2015年高考数学知识点之集合不等式解读
高考数学知识点:不等式知识点-
高考数学知识点:不等式知识点高考数学知识点:不等式知识点不等式不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。
因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。
在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。
不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合1。
解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。
在解不等式中,换元法和图解法是常用的技巧之一。
通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。
整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。
方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。
在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。
证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。
要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。
2015年高考数学(文)一轮课件:15-2不等式的证明
1 证明:(1)因为x>0,y>0,x-y>0,2x+ 2 -2y=2(x x -2xy+y2 3 1 1 1 2 -y)+ =(x-y)+(x-y)+ ≥3 x-y =3, x-y2 x-y2 x-y2 1 所以2x+ 2 ≥2y+3. x -2xy+y2 (2)因为a,b,c>0,所以要证a+b+c≥ 只需证明(a+b+c)2≥3. 3,
考点三
用放缩法证明不等式
1 1 【例3】 已知实数x,y满足:|x+y|< 3 ,|2x-y|< 6 ,求证: 5 |y|< . 18 思维启迪:3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|,联 系已知和结论.
解析:因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|, 1 1 由题设知|x+y|<3,|2x-y|<6, 2 1 5 从而3|y|<3+6=6, 5 所以|y|<18.
5.反证法的步骤 4 __________的假设; (1)作出否定□ 5 __________; (2)进行推理,导出□ 6 __________,肯定□ 7 ____________. (3)否定□
6.柯西不等式的二维形式 (1)柯西不等式的代数形式:设a1,a2,b1,b2均为实数,则
2 2 2 8 ________________(当且仅当a1b2=a2b1时, (a 1 +a 2 )( b + b 2 1 2 )≥ □
选修4-5 不等式选讲
第二节
不等式的证明
教材回归 自主学习
核心考点 引领通关
考题调研 成功体验
开卷速查 规范特训
【考点分析】
(1)考查证明不等式的常用方法:①比较法;
②分析法;综合法;④放缩法;⑤反证法.(2)考查应用柯西不等 式证明简单的不等式. 【复习指导】 (1)综合法与分析法的内在联系:综合法往往
2015年高考数学(文)一轮课件:2-1不等关系与不等式
考点二
不等式的性质
【例2】
若a>0>b>-a,c<d<0,则下列结论:
a b ①ad>bc;② d + c <0;③a-c>b-d;④a(d-c)>b(d-c)中 能成立的个数是( A.1个 C.3个 ) B.2个 D.4个
思维启迪:根据结论,结合已知条件,联想不等式的性质逐个 进行判断.
解析:∵a>0>b,c<d<0, ∴ad<0,bc>0,ad<bc,故①不成立. a b ac+bd + = . d c cd 由c<d<0,得cd>0. 由0>b>-a,得a>-b>0. 由c<d<0,得-c>-d>0. 所以-ac>bd,即ac+bd<0.
知logb(a-c)>logb(b-c). 又logb(b-c)>loga(b-c), 故logb(a-c)>loga(b-c),即③正确,选D.
答案:D
考点三
利用不等式的性质求范围
【例3】 已知函数f(x)=ax2+bx,且1≤f(-1)≤2, 2≤f(1)≤4,求f(-2)的取值范围. 思维启迪:先将已知条件化简,然后将a-b和a+b看作两个整 体,利用整体思想求解.
1 > 答案:□
2 = □ 3 < □ 4 > □ 5 = □ 6 < □ 7 < □
8 > □ 9 > □ 10 > □ 11 < □ 12 > □ 13 > □ 14 > □ 15 □ > 16 < □
●两点注意 (1)运用不等式性质,一定弄清性质成立的条件,切忌弱化或 强化性质成立的条件. (2)求代数式的范围,应利用待定系数法或数形结合建立待求 范围的整体与已知范围的整体的等量关系,避免扩大变量范围. ●两种方法 作差比较法与作商比较法是判定两个数或式大小的两种基本 方法,其中变形是关键.
解析:当c=0时,命题①不成立;若ac2>bc2,则c2>0,从 而a>b,命题②正确;又2c>0,故由a>b可得a· 2c>b· 2c,命题 ③正确,故填②③.
高考数学知识点之不等式
高考数学知识点之不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │§06. 不 等 式 知识要点1. 不等式的基本概念(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式.(4) 同解不等式与不等式的同解变形. 2.不等式的基本性质(1)a b b a <⇔>(对称性)(2)c a c b b a >⇒>>,(传递性)(3)c b c a b a +>+⇒>(加法单调性)(4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减) (6)bc ac c b a >⇒>>0,.(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除)11(10),0a b ab ab>>⇒<(倒数关系)(11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>⇒>>n Z n b a b ann且(开方法则)3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若(2))2||2(2,2222ab ab baab ba Rb a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号)(3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.,3a b ca b c R +++∈≥(4)若、、则a=b=c 时取等号) 0,2b a ab ab>+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a>>⇔>⇔<-><⇔<⇔-<<时,或(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么2112a b a b +≤≤+(当仅当a=b 时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数): 特别地,222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a cb a ==∈⎪⎭⎫⎝⎛+++≥++⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++注:例如:22222()()()ac bd a b c d +≤++. 常用不等式的放缩法:①21111111(2)1(1)(1)1n nn n n nn n n n-==-≥++--②1)n ==≥(2)柯西不等式: 时取等号当且仅当(则若nn nn n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈332211223222122322212332211321321))(();,,,,,,,,(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法. 6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩(3)无理不等式:转化为有理不等式求解1()0()0()()f xg x f x g x ⎧≥⎫⇒⎪⎬>≥⎨⎭⎪>⎩定义域○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f (4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a aa f x g x aaa f x g x ab a b f x a b>>⇔>><<⇔<>>>⇔⋅>(5)对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;l og ()log ()(01)()0()()()()aa aa f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 ⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为注:常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)124(1)()223279x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x xx x+=+≥与同号,故取等。
高考不等式知识点总结
高考不等式知识点总结高考数学中不等式是一个非常重要的知识点,占据着较大的比重。
下面是对高考数学中不等式知识点的完整总结:一、基本概念和性质1.不等关系:对于实数a和b,如果a=b,则称a等于b;如果a≠b,则称a不等于b。
当a不等于b时,可以断定a大于b(记作a>b),或者a小于b(记作a<b)。
2.不等式:不等式是由不等关系得到的等式,包括大于等于不等式(a≥b)和小于等于不等式(a≤b)。
3.基本性质:(1)若a>b且b>c,则a>c;(2) 若a>b且c>0,则ac>bc;(3) 若a>b且c<0,则ac<bc;(4)若a>b且c≥0,则a+c>b+c;(5)若a>b且c≤0,则a+c>b+c。
4.解不等式:与解方程类似,解不等式是指寻找满足不等式的解的过程。
5.不等式的性质:对于不等式两边同时加减一个相同的数,不等号方向不变;对于不等式两边同时乘除一个同号的数,不等号方向不变;对于不等式两边同时乘除一个异号的数,不等号方向改变。
二、一元一次不等式1.解一元一次不等式:求解一元一次不等式的关键是确定x的取值范围。
在解过程中,可以通过加减法、乘除法保持不等式不变。
2.不等式组:由多个不等式组成的方程组,称为不等式组。
求解不等式组的关键是确定每个不等式的集合和并集。
三、一元二次不等式1.解一元二次不等式:求解一元二次不等式的关键是确定不等式的根及开口方向。
可以根据系数的正负、零点的位置和变号法等来确定解的范围。
2.二次函数与一元二次不等式:通过对一元二次不等式的解法,可以进一步理解和应用二次函数的性质。
四、绝对值不等式1.绝对值不等式的性质:对于绝对值不等式,可以利用绝对值的性质将其拆分为多个实数的不等式。
2.解绝对值不等式的关键是分情况讨论。
将绝对值不等式中的绝对值拆分出来,分别讨论绝对值内外的情况,从而得到解的范围。
成人高考高升专数学常用知识点和公式(2015年版)
集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第一章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
2015届高考数学(理)二轮专题配套练习:专题1_第1讲_集合与常用逻辑用语(含答案)
