A. 平面平面B. 平面C. 异面直线与所成角的取值范围是D. 三棱锥的体积不变三、填空题(本大题共3个小题,每小题5分,共15分,把正确答案填在题中横线上)12. 设集合,集合,若,则实数_____.13. 某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.14. 等腰三角形ABC 的腰,,将它沿高AD 翻折,使二面角成60°,此时四面体ABCD 外接球的体积为______.四、解答题(本题共5个题,共77分,解答题应写出文字说明,证明过程或演算步骤)15. 如图是一个正四棱台的石料,上、下底面的边长分别为和,高.的()f x π6cos 2y x =()f x π0,2⎡⎤⎢⎥⎣⎦1111ABCD A B C D -P 1BC 1PB D ⊥1ACD 1//A P 1ACD 1A P 1AD π0,3⎛⎤ ⎥⎝⎦1D APC -{}0,1,2,3U ={}2|0A x U x mx =∈+={}1,2U C A =m =5AB AC ==6BC =B AD C --1111ABCD A B C D -20cm 40cm 30cm(1)求四棱台的表面积;(2)若要这块石料最大限度打磨为一个圆台,求圆台的体积.16. 如图,在平面直角坐标系中,,,.(1)求点B ,C 的坐标;(2)判断四边形的形状,并求出其周长.17. 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求周长最大值.18. 首次实施新高考的八省(市)于2021年1月23日统一举行了新高考适应性考试,在联考结束后,根据联考成绩,考生可了解自己的学习情况,作出升学规划,决定是否参加强基计划.在本次适应性考试中,某学校为了解高三学生的联考情况,随机抽取了100名学生的联考数学成绩作为样本,并按照分数段,,,,分组,绘制了如图所示的频率分布直方图.(Ⅰ)求出图中的值并估计本次考试及格率(“及格率”指得分为90分及以上的学生所占比例);(Ⅱ)估计该校学生联考数学成绩的第80百分位数;(Ⅲ)估计该校学生联考数学成绩的众数、平均数.19. 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,DB =BC ,DB ⊥AC ,M 是棱BB 1上一点.的1111ABCD A B C D -1O O -xOy 22OA AB == 2π3OAB ∠=(BC =-OABC ABC V ABC V [)50,70[)70,90[)90,110[)110,130[]130,150a(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.齐齐哈尔市实验中学2023-2024学年高二下学期7月期末考试数学试题一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】A二、多项选择题(本大题共3个小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的的得0分)【9题答案】【答案】ABD【10题答案】【答案】ABD【11题答案】【答案】ABD三、填空题(本大题共3个小题,每小题5分,共15分,把正确答案填在题中横线上)【12题答案】【答案】-3【13题答案】【答案】【14题答案】四、解答题(本题共5个题,共77分,解答题应写出文字说明,证明过程或演算步骤)【15题答案】【答案】(1) (2)【16题答案】【答案】(1),(2)四边形为等腰梯形,周长为8【17题答案】【答案】(1);(2).【18题答案】【答案】(Ⅰ),;(Ⅱ)120;(Ⅲ)众数100,平均为.【19题答案】【答案】(1)证明略 (2)证明略(3)M 为棱BB 1的中点为1222000+37000πcm 52B ⎛ ⎝32C ⎛ ⎝OABC 23π3+0.003a =66%99.6。
2019年高考试题分类汇编(统计与概率)
![2019年高考试题分类汇编(统计与概率)](https://img.taocdn.com/s3/m/1707a3d818e8b8f67c1cfad6195f312b3169ebe5.png)
2019年高考试题分类汇编(统计与概率)2019年高考试题分类汇编(统计与概率)考点1 统计考法1 简单随机抽样1.(2019·全国卷Ⅰ·文科)某学校为了解1000名新生的身体素质,将这些学生编号为1,2.1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。
若46号学生被抽到,则下面4名学生中被抽到的是:A.8号学生 B.200号学生 C.616号学生 D.815号学生2.(2019·天津卷·文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除。
某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况。
Ⅰ)应从老、中、青员工中分别抽取多少人?Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F。
现从这6人中随机抽取2人接受采访。
i)试用所给字母列举出所有可能的抽取结果;ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率。
考法2 数字特征1.(2019·全国卷Ⅱ·理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。
7个有效评分与9个原始评分相比,不变的数字特征是:A.中位数 B.平均数 C.方差 D.极差2.(2019·全国卷Ⅱ·文理科)我国高铁发展迅速,技术先进。
经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经该站高铁列车所有车次的平均正点率的估计值为。
1.已知一组数据为 6.7.8.8.9.10,则该组数据的方差为 1.2.2.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比约为 0.618,称为黄金分割比例。
专项扣除和专项附加扣除内容及标准
![专项扣除和专项附加扣除内容及标准](https://img.taocdn.com/s3/m/ff13ae3578563c1ec5da50e2524de518964bd3b6.png)
专项扣除和专项附加扣除内容及标准
专项扣除是指个人在计算纳税额时,根据法律规定可以扣除的一些固
定项目和具体金额。
根据最新修订的个人所得税法,专项扣除包括子女教育、继续教育、大病医疗、住房贷款利息、住房租金等五个方面。
1.子女教育专项扣除:指纳税人为其子女在全日制学校接受全日制学
历教育支付的教育经费,包括学费、书费、住宿费等。
标准为每个子女每
