2015年高考数学知识点之集合不等式解读

2015年高考数学知识点之集合不等式解读
2015年高考数学知识点之集合不等式解读

集合

1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.

集合的表示法:列举法、描述法、图形表示法.

2.集合元素的特征:确定性、互异性、无序性.

3.集合的性质:

①任何一个集合是它本身的子集,记为A A ?;

②空集是任何集合的子集,记为A ?φ;

③空集是任何非空集合的真子集;

如果B A ?,同时A B ?,那么A = B.

如果C A C B B A ???,那么,.

[注]:已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.( )

①对方程组解的集合应是点集.

例: ?

??=-=+1323y x y x 解的集合{(2,1)}. ②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =?)

4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.

集合运算:交、并、补.

{|,}

{|}{,}

A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?U 交:且并:或补:且C

主要性质和运算律

包含关系:,,,,

,;,;,.

U A A A A U A U A B B C A C A B A A B B A B A A B B ?Φ???????????C 等价关系:U A B A

B A A B B A B U ??=?=?=

C 集合的运算律:

交换律:.;A B B A A B B A ==

结合律:)()();()(C B A C B A C B A C B A ==

分配律:.)()()();()()(C A B A C B A C A B A C B A ==

0-1律:,,,A A A U A A U A U Φ=ΦΦ===

等幂律:.,A A A A A A ==

求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U

反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )

有限集的元素个数

定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0. 基本公式:

(1)()()()()

(2)()()()()

()()()()

card A B card A card B card A B card A B C card A card B card C card A B card B C card C

A card A

B

C =+-=++---+ (3) card ( U A )= card(U)- card(A)

【易错点1】忽视空集是任何非空集合的子集导致思维不全面。

例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集

合的子集有多少个?

【知识点归类点拔】(1)在应用条件A ∪B =B?A ∩B =A?AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.

原命题:若P 则q ; 逆命题:若q 则p ;

否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

(1)交换原命题的条件和结论,所得的命题是逆命题;

(2)同时否定原命题的条件和结论,所得的命题是否命题;

(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.

5、四种命题之间的相互关系:

一个命题的真假与其他三个命题的真假有如下三条关系:(原命题?逆否命题)

①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q.

7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

8. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题.

②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题.

例:①若325≠≠≠+b a b a 或,则.

解:逆否:

②,且21≠≠y x 3≠+y x .

解:逆否:

21≠≠∴y x 且 条件.

⑵小范围推出大范围;大范围推不出小范围.

例:若255 x x x 或,?.

(二) 1.不等式的基本性质及推论:

(1)如果a b >,那么b a <,如果b a <,那么a b >.

(对称性)即:a b >?b a <;b a

(2)如果a b >,且b c >,那么a c >.

(传递性) 即a b >,b c >?a c >。

(3)如果a b >,那么a c b c +>+. 即a b a c b c >?+>+。

(4)如果a b >,且c d >,那么a c b d +>+.

(相加法则) 即a b >,c d >?a c b d +>+

(5)如果a b >,且0c >,那么ac bc >;

如果a b >,且0c <,那么ac bc <

(6)如果a b 0c d 0ac bd >>>>>,且,那么.(相乘法则)

(7)若0,(1)n n

a b a b n N n >>>∈>则且

(8)若0,1)a b n N n >>>∈>且

1.基本不等式ab ≤a +b 2

(1)基本不等式成立的条件:__________.

(2)等号成立的条件:当且仅当______时取等号.

2.几个重要的不等式.常用变形

(1)a 2+b 2≥______ (a ,b ∈R ).

(2)b a +a b

≥____(a ,b 同号). (3)ab ≤????a +b 22 (a ,b ∈R ).

(4)????a +b 22____a 2+b 22.

3.算术平均数与几何平均数

设a >0,b >0,则a ,b 的算术平均数为__________,几何平均数为________,基本不等式可叙述为:____________________________________.