专题一集合与常用逻辑用语、不等式第1讲 集合与常用逻辑用语考情解读 1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验. (2)集合与集合之间的关系:A ⊆B ,B ⊆C ⇒A ⊆C ,空集是任何集合的子集,含有n 个元素的集合的子集数为2n ,真子集数为2n -1,非空真子集数为2n -2. 2.集合的基本运算(1)交集:A ∩B ={x |x ∈A ,且x ∈B }. (2)并集:A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:∁U A ={x |x ∈U ,且x ∉A }.重要结论:A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔B ⊆A . 3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理. 4.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件. 5.简单的逻辑联结词(1)命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.(2)命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ). 6.全称量词与存在量词“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”.热点一 集合的关系及运算例1 (1)(2014·四川)已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B 等于( ) A .{-1,0,1,2} B .{-2,-1,0,1} C .{0,1} D .{-1,0}(2)(2013·广东)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( ) A .(y ,z ,w )∈S ,(x ,y ,w )∉S B .(y ,z ,w )∈S ,(x ,y ,w )∈S C .(y ,z ,w )∉S ,(x ,y ,w )∈S D .(y ,z ,w )∉S ,(x ,y ,w )∉S 思维启迪 明确集合的意义,理解集合中元素的性质特征.思维升华 (1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M ={1,2,3},N ={x ∈Z |1<x <4},则( )A .M ⊆NB .N =MC .M ∩N ={2,3}D .M ∪N =(1,4)(2)(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .9 热点二 四种命题与充要条件例2 (1)(2014·天津)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 (2)(2014·江西)下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2≥cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β思维启迪 要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义. 思维升华 (1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a ,b 都是偶数,则a +b 是偶数”的逆否命题是________.(2)“log 3M >log 3N ”是“M >N 成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写) 热点三 逻辑联结词、量词例3 (1)已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,sin x <x ,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题(2)(2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B 思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题的否定既要否定量词,还要否定判断词.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列选项中正确的是( ) A .p 真q 假 B .p 假q 真 C .“p ∧q ”为假 D .“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,20x +2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤2或1≤a ≤2C .a >1D .-2≤a ≤11.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn 图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江)设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5}2.(2014·重庆)已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .綈p ∧綈q C .綈p ∧q D .p ∧綈q 押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1) D .(1,+∞)2.若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x -1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题3.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a>1(推荐时间:40分钟)一、选择题1.(2014·陕西)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1] D .(0,1)2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为( ) A .5 B .6 C .12 D .133.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为()A .3B .4C .7D .8 4.“(m -1)(a -1)>0”是“log a m >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是( )A .∃x ∈(0,π2),使得cos x >xB .∀x ∈(0,π2),使得cos x ≥xC .∀x ∈(0,π2),使得cos x >xD .∀x ∈(0,π2),使得cos x ≤x6.在△ABC 中,“A =60°”是“cos A =12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(2013·湖北)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B 等于( )A .{x |x ≤0}B .{x |0≤x <2或x >4}C .{x |2≤x ≤4}D .{x |0<x ≤2或x ≥4}8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是( )A .0B .1C .2D .39.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真10.已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[1,+∞)B .(-∞,-1]C .(-∞,-2]D .[-1,1] 二、填空题11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则ba =________.13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a 的值是________. 14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得20x -x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题. 其中真命题的序号是________.(填写所有真命题的序号)15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.例1 (1)A (2)B 变式训练 (1)C (2)C例2 (1)C (2)D 变式训练2 (1)若a +b 不是偶数,则a ,b 不都是偶数 (2)充分不必要 例3(1)C (2)D 变式训练3 (1)C (2)C BD BDA BDCBC CBCCA11.(1,+∞) 12.-4 13.1 14.①④ 15.②④。
2015年高考数学第一轮复习:集合
2015年高考文科数学第一轮复习:集合主编:宁永辉 主编单位:永辉中学生教育学习中心第一部分:集合的知识点讲解一、集合的定义:1、集合的定义:若干具有形同属性的数据总体。
例如:{所有的北京人}这个集合中的元素属性都满足籍贯为北京;{所有的等腰三角形}这个集合中的元素属性都满足为等腰三角形;2、元素:集合中每一个数据称为集合的元素。
3、高考数学中常见的两种集合:(1)、数集:由数字组成的集合;例如:集合}3,2,1{;集合}23|{x x x >-(2)、点集:由平面直角坐标系中点的坐标组成的集合;例如:}12|),{(-=x y y x ,这个集合表示直线12-=x y 上所有点组成的集合。
4、高中数学中常见的几种特殊集合:(1)、实数集:所有实数组成的集合,用字母R 表示;(2)、整数集:所有整数组成的集合,用字母Z 表示;(3)、自然数集:所有的自然数组成的集合,用字母N 来表示;(4)、有理数集:所有的有理数组成的集合,用字母Q 来表示;二、集合的表示:1、集合的第一种表示方法:列举法。
列举法就是把集合中的所有元素放在大括号中,元素与元素之间用“,”隔开;例如:集合}10,9,8,7,6,5,4,3,2,1{=A 。
2、集合的第二种表示方法:描述法。
把集合中所有元素相同的属性放在括号中。
例如:}032|{>-x x ;}02|),{(=-y x y x ;几种特殊的描述法集合:第一种:函数的定义域组成的集合。
例如:}1)(|{-==x x f x A ;根据偶次根号下的数要大于等于0得到:}01|{≥-=x x A 。
第二种:函数的值域组成的集合。
例如:}12|{2--==x x y y A ;函数122--=x x y 的值域),2[+∞-∈y 得到:}2|{-≥=y y A 。
第三种:不等式的解组成的集合。
例如:}032|{2<--=x x x A ;不等式)3,1(0322-∈⇒<--x x x 得到:}31|{<<-=x x A 。
2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2015 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2} 2.(5分)若a 为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.23.(5分)根据如图给出的2004 年至2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008 年减少二氧化硫排放量的效果最显著B.2007 年我国治理二氧化硫排放显现成效C.2006 年以来我国二氧化硫年排放量呈减少趋势D.2006 年以来我国二氧化硫年排放量与年份正相关4.(5 分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.845.(5 分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5 分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y 轴于M,N 两点,则|MN|=()A.2B.8 C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b 分别为14,18,则输出的a=()A.0 B.2 C.4 D.149.(5 分)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π10.(5 分)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A,B 两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5 分)已知A,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,顶角为120°,则E 的离心率为()A.B.2 C.D.12.(5 分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0 时,xf′(x)﹣f(x)<0,则使得f(x)>0 成立的x 的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5 分)若x,y 满足约束条件,则z=x+y 的最大值为.15.(5 分)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= .16.(5 分)设数列{a n}的前n 项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5 小题,满分60 分)17.(12 分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2 倍.(1)求;(2)若AD=1,DC=,求BD 和AC 的长.18.(12 分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70 分70 分到89 分不低于90 分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(12 分)如图,长方体ABCD﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1 上,A1E=D1F=4,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.20.(12 分)已知椭圆C:9x2+y2=m2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.21.(12 分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m 的取值范围.四、选做题.选修4-1:几何证明选讲22.(10 分)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G,且与AB,AC 分别相切于E,F 两点.