年1.0万元,对于有两个及以上子女的家庭,每个子女每年扣除1.5万元。
2.继续教育专项扣除:指纳税人为自己及其配偶接受继续教育支付的
教育经费,包括培训费、交通费、住宿费等。
标准为每人每年0.4万元。
以上五项专项扣除可以同时享受,但总额不得超过全年综合所得额。
(全年综合所得额=全年综合所得-基本减除费用)
需要注意的是,专项附加扣除是根据实际支出情况进行扣除的,纳税
人需要提供相关的证明材料。
另外,扣除的专项附加扣除总额不得超过同
一纳税人的应纳税所得额减除专项扣除后的余额。
总的来说,专项扣除和专项附加扣除是个人所得税制度中为纳税人减
轻税收负担提供的一种形式。
纳税人可以根据自身情况,选择合适的专项
扣除项目,减少纳税额的计算基数,降低个人所得税的缴纳金额。
2019年高考天津卷文科数学试题(含解析)
![2019年高考天津卷文科数学试题(含解析)](https://img.taocdn.com/s3/m/4c878923b7360b4c2e3f64ab.png)
天津2019年普通高等学校招生全国统一考试数学(文史类)一、选择题1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x R x =-==∈≤<,则()A C B =( )A.{2}B.{2,3}C.{1,2,3}-D.{1,2,3,4} 【答案】D 【解析】{1,2}AC =,(){1,2,3,4}A C B =,故选D.2.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为( )A.2B.3C.5D.6 【答案】C【解析】画出可行域,如图,当4E x y =-+经过(1,1)D -时,取最大值max 415z =+=.3.设x R ∈,则“05x <<”是“|1|1x -<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】B【解析】由|1|1x -<,得02x <<,“05x <<”不可以推出“02x <<”, 而“02x <<”可推出“05x <<”,故为的必要不充分条件,故选B.4.阅读的程序框图,运行相应的程序,输出S 的值为( )A.5B.8C.24D.29 【答案】B【解析】1,1i S ==;2,1,1225i j S ===+⨯=;3,538i S ==+=;4i =,满足4i ≥,输出8S =.5.已知0.223log 7,log 8,0.3a b c ===,则,,a b c 的大小关系为( )A.c b a <<B.a b c <<C.b c a <<D.c a b << 【答案】A 【解析】0.2332230.3log 8log 19log 2log 4lo 3g 7c b a ==<=<=<==<.6.己知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为( )2【答案】D【解析】由题意知(1,0)F ,:1l x =-,||4AB =,所以24ba=,e ==.7.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x:若()4g π=3()8f π=( ) A.2-B.2 【答案】C【解析】由题意知(0)00f ϕ=⇒=,所以()sin()f x A x ω=,()()sin()22x xg x f A ω==,()g x 的最小正周期为2π,且()4g π=()2sin 2f x x =,3()8f π=.8.已知函数1,()1, 1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为( )A.59[,]44B.59(,]44C.59(,]{1}44D.59 [,]{1}44【答案】D【解析】方法一:当1a =时,令104x+=即2840([0,1])t t t +-==,解得4(0,1)t =∈,令110(1)4x x x+-=>,解得2x =,排除A,B ; 当54a =时,令5044x +=即2850([0,1])t t t +-==,解得4(0,1)t =∈,令150(1)44x x x +-=>,解得4x =,排除C. 方法二:如图,当直线14y x a =-+过(1,2)点时,有2191044a a -=-⇒=-, 过(1,1)点时,有1151044a a -=-⇒=-, 当直线14y x a =-+与曲线1(1)y x x =>相切时,可求得切点1(2,)2, 此时1121204a a -=-⇒=-,综上,实数a 的取值范围为59 [,]{1}44.二.填空题 9.i 是虚数单位,则5||1ii-+的值为 .【解析】5(5)(1)231(1)(1)i i i i i i i ---==-=++-.10.设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【答案】(21,)3-【解析】2320x x +-<,即(1)(32)0x x +-<,即213x -<<,故x 的取值范围是2(1,)3-.11.曲线cos 2xy x =-在点(0,1)处的切线方程为 . 【答案】220x y +-=【解析】1'sin 2y x =--,当0x =时其值为12-,故所求的切线方程为112y x-=-,即220x y +-=.12.的正方核侧枝长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一底面的圆心为四棱锥底面的中心,则该圆柱的体积为 . 【答案】4π【解析】显然圆柱的直径等于1,圆柱的高等于1,所以圆柱的体积等于4π.13.设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为 .【答案】92【解析】∵0,0,24x y x y >>+=,∴42x y =+≥≤2xy ≤,当且仅当22x y ==时等号成立.,∵(1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=.14.在四边形ABCD 中,//,5,30AD BC AB AD A ==∠=︒,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= . 【答案】1-【解析】如图所示,//,5,30AD BC AB AD BAC ==∠=︒,又AE BE =,所以120AEB ∠=︒,根据余弦定理222cos1202AE BE AB AE BE +-︒=⋅⋅,解得2AE BE ==,所以25BE AD =-,又BD AD AB =-,25AE AB BE AB AD =+=-,所以72()()(12525)15525AB A BD AE AD A D B ⋅=-⋅=--⨯⨯⨯=--.三、解答题15.