4.利用基本不等式求最值问题

已知x >0,y >0,则

(1)如果积xy 是定值p ,那么当且仅当______时,x +y 有最____值是______(简记:积定和最小).

(2)如果和x +y 是定值p ,那么当且仅当______时,xy 有最____值是________(简记:和定积最大).

(1)几个重要的不等式:

设a 、b 是两个正数,则

2a b +称为正数a 、b a 、b 的几何平均数.

均值不等式定理: 若0a >,0b >,则a b +≥,即2

a b +≥. 常用的基本不等式:①()22

2,a b ab a b R +≥∈;②()22

,2a b ab a b R +≤∈; ③()20,02a b ab a b +??≤>> ???;④()2

22,22a b a b a b R ++??≥∈ ???

. 极值定理:设x 、y 都为正数,则有 ①若x y s +=(和为定值),则当x y =时,积xy 取得最大值2

4

s .

②若xy p =(积为定值),则当x y =时,和x y +取得最小值.

例1、若直线220(,0)ax by a b +-=>始终平分圆22

4280x y x y +---=的周长,则12a b

+的最小值为 . 变式1:若正数y x ,满足211=+y

x ,则y x z 2+=的最小值为 变式2:若正数y x ,满足082=-+xy y x ,则y x z +=的最小值为

变式3:已知b a ,是给定的正数,则22

22sin cos a b z αα

=+的最小值为

变式4:1()()9a x y x y

++≥对任意正实数x ,y 恒成立,则正实数a 的最小值为 . 例2、若正数,a b 满足条件3ab a b =++,则ab 的取值范围是 。

变式:条件不变,求a +b 的取值范围.

例3、(1)已知x >0,y >0,lg x +lg y =1,求25z x y =+的最小值.

(2)已知x <54,求函数y =4x -2+145

x -的最大值.

变式1:已知x >0,y >0,且x +y =1,则

1y y x +的最小值是________.

变式2:若x <3,求f (x )=43

x -+x 的最大值.

2.绝对值三角不等式

定理1:如果a,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.

定理2:如果a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.

2.若关于x 的不等式|x-2|+|x-a|≥a 在R 上恒成立,则a 的最大值是( )

A.0

B.1

C.-1

D.2

【典例1】 (2009·上海)某地街道呈现东—西?南—北向的风格状,相邻街距都为1.两街道相交的点称为格点,若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点.请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间路程的和最短.

类型二 含绝对值不等式的解法

(1)解绝对值不等式的关键是去掉绝对值符号.其方法主要有:利用绝对值的意义;利用公式;平方?分区间讨论等.

(2)利用平方法去绝对值符号时,应注意不等式两边非负才可进行.

(3)零点分段法解绝对值不等式的步骤:

①求零点;②划区间?去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.

【典例】 解不等式:|2x+1|-|x-4|<2.

【典例】 设函数f(x)=|2x+1|-|x-4|.

(1)解不等式f(x)>2;

(2)求函数y=f(x)的最小值.

不等式的证明方法:

①比较法:作差作商后的式子变形,判断正负或与1比较大小。

②综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立的证明方法。

逻辑关系是:12n A B B B B ?????

思维特点:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出

结论。

③分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立。

逻辑关系是:12n B B B B A ?????

思维特点:执果索因,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法。

④反证法:正难则反。先假定要证不等式的反面成立,然后推出与已知条件(或已知真命题或定理、公理、定义)矛盾的结论,从而断定反证假定错误,因而要证不等式成立。 ⑤放缩法:将不等式一侧适当的放大或缩小来证明不等式成立。

常用的放缩方法有: 添加或舍去一些项,如:a a >+12;n n n >+)1(;

将分子或分母放大(或缩小); 利用基本不等式,如:4lg 16lg 15lg )2

5lg 3lg (5lg 3log 2=<=+

)1()1(++<+n n n n ; 利用常用结论:k k k k k 21

11

1<++=-+;

k k k k k

111)1(112--=-< ; 1

11)1(112+-=+>k k k k k (程度大) )1

111(21)1)(1(111122+--=+-=-

⑦构造法:过构造函数、方程、数列、向量或不等式来证明不等式;