(1)证明:EF∥BC;(2)若AG 等于⊙O 的半径,且AE=MN=2,求四边形EBCF 的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C1:(t 为参数,t≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2 与C3 交点的直角坐标;(2)若C1 与C2 相交于点A,C1 与C3 相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d 均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015 年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5 分)若a 为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004 年至2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008 年减少二氧化硫排放量的效果最显著B.2007 年我国治理二氧化硫排放显现成效C.2006 年以来我国二氧化硫年排放量呈减少趋势D.2006 年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A 从图中明显看出2008 年二氧化硫排放量比2007 年的二氧化硫排放量减少的最多,故A 正确;B 从2007 年开始二氧化硫排放量变少,故B 正确;C 从图中看出,2006 年以来我国二氧化硫年排放量越来越少,故C 正确;D2006 年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误.【解答】解:A 从图中明显看出2008 年二氧化硫排放量比2007 年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B2004﹣2006 年二氧化硫排放量越来越多,从2007 年开始二氧化硫排放量变少,故B 正确;C 从图中看出,2006 年以来我国二氧化硫年排放量越来越少,故C 正确;D2006 年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5 分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7= =3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5 分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)= ,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)= =2 ×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5 分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y 轴于M,N 两点,则|MN|=()A.2B.8 C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b 分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b 的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b 变为18﹣14=4,由a>b,则a 变为14﹣4=10,由a>b,则a 变为10﹣4=6,由a>b,则a 变为6﹣4=2,由a<b,则b 变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大,利用三棱锥O﹣ABC 体积的最大值为36,求出半径,即可求出球O 的表面积.【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大,设球O 的半径为R ,此时V O ﹣ABC=V C ﹣AOB===36,故R=6,则球O 的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大是关键.10.(5 分)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A,B 两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P 在CD 边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2 ,当P 在AD 边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5 分)已知A,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,顶角为120°,则E 的离心率为()A.B.2 C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M 在双曲线﹣=1 的左支上,由题意可得M 的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M 在双曲线﹣=1 的左支上,且MA=AB=2a,∠MAB=120°,则M 的坐标为(﹣2a,a),代入双曲线方程可得,-=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M 的坐标是解题的关键.12.(5 分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0 时,xf′(x)﹣f(x)<0,则使得f(x)>0 成立的x 的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0 时总有xf(′x)﹣f(x)<0 成立,可判断函数g(x)= 为减函数,由已知f(x)是定义在R 上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0 等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0 时总有xf′(x)<f(x)成立,即当x>0 时,g′(x)恒小于0,∴当x>0 时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1 或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)= ,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5 分)若x,y 满足约束条件,则z=x+y 的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过 D 点时,z 最大,由得D(1,),所以z=x+y 的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5 分)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=3 .【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x 分别赋值1,﹣1,可得两个等式,两式相减,再除以2 得到答案.【解答】解:设 f (x )=(a +x )(1+x )4=a 0+a 1x +a 2x 2+…+a 5x 5,令 x=1,则 a 0+a 1+a 2+…+a 5=f (1)=16(a +1),① 令 x=﹣1,则 a 0﹣a 1+a 2﹣…﹣a 5=f (﹣1)=0.② ①﹣②得,2(a 1+a 3+a 5)=16(a +1),所以 2×32=16(a +1), 所以 a=3. 故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5 分)设数列{a n}的前 n 项和为 Sn,且a1=﹣1,a【考点】8H :数列递推式. 【专题】54:等差数列与等比数列. 【分析】通过 S n +1﹣S n =a n +1 可知 S n +1﹣S n =S n +1S n ,两边同时除以 S n +1S n 可知﹣ =1,进而可知数列{}是以首项、公差均为﹣1 的等差数列,计算即得结论. 【解答】解:∵a n +1=S n +1S n , ∴S n +1﹣S n =S n +1S n , ∴﹣=1, 又∵a 1=﹣1,即=﹣1, ∴数列{}是以首项是﹣1、公差为﹣1 的等差数列, ∴=﹣n , ∴S n =﹣, 故答案为:﹣. 【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5 小题,满分60 分)17.(12 分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2 倍.(1)求;(2)若AD=1,DC=,求BD 和AC 的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A 作AE⊥BC 于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC 及正弦定理可得sin ∠B= ,sin ∠ C=,从而得解.(2)由(1)可求BD=.过D 作DM⊥AB 于M,作DN⊥AC 于N,由AD 平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD 和AC 的长.【解答】解:(1)如图,过A 作AE⊥BC 于E,∵= =2∴BD=2DC,∵AD 平分∠BAC∴∠BAD=∠DAC在△ABD 中,=,∴sin∠B=在△ADC 中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D 作DM⊥AB 于M,作DN⊥AC 于N,∵AD 平分∠BAC,∴DM=DN,∴= =2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD 的长为,AC 的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12 分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70 分70 分到89 分不低于90 分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意评分的平均值高于B 地区用户满意评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散;(2)记C A1 表示事件“A地区用户满意度等级为满意或非常满意”,记C A2 表示事件“A 地区用户满意度等级为非常满意”,记C B1 表示事件“B地区用户满意度等级为不满意”,记C B2 表示事件“B 地区用户满意度等级为满意”,则C A1 与C B1 独立,C A2 与C B2 独立,C B1 与C B2 互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12 分)如图,长方体ABCD﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1 上,A1E=D1F=4,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1 为x,y,z 轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F 几点的坐标.设平面EFGH 的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF 与平面EFGH 所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH 如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1 所在直线为x,y,z 轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH 的法向量,则:,取z=3,则;若设直线AF 和平面EFGH 所成的角为θ,则:sinθ==;∴直线AF 与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12 分)已知椭圆C:9x2+y2=m2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M (x M,y M),将y=kx+b 代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2= ,则x M== ,y M=kx M+b=,于是直线OM 的斜率k OM== ,即k OM•k=﹣9,∴直线OM 的斜率与l 的斜率的乘积为定值.(2)四边形OAPB 能为平行四边形.∵直线l 过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y= x,设P 的横坐标为x P,由得,即x P= ,将点(,m)的坐标代入l 的方程得b=,即l 的方程为y=kx+,将y= x,代入y=kx+,得kx+= x解得x M=,四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l 的斜率为4﹣或4+时,四边形OAPB 能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12 分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m 的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0 说明函数为增函数,利用f′(x)≤0 说明函数为减函数.