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除,某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F .享受情况如右表,其中“”表示享受.“⨯”表示不享受.现从这6人中随机抽取2人接受采访. (i )使用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【解析】(1)由已知老、中、青员工人数之比为6:9:10,由于采用分层抽样的方法从中抽取25为员工,因此应从老、中、青员工中分别抽取6人,9人,10人. (2)(i )从已知6人中随机抽取2人的所有可能结果为{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}A B A C A D A E A F B C B D B E B F C D C E C F D E D F E F 共15种.(ii )由表格知,符合题意的所有可能结果为{,},{,},{,},{,},{,},{,},{,},{,},{,},{,},{,}A B A D A E A F B D B E B F C E C F D F E F 共11种.所以,事件M 发生的概率11()15P M =.16.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求in 6(s 2)B π-的值.【答案】(1)14-;(2)【解析】(1)在ABC ∆中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =,由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2coscos 2sin666828(2)16B B B πππ+=+=--⨯=-17.如图,在四棱锥P ABCD -中底面ABCD 为平行四边形,PCD ∆为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =.(1)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【答案】(1)见解析;(2)见解析;(3. 【解析】(1)证明:连接BD ,易知AC BD H =,BH DH =.又由BG PG =,故//GH PD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以//GH 平面PAD . (2)证明:取棱PC 的中点N ,连接DN .依题意,得D N P C ⊥,又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥,又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)解:连接AN ,由(2)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角.因为PCD ∆是等边三角形,2CD =且N 为PC 的中点,所以DN =DN AN ⊥,在Rt AND ∆中,sin 3DN DAN AD ∠==.所以,直线AD 与平面PAC 所成角的正弦值为3. 18.设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知113a b ==,23b a =,3243b a =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足.求*112222()n n a c a c a c n N +++∈.【答案】(1)3n a n =;3n nb =;(2)22*(21)3692()n n n n N +-++∈.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,依题意,得23323154q d q d =+⎧⎨=+⎩,解得33d q =⎧⎨=⎩,故33(1)3n a n n =+-=,1333n nn b -=⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3n nb =.(2)112222n n a c a c a c +++135212142632(())n b n a a a a a b a b a b a b -=+++++++++123(1)366[3123183632]()n n n n n -=⨯+⨯+⨯+⨯+⨯++⨯2123613233()n n n =+⨯+⨯++⨯.记1213233nn T n =⨯+⨯++⨯,① 则231313233n n T n +=⨯+⨯++⨯,②②-①得,231233333n n n T n +=-----+⨯11313(21)333132()n n n n n ++--+=-+⨯=-. 所以122112222(21)3336332n n n n n a c a c A a c n T n +-++++=++⨯22*(21)3692()n n n n N +-++=∈.19.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为B .|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上.且//OC AP ,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c2b =,又由222a b c =+,消去b得222(2)a a c =+,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2a c =,b =,故椭圆方程为2222143x y c c+=.由题意,(,0)F c -,则直线l 的方程为3()4y x c =+.点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1x c =,2137c x =-.代入到l 的方程,解得132y c =,2914y c =-.因为点P 在x 轴上方,所以2()3,P c c .(2)由圆C 在直线4x =上,可设(4,)c t .因为//OC AP ,且由(1)知(2,0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l||3(4)22c +-=,可得2c =. 所以,椭圆的方程为2211612x y +=.20.设函数()ln (1)x f x x a x e =--,其中a R ∈. (1)若0a ≤,讨论()f x 的单调性; (2)若10ea <<. (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【解析】(1)由已知()f x 的定义域为(0,)+∞,且2[11()(]1)x x xax e f x ae a x e x x-'=-+-=.