⑧数学归纳法:数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

1.整式不等式的解法

根轴法(零点分段法)

①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)

②求根,并在数轴上表示出来;

③由右上方穿线,经过数轴上表示各根的点(为什么?);

④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,

(完整版)不等式及其基本性质知识点复习及例题讲解

不等式的概念及其基本性质 一、知识点复习: 1. 用 不等号 连接起来的式子叫不等式;常见的不等号有“>,≥,<,≤,≠”。 2.不等式的基本性质: (1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 如果a b >,那么c b c a +>+,c b c a ->-; (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 如果)0(>>c b a ,那么ac bc >,a b c c >; (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 如果)0(<>c b a ,那么bc ac <, c b c a <; (4)如果a b >,那么b a <; (5)如果a b >,b c >,那么a c >。 二、经典题型分类讲解: 题型1:考察不等式的概念 1. (2017春金牛区校级月考)式子:①02>;②14≤+y x ;③03=+x ;④7-y ;⑤35.2>-m 。其中不等式有( ) A 、1个 B 、2个 C 、3个 D 、4个 题型2:考察不等式的性质 2.(2017连云港四模)已知b a >,下列关系式中一定正确的是( ) A 、22b a < B 、b a 22< C 、22+<+b a D 、b a -<- 3. 若0a b <<,则下列式子:12a b +<+ , 1a b > , a b ab +< , 11a b <,其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 4.下列说法不一定成立的是( ) A .若a b >,则a c b c +>+ B .若a c b c +>+,则a b > C .若a b >,则22ac bc > D .若22ac bc >,则a b >

不等式与不等式组知识点归纳

第九章 不等式与不等式组 一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。 2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。 3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。 4、解不等式:求不等式的解集的过程,叫做解不等式。 5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。 ????????????????????????????????与实际问题 组一元一次不等式法 一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321

(二、)不等式的基本性质 不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。 用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。 用字母表示为: 如果0,>>c b a ,那么bc ac >(或c b c a >);如果0,>c b a ,那么bc ac <(或c b c a <);如果0,<(或c b c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形 式。 (注:①传递性:若a >b ,b >c ,则a >c . ②利用不等式的基本性质可以解简单的不等式) (三、)一元一次不等式

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

不等式知识点详解

考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ §06. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

基本不等式学习知识梳理

基本不等式 【考纲要求】 1. 2 a b +≤ 的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 2. 2 a b +≤ 解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】 【考点梳理】 考点一:重要不等式及几何意义 1.重要不等式: 如果,R a b ∈,那么2 2 2a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式: 如果,a b 是正数,那么 2a b +≥(当且仅当a b =时取等号“=”). 要点诠释:22 2a b ab +≥ 和2 a b +≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;

(2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。 (3)2 2 2a b ab +≥可以变形为:222a b ab +≤,2a b ab +≥可以变形为:2()2 a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD . 易证~Rt ACD Rt DCB ??,那么2 CD CA CB =?,即CD ab = . 这个圆的半径为2b a +,它大于或等于CD ,即ab b a ≥+2 ,其中当且仅当点C 与圆心重合,即a b =时,等号成立. 要点诠释:1.在数学中,我们称 2 b a +为,a b 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 2.如果把 2 b a +看作是正数,a b 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项. 考点二:基本不等式2 a b ab +≤的证明 1. 几何面积法 如图,在正方形ABCD 中有四个全等的直角三角形。 设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形 的面积的和是2ab ,正方形ABCD 的面积为2 2 a b +。由于4个直角三角形的面积小于正方形的面积,所 以:22 2a b ab +≥。当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有2 2 2a b ab +=。