注意参数m 的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m 的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0 处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1 的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0 时,g′(t)<0;当t>0 时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1 时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1 时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m 的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10 分)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G,且与AB,AC 分别相切于E,F 两点.(1)证明:EF∥BC;(2)若AG 等于⊙O 的半径,且AE=MN=2,求四边形EBCF 的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD 是∠CAB 的角平分线及圆O 分别与AB、AC 相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD 是EF 的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC 为等腰三角形,AD⊥BC,∴AD 是∠CAB 的角平分线,又∵圆O 分别与AB、AC 相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD 是EF 的垂直平分线,又∵EF 为圆O 的弦,∴O 在AD 上,连结OE、OM,则OE⊥AE,由AG 等于圆O 的半径可得AO=2OE,∴∠OAE=30°,∴△ABC 与△AEF 都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN= ,∴OD=1,∴AD=5,AB=,∴四边形EBCF 的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C1:(t 为参数,t≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2 与C3 交点的直角坐标;(2)若C1 与C2 相交于点A,C1 与C3 相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3 交点的直角坐标.(2)由曲线C1 的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠ 0),利用|AB|= 即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2 与C3 交点的直角坐标为(0,0),.(2)曲线C1:(t 为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B 都在C1 上,∴A(2sinα,α),B.∴|AB|= =4 ,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d 均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d 均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d 均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年江苏省高考数学试卷答案与解析
2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题: 概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题: 图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m ﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点: 指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题: 三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和"可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和"方法、“裂项求和"方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题: 计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题: 综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x )与φ(x)=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g(x )|=1实根的个数为4. 故答案为:4. 点评:本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k •a k+1)的值为.考点:数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分析: 利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 解答解:=+:=++++=++ =++,∴(a k •a k+1)=+++++++…+++++++…+=+0+0 =.故答案为:9.点评: 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤) 15.(14分)(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.考点: 余弦定理的应用;二倍角的正弦. 专题: 解三角形. 分析:(1)直接利用余弦定理求解即可. (2)利用正弦定理求出C 的正弦函数值,然后利用二倍角公式求解即可. 解答:解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB •ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB <BC ,∴C 为锐角, 则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点: 直线与平面平行的判定;直线与平面垂直的性质.专题: 证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2。
2015年高考数学一轮复习热点难点精讲精析:6.1不等式
张喜林制[选取日期]2015年高考一轮复习热点难点精讲精析:6.1不等式一、不等关系与不等式(一)应用不等式表示不等关系 ※相关链接※1、将实际的不等关系写成对应的不等式时,应注意实际问题中关键性的文字语言与对应的数学符号之间的正确转换,这关系到能否正确地用不等式表示出不等关系。
常见的文字语言与数学符号之间的转换关系如下表:2、注意区分“不等关系”和“不等式”的异同,不等关系强调的是关系,可用表示,不等式则是表现不等关系的式子,对于实际问题中的不等关系可以从“不超过”、“至少”、“至多”等关键词上去把握,并考虑到实际意义。
※例题解析※〖例〗某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车。
根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式。
思路解析:把握关键点,不超过1000万元,且A 、B 两种车型分别至少5辆、6辆,则不等关系不难表示,要注意取值范围。
解答:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则 ,.,,+≤+≤⎧⎧⎪⎪≥≥⎪⎪⎨⎨≥≥⎪⎪⎪⎪∈∈⎩⎩40x 90y 10004x 9y 100x 5x 5y 6y 6x y Nx y N(二)比较大小 ※相关链接※比较实数或代数式的大小的方法主要是作差法和作商法。
1、“作差法”的一般步骤是:(1)作差;(2)变形;(3)判断符号;(4)得出结论。
用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理化等方法。
常用的结论有,,等。
当两个式子都为正时,有时也可以先平方再作差。
2、作商法的一般步骤是:(1)作商;(2)变形;(3)判断商与1的大小;(4)得出结论。
注:当商与1的大小确定后必须对商式的分母的正负做出判断方可得出结论,如:,;3、特例法若是选择题还可以用特殊值法比较大小,若是解答题,也可以用特殊值法探路.※例题解析※〖例〗(1)(2012·南平模拟)若a 、b 是任意实数,且a >b ,则下列不等式成立的是( )()()()l ++-22a bb A a 1b 1B 1a11C g a b 0D 33()>()<()>()<(2)已知a 1,a 2∈(0,1),记M=a 1a 2,N=a 1+a 2-1,则M 与N 的大小关 系是( )(A )M <N (B )M >N ()M=N (D )不确定 (3)已知a >b >0,比较a a b b 与a b b a 的大小.【方法诠释】(1)运用特殊值验证即可.(2)可用作差法求 解.(3)利用作商法求解判断. 解析:(1)选D.令,=-1a 2b=-1,则A 、B 、均不成立,故选D. (2)选B.∵M-N=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1) =(a 1-1)(a 2-1) 又a 1,a 2∈(0,1),故(a 1-1)(a 2-1)>0,故M >N.(3)∵()---==a b a b a bb a a b a b a a a b b b,又a >b >0,故,a1b>a-b >0,∴(),-a ba 1b>即,a b b a a b 1a b >又a b b a >0,∴a a b b >a b b a ,∴a a b b 与a b b a 的大小关系为:a a b b >a b b a .(三)不等式性质的应用〖例〗(1)(2011·浙江高考)若a 、b 为实数,则“0<ab <1”是“11a b b a<或>”的( ) (A)充分而不必要条件 (B)必要而不充分条件 ()充分必要条件 (D)既不充分也不必要条件(2)已知函数f(x)=ax 2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求 f(-2)的取值范围.【方法诠释】(1)利用不等式的基本性质进行判断.(2)利用待定系数法寻找f(-2)与f(-1),f(1)之间的关系,即用f(-1),f(1)整体表示f(-2),再利用不等式的性质求f(-2)的取值范围.解析:(1)选A.0<ab <1可分为两种情况:当a >0,b >0时,由0<ab <1两边同除以b 可得;1a b<当a <0,b <0时,两边同除以a 可得.1b a >∴“0<ab <1”是“11a b b a<或>”的充分条件,反之,当11a b b a <或>时,可能有ab <0,∴“0<ab <1”是“11a b b a<或>”的不必要条件,故应为充分不必要条件.(2)方法一:设f(-2)=mf(-1)+nf(1)(m 、n 为待定系数),则4a-2b=m(a-b)+n(a+b). 即4a-2b=(m+n)a+(n-m)b. 于是得+==⎧⎧⎨⎨-=-=⎩⎩m n 4m 3n m 2n 1,解得,∴f(-2)=3f(-1)+f(1). 又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10, 即5≤f(-2)≤10. 方法二:()()()()()(),,..⎧=-+⎪-=-⎧⎪⎪⎨⎨=+⎪⎪⎩=--⎪⎩1a f 1f 1f 1a b 21f 1a b b f 1f 12[]即[] ∴f(-2)=4a-2b=3f(-1)+f(1). 又∵1≤f(-1)≤2,2≤f(1)≤4, ∴5≤3f(-1)+f(1)≤10, 即5≤f(-2)≤10.(四)不等式的证明〖例〗已知a >0,b >0,且a +b =1 求证 (a +a 1)(b +b 1)≥425。
2015届高考数学总复习第六章 第二节一元二次不等式及其解法课件 理
由于x2-2x+1=(x-1)2≥0.
所以原不等式等价于
所以原不等式的解集为{x|-2≤x<1或1<x≤4} 点评:(1)解分式不等式的指导思想是将分式不等式转化为整 式不等式 , (2)解分式不等式或高次不等式常用穿根法.利用穿根法解不
等式时,分解因式后各因式中x的最高次项系数须为正.
变式探究
给定的区间上全部在x轴上方;恒小于0就是相应的二次函
数的图象在给定的区间上全部在x轴下方.
变式探究
4.已知f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a
恒成立,则a的取值范围是__________.
解析:由已知得x2-2ax+2-a≥0在x∈[-1,+∞)上恒成 立,令g(x)=x2-2ax+2-a, Δ>0, 2 即Δ=4a -4(2-a)≤0或a≤-1, 解得-3≤a≤1. g-1≥0, 答案:[-3,1]
-6<0,可以用一次函数的单调性求解.
解析:将f(x)<-m+5变为m(x2-x+1)-6<0,则命题 等价于m∈[-2,2]时,g(m)=m(x2-x+1)-6<0恒成立. ∵x2-x+1>0,∴g(m)在[-2,2]上单调递增, ∴只要g(2)=2(x2-x+1)-6<0, 即x2-x-2<0,解得-1<x<2. 答案:(-1,2)
第六章
第二节 一元二次不等式及其解法
解一元二次不等式
【例1】 解下列不等式:
(1)19x-3x2≥6; (2)0<x2-x-2≤4.
自主解答:
解析:(1)(法一)原不等式可化为3x2-19x+6≤0,
方程3x2-19x+6=0的解为x1=
,x2=6.