因此当0a ≤时,210x ax e ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(2)证明:(i )由(1)知,21()x ax e f x x -'=.令2()1xg x ax e =-,由10a e <<,可知()g x 在(0,)+∞内单调递减,又(1)10g ae =->,且22()()1111ln 1ln 1ln 0()g a a a a a=-=-<,故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设0x ,则011ln x a<<.当0()0,x x ∈时,0(())()0g x g x f x x x '=>=,所以()f x 在0(0,)x 内单调递增;当0(,)x x ∈+∞时,0()()()0g x g x x x f x<'==,所以()f x 在0(,)x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h x x'=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-,从而1ln 111111ln ln ln ln ()1ln ln ln ln 0())1(a f a e h a a a a a a=--=-+=<,又因为0()(1)0f x f >=,所以()f x 在0(),x +∞内有唯一零点.又()f x 在0(0,)x 内有唯一零点1,从而,()f x 在(0,)+∞内恰好有两个零点. (ii )由题意01()()00f x f x '=⎧⎨=⎩,即0120111ln )1(x x ax x a e x e⎧=⎨=-⎩,从而1011201ln x x x x e x --=,即102011ln 1x x x x e x -=-. 因为当1x >时,ln 1x x ≤-,又101x x >>,故10220101()11x x x x e x x --<=-,两边取对数,得020ln ln x x e x -<,于是100021(ln )2x x x x -<<-,整理得0132x x ->.。
2019年高考数学试题分项版—统计概率(解析版)
![2019年高考数学试题分项版—统计概率(解析版)](https://img.taocdn.com/s3/m/8db410413968011ca30091fd.png)
2019年高考数学试题分项版——统计概率(解析版)一、选择题1.(2019·全国Ⅰ文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生答案 C解析根据题意,系统抽样是等距抽样,所以抽样间隔为=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知,616号学生被抽到.2.(2019·全国Ⅱ文,4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.3.(2019·全国Ⅱ文,5)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.4.(2019·全国Ⅲ文,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.答案 D解析设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为=.5.(2019·全国Ⅲ文,4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 6.(2019·浙江,7)设0<a<1.随机变量X的分布列是()则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=(a+1),所以D(X)=++==,所以当a在(0,1)内增大时,D(X)先减小后增大.7.(2019·全国Ⅰ理,6)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A. 8.(2019·全国Ⅱ理,5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差答案 A解析记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A. 9.(2019·全国Ⅲ理,3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7. 10.(2019·全国Ⅲ理,4)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.24答案 A解析展开式中含x3的项可以由“1与x3”和“2x2与x”的乘积组成,则x3的系数为+2=4+8=12.二、填空题1.(2019·全国Ⅱ文,14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 2.(2019·浙江,13)在二项式(+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.答案16 5解析该二项展开式的第k+1项为T k+1=()9-k x k,当k=0时,第1项为常数项,所以常数项为()9=16;当k=1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.3.(2019·江苏,5)已知一组数据6,7,8,8,9,10,则该组数据的方差是_____________.答案解析数据6,7,8,8,9,10的平均数是=8,则方差是=. 4.(2019·江苏,6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.答案解析记3名男同学为A,B,C,2名女同学为a,b,则从中任选2名同学的情况有(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10种,其中至少有1名女同学的情况有(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),(a,b),共7种,故所求概率为.5.(2019·全国Ⅰ理,15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.6.(2019·全国Ⅱ理,13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98. 7.(2019·天津理,10)8的展开式中的常数项为________.