高中数学复习不等式知识点及主要题型_讲义含解答

不等式的基本知识 一、解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则 不等式的解的各种情况如下表: 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 00 2 >=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集)0(02>>++a c bx ax {}2 1 x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 2、标根法:其步骤是: 1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; 2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回; 3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3

3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0() ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 二、线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题: 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解: 满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域. 使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: 1)寻找线性约束条件,列出线性目标函数; 2)由二元一次不等式表示的平面区域做出可行域; 3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

不等式知识点不等式基础知识

不等式的知识要点 1.不等式的基本概念 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>> 0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))(0*2N n a n ∈≥(开方法则) 3.几个重要不等式 (1)非负式:0,0||,2≥≥∈a a R a 则若;.0,0≥≥a a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)二元均值不等式:如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 常用为:a b +≥a=b 时取等号),2()2 a b ab +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等. 不等式链:如果a ,b 都是正数,那么 2 112a b a b +≤+(当仅当a=b 时取等号) ,3 a b c a b c R +++∈(4)三元均值不等式:若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 4.几个著名不等式 (1)柯西不等式: 时取等号当且仅当(则 若n n n n n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ΛΛΛΛΛΛ332211223222122322212332211321321))(();,,,,,,,,

集合不等式知识点整理(答案)

1 集合不等式知识点整理 一. 集合及其表示法 1、我们把_能确切指定的一些对象的全体_叫做集合。集合中各个对象叫做__元素_,他们的特征是:①__确定性__②__互异性__③__无序性__. 2、数的集合简称数集,我们把常用的数集用特定的字母表示: 全体自然数的集合,记作_N _,不包括零的自然数组成的集合,记作_* N _; 全体整数组成的集合,记作_Z _; 全体有理数组成的集合,记作_Q _; 全体实数组成的集合,记作_R _. 正整数集,负整数集,正有理数集,负有理数集,正实数集,负实数集分别表示为_,,,,,Z Z Q Q R R +-+-+-_ 3、我们把含有有限个数的集合叫做__有限集_,含有无限个元素的集合叫做_无限集_. 我们引进空集,规定空集_不含有任何元素_,记作__ φ __. 4、集合的表示方法有:_列举法、描述法、文氏图_. 5、元素与集合之间应用__,∈?_ 二. 集合之间的关系 1、对于两个集合A 和B ,如果__A 中的任意元素也都是B 中的元素___,那么集合A 叫做集合B 的子集,记作_A B ?_,数学的表达式是_,x A x B ?∈∈__. 2、如果__A 是B 的子集,B 也是A 的子集__,那么叫做集合A 和集合B 相等,记作__A B =_ 【用来证明两个集合相等的方法】 3、对于两个集合,如果__A 是B 的子集且B 中至少有一个元素不属于A _,那么集合A 叫做集合B 的真子集,记作 A B ? ,数学的表达式是_,x A x B ?∈∈且,b B b A ?∈?_. 4、 数集*,,,,N N R Q Z 之间的关系是_*N N Z Q R ????_. 5、空集是任何集合的_子集__,是任何非空集合的_真子集__.【任何涉及到子集和真子集问题,要考虑空集!】 6、若集合是有限集,元素有n 个,则这个集合的子集有___2n _个,真子集有__21n -___

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

初中不等式知识点总结

初中不等式知识点总结 一、不等式的概念 1、不等式 用不等号表示不等关系的式子,叫做不等式。 2、不等式的解集 对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 求不等式的解集的过程,叫做解不等式。 二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 三、一元一次不等式 1、一元一次不等式的概念 一般地,不等式中只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。 2、一元一次不等式的.解法 一般步骤: (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)将 x 项的系数化为 1。 四、一元一次不等式组 1、一元一次不等式组的概念 几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 求不等式组的解集的过程,叫做解不等式组。 当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 2、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集。 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