函数y=3x2-19x+6的图象开口向上且与x轴有两个交点
高考不等式涉及的知识点
高考不等式涉及的知识点高考数学中,不等式是一个重要的知识点,也是学生们需要掌握的基础内容之一。
在高考中,不等式题目通常出现在数学试卷的选择题和解答题中,涉及了许多重要的数学概念和思维方法。
本文将通过逐步的思考,介绍高考不等式涉及的主要知识点。
一、不等式的基本概念不等式是用不等号连接的两个数或两个算式,表示这两个数的大小关系。
不等式中的不等号可以是大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)。
例如,1+2<4表示1+2的值小于4。
二、不等式的解集对于一个不等式,我们需要找出使得不等式成立的所有数的集合,这个集合被称为不等式的解集。
例如,不等式2x-3>5的解集表示为{x|x>4},表示当x大于4时,不等式成立。
三、不等式的性质1.加减性质:如果不等式的两边都加上(或减去)同一个数,不等式的方向不变。
例如,对于不等式2x-3>5,如果两边同时加上3,得到2x>8,方向不变。
2.乘除性质:如果不等式两边都乘以(或除以)同一个正数,不等式的方向不变;如果乘以(或除以)同一个负数,不等式的方向改变。
例如,对于不等式2x-3>5,如果两边同时乘以2,得到4x-6>10,方向不变;如果两边同时乘以-1,得到-2x+3<-5,方向改变。
3.倒数性质:如果两边同时取倒数,不等式的方向改变。
例如,对于不等式2x-3>5,如果两边同时取倒数,得到1/(2x-3)<1/5,方向改变。
四、不等式的求解方法解不等式的方法主要有图像法、试探法和代数法。
1.图像法:将不等式转化为图像在直角坐标系中的表示,通过观察图像来确定不等式的解集。
例如,对于不等式x+2>0,可以绘制出直线y=-2,然后确定直线上的点对应的x值的范围,即为不等式的解集。
2.试探法:通过尝试不同的数值,来判断不等式的解集。
例如,对于不等式x^2-4<0,可以尝试x取不同的值,如x=0、x=1、x=-1等,来确定不等式的解集。
高考数学复习《集合》知识点
集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集.②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间) 则不等式)0)(0(0022110><>++++--a a x a xa x a n n n n的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;2原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
历年高三数学高考考点之集合必会题型及答案
历年高三数学高考考点之集合必会题型及答案体验高考1.(2015·重庆)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A答案 D解析由于2∈A,2∈B,3∈A,3∈B,1∈A,1∉B,故A,B,C均错,D是正确的,选D.2.(2015·福建)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B等于()A.{-1}B.{1}C.{1,-1}D.∅答案 C解析集合A={i,-1,1,-i},B={1,-1},A∩B={1,-1},故选C.3.(2016·山东)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B等于()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)答案 C解析A={y|y>0},B={x|-1<x<1},则A∪B=(-1,+∞),故选C.4.(2015·四川)设集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},则A∪B等于()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}答案 A解析∵A={x|-1<x<2},B={x|1<x<3},∴A∪B={x|-1<x<3}.5.(2016·北京)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B等于()A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}答案 C解析由A={x|-2<x<2},得A∩B={-1,0,1}.高考必会题型题型一单独命题独立考查常用的运算性质及重要结论:(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩(∁U A)=∅,A∪(∁U A)=U;(4)A∩B=A⇔A⊆B⇔A∪B=B.例1(1)(2015·广东)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N等于()A.∅B.{-1,-4}C.{0}D.{1,4}(2)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.答案(1)A(2)4解析(1)因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)(x-1)=0}={1,4},所以M∩N=∅,故选A.(2)由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由A⊆B,如图所示,则a>4,即c=4.点评(1)弄清集合中所含元素的性质是集合运算的关键,这主要看代表元素,即“|”前面的表述.(2)当集合之间的关系不易确定时,可借助Venn图或列举实例.变式训练1(1)(2015·浙江)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q等于()A.[0,1)B.(0,2]C.(1,2)D.[1,2]答案 C解析∵P={x|x≥2或x≤0},∁R P ={x |0<x <2},∴(∁R P )∩Q ={x |1<x <2},故选C.(2)已知集合A ={x |x 2-3x +2=0},B ={x |0≤ax +1≤3},若A ∪B =B ,求实数a 的取值范围.解 ∵A ={x |x 2-3x +2=0}={1,2},又∵B ={x |0≤ax +1≤3}={x |-1≤ax ≤2},∵A ∪B =B ,∴A ⊆B .①当a =0时,B =R ,满足题意.②当a >0时,B ={x |-1a ≤x ≤2a}, ∵A ⊆B ,∴2a≥2,解得0<a ≤1. ③当a <0时,B ={x |2a ≤x ≤-1a}, ∵A ⊆B ,∴-1a ≥2,解得-12≤a <0. 综上,实数a 的取值范围为⎣⎡⎦⎤-12,1. 题型二 集合与其他知识的综合考查集合常与不等式、向量、数列、解析几何等知识综合考查.集合运算的常用方法:(1)若已知集合是不等式的解集,用数轴求解;(2)若已知集合是点集,用数形结合法求解;(3)若已知集合是抽象集合,用Venn 图求解.例2 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a+b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A.1<r <R <3B.1<r <3≤RC.r ≤1<R <3D.1<r <3<R答案 A解析 ∵|a |=|b |=1,a ·b =0,又∵OQ →=2(a +b ),∴|OQ →|2=2(a +b )2=2(a 2+b 2+2a ·b )=4,∴点Q 在以原点为圆心,半径为2的圆上.又OP →=a cos θ+b sin θ,∴|OP →|2=a 2cos 2θ+b 2sin 2θ=cos 2θ+sin 2θ=1.∴曲线C 为单位圆.又∵Ω={P |0<r ≤|PQ →|≤R ,r <R },要使C ∩Ω为两段分离的曲线,如图,可知1<r <R <3,其中图中两段分离的曲线是指AB 与CD .故选A.点评 以集合为载体的问题,一定要弄清集合中的元素是什么,范围如何.对于点集,一般利用数形结合,画出图形,更便于直观形象地展示集合之间的关系,使复杂问题简单化. 变式训练2 函数f (x )=x 2+2x ,集合A ={(x ,y )|f (x )+f (y )≤2},B ={(x ,y )|f (x )≤f (y )},则由A ∩B 的元素构成的图形的面积是________.答案 2π解析 集合A ={(x ,y )|x 2+2x +y 2+2y ≤2},可得(x +1)2+(y +1)2≤4,集合B ={(x ,y )|x 2+2x ≤y 2+2y },可得(x -y )·(x +y +2)≤0.在平面直角坐标系上画出A ,B 表示的图形可知A ∩B 的元素构成的图形的面积为2π.题型三 与集合有关的创新题与集合有关的创新题目,主要以新定义的形式呈现,考查对集合含义的深层次理解,在新定义下求集合中的元素、确定元素个数、确定两集合的关系等.例3 设S 为复数集C 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b i|a ,b 为整数,i 为虚数单位}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集.其中的真命题是________.(写出所有真命题的序号)答案①②解析①正确,当a,b为整数时,对任意x,y∈S,x+y,x-y,xy的实部与虚部均为整数;②正确,当x=y时,0∈S;③错误,当S={0}时,是封闭集,但不是无限集;④错,设S ={0}⊆T,T={0,1},显然T不是封闭集,因此,真命题为①②.点评解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义,首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质,解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.变式训练3在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z,k=0,1,2,3,4}.给出如下四个结论:①2 016∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一类”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1B.2C.3D.4答案 C解析对于①:2 016=5×403+1,∴2 016∈[1],故①正确;对于②:-3=5×(-1)+2,∴-3∈[2],故②不正确;对于③:∵整数集Z被5除,所得余数共分为五类.∴Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;对于④:若整数a,b属于同一类,则a=5n1+k,b=5n2+k,∴a-b=5n1+k-(5n2+k)=5(n1-n2)=5n,∴a-b∈[0],若a-b=[0],则a-b=5n,即a=b+5n,故a与b被5除的余数为同一个数,∴a与b属于同一类,∴“整数a,b属于同一类”的充要条件是“a-b∈[0]”,故④正确,∴正确结论的个数是3.高考题型精练1.(2015·天津)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)等于()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A解析由题意知,∁U B={2,5,8},则A∩(∁U B)={2,5},选A.2.