答案28解析二项展开式的通项T r+1=(2x)8-r r=r·28-r x8-4r,令8-4r=0可得r=2,故常数项为2×26×=28.三、解答题1.(2019·全国Ⅰ文,17)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.解(1)由调查数据,男顾客中对该商场服务满意的频率为=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的频率为=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2的观测值k=≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.2.(2019·全国Ⅱ文,19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.3.(2019·全国Ⅲ文,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.(2019·北京文,17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生中上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生支付金额分布情况如下:(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解(1)由题意知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)==0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.5.(2019·天津文,15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=.6.(2019·江苏,22)(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2-3b2的值.解(1)因为(1+x)n=+x+x2+…+x n,n≥4,所以a2==,a3==,a4==.因为=2a2a4,所以2=2××.解得n=5.(2)由(1)知,n=5.(1+)n=(1+)5=++()2+()3+()4+()5=a+b.方法一因为a,b∈N*,所以a=+3+9=76,b=+3+9=44,从而a2-3b2=762-3×442=-32.方法二(1-)5=+(-)+(-)2+(-)3+(-)4+(-)5=-+()2-()3+()4-()5.因为a,b∈N*,所以(1-)5=a-b.因此a2-3b2=(a+b)(a-b)=(1+)5×(1-)5=(-2)5=-32.7.(2019·江苏,23)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),…,(n,2)},n∈N*.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).解(1)当n=1时,A1={(0,0),(1,0)},B1={(0,1),(1,1)},C1={(0,2),(1,2)},所以M1={(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)}.所以X的所有可能取值是1,,2,.X的概率分布为P(X=1)==,P(X=)==,P(X=2)==,P(X=)==.(2)设A(a,b)和B(c,d)是从M n中取出的两个点.因为P(X≤n)=1-P(X>n),所以仅需考虑X>n的情况.①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;③若b=0,d=2,则AB=≤,因为当n≥3时,≤n,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法;④若b=1,d=2,则AB=≤,所以当且仅当AB=时X>n,此时a=0,c=n或a=n,c=0,有2种取法.综上,当X>n时,X的所有可能取值是和,且P(X=)=,P(X=)=.因此,P(X≤n)=1-P(X=)-P(X=)=1-.8.(2019·全国Ⅰ理,21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.9.(2019·全国Ⅱ理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.解(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为P=[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.10.(2019·全国Ⅲ理,17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.11.(2019·北京理,17)(13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【思路分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望()E X.(Ⅲ)从样本仅使用A的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3 3 3 301 4060CpC==,不能认为认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.【解析】:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,A∴,B两种支付方式都使用的人数有:1005302540---=,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率400.4100p==.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,18101806(0)302575025P X==⨯==,1815121039013(1)3025302575025P X==⨯+⨯==,12151806(2)302575025P X ==⨯==, X ∴的分布列为:数学期望()0121252525E X =⨯+⨯+⨯=. (Ⅲ)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化, 理由如下:从样本仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060. 