第九章不等式与不等式组 一、目标与要求 1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 二、知识框架 三、重点 理解并掌握不等式的性质; 正确运用不等式的性质; 建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程; 寻找实际问题中的不等关系,建立数学模型; 一元一次不等式组的解集和解法。 四、难点 一元一次不等式组解集的理解; 弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式; 正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 五、知识点、概念总结 1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。 2.不等式分类:不等式分为严格不等式与非严格不等式。 一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。 3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 5.不等式解集的表示方法: (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3 (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形

不等式知识点整理

不等式知识点整理 一、不等关系: 1.实数的大小顺序与运算性质之间的关系: 0>-?>b a b a ; 0<-? (自反性) (2)c a c b b a >?>>, (传递性) (3)c b c a b a +>+?> (可加性) (4)bc ac c b a >?>>0,; bc ac c b a 0, (可乘性) (5)d b c a d c b a +>+?>>, (同向加法) (6)bd ac d c b a >?>>>>0,0; (同向乘法) (7)n n n n b a b a n N n b a >>?>∈>>,1,,0。 (同向乘方) 3.常用的基本不等式和重要的不等式 (1)0,0,2≥≥∈a a R a , 当且仅当0a =取“=”. (2)ab b a R b a 2,,22≥+∈则(当且仅当a b =时取“=”) (3)+∈R b a ,,则ab b a 2≥+(当且仅当a b =时取“=”) 注:2 a b +——集几何平均数. (4)222()22 a b a b ++≥(当且仅当a b =时取“=”) (5)2222()33 a b c a b c ++++≥(当且仅当a b c ==时取“=”) (6)22222()()()a b c d ac bd ++≥+(当且仅当a b c d =时取“=”)(柯西不等式) 4、最值定理:设,0,x y x y >+≥由 (1)如积xy P =为定值,则当且仅当x y =时x y +有最小值 (2)如和x y S +=为定值,则当且仅当x y =时x y ?有最大值2()2 S . 即:积定和最小,和定积最大. 注:运用最值定理求最值的三要素:一正二定三相等. 5.含绝对值的不等式性质: b a b a b a +≤±≤±(注意等号成立的情况). 二、不等式的证明方法 1.比较法 (1)作差比较法:作差——变形(通分、因式分解等)——判别符号; (2)作商比较法:作商——变形(化为幂的形式等)——与1比大小.(分母要为正的) 2.综合法——由因导果(由前面结论)

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

基本不等式知识点归纳

基本不等式知识点归纳 1基本不等式.ab空 2 (1) 基本不等式成立的条件: a . 0,b .0. (2) 等号成立的条件:当且仅当a =b时取等号. [探究]1.如何理解基本不等式中“当且仅当”的含义? 提示:①当a = b时,乞_卫_ ab取等号,即a = b= 皂卫hJ ab. 2 2 ②仅当a二b时,-—丄」ab取等号,即 -—=.-;:ab = a =b. 2 2 2?几个重要的不等式 2 2 b a a b 丄2ab(a,b R); 2(ab 0). a b 2 2 a + b 2 a +b 2 a +b ab 臥)(a,b R);( ) (a,b R) 2 2 2 3?算术平均数与几何平均数 设a 0,b 0,则a,b的算术平均数为』~卫,几何平均数为,ab,基本不等式可叙述为:两个正实数的算术 2 平均数不小于它的几何平均数. 4?利用基本不等式求最值问题 已知x 0, y - 0,则 (1) 如果积xy是定值p,那么当且仅当x=y时,x y有最小值是2「p.(简记:积定和最小). 2 (2) 如果和x y是定值p,,那么当且仅当x = y时,xy有最大值是—.(简记:和定积最大). [探究]2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 1 提示:当等号取不到时,可利用函数的单调性等知识来求解?例如,y=x 在x_2时的最小值,利用单调 x 5 性,易知X = 2时丫皿山二. 2 [自测?牛刀小试] 1.已知m?0, n ? 0,且mn =81,则m ? n的最小值为() A. 18 B. 36 C. 81 D . 243 解析:选 A 因为n>0, n>0,所以m+ n>2 mn= 2 81 = 18.

相关文档
最新文档