(2015·陕西)设集合M={x|x2=x},N={x|lg x≤0},则M∪N等于()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案 A解析由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.3.(2016·四川)集合A={x|-2≤x≤2},Z为整数集,则A∩Z中元素的个数是()A.3B.4C.5D.6答案 C解析由题意,A∩Z={-2,-1,0,1,2},故其中的元素个数为5,选C.4.设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图中阴影部分表示的区间是()A.[0,1]B.[-1,2]C.(-∞,-1)∪(2,+∞)D.(-∞,-1]∪[2,+∞)答案 C解析因为A={x|0≤x≤2}=[0,2],B={y|-1≤y≤1}=[-1,1],所以A∪B=[-1,2],所以∁R (A ∪B )=(-∞,-1)∪(2,+∞).5.已知集合A ={x |-1≤x ≤1},B ={x |x 2-2x <0},则A ∪(∁R B )等于( )A.[-1,0]B.[1,2]C.[0,1]D.(-∞,1]∪[2,+∞)答案 D解析 ∵A ={x |-1≤x ≤1},B ={x |x 2-2x <0}={x |0<x <2},∴∁R B =(-∞,0]∪[2,+∞),∴A ∪(∁R B )=(-∞,1]∪[2,+∞).6.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M ={-1,0,12,2,3}的所有非空子集中具有伙伴关系的集合的个数是( )A.1B.3C.7D.31答案 B解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},{12,2},{-1,12,2}. 7.在R 上定义运算⊗:x ⊗y =x 2-y ,若关于x 的不等式(x -a )⊗(x +1-a )>0的解集是集合{x |-2≤x ≤2}的子集,则实数a 的取值范围是( )A.-2≤a ≤2B.-1≤a ≤1C.-2≤a ≤1D.1≤a ≤2 答案 C解析 因为(x -a )⊗(x +1-a )>0,所以x -a 1+a -x>0, 即a <x <a +1,则a ≥-2且a +1≤2,即-2≤a ≤1.8.已知集合A ={x |x 2-2 017x +2 016<0},B ={x |log 2x <m },若A ⊆B ,则整数m 的最小值是( )A.0B.1C.11D.12答案 C解析 由x 2-2 017x +2 016<0,解得1<x <2 016,故A ={x |1<x <2 016}.由log 2x <m ,解得0<x <2m ,故B ={x |0<x <2m }.由A ⊆B ,可得2m ≥2 016,因为210=1 024,211=2 048,所以整数m 的最小值为11.9.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a j a i两数中至少有一个属于A ,则称集合A 为“权集”,则( ) A.{1,3,4}为“权集”B.{1,2,3,6}为“权集”C.“权集”中元素可以有0D.“权集”中一定有元素1答案 B解析 由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a j a i 需有意义,故不能有0,同时不一定有1,故C ,D 错误.10.已知a ,b 均为实数,设集合A ={x |a ≤x ≤a +45},B ={x |b -13≤x ≤b },且A ,B 都是集合{x |0≤x ≤1}的子集.如果把n -m 叫做集合{x |m ≤x ≤n }的“长度”,那么集合A ∩B 的“长度”的最小值是________.答案 215解析 ∵⎩⎪⎨⎪⎧ a ≥0,a +45≤1,∴0≤a ≤15, ∵⎩⎪⎨⎪⎧b -13≥0,b ≤1,∴13≤b ≤1,利用数轴分类讨论可得集合A ∩B 的“长度”的最小值为13-15=215. 11.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集,则S 4的所有奇子集的容量之和为________.答案 7解析 ∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,∴S 4的所有奇子集的容量之和为7.12.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.解 (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧ m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).。
2015高考数学专题十:不等式选讲(学生版含13、14年高考试题)
2015年高考数学专题十:不等式选讲(学生版含13、14年高考题)一、考纲要求:(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①|ax+b|≤|a|+|b|.②|a-b|≤|a-c|+|c-b|.③会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明。
①柯西不等式的向量形式:②③(此不等式通常称为平面三角不等式。
)(3)会用参数配方法讨论柯西不等式的一般情形:(4)会用向量递归方法讨论排序不等式。
(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。
(6)会用数学归纳法证明贝努利不等式(x>-1,x≠0,n为大于1的正整数),了解当n为大于1的实数时贝努利不等式也成立。
(7)会用上述不等式证明一些简单问题,能够利用平均值不等式,柯西不等式求一些特定函数的极值。
(8)了解证明不等式的基本方法:比较法,综合法,分析法,反证法,放缩法。
二、知识点整合:1. 含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a .(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值的几何意义求解. 2. 含有绝对值的不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |. 3. 柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号 成立.(2)若a i ,b i (i ∈N*)为实数,则(∑ni =1a 2i )(∑n i =1b 2i )≥(∑ni =1a ib i)2,当且仅当a 1b 1=a 2b 2=…=a n b n (当某b j=0时,认为a j =0,j =1,2,…,n )时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量共线时等号成立. 4. 不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.二、高考感悟1. (2013·重庆)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是____.2. (2013·江西)在实数范围内,不等式||x -2|-1|≤1的解集为________.3. (2013·陕西)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________.4. (2012·山东)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________.5. (2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2·⎝⎛⎭⎫1x 2+4y 2的最小值为________.6.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.7.[2014·湖南卷] 在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________.8. [2014·陕西卷]C.(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρ sin ⎝⎛⎭⎫θ-π6=1的距离是________.三、典型题型题型一 含绝对值的不等式的解法例1 (2013·课标全国Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围.变式训练1 已知函数f (x )=|x +1|+|x -2|-m .(1)当m =5时,求f (x )>0的解集;(2)若关于x 的不等式f (x )≥2的解集是R ,求m 的取值范围.题型二 不等式的证明例2 (2012·福建)已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c ∈R +,且1a +12b +13c =m ,求证:a +2b +3c ≥9.题型三 不等式的综合应用例3 (2012·辽宁)已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}.(1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围.变式训练3 已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.四、阅卷评析典例 (10分)设f (x )=|x |+2|x -a |(a >0).(1)当a =1时,解不等式f (x )≤8;(2)若f (x )≥6恒成立,求正实数a 的取值范围.五、小题冲关1. (2012·湖南)不等式|2x +1|-2|x -1|>0的解集为________.2. (2012·湖北改编)设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by +cz =20,则a +b +cx +y +z =________.3. 若a ,b ,c ∈(0,+∞),且a +b +c =1,则a +b +c 的最大值为________.4. 不等式|x +1||x +2|≥1的实数解为__________.5. 若不等式x +|x -1|≤a 有解,则实数a 的取值范围是______.6. 对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m ,则m 的值为________.六、专题限时规范训练一、填空题1. 不等式|x +3|-|x -2|≥3的解集为________.2. 设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y2+y ,则M 、N 的大小关系为__________.3. 对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 4. 若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________. 二、解答题5. 设不等式|2x -1|<1的解集为M .(1)求集合M ;(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.6. 若不等式⎪⎪⎪⎪x +1x >|a -2|+1对于一切非零实数x 均成立,求实数a 的取值范围.7. (2012·江苏)已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.8. 已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.9. 已知函数f (x )=|2x +1|+|2x -3|.(1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集非空,求实数a 的取值范围.七、13、14年高考试题汇编 一、填空题错误!未指定书签。