故不能认为认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化. 【归纳与总结】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.12.(2019·天津理,16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为,假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为 ,故X ~B ,从而P (X =k )= k3-k ,k =0,1,2,3. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=3×=2. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y=1},事件{X=2}与{Y=0}均相互独立,从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P({X=3,Y=1})+P({X=2,Y=0})=P({X=3})P({Y=1})+P({X=2})P({Y=0})=×+×=.。
2019年天津市高考数学试卷(文科)以及答案解析
![2019年天津市高考数学试卷(文科)以及答案解析](https://img.taocdn.com/s3/m/80069541a45177232f60a253.png)
绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)文科数学答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={﹣1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{﹣1,2,3}D.{1,2,3,4} 2.(5分)设变量x,y满足约束条件则目标函数z=﹣4x+y的最大值为()A.2B.3C.5D.63.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.(5分)阅读如图的程序框图,运行相应的程序,输出S的值为()A.5B.8C.24D.295.(5分)已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b6.(5分)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线﹣=1(a>0,b >0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.B.C.2D.7.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g()=,则f()=()A.﹣2B.﹣C.D.28.(5分)已知函数f(x)=若关于x的方程f(x)=﹣x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,]B.(,]C.(,]∪{1}D.[,]∪{1}二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)i是虚数单位,则||的值为.10.(5分)设x∈R,使不等式3x2+x﹣2<0成立的x的取值范围为.11.(5分)曲线y=cos x ﹣在点(0,1)处的切线方程为.12.(5分)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.13.(5分)设x>0,y>0,x+2y=4,则的最小值为.14.(5分)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE ,则•=.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3c sin B =4a sin C.(Ⅰ)求cos B的值;(Ⅱ)求sin(2B+)的值.17.(13分)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.18.(13分)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n(n∈N*).19.(14分)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线x=4上,且OC∥AP.求椭圆的方程.20.(14分)设函数f(x)=lnx﹣a(x﹣1)e x,其中a∈R.(Ⅰ)若a≤0,讨论f(x)的单调性;(Ⅱ)若0<a<,(i)证明f(x)恰有两个零点;(i)设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0﹣x1>2.2019年天津市高考数学(文科)答案解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据集合的基本运算即可求A∩C,再求(A∩C)∪B;【解答】解:设集合A={﹣1,1,2,3,5},C={x∈R|1≤x<3},则A∩C={1,2},∵B={2,3,4},∴(A∩C)∪B={1,2}∪{2,3,4}={1,2,3,4};故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图:联立,解得A(﹣1,1),化目标函数z=﹣4x+y为y=4x+z,由图可知,当直线y=4x+z过A时,z有最大值为5.故选:C.【点评】本题考查简单的线性规划知识,考查数形结合的解题思想方法,是中档题.3.【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要不充分条件,即0<x<5是|x﹣1|<1的必要不充分条件故选:B.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.4.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:i=1,s=0;第一次执行第一个判断语句后,S=1,i=2,不满足条件;第二次执行第一个判断语句后,j=1,S=5,i=3,不满足条件;第三次执行第一个判断语句后,S=8,i=4,满足退出循环的条件;故输出S值为8,故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题5.【分析】本题可根据相应的对数式与指数式与整数进行比较即可得出结果.【解答】解:由题意,可知:a=log27>log24=2,b=log38<log39=2,c=0.30.2<1,∴c<b<a.故选:A.【点评】本题主要考查对数式与指数式的大小比较,可利用整数作为中间量进行比较.本题属基础题.6.