高考函数与不等式知识点
高考函数与不等式知识点高考中的函数与不等式知识点高考是中国学生人生中关键的一场考试,考生们需要通过高考来决定自己的未来发展方向。
其中,数学科目是高考的重点考察内容之一,而函数与不等式是数学中的重要知识点之一。
本文将探讨高考中的函数与不等式知识点,并对其应用和解题要点进行分析。
一、函数知识点函数是数学中的重要概念之一,它描述了不同变量之间的关系。
在高考中,函数的定义、性质和图像是常见考点。
1.1 函数的定义函数是一种特殊的关系,它以一组输入值(自变量)和相应的输出值(因变量)之间的对应关系来定义。
函数表示为f(x),其中x为自变量,f(x)为对应的因变量。
函数的定义域是所有自变量可能取值的集合,值域是对应的因变量可能取值的集合。
1.2 函数的性质函数的性质包括奇偶性、周期性、单调性等。
其中,奇偶性指的是函数关于原点的对称性,周期性指的是函数在一定区间内重复出现的性质,单调性指的是函数在定义域内的递增或递减的趋势。
1.3 函数的图像函数的图像是通过绘制函数在直角坐标系中的所有可能点得到的曲线或直线。
图像可以帮助我们直观地理解函数的性质和变化趋势。
二、不等式知识点不等式是数学中的另一个重要概念,它描述了变量之间的大小关系。
在高考中,不等式的解集、性质和应用是常见考点。
2.1 不等式的解集不等式的解集是满足不等式条件的所有可能解的集合。
解集可以是有限集合、无限集合或空集。
2.2 不等式的性质不等式的性质包括加减乘除法则、取绝对值法则和两边平方等。
这些性质可以帮助我们对不等式进行等价变换,从而得到更简洁的形式。
2.3 不等式的应用不等式的应用涉及到实际问题的建模和求解。
例如,利用不等式可以确定某个问题的最优解,或者评估一个系统的稳定性。
三、应用与解题要点高考中的函数与不等式不仅仅是理论知识,更需要学生掌握其应用和解题要点。
3.1 应用学生需要理解函数和不等式在实际问题中的应用,运用数学知识解决实际问题。
例如,可以通过分析函数图像来解释某个实际问题中的变化趋势。
2015年高考第一轮复习数学:6.6 不等式的应用
6.6 不等式的应用●知识梳理1.运用不等式求一些最值问题.用a +b ≥2ab 求最小值;用ab ≤(2b a +)2≤222b a +求最大值.2.某些函数的单调性的判定或证明也就是不等式的证明.3.求函数的定义域,往往直接归纳为解不等式(组).4.三角、数列、立体几何和解析几何中的最值都与不等式有密切联系.5.利用不等式可以解决一些实际应用题. ●点击双基1.已知函数f (x )=log 21(x 2-ax +3a )在[2,+∞)上是减函数,则实数a 的范围是A.(-∞,4]B.(-4,4]C.(0,12)D.(0,4]解析:∵f (x )=log 21(x 2-ax +3a )在[2,+∞)上是减函数, ∴u =x 2-ax +3a 在[2,+∞)上为增函数,且在[2,+∞)上恒大于0.∴⎪⎩⎪⎨⎧>+-≤.032422a a a, ∴-4<a ≤4. 答案:B2.把长为12 cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是A.233 cm 2B.4 cm 2C.32 cm 2D.23 cm 2解析:设两段长分别为x cm ,(12-x ) cm , 则S =43(3x)2+43(312x -)2=183(x 2-12x +72)=183[(x -6)2+36]≥23.答案:D3.(理)如果0<a <1,0<x ≤y <1,且log a x log a y =1,那么xy A.无最大值也无最小值 B.有最大值无最小值C.无最大值有最小值D.有最大值也有最小值解析:∵log a x +log a y ≥2y x a a log log =2, ∴log a xy ≥2. ∴0<xy ≤a 2. 答案:B(文)已知a >b >c >0,若P =a cb -,Q =bca -,则 A.P ≥Q B.P ≤Q C.P >QD.P <Q解析:特殊值检验.a =3,b =2,c =1.P =31,Q =1,P <Q . 答案:D4.已知实数x 、y 满足yx=x -y ,则x 的取值范围是_______. 解析:由yx=x -y ,得y 2-xy +x =0. ∵y ∈R ,∴Δ=x 2-4x ≥0.∴0≤x ≤4. ∵x =0时y =0不符合题意,∴0<x ≤4. 答案:0<x ≤45.已知不等式组⎪⎩⎪⎨⎧<+-<+-08603422x x x x ,的解集是不等式2x 2-9x +a <0的解集的子集,则实数a 的取值范围是____________.解析:由⎪⎩⎪⎨⎧<+-<+-,,08603422x x x x 得2<x <3.则⇒⎩⎨⎧≤≤0302)()(f f a ≤9. 答案:(-∞,9] ●典例剖析【例1】 函数y =122++x bax 的最大值为4,最小值为-1,求常数a 、b 的值.剖析:由于函数是分式函数,且定义域为R ,故可用判别式法求最值.解:由y =122++x bax 去分母整理得yx 2-2ax +y -b =0. ①对于①,有实根的条件是Δ≥0,即(-2a )2-4y (y -b )≥0. ∴y 2-by -a 2≤0.又-1≤y ≤4, ∴y 2-by -a 2=0的两根为-1和4. ∴⎩⎨⎧-=⨯-=+-.41412a b ,解得⎩⎨⎧==32b a ,或⎩⎨⎧=-=.32b a , 评述:这是关于函数最大值、最小值的逆向题.深化拓展 已知x 、y ∈R +且x 2+y8=1,求x +y 的最小值.本题不难求解(读者不妨求解).由本题的启发,你能解下列问题吗?已知a 、b 是正常数,a +b =10,又x 、y ∈R +, 且x a +yb=1,x +y 的最小值为18. 求a 、b 的值. 略解:x +y =(x +y )(y x 82+)=10+xy 2+y x8≥10+2y x x y 82⋅=18. 当且仅当yxx y 82=时取等号. 由⎪⎩⎪⎨⎧==+224182x y y x ,解得⎩⎨⎧==.126y x ,∴当x =6,y =12时,x +y 的最小值为18.同上题,x +y =(x +y )(x a +yb)=a +b +y bx x ay +≥a +b +2ab . 由⎪⎩⎪⎨⎧=+=++,,10182b a ab b a 得⎩⎨⎧==,,82b a 或⎩⎨⎧==.28b a ,【例2】 已知a >0,求函数y =ax a x +++221的最小值.解:y =a x +2+ax +21,当0<a ≤1时,y =a x +2+ax +21≥2,当且仅当x =±a -1时取等号,y min =2. 当a >1时,令t =a x +2(t ≥a ).y =f (t )=t +t 1.f '(t )=1-21t>0.∴f (t )在[a ,+∞)上为增函数. ∴y ≥f (a )=aa 1+,等号当t =a 即x =0时成立,y min =aa 1+.综上,0<a ≤1时,y min =2;a >1时,y min =aa 1+.【例3】 已知函数f (x )=ax 2+bx +c (a >0且bc ≠0).(1)若| f (0)|=| f (1)|=| f (-1)|=1,试求f (x )的解析式; (2)令g (x )=2ax +b ,若g (1)=0,又f (x )的图象在x 轴上截得的弦的长度为l ,且0<l ≤2,试确定c -b 的符号.解:(1)由已知| f (1)|=| f (-1)|,有|a +b +c |=|a -b +c |,(a +b +c )2=(a -b +c )2,可得4b (a +c )=0.∵bc ≠0,∴b ≠0.∴a +c =0. 又由a >0有c <0.∵|c |=1,于是c =-1,则a =1,|b |=1. ∴f (x )=x 2±x -1.(2)g (x )=2ax +b ,由g (1)=0有2a +b =0,b <0. 设方程f (x )=0的两根为x 1、x 2.∴x 1+x 2=-a b =2,x 1x 2=ac . 则|x 1-x 2|=212214x x x x -+)(=ac44-. 由已知0<|x 1-x 2|≤2,∴0≤ac<1. 又∵a >0,bc ≠0,∴c >0.∴c -b >0. ●闯关训练 夯实基础1.已知方程sin 2x -4sin x +1-a =0有解,则实数a 的取值范围是 A.[-3,6] B.[-2,6] C.[-3,2] D.[-2,2]解析:∵a =(sin x -2)2-3,|sin x |≤1, ∴-2≤a ≤6. 答案:B2.当x ∈[-1,2]时,不等式a ≥x 2-2x -1恒成立,则实数a 的取值范围是A.a ≥2B.a ≥1C.a ≥0D.a ≥-2解析:当x ∈[-1,2]时,x 2-2x -1=(x -1)2-2∈[-2,2].∵a ≥x 2-2x -1恒成立,∴a ≥2. 答案:A3.b g 糖水中有a g 糖(b >a >0),若再添m g 糖(m >0),则糖水变甜了.试根据这一事实,提炼出一个不等式____________.解析:b a <mb m a ++. 答案:b a <mb m a ++ 4.若a >0,b >0,ab ≥1+a +b ,则a +b 的最小值为____________.解析:1+a +b ≤ab ≤(2b a +)2, ∴(a +b )2-4(a +b )-4≥0. ∴a +b ≤2244-或a +b ≥2244+. ∵a >0,b >0,∴a +b ≥2+22. 答案:2+225.已知正数x 、y 满足x +2y =1,求x 1+y1的最小值. 解:∵x 、y 为正数,且x +2y =1,∴x 1+y 1=(x +2y )(x 1+y 1) =3+x y 2+yx≥3+22, 当且仅当x y 2=yx,即当x =2-1,y =1-22时等号成立.∴x 1+y1的最小值为3+22. 6.(2004年春季上海)已知实数p 满足不等式212++x x <0,试判断方程z 2-2z +5-p 2=0有无实根,并给出证明.解:由212++x x <0,解得-2<x <-21.∴-2<p <-21. ∴方程z 2-2z +5-p 2=0的判别式Δ=4(p 2-4). ∵-2<p <-21,41<p 2<4, ∴Δ<0.由此得方程z 2-2z +5-p 2=0无实根. 培养能力7.(2003年全国)已知c >0,设P :函数y =c x 在R 上单调递减,Q :不等式x +|x -2c |>1的解集为R .如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数y =c x 在R 上单调递减⇔0<c <1.不等式x +|x -2c |>1的解集为R ⇔函数y =x +|x -2c |在R 上恒大于1.∵x +|x -2c |=⎩⎨⎧>≥-,,c x cc x cx 22222 ∴函数y =x +|x -2c |在R 上的最小值为2c . ∴不等式x +|x -2c |>1的解集为R ⇔2c >1⇔c >21. 如果P 正确,且Q 不正确,则0<c ≤21. 如果P 不正确,且Q 正确,则c ≥1.∴c 的取值范围为(0,21]∪[1,+∞). 8.已知函数f (x )=x 2+bx +c (b 、c ∈R )且当x ≤1时,f (x )≥0,当1≤x ≤3时,f (x )≤0恒成立.(1)求b 、c 之间的关系式;(2)当c ≥3时,是否存在实数m 使得g (x )=f (x )-m 2x 在区间(0,+∞)上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.解:(1)由已知f (1)≥0与f (1)≤0同时成立,则必有f (1)=0,故b +c +1=0.(2)假设存在实数m ,使满足题设的g (x )存在.∵g (x )=f (x )-m 2x =x 2+(b -m 2)x +c 开口向上,且在[22bm -,+∞)上单调递增,∴22b m -≤0.∴b ≥m 2≥0.∵c ≥3,∴b =-(c +1)≤-4.这与上式矛盾,从而能满足题设的实数m 不存在. 探究创新9.有点难度哟! 已知a >b >0,求a 2+)(b a b -16的最小值.解:∵b (a -b )≤(2b a b -+)2=42a ,∴a 2+)(b a b -16≥a 2+264a ≥16.当且仅当⎩⎨⎧=-=82a b a b ,,即⎪⎩⎪⎨⎧==222b a ,时取等号.深化拓展a >b >0,求b (a -b )·216a 的最大值.提示:b (a -b )≤42a .答案:4●思悟小结1.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题.2.建立不等式的主要途径有:(1)利用问题的几何意义;(2)利用判别式;(3)利用函数的有界性;(4)利用函数的单调性.3.解不等式应用问题的三个步骤: (1)审题,必要时画出示意图; (2)建立不等式模型,即根据题意找出常量与变量的不等关系; (3)利用不等式的有关知识解题,即将数学模型转化为数学符号或图形符号.4.利用重要不等式求最值时,要注意条件:一正、二定、三相等,即在x +y ≥2xy 中,x 和y 要大于零,要有定积或定和出现;同时要求“等号”成立.5.化归思想在本节占有重要位置,等式和不等式之间的转化、不等式和不等式之间的转化、函数与不等式之间的转化等,对于这些转化,一定要注意条件.●教师下载中心 教学点睛1.应用不等式解决数学问题时,关键在于要善于把等量关系转化为不等量关系,以及不等关系的转化等,把问题转化为不等式的问题求解.2.应用不等式解决应用问题时,应先弄清题意,根据题意列出不等式或函数式,再利用不等式的知识求解.3.与不等式相关联的知识较多,如函数与不等式、方程与不等式、数列与不等式、解析几何与不等式,要善于寻找它们之间的联系,从而达到综合应用的目的.拓展例题 【例1】 (2003年福建质量检测题)已知函数f (x )=|log 2(x +1)|,实数m 、n 在其定义域内,且m <n ,f (m )=f (n ).求证:(1)m +n >0;(2)f (m 2)<f (m +n )<f (n 2). (1)证法一:由f (m )=f (n ),得|log 2(m +1)|=|log 2(n +1)|,即log 2(m +1)=±log 2(n +1),log 2(m +1)=log 2(n +1), ①或log 2(m +1)=log 211+n .②由①得m +1=n +1,与m <n 矛盾,舍去. 由②得m +1=11+n ,即(m +1)(n +1)=1.③∴m +1<1<n +1.∴m <0<n .∴mn <0. 由③得mn +m +n =0,m +n =-mn >0. 证法二:(同证法一得)(m +1)(n +1)=1.∵0<m +1<n +1,∴211)()(+++n m >))((11++n m =1.∴m +n +2>2.∴m +n >0.(2)证明:当x >0时,f (x )=|log 2(x +1)|=log 2(x +1)在(0,+∞)上为增函数.由(1)知m 2-(m +n )=m 2+mn =m (m +n ),且m <0,m +n >0,∴m (m +n )<0.∴m 2-(m +n )<0,0<m 2<m +n . ∴f (m 2)<f (m +n ). 同理,(m +n )-n 2=-mn -n 2=-n (m +n )<0, ∴0<m +n <n 2.∴f (m +n )<f (n 2). ∴f (m 2)<f (m +n )<f (n 2).【例2】 求证:对任意x 、y ∈R ,都有497721++x x ≤5-3y +21y 2,并说明等号何时成立.证明:72x +49≥2·7x ·7=2·7x +1,∴497721++x x ≤21. 又∵5-3y +21y 2=21(y -3)2+21≥21,∴497721++x x ≤5-3y +21y 2.当且仅当x =1,y =3时取等号.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 集合的表示法:列举法、描述法、图形表示法.2.集合元素的特征:确定性、互异性、无序性.3.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.( ) ①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 主要性质和运算律 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0. 基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。
(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题) ①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。
若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。
8. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则. 解:逆否:②,且21≠≠y x 3≠+y x . 解:逆否:21≠≠∴y x 且 条件.⑵小范围推出大范围;大范围推不出小范围. 例:若255 x x x 或,⇒.(二) 1.不等式的基本性质及推论:(1)如果a b >,那么b a <,如果b a <,那么a b >.(对称性)即:a b >⇒b a <;b a <⇒a b >。
(2)如果a b >,且b c >,那么a c >.(传递性) 即a b >,b c >⇒a c >。
(3)如果a b >,那么a c b c +>+. 即a b a c b c >⇒+>+。
(4)如果a b >,且c d >,那么a c b d +>+.(相加法则) 即a b >,c d >⇒a c b d +>+ (5)如果a b >,且0c >,那么ac bc >; 如果a b >,且0c <,那么ac bc < (6)如果a b 0c d 0ac bd >>>>>,且,那么.(相乘法则) (7)若0,(1)nna b a b n N n >>>∈>则且(8)若0,1)a b n N n >>>∈>且1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:__________.(2)等号成立的条件:当且仅当______时取等号. 2.几个重要的不等式.常用变形 (1)a 2+b 2≥______ (a ,b ∈R ). (2)b a +ab≥____(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)⎝⎛⎭⎫a +b 22____a 2+b 22.3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为__________,几何平均数为________,基本不等式可叙述为:____________________________________. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当______时,x +y 有最____值是______(简记:积定和最小).(2)如果和x +y 是定值p ,那么当且仅当______时,xy 有最____值是________(简记:和定积最大).(1)几个重要的不等式:设a 、b 是两个正数,则2a b+称为正数a 、b a 、b 的几何平均数.均值不等式定理: 若0a >,0b >,则a b +≥,即2a b+≥. 常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.极值定理:设x 、y 都为正数,则有①若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .②若xy p =(积为定值),则当x y =时,和x y +取得最小值.例1、若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+的最小值为 . 变式1:若正数y x ,满足211=+yx ,则y x z 2+=的最小值为 变式2:若正数y x ,满足082=-+xy y x ,则y x z +=的最小值为变式3:已知b a ,是给定的正数,则2222sin cos a b z αα=+的最小值为变式4:1()()9ax y x y++≥对任意正实数x ,y 恒成立,则正实数a 的最小值为 . 例2、若正数,a b 满足条件3ab a b =++,则ab 的取值范围是 。
变式:条件不变,求a +b 的取值范围.例3、(1)已知x >0,y >0,lg x +lg y =1,求25z x y=+的最小值. (2)已知x <54,求函数y =4x -2+145x -的最大值.变式1:已知x >0,y >0,且x +y =1,则1yy x+的最小值是________.变式2:若x <3,求f (x )=43x -+x 的最大值.2.绝对值三角不等式定理1:如果a,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.定理2:如果a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.若关于x 的不等式|x-2|+|x-a|≥a 在R 上恒成立,则a 的最大值是( ) A.0 B.1 C.-1 D.2【典例1】 (2009·上海)某地街道呈现东—西、南—北向的风格状,相邻街距都为1.两街道相交的点称为格点,若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间路程的和最短.类型二 含绝对值不等式的解法(1)解绝对值不等式的关键是去掉绝对值符号.其方法主要有:利用绝对值的意义;利用公式;平方、分区间讨论等.(2)利用平方法去绝对值符号时,应注意不等式两边非负才可进行. (3)零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.【典例】 解不等式:|2x+1|-|x-4|<2.【典例】 设函数f(x)=|2x+1|-|x-4|. (1)解不等式f(x)>2;(2)求函数y=f(x)的最小值.不等式的证明方法:①比较法:作差作商后的式子变形,判断正负或与1比较大小。
②综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立的证明方法。
逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒思维特点:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论。