【分析】推导出F(1,0),准线l的方程为x=﹣1,|AB|=,|OF|=1,从而b=2a,进而c==,由此能求出双曲线的离心率.【解答】解:∵抛物线y2=4x的焦点为F,准线为l.∴F(1,0),准线l的方程为x=﹣1,∵l与双曲线﹣=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),∴|AB|=,|OF|=1,∴,∴b=2a,∴c==,∴双曲线的离心率为e=.故选:D.【点评】本题考查双曲线的离心率的求法,考查抛物线、双曲线的性质等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.7.【分析】根据条件求出φ和ω的值,结合函数变换关系求出g(x)的解析式,结合条件求出A的值,利用代入法进行求解即可.【解答】解:∵f(x)是奇函数,∴φ=0,∵f(x)的最小正周期为π,∴=π,得ω=2,则f(x)=A sin2x,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).则g(x)=A sin x,若g()=,则g()=A sin=A=,即A=2,则f(x)=A sin2x,则f()=2sin(2×=2sin=2×=,故选:C.【点评】本题主要考查三角函数的解析式的求解,结合条件求出A,ω和φ的值是解决本题的关键.8.【分析】分别作出y=f(x)和y=﹣x的图象,考虑直线经过点(1,2)和(1,1)时,有两个交点,直线与y=在x>1相切,求得a的值,结合图象可得所求范围.【解答】解:作出函数f(x)=的图象,以及直线y=﹣x的图象,关于x的方程f(x)=﹣x+a(a∈R)恰有两个互异的实数解,即为y=f(x)和y=﹣x+a的图象有两个交点,平移直线y=﹣x,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a=或a=,考虑直线与y=在x>1相切,可得ax﹣x2=1,由△=a2﹣1=0,解得a=1(﹣1舍去),综上可得a的范围是[,]∪{1}.故选:D.【点评】本题考查分段函数的运用,注意运用函数的图象和平移变换,考查分类讨论思想方法和数形结合思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.9.【分析】本题可根据复数定义及模的概念及基本运算进行计算.【解答】解:由题意,可知:===2﹣3i,∴||=|2﹣3i|==.故答案为:.【点评】本题主要考查复数定义及模的概念及基本运算.本题属基础题.10.【分析】解一元二次不等式即可.【解答】解:3x2+x﹣2<0,将3x2+x﹣2分解因式即有:(x+1)(3x﹣2)<0;(x+1)(x﹣)<0;由一元二次不等式的解法“小于取中间,大于取两边”可得:﹣1<x<;即:{x|﹣1<x<};或(﹣1,);故答案为:(﹣1,);【点评】本题考查了不等式的解法与应用问题,是基础题.11.【分析】本题就是根据对曲线方程求导,然后将x=0代入导数方程得出在点(0,1)处的斜率,然后根据点斜式直线代入即可得到切线方程.【解答】解:由题意,可知:y′=﹣sin x﹣,∵y′|x=0=﹣sin0﹣=﹣.曲线y=cos x﹣在点(0,1)处的切线方程:y﹣1=﹣x,整理,得:x+2y﹣2=0.故答案为:x+2y﹣2=0.【点评】本题主要考查函数求导以及某点处导数的几何意义就是切线斜率,然后根据点斜式直线代入即可得到切线方程.本题属基础题.12.【分析】求出正四棱锥的底面对角线长度和正四棱锥的高度,根据题意得圆柱上底面的直径就在相对中点连线,有线段成比例求圆柱的直径和高,求出答案即可.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v=sh=π()2×1=;故答案为:【点评】本题考查正四棱锥与圆柱内接的情况,考查立体几何的体积公式,属基础题.13.【分析】利用基本不等式求最值.【解答】解:x>0,y>0,x+2y=4,则===2+;x>0,y>0,x+2y=4,由基本不等式有:4=x+2y≥2,∴0<xy≤2,≥,故:2+≥2+=;(当且仅当x=2y=2时,即:x=2,y=1时,等号成立),故的最小值为;故答案为:.【点评】本题考查了基本不等式在求最值中的应用,属于中档题.14.【分析】利用和作为基底表示向量和,然后计算数量积即可.【解答】解:∵AE=BE,AD∥BC,∠A=30°,∴在等腰三角形ABE中,∠BEA=120°,又AB=2,∴AE=2,∴,∵,∴又,∴•====﹣12+×5×2×﹣=﹣1故答案为:﹣1.【点评】本题考查了平面向量基本定理和平面向量的数量积,关键是选好基底,属中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.【分析】(Ⅰ)根据分层抽样各层所抽比例相等可得结果;(Ⅱ)(i)用列举法求出基本事件数;(ii)用列举法求出事件M所含基本事件数以及对应的概率;【解答】解:(Ⅰ)由已知,老、中、青员工人数之比为6:9:10,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人;(Ⅱ)(i)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种;(ii)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种,所以,事件M发生的概率P(M)=.【点评】本题考查了用列举法求古典概型的概率问题以及根据数据分析统计结论的问题,是基础题目16.【分析】(Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.【解答】解(Ⅰ)在三角形ABC中,由正弦定理=,得b sin C=c sin B,又由3c sin B=4a sin C,得3b sin C=4a sin C,即3b=4a.又因为b+c=2a,得b=,c=,由余弦定理可得cos B===﹣.(Ⅱ)由(Ⅰ)得sin B==,从而sin2B=2sin B cos B=﹣,cos2B=cos2B﹣sin2B=﹣,故sin(2B+)=sin2B cos+cos2B sin=﹣×﹣×=﹣.【点评】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.属中档题.17.【分析】(Ⅰ)连结BD,由题意得AC∩BD=H,BH=DH,由BG=PG,得GH∥PD,由此能证明GH∥平面P AD.(Ⅱ)取棱PC中点N,连结DN,推导出DN⊥PC,从而DN⊥平面P AC,进而DN⊥P A,再上P A⊥CD,能证明P A⊥平面PCD.(Ⅲ)连结AN,由DN⊥平面P AC,知∠DAN是直线AD与平面P AC所成角,由此能求出直线AD与平面P AC所成角的正弦值.【解答】证明:(Ⅰ)连结BD,由题意得AC∩BD=H,BH=DH,又由BG=PG,得GH∥PD,∵GH⊄平面P AD,PD⊂平面P AD,∴GH∥平面P AD.(Ⅱ)取棱PC中点N,连结DN,依题意得DN⊥PC,又∵平面P AC⊥平面PCD,平面P AC∩平面PCD=PC,∴DN⊥平面P AC,又P A⊂平面P AC,∴DN⊥P A,又P A⊥CD,CD∩DN=D,∴P A⊥平面PCD.解:(Ⅲ)连结AN,由(Ⅱ)中DN⊥平面P AC,知∠DAN是直线AD与平面P AC所成角,∵△PCD是等边三角形,CD=2,且N为PC中点,∴DN=,又DN⊥AN,在Rt△AND中,sin∠DAN==.∴直线AD与平面P AC所成角的正弦值为.【点评】本题考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力.18.【分析】(Ⅰ)由等差等比数列通项公式和前n项和的求解{a n}和{b n}的通项公式即可.(Ⅱ)利用分组求和和错位相减法得答案.【解答】解:(Ⅰ){a n}是等差数列,{b n}是等比数列,公比大于0.设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0.由题意可得:3q=3+2d①;3q2=15+4d②解得:d=3,q=3,故a n=3+3(n﹣1)=3n,b=3×3n﹣1=3n(Ⅱ)数列{c n}满足c n=,a1c1+a2c2+…+a2n c2n(n∈N*)=(a1+a3+a5+…+a2n﹣1)+(a2b1+a4b2+a6b3+…+a2n b n)=[3n+×6]+(6×3+12×32+18×33+…+6n×3n)=3n2+6(1×3+2×32+…+n×3n)令T n=(1×3+2×32+…+n×3n)①,则3T n=1×32+2×33+…+n3n+1②,②﹣①得:2T n=﹣3﹣32﹣33…﹣3n+n3n+1=﹣3×+n3n+1=;故a1c1+a2c2+…+a2n c2n=3n2+6T n=(n∈N*)【点评】本题主要考查等差等比数列通项公式和前n项和的求解,考查数列求和的基本方法分组和错位相减法的运算求解能力,属中档题.19.【分析】(Ⅰ)由题意可得a=2b,再由离心率公式可得所求值;(Ⅱ)求得a=2c,b=c,可得椭圆方程为+=1,设直线FP的方程为y=(x+c),联立椭圆方程求得P的坐标,以及直线AP的斜率,由两条直线平行的条件和直线与圆相切的条件,解方程可得c=2,即可得到所求椭圆方程.【解答】解:(Ⅰ)|OA|=2|OB|,即为a=2b,可得e====;(Ⅱ)b=a,c=a,即a=2c,b=c,可得椭圆方程为+=1,设直线FP的方程为y=(x+c),代入椭圆方程可得7x2+6cx﹣13c2=0,解得x=c或x=﹣,代入直线PF方程可得y=或y=﹣(舍去),可得P(c,),圆心C在直线x=4上,且OC∥AP,可设C(4,t),可得=,解得t=2,即有C(4,2),可得圆的半径为2,由直线FP和圆C相切的条件为d=r,可得=2,解得c=2,可得a=4,b=2,可得椭圆方程为+=1.【点评】本题考查椭圆的方程和性质,注意运用直线和椭圆方程联立,求交点,以及直线和圆相切的条件:d=r,考查化简运算能力,属于中档题.20.【分析】(I)f′(x)=﹣[ae x+a(x﹣1)e x]=,x∈(0,+∞).a≤0时,f′(x)>0,即可得出函数f(x)在x∈(0,+∞)上单调性.(II)(i)由(I)可知:f′(x)=,x∈(0,+∞).令g(x)=1﹣ax2e x,∵0<a<,可知:可得g(x)存在唯一解x0∈(1,ln).可得x0是函数f(x)的唯一极值点.令h(x)=lnx﹣x+1,可得x>1时,lnx<x﹣1.f(ln)<0.f(x0)>f(1)=0.可得函数f(x)在(x0,+∞)上存在唯一零点.又函数f(x)在(0,x0)上有唯一零点1.即可证明结论.(ii)由题意可得:f′(x0)=0,f(x1)=0,即a=1,lnx1=a(x1﹣1),可得=,由x>1,可得lnx<x﹣1.又x1>x0>1,可得<=,取对数即可证明.【解答】(I)解:f′(x)=﹣[ae x+a(x﹣1)e x]=,x∈(0,+∞).a≤0时,f′(x)>0,∴函数f(x)在x∈(0,+∞)上单调递增.(II)证明:(i)由(I)可知:f′(x)=,x∈(0,+∞).令g(x)=1﹣ax2e x,∵0<a<,可知:g(x)在x∈(0,+∞)上单调递减,又g(1)=1﹣ae>0.且g(ln)=1﹣a=1﹣<0,∴g(x)存在唯一解x0∈(1,ln).即函数f(x)在(0,x0)上单调递增,在(x0,+∞)单调递减.∴x0是函数f(x)的唯一极值点.令h(x)=lnx﹣x+1,(x>0),h′(x)=,可得h(x)≤h(1)=0,∴x>1时,lnx<x﹣1.f(ln)=ln(ln)﹣a(ln﹣1)=ln(ln)﹣(ln﹣1)<0.∵f(x0)>f(1)=0.∴函数f(x)在(x0,+∞)上存在唯一零点.又函数f(x)在(0,x0)上有唯一零点1.因此函数f(x)恰有两个零点;(ii)由题意可得:f′(x0)=0,f(x1)=0,即a=1,lnx1=a(x1﹣1),∴lnx1=,即=,∵x>1,可得lnx<x﹣1.又x1>x0>1,故<=,取对数可得:x1﹣x0<2lnx0<2(x0﹣1),化为:3x0﹣x1>2.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法、构造法,考查了推理能力与计算能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为
, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从
这6人中随机抽取2人接受采访.
(i )试用所给字母列举出所有可能的抽取结果;
(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.
解:(1)由已知,老、中、青员工人数之比为6 : 9 : 10,
由于采用分层抽样的方法从中抽取25位员工,
因此应从老、中、青员工中分别抽取6人,9人,10人.
(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },
A B A C A D A E A F B C{, },{, },{, },{, {,}
},,
B D B E B F
C
D C
E {,},
C F{,},{,},{,}
D E D F E F,共15种.
(ii)由表格知,符合题意的所有可能结果为
{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,
},}
A B A D A E A F B D B C
E B
F E C F D F E F,共11种.
所以,事件M发生的概率
11 ()
15
P M .
.。